Journal of Machine Learning for Modeling and Computing, 5(2):73-111 (2024)

PREDICTING FLUID PARTICLE
TRAJECTORIES WITHOUT FLOW
COMPUTATIONS: A DATA-DRIVEN
APPROACH

Jianchen Wei,! Melissa A. Green,? Lixin Shen,! &
Minghao W. Rostami*>*

IDepartment of Mathematics, Syracuse University, 215 Carnegie Building,
Syracuse, New York 13244, USA

2 Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis,
Minnesota 55455, USA

3Department of Mathematics and Statistics, Binghamton University, PO Box
6000, Binghamton, New York 13902-6000, USA

*Address all correspondence to: Minghao W. Rostami, Department of Mathematics and
Statistics, Binghamton University, PO Box 6000, Binghamton, New York 13902-6000,
USA, E-mail: mrostami@binghamton.edu

Original Manuscript Submitted: 12/11/2023; Final Draft Received: 4/12/2024

The Lagrangian analysis of a fluid flow entails calculating the trajectories of fluid particles, which
are governed by an autonomous or non-autonomous dynamical system, depending on whether the
flow is steady or unsteady. In conventional methods, a particle’s position is incremented time step
by time step using a numerical solver for ordinary differential equations (ODEs), assuming that
the fluid velocity field is known analytically or can be acquired through either numerical simula-
tion or experimentation. In this work, we assume instead that the velocity field is unavailable but
abundant trajectory data are available. Leveraging the data processing power of deep neural net-
works, we construct data-driven models for the increment in particles” positions and simulate their
trajectories by applying such a model recursively. We develop a novel, more experiment-friendly
model for non-autonomous systems and compare it with two existing models: one developed for au-
tonomous systems only and one developed for non-autonomous systems with some knowledge of
the time-varying terms. Theoretical analysis is performed for all three that sheds a new light on the
existing models. Numerical results obtained for several benchmark problems confirm the validity of
these models for advancing fluid particles’ positions and reveal how their performance depends on
the structure of the neural network and physical features of the flow, such as vortices.

KEY WORDS: fluid particle trajectory, dynamical system, steady flow, unsteady flow,
data-driven model, deep neural network

2689-3967/24/$35.00 © 2024 by Begell House, Inc. www.begellhouse.com 73

74 Wei et al.

1. INTRODUCTION

In the analysis of fluid mechanic systems, there are two main frameworks: the Eulerian and the
Lagrangian. In the Eulerian, a flow field is specified by the evolution of fluid properties at specific
positions and times. In the Lagrangian, the dynamics are specified along trajectories of defined
fluid tracer points. At any time point, the position of each Lagrangian tracer is governed by a
system of ordinary differential equations (ODESs) that equates the instantaneous rate of change in
the particle’s position with the local fluid velocity. For a steady flow, the fluid velocity field does
not vary with time, resulting in an autonomous dynamical system, whereas an unsteady flow,
characterized by a time-varying fluid velocity field, gives rise to a non-autonomous system.

Conventional methods for simulating fluid particle trajectories apply a numerical ODE solver,
such as the forward Euler method or a Runge-Kutta method, to the system of ODEs to advance
a particle’s position time step by time step, requiring the resolution of the local fluid velocity at
every step. In applications where the fluid velocity field is not known analytically, resolving it
is the most computationally intensive component of fluid particle tracking. One approach is to
first use a system of partial differential equations (PDEs), such as the Navier-Stokes equations,
to model the fluid dynamics and then calculate the fluid velocity by solving this system of PDEs
numerically (Elman et al., 2014). It assumes that a sufficiently accurate model already exits or
can be derived from first principles and that a sufficiently accurate and computationally efficient
numerical method already exists or can be developed to simulate this model. Besides numeri-
cal simulation, the fluid velocity field can also be obtained through experimentation using flow
measurement techniques such as the particle image velocimetry (PIV) (Raffel et al., 2018).

In this work, we consider a completely different paradigm for tracking fluid particles, where
the fluid velocity field is unavailable but plenty of particle trajectory data are available instead.
This is common in the use of particle tracking velocimetry (PTV), an experimental technique
similar to PIV that can generate complete trajectories of individual particles (Schanz et al., 2016).
Lagrangian analysis of fluid trajectory dynamics is also of major interest in fluids, dynamical
systems, and oceanography (Haller, 2015; van Sebille et al., 2018). That is, we aim to predict
fluid particle trajectories based on these data without any knowledge of the fluid velocity field.
We use a deep neural network (DNN) (Goodfellow et al., 2016), which is a composition of layers
of affine functions and non-linear functions, to model an increment function that produces the
change in a particle’s position over a small time interval based on its position at the start of
the interval. It is trained so that the model parameters best fit the trajectory data. Applying the
trained DNN recursively, we can then compose the entire trajectory of a fluid particle over a
much larger time domain. Our work is closely related to Qin et al. (2019, 2021), where DNNs
were used to model the solutions to systems of ODEs whose forms are only partially known
at best. Due to the incomplete equations, direct simulation using a numerical ODE solver is
infeasible. The existence of increment functions for autonomous systems and non-autonomous
systems was shown in Qin et al. (2019, 2021), respectively; several ResNet (He et al., 2016)-like
DNN models were developed to approximate a flow map associated with such a system, which
is, loosely speaking, the sum of an increment function and the identity function. It produces the
future state of the system at the end of a small time interval given its current state at the start
of the interval. The framework developed in Qin et al. (2019, 2021) has already been applied to
learn the solutions to biological models (Su et al., 2021), PDEs (Chen et al., 2022; Wu and Xiu,
2020), and reduced systems (Fu et al., 2020).

However, there is a major disadvantage of using the increment function in Qin et al. (2021)
for the prediction of non-autonomous systems purely from measured data, such as in the fluid

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 75

dynamic or oceanographic examples mentioned above. Learning it requires knowing how the
forcing terms that drive the evolution of the system state depend on time, that is, the forcing terms
need to be partially known. In the context of tracking fluid particles, this means knowing how the
fluid velocity field of an unsteady flow varies with time, which is unrealistic in problems where
the fluid velocity is truly unknown. Our contributions are as follows. First, we propose a new
increment function for non-autonomous systems that can be learned without any knowledge of
the time-dependent terms, allowing for the solution of these systems in applications where only
trajectory data are available. Secondly, we find novel analytic expressions of all three increment
functions, including the one proposed here and the two existing ones in Qin et al. (2019, 2021),
that complement the analysis in Qin et al. (2019, 2021) and shed a new light on these functions.
Thirdly, we validate the applicability of DNN models built for the three increment functions at
tracking fluid particles in several benchmark problems. We also compare the performance of
these models and examine how it can be influenced by network structures and flow features.
While the aim here and in Qin et al. (2019, 2021) is to learn the solution to a system of ODEs
without knowing its complete form, there is also a large body of work on data-driven equation
discovery, such as Raissi et al. (2018), Zhuang et al. (2021), Proctor et al. (2016), Long et al.
(2018, 2019), Lu et al. (2021), and Lin et al. (2023), where the goal is to uncover the governing
physical laws, in the form of ODEs or PDEs, hidden in data. The network structures developed
in Qin et al. (2019, 2021) have also been used to learn Hamiltonian systems (Wu et al., 2020)
and perform model corrections (Chen and Xiu, 2021). Our work is also among many that apply
machine learning techniques to solve fluid mechanics problems [see Brunton et al. (2020) for an
overview].

We note that in this new paradigm, the challenges of predicting fluid particle trajectories arise
from acquiring trajectory data and training a DNN model for the increment function or flow map,
instead of from resolving the fluid velocity field as in the traditional paradigm. The accuracy of
trajectory calculation depends on the accuracy of the DNN model, which in turn depends on
the quality and quantity of the data as well as the structure of the NN and the optimality of
its parameters, instead of on the accuracy of the time-stepping scheme and the mathematical
modeling, numerical simulation, and experimental measurement of the fluid velocity field as in
the traditional paradigm.

The rest of the paper is organized as follows. In Section 2, Appendix A, and Appendix B, we
derive a new increment function for non-autonomous systems and find novel analytic expressions
for the two existing increment functions in Qin et al. (2019, 2021). In Section 3, we build and
compare DNN models for the increment functions corresponding to a variety of fluid flows. We
also apply them recursively to predict full particle trajectories. The advantages and disadvantages
of the proposed and existing increment functions for non-autonomous systems are discussed in
both Sections 2 and 3. We summarize and conclude the paper in Section 4.

2. METHODS

In the study of fluid dynamics, unsteady flows are characterized by time-dependent velocity
fields, whereas steady flows maintain the same velocity field over time. Accordingly, positions of
particles immersed in an unsteady flow must be modeled using non-autonomous dynamical sys-
tems, whereas positions of particles immersed in a steady flow can be described by autonomous
dynamical systems.

For either type of flows, we aim to construct a neural network (NN) to model the increments
in fluid particles’ positions over a fixed, relatively small time duration. In the case of a steady

Volume 5, Issue 2, 2024

76 Wei et al.

flow, the increment is a function of the starting position only, whereas in the case of an unsteady
flow, it depends on the starting time point as well. In Section 2.1, we derive three variants of the
increment: one for steady flows, and two for unsteady flows. Our derivation, which is different
from the one in Qin et al. (2019, 2021), allows us to find an analytic expression for each variant
in terms of the fluid velocity vector field. In Section 2.2, we present the NN for modeling the
increment, and an algorithm for predicting particle trajectories using this model. The data sets
used to train and test the model are described in Section 2.3.

2.1 The A-Increment and Flow Map
2.1.1 Steady Flows

In the case of a steady flow, let u(z) € R denote the fluid velocity vector at location 2 € R%o,
where dj, is the dimension of the flow and is 2 or 3 in this work. Let x(t) € R%° denote the
position of a particle in this flow at time ¢. Assuming that the particle moves at the local fluid
velocity (the no-slip condition), x(¢) satisfies the following system of autonomous ODEs:

dx
a = U(X(t)), te [OvT]a (1)

where T > 0. For this system, we can prove the following.

Theorem 1. In Eq. (1), let the expression of u(x) in terms of x be fixed. Let 0 < A < T be
fixed. Then there exists a function & 5 from R%e to R%e such that for any x satisfying Eq. (1)
andany t € [0,T — A,

bax(t) =x(t +A4) —x(1). 2)

The proof of this theorem can be found in Appendix A. For the rest of the paper, we refer
to ¢ o and its counterparts for unsteady flows as A-increments. We also refer to ¢, as the
steady A-increment to distinguish it from a A-increment for an unsteady flow, which will be
represented by 1 o or & in later sections. This concept was first introduced in Qin et al. (2019),
where the existence of ¢, was shown using the fundamental theorem of calculus and mean-
value theorem. Our proof is based on the Taylor expansion of x(t) instead and has the advantage
of being constructive, that is, we are able to find an expression of ¢ in terms of the fluid
velocity u (see Appendix B).

Accordingly, the flow map for the autonomous system Eq. (1) can be written as

Pa(x(t)) = x(t) + da(x(1), t€[0,T—A ©)

We note the difference between the A-increment ¢, and the flow map ®: given a starting
position of a particle, the former gives the change in the position of the particle whereas the
latter gives the actual position of the particle, at the end of a time duration of length A.

2.1.2 Unsteady Flows

In the case of an unsteady flow, let u(z,y(t)) € R denote the fluid velocity vector at location
x € R%o and time ¢, where 7 is a function from [0, 7] to R that specifies the dependence of u

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 71

on time.” Again assuming the no-slip condition, the position of a particle in this flow at time ¢,
x(t), satisfies the following system of non-autonomous ODEs:

dx

B wufx(t), v(1), 1€ 0.7). @)
For this system, we can prove the following.

Theorem 2. In Eq. (4), let the expression of u(x,v(t)) in terms of x and vy be fixed. Let 0 <

A < T be fixed. Then there exists a function P A from R4%+™+1 1o R sych that for any x, any
mth-degree polynomial vy satisfying Eq. (4), and any t € [0,T — A,

WA (x(1), T(1) = x(t + A) = x(t), %)
where T'(t) = [y(t) y(D(t) - y(m)(t)}T € R™ ! and y*) denotes the kth derivative of .

The proof is very similar to the proof of Theorem 1 after rewriting the non-autonomous
system Eq. (4) into the following autonomous system: for ¢ € [0, T:

alx]- u(x, y(1)
t

X
YO @) v@ (@) - vm(t) 0

Our proof is again different from the existing one in Qin et al. (2021), where the existence of

the A-increment 1, was first shown. It gives an explicit expression of 1\ 5 in terms of u (see

Appendix B). We refer to this variant of A-increment as the y-explicit unsteady A-increment to

emphasize that the time-dependent term y(¢) is known. The flow map of the non-autonomous

system Eq. (4) can therefore be written as

}T . (6)

Wa(x(t),T(1) =x(t) + Wa(x(®),L(t), t€[0,T—-A ()

In the case where y is not a polynomial, for any ¢ € [0, 7 — A], if we can find an mth-degree
polynomial p that approximates 'y globally on [0, T] or locally in the neighborhood [¢,t + A,
then instead of Eqgs. (5) and (7), we have

WA (x(1), P(t) =~ x(t + A) = x(1), (®)

Wa(x(t), P(t) = x(t) + bax(t), P(t)), ©)

where P(t) = [p(t) p(t) --- p(™) (t)}T and p(*) denotes the kth derivative of p.
Alternatively, we propose to rewrite the non-autonomous system Eq. (4) into the the follow-
ing different autonomous system: for ¢ € [0, T,

s(2)-[)

We can then prove the following for Eq. (4) by applying an argument similar to the proof of
Theorem 1 to the autonomous system Eq. (10).

fThere could be more than one time-dependent terms 1, Y, - - - in w. The changes to Theorem 2 and its
proof are only technical. Therefore, we only consider the special case (4) in this paper.

Volume 5, Issue 2, 2024

78 Wei et al.

Theorem 3. In Eq. (4), let the expression of y(t) in terms of t and the expression of u(x,vy(t))
in terms of « and 7y be fixed. Let 0 < A < T be fixed. Then there exists a function & from
R&+! 10 R such that for any x satisfying Eq. (4) and any time point t € [0, T — A,

En(x(t), 1) = x(t + A) —x(1). (11

The expression of & in terms of w can be found in Appendix B as well. We refer to this
variant of A-increment as the y-implicit unsteady A-increment to emphasize that the time-
dependent term y(t) is unknown. Therefore, besides Eq. (7), the flow map of the nonautonomous
system Eq. (4) can also be rewritten as

[1]

a(x(t),t) = x(t) + &a(x(t),1), t€[0,T—A]. (12)

We have seen that for the non-autonomous system Eq. (4), both the y-explicit unsteady A-
increment \ o and the y-implicit unsteady A-increment & can be used to calculate the change
in a particle’s position. We summarize the advantages and disadvantages of the two below.

— Tolearn \ 5 from data, we must know 7y or, in cases where y is not a polynomial, its poly-
nomial approximation, p. This is unrealistic when an expression of the fluid velocity, u,
is truly unknown and only trajectory data are available. Learning & A only requires know-
ing the trajectory data and the associated “time stamps,” which makes the data collection
considerably simpler and “experiment-friendly.”

— Once an expression of P A (x,T'(¢)) in terms of and T" has been learned, since it does
not vary with the expression of y in terms of ¢ (see Theorem 2), it is applicable to an
entire family of non-autonomous systems Eq. (4) where the expression of w(x,y(t)) in
terms of @ and vy is the same but the expressions of y in terms of ¢ differ. In contrast, the
expression of & is “married to” a specific choice of y and is only applicable to a specific
non-autonomous system Eq. (4) (see Theorem 3).

— Theorem 2 assumes that y is a polynomial of ¢. This is not necessary in Theorem 3.

In Sections 3.3 and 3.4, we will compare the numerical results of the NN models built for
both unsteady A-increments.

We conclude Section 2.1 with a summary of the three variants of A-increment described
above. See Table 1. The steady A-increment ¢, and the y-explicit unsteady A-increment
P, were introduced in Qin et al. (2019, 2021). To our knowledge, the y-implicit unsteady
A-increment & 5 is novel; so are the explicit, analytic expressions for all three A-increments in
terms of the forcing terms in the underlying dynamical systems (see Appendix B).

2.2 The Neural Network Model for the A-Increment

In Qin et al. (2019), several NNs that resemble the residual neural network (ResNet) (He et al.,
2016) were proposed to approximate the flow map ® A for a steady flow [see Eq. (3)]. In Qin
et al. (2021), they were extended to model the flow map W A for an unsteady flow [see Eq. (7)].
Our approach is very similar: we use feedforward NNs (Jain et al., 1996) to approximate all three
A-increments described in Section 2.1 and then compose these learned increments to construct
the full flow maps.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 79

TABLE 1: The three variants of A-increment (dy,: dimension of the flow, 2 or 3 in this work)
A-
increment

Input Output Notes

termed “steady

dfo
Pa x(t) € R A-increment”

termed “y-explicit
unsteady A-increment”

Y(t)

(1)

Y ()
Ro+m+1 _

< x(t+ A) — x(t) € R L(t) :

x(t)
LN [()

a0
7v: an mth-degree
polynomial

termed “y-implicit
unsteady A-increment”

&n [Xit)

Let d;, denote the dimension of the domain of a A-increment; that is, di, = dfo, dao+m+1,
and dp,+ 1 for P A, P A, and E A, respectively (see Table 1). For each of the three A-increments,
their feedforward NN model is a function from R%» to R%o that takes the following form:

No(X) = ony 1 (Whiy41(- - 02(Woo (W1 X + b)) +b2) -+) + by 1), (13)

where W; is a weight matrix, b; is a bias vector, o; is an activation function applied element-
wise, Ny is the number of hidden layers, and © is a vector containing all the entries in the
weight matrices and bias vectors, that is, © is a vector of model parameters. The sizes of W; and
b, depend on the number of “neurons” on the two network layers connected by them. Depending
on whether the flow is steady or unsteady, the input, X, in Eq. (13) is either a particle’s position
at a time point ¢, or this position augmented by some extra term(s) dependent on ¢ (see Table 1).
If the model parameters in © are properly chosen, then N (X') is approximately the change in
the particle’s position after a time interval of length A. Replacing d 5, P, or Ea in Egs. (3),
(7), or (12) with Ng, we obtain a model for the flow map @, ¥ A, or Ea, which allows us to
simulate the position of the particle at time ¢ + A.

Furthermore, we can trace a particle over the time domain [0, 7], where T is an integer
multiple of A, by applying the model for the flow map recursively, as outlined in Algorithm 1.

2.3 The Training and Testing of Neural Networks

We choose the parameters in ® of an NN model (13) to “best fit” a training set obtained from
a collection of trajectories of many particles over the time period [0, T]. More specifically, it

Volume 5, Issue 2, 2024

80 Wei et al.

Algorithm 1: Tracing a particle using an NN model for G5, P a, OF Ea
Input: the NN model Ng for G A, Pa, or Ep,
the time duration A > 0,
the particle’s position, x°, at ¢ = 0,
a positive integer K,
a polynomial y of degree m (in the case of 1\ o only)
Output: the estimated position of the particle, X'*, att = jAforj =1, 2,--- | K

1 X%« x% // initialization
2 for j < 1to K do
3 switch A-increment do
4 case p 5 do
// input for the steady A-increment
5 X« xU-DA,
end
6 case P do
// input for the y-explicit unsteady A-increment
Py xG-hHAa
' “[r«j—lm)}’
end
8 case & do
// input for the y-implicit unsteady A-increment
Py xG-hHa
’ - { (G- 1A }
end
end
10 ijAei(j_l)A—l-N@(X); // update the particle’s position
end

ti+A t
b —x

% i

consists of Ny, input-output pairs in the form of (X :j , X) , where x:T" is the position
of the ith particle at a time point ¢; € [0,7 — A], xzj T2 s its position after a time duration of
length A, and

t.:
X]

]

if the NN model is for @ 4 ;

, if the NN model is for {5 ;

x?
XY =4 |r@y) (14)

J

t.]
h] if the NN model is for &,

(see Table 1). We emphasize that training an NN model for the y-explicit unsteady A-increment
P 5 requires knowing the time-dependent term y in the fluid velocity vector w(x,y(t)) or a
polynomial approximation to it. This is not necessary for the y-implicit unsteady A-increment
&, which only entails trajectory data and their time stamps. We relabel each data pair in the

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 81

training set as (X’ wain | yytrain _ x4} such that for each index k, there exist a particle index i and
a time point ¢; satisfying X" = X fj , Xipain — xfj , and yain = x? *2 The training set can
thus be denoted by
i i i Nirain
{ (A:vgcram7 yfcram _ Xt]zam) k;l . (1 5)

The optimal parameter vector, ®*, for the NN model is the minimizer of the mean-squared
error (MSE) associated with the training set

Ntrain
1 4 . .
MS Buin = 57— > | Ne (X5 — (vt — ") . (16)
ram k:1

found by a numerical method.

A test set consisting of input-output pairs in the same format is also obtained from the same
collection of trajectories, which does not overlap with the training set and does not enter the
optimization of the model parameters in ®. The trained NN model, Ng-, is tested on this set to
examine its adaptability to new, unseen data. It is denoted by

Nlesl

{ (thema YE:Sl - xtkeSt) k=1" (17)

On a different collection of trajectories that does not overlap with the one from which data

sets (15) and (17) are drawn, we also examine the accuracy of Algorithm 1, that is, the recursive

application of the already-trained NN model Ng- at predicting complete trajectories spanning
over the time domain [0, T, instead of trajectory segments over a time interval of length A.

3. NUMERICAL EXAMPLES

We examine the performance of the data-driven approach outlined in Section 2 at approximating
the A-increments for four benchmark problems: Hill’s spherical vortex (Section 3.1), the classic
steady ABC flow (Section 3.2), a double-gyre flow (Section 3.3), and the unsteady ABC-type
flow (Section 3.4). They consist of three three-dimensional (3D) flows, one two-dimensional
(2D) flow, two steady flows, and two unsteady flows (see Table 2 for a summary), which exhibit
complex behaviors such as eddies and chaotic advection, a hallmark of full turbulence. In all
four problems, the velocity field is known analytically, allowing for convenient acquisition of
training and test data through numerical simulation. We also examine the performance of Al-
gorithm 1, in which the A-increment learned from data is applied recursively to predict fluid
particle trajectories.

TABLE 2: Specifications of the benchmark problems

2D/ | Steady/ Characteristic
Example
3D | Unsteady | Length Speed Time
Hill’s spherical vortex | 3D Steady 2 0.25 8
Steady ABC flow 3D | Steady 27 V3+V2 2
Double-gyre flow 2D | Unsteady 1 0.1 -7 4
Unsteady ABC flow 3D | Unsteady 27 V3 +V2 2

Volume 5, Issue 2, 2024

82 Wei et al.

In each example, we follow the procedure described below to train and test a feedforward
NN model for the A-increment ® A, P A, or Ea (see Table 1), where A > 0 is a duration of time.
Let there be Ni,y hidden layers in the NN and Ny, “neurons” on each hidden layer. In Eq. (13),
the activation function o; is chosen to be the hyperbolic tangent function if 1 <4 < N,y and a
linear function if 7 = N,y + 1. These choices are quite standard for regression problems.

Step 1. Use the Latin hypercube sampling (LHS) (Tang, 1993) to determine the initial positions
of Ny, particles in a computational domain D taken from the literature.

Step 2. Simulate the trajectories of these particles between time 0 and an end time 7" > 0 using
the explicit four-stage Runge-Kutta method (RK4) with step size 0 < T < A.* This step
entails solving IV, straightforward initial-value problems since the fluid velocity u in
Eq. (1) or Eq. (4) is known explicitly. The trajectories generated this way are considered
the “ground truth” for comparison with the predicted results of an NN. The end time T’
varies from problem to problem and is calculated as a characteristic length divided by
a characteristic speed, both of which are listed in Table 2 for each example and further
explained in its corresponding subsection.

Step 3. On each trajectory, randomly select Ny, segments with the starting time and end time
separated by a duration A. As a result, we obtain N = Npar - Nseg pairs of data points

{(Xk, yi — x5) b, (18)

from which the A-increment ¢ A, P A, or EA can be learned. As in Section 2.3, for each
index k in Eq. (18), there exist a particle index 7 and a time point ¢; in [0, 7" — A] such
that x;, is the position of the ith particle at time ¢, and y, is its position at time ¢; + A;
in addition, X', is as defined in Eq. (14).

Steps 1-3 constitute the process of data acquisition for the training and testing of an NN
model for the A-increment. It is also illustrated graphically in Fig. 1 for the double-gyre
example (see Section 3.3) with A = T'/25 = 0.16, Nyer = 10, and Nyeg = 3.

Step 4. Randomly select a training set (15) and a test set (17) from (18) that do not overlap. The
ratio between their sizes, Nyain : Niest, 1S about 5:1.

Step 5. Determine the optimal parameters of the NN model by minimizing the MSE of the
training set defined in (16). We solve the minimization problem using 1000 epochs of the
Levenberg-Marquardt algorithm (Marquardt, 1963) implemented in MATLAB’s Deep
Learning Toolbox. Let ®* denote the vector of optimal parameter values found this way.

Step 6. Assess the accuracy of the trained NN model Ng- on the test set (17), which has not
been used in the training of the model in any way and can thus be viewed as new, unseen
data. For k = 1, 2,---, Ny, we use the segment relative error, defined as follows, to
measure the accuracy of the NN model:

[No- () - 5 =,

gseg _
k length of the kth segment

(19)

the numerator of which is the absolute error in the estimated kth increment, yi™ — x[&™,
from the test set (17). We note that this is different from the error (16) used to determine

#We assume that 7" is an integer multiple of A, and A is an integer multiple of .

Journal of Machine Learning for Modeling and Computing

* Tvajectory starting

T T T T T T T T T 1
*
% Trajectory starting w pmm
points Trajectories

‘ T
06 * ¥ 06
> >
*
04 04
¥
%

Y¢ Trajectory starting points
Trajectories

X Segment starting and end points
Segments
0.8 - q

0.2+

FIG. 1: Illustration of the process of data acquisition for the training and testing of an NN model for the
A-increment. The double-gyre flow is considered. A = T'/25 = 0.16, Npor = 10, and Nyeg = 3. () Step
1. (b) Step 2. (c) Step 3.

©®* in Step 5. It allows for a fair comparison between two NN models built for two
different values of A as it has been normalized by the length of the segment.

We also perform the following three steps to examine the accuracy of Algorithm 1 at calcu-
lating complete particle trajectories between time 0 and an end time 7", which is greater than or
equal to T, the trajectory end time used in Step 2.

Step 7. Simulate an additional test set of Ny, particle trajectories with end time 7" following
Steps 1 and 2. We select a different seed for the random number generator in the LHS to
avoid reusing a trajectory that has already been sampled to learn the A-increment. As-

sume that 7" is an integer multiple of A. Fori =1, 2,---, Nipjandj =0, 1,2,--- | K,
where K = T’ /A, let ng denote the point on the ith trajectory corresponding to time
JA.

Step 8. Estimate each trajectory in this set using Algorithm 1. Let iz A denote the point on the
ith estimated trajectory corresponding to time jA. That is,
X0 =xY,

. 4 20
x4 =302 | Ne- (XEJ_I)A) for 1<j<K, 20

Volume 5, Issue 2, 2024

84 Wei et al.

(G-DHAa

i

where X
xUhA,

is as defined in Eq. (14) with ¢; and xjj replaced by (j — 1)A and

Step 9. Assess the accuracy of Algorithm 1 at estimating the N trajectories. For the ith tra-
jectory, we measure the following relative error:

K
traj _ A Zj =1
¢ length of the ith trajectory’

X’L

~JA j A
-]

e2y)

the numerator of which is approximately the total absolute error along the ith estimated
trajectory. It allows us to compare the performance of Algorithm 1 at estimating trajecto-
ries with different end times since it has been normalized by the length of the trajectory.

A brief description of some of the parameters and their values used in the numerical experi-
ments can be found in Table 3.

We will explore the performance of various versions of Algorithm 1. They may use NNs with
different network structures and/or corresponding to different variants of A-increment. They
may also be applied to estimate trajectories with different end times. To distinguish them from
one another, we refer to each of them as Algorithm 1 (A-increment, A, Niay, Nyeu, T"). For
example, Algorithm 1 (¢ A, 0.08, 5, 20, 8) refers to the version of Algorithm 1 that calculates
trajectories over the time domain [0, 8] by recursively applying an NN with five hidden layers,
20 neurons on each layer built for the steady A-increment ¢ o where A = 0.08.

3.1 Hill’s Spherical Vortex

Hill’s spherical vortex (Rockwood et al., 2019) is a classic example of a 3D vortex flow. It
describes a swirling motion of a fluid vortex ring that fills a spherical volume, and the analytically
defined Hill’s spherical vortex has a separatrix at the boundary: fluid does not cross the spherical

TABLE 3: Summary of some parameters used in the numerical experiments

Parameter Description Value
A Time duration between the starting and end Between 7'/400
time points of each trajectory segment and T'/25
T Step size used in RK4 to simulate particle trajectories 0.001
Niay Number of hidden layers in the NN Between 1 and 5
Nieu Number of “neurons” on each hidden layer Between 20 and 735
Nparam Number of NN parameters in weight matrices and Between 1823
bias vectors combined, that is, in ® and 4442

Number of particle trajectories from which

Npar . 5000
the trajectory segments are sampled

Nieg Number of segments sampled from each trajectory 10

]Vtotal Npar . Nseg 50,000

Ne Number of additional particle trajectories for testing 1000

Algorithm 1

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 85

vortex boundary. The velocity of the fluid is proportional to the distance from the center of the
vortex ring, and the vorticity (i.e., the rotation of the fluid) is proportional to the inverse of the
distance squared. Hill’s spherical vortex is an important solution in fluid dynamics because it
provides a simple and idealized model for the motion of a fluid with rotational symmetry. It has
been used to study a wide range of phenomena, including the formation of hurricanes and other
atmospheric vortices, the motion of planets and stars, and the behavior of viscous fluids.

In our example, the mathematical expression of the velocity vector field w(x) within and
around Hill’s spherical vortex can be represented piecewise. Let u = [u v w]T and z =
[z y 2]T. Inside the spherical vortex ring boundary, the velocity components are as follows:

xXxrz

u(@) = 5, 22)
v(@) = 75, 23)
w(z) = or? — 2% —22% — 2y2)’ (24)

5
while outside of the spherical vortex, the velocity components are as follows:

OCT’SSCZ

U = Sy e @3)

B ourdyz 26

'U(m) - 5($2+y2+22)(5/2)’ ()
o222 4 2+ 2 /D] 3,2 432

w(z) = ars{[2(z* + y* + 27)/] — 2172 +7"y}' 27)

15(22 + 2 + 22)5/2)

The vortex strength parameter is « = 2, and the radius of the sphere is » = 1. 3D and 2D
streamlines are shown in Fig. 2.

In this example, the characteristic length is chosen to be 2, the non-dimensional diameter
of the spherical vortex, and the characteristic speed is chosen to be the non-dimensional free-
stream speed, 0.25, as seen in Fig. 2(b). It follows that the characteristic time is 7' = 2/0.25 = 8.
The domain D from which the trajectory starting points in Steps 1 and 7 are sampled is the cube
[—2,2] x [=2,2] x [-2,2]. Recall that for a steady flow, the A-increment ¢ 4, defined in Egs. (2)
and (B.1), is a function from R%° to R%e which, given a starting position of a particle in this
flow, produces the change in the particle’s position after a time duration of fixed length A. In
this example, dg, = 3 as the flow is 3D.

We first fix A = T'/100 and examine the effectiveness of four NNs of different structures at
approximating ¢ A . For a fair comparison, as the number of hidden layers, Vi, increases, the
number of neurons on each hidden layer, N,,, are adjusted accordingly so that the total number
of network parameters, Nparam, to be determined is about 2000 for every NN. We follow Steps
1-6 to construct each NN model. In Table 4, we report the minimum, mean, and maximum of
the segment relative error £, defined in Eq. (19) for the test set. [For a fair comparison, the
data set (18) and its partition in Steps 3 and 4 are kept the same in the training and testing of
NN models of different structures.] More detailed statistics of &} %, including its median and
quartiles, are also displayed in Fig. 3(a) by box plots. From Table 4 and Fig. 3(a), we observe
that as the network structure varies, the mean/median of £, ® can differ by as much as two orders

Volume 5, Issue 2, 2024

86 Wei et al.

(a) (b)

FIG. 2: Streamlines in the Hill’s spherical vortex example. (a) 3D streamlines. The red streamlines are
initiated inside of the unit sphere centered at the origin. The blue streamlines are initiated on the plane
z = 2. (b) 2D streamlines on the plane y = 0 calculated using the x- and z-directional velocities on the
plane. The background coloring indicates the fluid speed on the plane calculated using all three velocity
components. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

TABLE 4: The minimum, mean, and maximum of the segment relative
error £,% (19) for four NN models of the steady A-increment ¢, in
the Hill’s spherical vortex example. A = T7'/100 = 0.08 is fixed. (See
Table 3 for the meaning of Ny, Npey and Nparam)

Niay DNneu Nparam Min. E;°% Mean &% Max. £,°%
1 300 2103 7.37-10~% 246-1072 6.98-10""!

2 40 1923 1.05-107° 7.79-10~% 4.12-1072
3 30 2073 389-107% 3.22.107% 3.44.1072
5 20 1823 2,65-107% 1.15-107% 1.42-1072

of magnitude, indicating that network structure plays an important role in the accuracy of an NN
model for ¢ . Furthermore, the deepest NN equipped with five hidden layers approximates ¢
most accurately, despite having the fewest parameters; it boasts a mean/median &, ® in the order
of 1074,

We also observe that prominent flow features, such as the vortex in this case, can have strong
implications on the accuracy of NN models. For the NN model with A = 7"/100, Nj,y = 5, and
Nuew = 20, in Fig. 4, we plot £, against ||x}™'[|,, which is the distance between the starting
point of the kth segment in the test set (17) and the origin. For reference, a vertical dotted line is
included in this figure to mark where [|x$™||, would be exactly 1 such that ||x{*"(|, < 1 (inside

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 87

A-increment: ¢ 5

100 ¢ 100
[JEror —
—©6— Mean Error —6— Mean Error

10"

Relative Error in Estimated Segment (£;)

1070 L . . .
1 2 -

Ti25 T/50 T/100 T/200 T/400
Time duration between segment starting and end points (A)

(@) (b)

FIG. 3: Box plots of the segment relative error £, (19) in the Hill’s spherical vortex example. A log scale
is used on the vertical axis. In each box plot, the mean (circle) and median (horizontal line through the box),
first and third quartiles (lower and upper edges of the box), outliers (dots), and minimum and maximum
of the nonoutliers (boundaries of the lower and upper whiskers) of £, are shown. Outliers are defined
to be S,S:g that are 1.5 times of the interquartile range (height of the box) below the first quartile or above
the third quartile. (a) The NN models for the steady A-increment ¢ o with fixed A = 7//100 = 0.08
and four different network structures (see Table 4). (b) The NNs with fixed network structure (Nyay = 5,
Npew = 20) and five different values of A (7'/25 = 0.32, T/50 = 0.16, T'/100 = 0.08, 7'/200 = 0.04,
and 7'/400 = 0.02).

3
Number of hidden layers (Nig,)

)

10™

seg

Relative Error in Estimated Segment (&;

=)
&

I I I I I
0 0.5 1 15 2 25 3 35 4 4.5 5
Distance between segment starting point and origin (||x{||2)

106 | i . .

FIG. 4: The segment relative error £, ¢ (19) against the distance between the segment starting point ™
and the origin in the Hill’s spherical vortex example. A semi-log scale is used. A = T/100 = 0.08,
Niay = 5, Nneu = 20. The vertical dotted line marks the boundaryof the vortex. The horizontal dashed line

marks the mean &;%. The horizontal dashed-dotted line marks the median of £ %.

Volume 5, Issue 2, 2024

88 Wei et al.

test

the spherical vortex) to its left, and [|x}**'||, > 1 (outside the spherical vortex) to its right. A
horizontal dashed line and a horizontal dashed-dotted line are also included to mark the mean
and median £, respectively. As this figure indicates, for most cases where ||x{||, ~ 1 or

I3
x4, < 1, E* is larger than its mean and median; in particular, the largest £, occurs when

[l xis*!||, = 1, that is, when x}** is close to the unit sphere, the boundary of the vortex. As shown
in Fig. 2, the flow pattern undergoes drastic changes near the boundary and is far more complex
on the inside.

Next, we examine how the choice of A affects the accuracy of NN models for ¢ 5 by fixing
Niagy = 5, Npew = 20 and varying A between 7'/400 = 0.02 and 7'/25 = 0.32. For each value
of A, we again follow Steps 1-6 to build the NN. (For a fair comparison, the trajectories in
Step 2, once generated, are kept the same in the training and testing of NN models for different
values of A.) The statistics of £;® are illustrated by box plots in Fig. 3(b). We observe that the
mean/median &, is consistently on the order of 10~* and not very sensitive to the choice of A;
£, achieves the minimum when A is neither too small nor too large, at 7/100.

All the experiments so far aim to inspect the performance of NN models at estimating the
increment in a fluid particle’s position over a relatively small time duration of length A. We
now turn to the performance of Algorithm 1, where a trained NN model is applied recursively to
estimate the complete trajectory of the particle over the time domain [0, 7], where 77 > T'. In
all the experiments below, Ni,y = 5, and Npe, = 20.

Recall that following Steps 1-6, we have already built five NNs with Ny = 5, Npey = 20
for five values of A between 7/400 and T'/25, whose performance at estimating changes in
fluid particles’ positions is summarized and compared in Fig. 3(b). We now follow Steps 7—
9 to investigate how the choice of A affects the accuracy of Algorithm 1. More specifically,
we first follow Step 7 to generate a new set of Ny, trajectories with end time 7. For a fair
comparison, this set is kept the same as we vary A in Algorithm 1. Then for each A, we repet:at
Taj

Algorithm 1 (b, A, 5, 20, T)% and depict the statistics of the trajectory relative error &,

defined in (21) in Fig. 5(a). For all five values of A, the median of £ is in the order of 10~%;
and while more variability can be observed for the mean of £, it stays well below 1072,
Moreover, the median/mean 5?2” also achieves the minimum at A = 7'/100, as observed for the
segment relative error &£, % in Fig. 3(b). For this value of A, we plot the fifty most inaccurate
estimated trajectories (circles) as well as their exact counterparts (solid lines) in Figs. 6(a) and
6(b) viewed from two different angles. All trajectories but one lie within or close to the unit
sphere boundary [also shown in Figs. 6(a) and 6(b) for reference], where the NNs have the
most difficulty estimating the increment in a fluid particle’s position, as demonstrated in Fig. 4.
Additionally, in Fig. 6(c), we zoom in on the six most inaccurate estimated trajectories and the
exact ones corresponding to them. The error 5;”” in each estimated trajectory and the unit sphere
boundary are displayed as well.

In the previous set of experiments, the same trajectory end time 7" is used to acquire the
trajectories for training NN models (Step 2) and those for testing Algorithm 1 (Step 7). Naturally,
we wonder about the applicability of the NNs beyond the time point 7', that is, whether and to
what extent they can be used to extrapolate trajectory data. To look into this, we repeat Steps
7-9 for four end times between T and 27", while fixing A = T'/100, Niay = 5, and Npe, = 20.
That is, the end time in Step 2 remains 7" for the trajectories used to train the NN, whereas

§Recall that this is the version of Algorithm 1 that calculates trajectories over the time domain [0, 7] by
recursively applying an NN with five hidden layers, 20 neurons on each layer built for the steady A-
increment ¢ A .

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 89

A-increment: ¢ A

o
10 —JEnor

—6— Mean Error

in Estimated Trajectory (£")
5

T F I :

. . . .
! . L . L T 1.25T 15T 2T
Ti25 /50 /100 TI200 /400 End time of trajectories for testing

Time duration between segment starting and end points (A) (end time of trajectories for training remains T)

(a) (®)

FIG. 5: Box plots of the trajectory relative error S;ra] (21) associated with Algorithm 1 in the Hill’s spherical
vortex example. A log scale is used on the vertical axis. (See the caption of Fig. 3 for interpretation of box
plots.) (a) Algorithm 1 (A, A, 5, 20, T') where A equals T//25 = 0.32, T//50 = 0.16, T//100 = 0.08,
T/200 = 0.04, or T/400 = 0.02. (b) Algorithm 1 (b 5, T/100, 5, 20, T"), where T’ equals T' = 8,
1.25T =10, 1.57T = 12, or 2T = 16.

Relative Error
5

the end time 7” in Step 7 can be greater than T for the trajectories used to test Algorithm 1.
(For a fair comparison, the trajectory starting points in Step 7, once sampled, remain unchanged.
We extend its trajectory as T’ increases.) For each end time 7" considered, the statistics of 5;”’
associated with Algorithm 1 (¢ o, 7/100, 5, 20, T") are summarized in a box plot in Fig. 5(b).
We observe that £ increases with 7”; and while the increase is slow between 7" and 1.5T, it

becomes considerably steeper between 1.57 and 27. When 77 = 1.5T, the mean/median Szraj
is still below 1073 and the maximum c‘,'?aj is around 10~!, indicating that Algorithm 1 can be
applied to trace fluid particles up to time 1.57 to a reasonable degree of accuracy, even though
the training data for the NN are all collected at time points that do not exceed 7. (See Appendix C

for additional graphics.)

3.2 Steady ABC Flow

The steady ABC flow (Haller, 2005) is a useful test case because it exhibits a wide range of flow
phenomena, including turbulence, boundary layers, and complex flow structures. It is character-
ized by a 3D periodic flow pattern that is created by the motion of three vortices rotating around
perpendicular axes.

In this example, the fluid velocity vector field u(x) wherew = [u v w]T andx = [z y 2
is given by

]T

u(x) = Asinz + C cosy, (28)
v(x) = Bsinz + Acos z, (29)
w(x) = Csiny + Bcosz. (30)

Volume 5, Issue 2, 2024

90 Wei et al.

A-increment: ¢ 5
,
05

0

05 0.02108

0.011195
0.012813
0.012247
_08 i
-1 P
-1.2 4 :
N
1.4
_ 1.6
02040608 o 0408787
y X W
0 p4a -040
X y

(©)
FIG. 6: The fifty most inaccurate trajectories estimated by Algorithm 1 (¢ A, 7/100, 5, 20, T') and the
corresponding true trajectories in the Hill’s spherical vortex example. The circles mark the estimated trajec-
tories, and the solid lines represent the true trajectories. The starting point of each trajectory is marked with
a star. (a), (b) All 50 pairs of trajectories viewed from two different angles. The unit sphere centered at the
origin is included for reference. (c) The six most inaccurate estimated trajectories and the corresponding
exact trajectories. The relative trajectory errors 8? ¥ (21) are displayed at the top of the respective panels.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 91

In particular, we consider the parameter values A = V3, B = /2, C = 1 as in Haller
(2005). We show the 2D streamlines on three planes in Fig. 7(a) and a bundle of 3D “stream
ribbons” in Fig. 7(b), where the twist in the ribbons is proportional to the curl of the flow.

Like the Hill’s spherical vortex example, the steady ABC flow is a 3D steady flow. Therefore,
we proceed as in Section 3.1 to examine the performance of NN models at advancing fluid
particles’ positions. In Steps 2 and 7, the particles are sampled from the domain D = [0, 27] x
[0, 27] % [0, 27]. The characteristic length of the steady ABC is chosen to be 27, the length of the
edges of D. The maximum amplitude in the three velocity components, A + B = (v/3 + v/2),
is identified as the characteristic speed. Consequently, the characteristic time 7" is determined to
be 2 by rounding 27/ (A + B) to the next bigger integer.

We first explore how the structure of the NN influences the performance of NN models for the
steady A-increment ¢, where A = T'/100 is fixed. We adopt the same four network structures
used in Section 3.1, the number of parameters, Nparam, of which stays around 2000 as the number
of hidden layers, Ny, and the number of neurons on each layer, Ny, vary. The minimum, mean,
and maximum of the segment relative error £ * defined in Eq. (19) are presented in Table 5. For
each network structure, we also present more detailed statistics of £, * in a box plot in Fig. 8(a).
We observe that the mean and median of £,® are around 10~* for all four networks. Unlike in
the previous example where a deeper network is more accurate, the network with a single hidden
layer and the most network parameters outperforms the other networks.

We also observe that the accuracy of the NN model depends on the balance between the local
rate of strain and rate of rotation, which can be characterized by the @ criterion (Hunt et al.,
1988). Roughly speaking, the) criterion at a given point increases with the rate of rotation and
decreases with the rate of strain at that point. A positive () indicates the dominance of rotation

3.5

0.02

(a) (b)

FIG. 7: Streamlines and stream ribbons in the steady ABC flow example. (a) 2D streamlines calculated
using the 2D fluid velocity vector field on each of the three planes z = 0, y = 2w, and z = 2. The
background coloring of each plane indicates the fluid speed on the plane calculated using the full 3D
velocity vector field. (b) A bundle of 3D stream ribbons initiated from the plane y = 0. The inset shows
the same bundle viewed from a different angle.

Volume 5, Issue 2, 2024

92 Wei et al.

TABLE 5: The minimum, mean, and maximum of the segment relative
error £, (19) for four NN models of the steady A-increment ¢ 5 in the
classic steady ABC flow example. A = T/100 = 0.02 is fixed. (See
Table 3 for the meaning of Niay, Npeu, and Nparam)

Niay Npeu Nparam Min. % Mean £;°% Max. £;°%
1 300 2103 1.45-107° 4.63-10~° 3.00-1072

2 40 1923 1.70-107° 1.31-10~* 5.00-1072
3 30 2073 263-107° 126-107* 5.62-1072
5 20 1823 4.76-107% 2.94-10~* 1.10-102

A increment: ch .

107 102
| — = | —

S —O©— Mean Error o Py : . —O©— Mean Error
107 = 107
g 10° g 10"
% Z
= &
=104k 210°¢
g
& &

10 107

1 2 3 5 T/25 /50 T/100 T/200 T/400
Number of hidden layers (Nj,,) Time duration between segment starting and end points (A)
(a) (b)

FIG. 8: Box plots of the segment relative error £, ¢ (19) in the steady ABC flow example. A log scale is used
on the vertical axis. (See the caption of Fig. 3 for interpretation of box plots.) (a) The NN models for the
steady A-increment ¢ with fixed A = 7'/100 and four different network structures (see Table 5). (b) The
NNs with fixed network structure (Niay = 1, Npew = 30) and five different values of A (7'/25 = 0.08,
T/50 = 0.04,7/100 = 0.02, 7/200 = 0.01, and 7'/400 = 0.005).

over strain, whereas a negative () value indicates the dominance of strain over rotation. In Fig. 9,
for the NN model with Njpy = 1, Npey = 300, and A = T'/200, we plot ;% against the Q value
at the starting point for every segment in the test set (17). It shows that the NN model tends to
be less accurate as the initial () decreases, that is, as the strain becomes more dominant at the
segment starting location. In particular, for the majority of the segments with initial @ less than
—2, &% is above the mean and median.

We next look into how the value of A affects the accuracy of NN models of ¢ 5 by fixing
Nigy = 1, Npew = 300 and varying A between 7'/400 = 0.02 and 7'/25 = 0.32. For each value
of A, we again follow Steps 1-6 to build an NN. The statistics of £, are illustrated by box plots
in Fig. 8(b). The mean/median £, * is consistently in the order of 107, and £, achieves the
minimum at A = 7°/200.

Following Steps 7-9, we also examine the performance of Algorithm 1 at estimating particle
trajectories. As in Section 3.1, we perform two sets of experiments. First, we fix the network

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 93

A il nwncan b A

=)
%
I

Relative Error in Estimated Segment (£;)

=)
&
T
x
I

107 I I I I I
-3 -2 -1 0 1 2 3
Q value at xj¢

FIG. 9: The segment relative error £, (19) against the initial Q value for the test set (17) in the steady
ABC flow example. A semi-log scale is used. A = 7'/200 = 0.01, Njay = 1, Npew = 300, and A =
T/200 = 0.01. The horizontal dashed line marks the mean &, ¢. The horizontal dash-dotted line marks the
median of £} 5.

structure (NVigy = 1, Nyew = 300) and T’ = T in Step 7, that is, the end time of the trajectories
generated for testing Algorithm 1 is the same as the end time of the trajectories generated for
training the NN in Step 2. For five values of A, we report the statistics of the trajectory relative
error £ defined in (21) in Fig. 10(a). The mean/median &;™ is in the order of 10~* in all cases.

A-increment: b .

102 F 10%F
—~ —Error o [—Error
g —©— Mean Error \i{ +. Mean Error
W = 107 7
Z g i
£10° g A-"?w:
=z T 102
g =
E T
£ E
= = -3 L
= =
£ 10 £
i =
= =]
= =4
P 510
=
A 105 F R
£ £ 10°
= <
< o~
= 10-5 1 1 L L

10 . . . L L T 1.25-T 15T 2.T

T/25 T/50 T/100 T/200 T/400 End time of trajectories for testing
Time duration between segment starting and end points (A) (end time of trajectories for training remains T')
(a) (b)

FIG. 10: Box plots of the trajectory relative error £, (21) associated with Algorithm 1 in the steady ABC
flow example. A log scale is used on the vertical axis. (See the caption of Fig. 3 for interpretation of box
plots.) (a) Algorithm 1 (b A, A, 1, 300, T') where A equals 7'/25 = 0.08, T'//50 = 0.04, 7'//100 = 0.02,
T/200 = 0.01, or T/400 = 0.005. (b) Algorithm 1 (b 5, 7/200, 1, 300, T') where T” equals T' = 2,
1.25T =2.5,1.5T =3, 0r 2T = 4.

Volume 5, Issue 2, 2024

94 Wei et al.

We plot the fifty least-accurate trajectories (circles) estimated by Algorithm 1 (¢ o, 7/200, 1,
300, T') and the corresponding true trajectories (solid lines) in Figs. 11(a) and 11(b). The isosur-
faces of () values 2 and —2 are also shown in the two subplots. (Interestingly, each isosurface
resembles a network of interconnected tubes.) We can see that most of the 50 trajectories initi-
ate outside of the isosurface of @) value 2 [Fig. 11(a)] and within the isosurface of) value —2
[Fig. 11(b)]. This is consistent with our observation from Fig. 9 that the NN model tends to be
less accurate when strain is more dominant than rotation. Furthermore, as seen in Fig. 12, the six
most inaccurate trajectories all start within the isosurface of) value —2.

Next, we fix the NN (Njyy = 1, Nyew = 300, and A = 7'/200) and repeat Steps 7-9 for
four end times between 7 = T and 7" = 2T. For each end time 7", the statistics of the
trajectory relative error Sf ¥ (21) associated with Algorithm 1 (¢, 7/200, 1, 300, T") are
shown in Fig. 10(b). As in the previous example, when the end time is as large as 7" = 1.5T,
the maximum &£ is around 10!, indicating that the NN model can be applied to trace fluid
particles up to time 77 = 1.57 to a reasonable degree of accuracy, even though the training data
(15) for the NN are all collected at time points that do not exceed 7.

3.3 Double-Gyre Flow

The double-gyre flow (Shadden et al., 2005) is a model of oceanic circulation patterns compris-
ing two rotating eddies, or gyres, that are found in the surface layer of the ocean. These kinds of
flows are created by the interaction between the wind-driven surface currents and the underlying,

A-increment: @ 5

(b)

FIG. 11: The fifty least accurate trajectories estimated by Algorithm 1 (¢ A, 77/200, 1, 300, T), the cor-
responding true trajectories, and @ isosurfaces in the steady ABC flow example. The circles mark the
estimated trajectories, and the solid lines represent the true trajectories. The starting point of each trajec-
tory is marked with a star. (a) The fifty pairs of trajectories shown with the isosurface of) value 2. (b) The
50 pairs of trajectories shown with the isosurface of @) value —2.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 95

A-increment: ¢ 5

0.00060613
0.00066132 7 0.00050199
6 y
"L
5 ¥

0.00026632

0.00026235

0.0004335

TRy 3 "_/_

N : : N ;-.\. k
6- 21 AL N

11]
B w
X y 5) 15 105 ¢ P 3
445 g 1 % y
X Yy

FIG. 12: The six least-accurate trajectories estimated by Algorithm 1 (¢ A, 7°/200, 1, 300, T'), the corre-
sponding true trajectories, and the isosurface of) value —2 in the steady ABC flow example. The circles
mark the estimated trajectories, and the solid lines represent the true trajectories. The starting point of
each trajectory is marked with a star. The trajectory relative errors Efaj (21) are displayed at the top of the
respective panels.

stratified layers of the ocean. Researchers use the double-gyre example to study a wide range of
oceanic phenomena, including the transport of nutrients and pollutants, the formation and move-
ment of marine ecosystems, and the impact of ocean circulation patterns on climate change. By
studying the behavior of the double-gyre flow, researchers can gain insights into the behavior
of more complex oceanic flows and develop more accurate and efficient numerical models for
simulating them.

For this 2D unsteady flow, the velocity vector field u(x,y(t)) is

u(z, y(t) = —m Asin(rf(z,1)) cos(my), (1)
v(a,y(t)) = mAcos(rmf(x,t)) sin(wy)g—i(x,t), (32)

where u = [u v]T, z = [z y]T, and
f(x,t) = esin(wt)z* + (1 — 2esin(wt))z. (33)

Volume 5, Issue 2, 2024

96 Wei et al.

Equations (31)—(33) imply that the time-dependent term is y(¢) = € sin(wt) in this example.
We choose A = 0.1, € = 0.25, and w = 27 as in Shadden et al. (2005). The flow velocity vector
field when ¢t = 0, 0.25, 0.5, 0.75 is illustrated in Fig. 13. Note that as suggested by Egs. (32)
and (33), the velocity fields are identical at ¢ = 0 and 0.5 [see Figs. 13(a) and 13(c)].

The domain D from which the starting points of fluid particle trajectories are sampled in
Steps 1 and 7 is [0,2] x [0, 1]. At time ¢ = 0 or ¢ = 0.5, the diameter of either gyre is 1 [see
Figs. 13(a) and 13(c)], which is chosen to be the characteristic length. The amplitude of the
right-hand sides of Egs. (31) and (32), 7 A, is taken to be the characteristic speed. Rounding the
ratio 1/(mA) up to the next larger integer results in the characteristic time 7" = 4. Since the flow
is unsteady, we also compare the performance of NN models built for the y-explicit unsteady A-
increment 1\ 5 definedin Egs. (5), (B.3), and the y-implicit unsteady A-increment & 5 defined in
Egs. (11), (B.5). Recall that they are two variants resulting from two different ways of rewriting
the original non-autonomous system Eq. (4) into an autonomous system: Eq. (6) or Eq. (10). We
have summarized and compared them in Table 1 as well as in the text preceding it.

As seen in Table 1,) 5 is a function from Rénotm+1 g R where dy, is the dimension of
the flow, and m is the degree of the polynomial y of time ¢ in the velocity vector field u(x, y(t)).
In this example, dg, = 2, and v = esin(wt), which is not a polynomial. Therefore, for the
starting time point ¢; of each trajectory segment in Eq. (18) selected in Step 3, we use the
second-degree Taylor polynomial of vy around ¢j, to approximate y locally on that segment,
between time points ¢, and ¢, + A. This leads to a1 5 that is from R? to R2. The other unsteady
A-increment, & x, is a function from R3 to R? in this example, according to Table 1.

As in the previous two examples, we first follow Steps 1-6 to examine the performance of
NN models for P o and Ex, which is summarized in Tables 6 and 7 and depicted in Fig. 14.
Various network structures and values of A are again considered. By comparing Table 6 to

t=05 t=075

08

06

04F

02}

FIG. 13: Snapshots of the double-gyre flow. The lengths of the arrows and the background coloring indicate
fluid speed. (a) t = 0. (b) t = 0.25. (c) t = 0.5. (d) t = 0.75.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 97

TABLE 6: The minimum, mean, and maximum of the segment relative
error &£, (19) for four NN models of the y-explicit unsteady A-
increment 1 in the double-gyre example. A = 7'/200 = 0.02 is fixed.
(See Table 3 for the meaning of Niay, Npey and Nparam)

Niay Npeu Nparam Min. % Mean £;°% Max. £;°%
1 250 2002 520-107°% 7.43.107* 447102

2 40 1962 4.76-107% 7.83-1075 1.22-1072
3 30 2102 1.03-1077 4.12-107° 6.71-107
4 25 2152 2.61-1077 597-1075 3.54-107°

TABLE 7: The minimum, mean, and maximum of the segment relative
error £,% (19) for four NN models of the y-implicit unsteady A-
increment &, in the double-gyre example. A = 7'/200 = 0.02 is fixed.
(See Table 3 for the meaning of Ny, Nnew and Nparam)
Niay Npeu Nparam Min. &% Mean £,°% Max. £;°%
1 735 4412 3.09-107° 624-1073 285107
2 63 4412 141-107 8.14-107* 1.98.107!
3 45 4412 3.85-107° 498-107* 7.89.1072
4 37 4442 456-107° 4.56-107* 6.78-1072

Table 7 and Figs. 14(a) and 14(b) to Figs. 14(c) and 14(d), we note that the NN models for &
are noticeably less accurate than the NN models for 1 . For every combination of A and Ny,
considered, even though twice as many network parameters are used in the NN model for &,
the segment relative error £°° (19) associated with it is still about one order of magnitude larger
than the £, associated with the NN model for 5 . (Note that Nparam ~ 4400 in the case of &,
and Nparam ~ 2000 in the case of o .) In addition, as seen in Figs. 14(a) and 14(c), network
structure plays an important role in the accuracy of NN models for both 1\ o and Ea, and deeper
networks are more desirable when the total number of network parameters remains more or less
the same. Figures 14(b) and 14(d) suggest that the accuracy of the NN models for both 1 o and
& is not very sensitive to the value of A. For every A considered, the mean/median &, is in
the order of 1073 for the NN model for \» , and is in the order of 10~* for the NN model for
En-

We emphasize that although the trained NN models for 1\ o are more accurate, to train or
simulate such a model entails knowing the time-dependent term <y in the velocity vector field
u(x,y(t)); that is, we need to know how the fluid velocity varies with time, which is not realistic
in a setting where only trajectory data are available and the flow is simply a “black box.” Learning
& A only requires trajectory data and the time stamps at which they are collected, making it more
applicable in precisely the type of scenarios where data-driven methods are highly sought after.

As in Section 3.1, we also look into the effects of distinct flow structures (the two gyres) on
the accuracy of NN models for {5 and &x. We fix A = 77/200 and Niyy = 3, Npeu = 30 for
P, Niay = 3, Npew = 45 for Ea. In Fig. 15, for both NNs, we plot £, against the smaller of
the following two distances: 1) ||xi& — [0.5 0.5]7 ,» that is, the distance between the starting

Volume 5, Issue 2, 2024

98 Wei et al.

A-increment- 1l .

107" g w0
. —JEmor e
.t —©— Mean Error —©— Mean Error

Relative Error in Esti

. \ .
1 2 3 4 T/25 T/50 T/100 T/200 T/400
Number of hidden layers (Ni,,) Time duration between segment starting and end points (A)

(@) (b)

Aincrement: ¥

10°F 10
[C—JEror
—©— Mean Error

L L L L L L L L L
1 2 3 4 T/25 T/50 T/100 T/200 T/400

Number of hidden layers (N,

(©) (d

FIG. 14: Box plots of the segment relative error £; ¢ (19) in the double-gyre example. A log scale is used on
the vertical axis. (See the caption of Fig. 3 for interpretation of box plots.) (a) The NNs for the y-explicit
unsteady A-increment P o with fixed A = 7°/200 = 0.02 and four different network structures (see
Table 6). (b) The NNs for P o with Ny = 3, Nnew = 45, and five different values of A (7'/25 = 0.16,
T/50 = 0.08, 7/100 = 0.04, T/200 = 0.02, and 7'/400 = 0.01). (c) The NNs for the y-implicit
unsteady A-increment & with fixed A = 7/200 = 0.02 and four different network structures (see
Table 7). (d) The NNs for £ with Nigy = 3, Nnew = 45 and five different values of A (1/25 = 0.16,
T/50 = 0.08,7/100 = 0.04, T/200 = 0.02, and 7'/400 = 0.01).

Time duration between segment starting and end points (A)

point of the kth segment in the test set (17), x|, and [0.5 0.5]7, and 2) ||x{¢ — [1.5 0.5]7]],,
that is, the distance between x'¢* and [1.5 0.5]7, where [0.5 0.5]7 and [1.5 0.5]7 are roughly
the gyre centers at ¢ = 0 and ¢ = 0.5 [see Figs. 13(a) and 13(c)]. The mean and median of &;®
are also displayed in each plot for reference. We observe that for both NNs, the errors loosely
form a U shape, indicating that large errors occur either close to the center or the edges of the
gyres; in particular, the largest errors correspond to segments furthest away from the gyres, at
the boundary of the domain.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 929

A-increment: U A A-increment: & A

Relative Error in E:

.
0 0.1 06 07 0 0.1 02 03 04 05 06 07
min {[|x — 0.5 0.5]7,, [xi —[1.5 0.5]7]|,}

(a) (b)

FIG. 15: The segment relative error £, ° (19) against min{Hx‘,:S1 —10.5 O.S]THZ, Hx}?“ —[1.5 O.S]THZ}
in the double-gyre example, where x&™ is the starting point of the kth segment in the test set (17), and
[0.5 0.5]7, [1.5 0.5]T are roughly the gyre centers at t = 0 and ¢t = 0.5 [see Figs. 13(a) and 13(c)]. A
semi-log scale is used. The horizontal dashed line marks the mean £, ®. The horizontal dash-dotted line
marks the median of £;®. (a) The NN with A = T7/200 = 0.02, N,y = 3, and Npew = 30 for the y-
explicit unsteady A-increment P 5. (b) The NN with A = 7/200 = 0.02, Njay = 3, and Npeu = 45 for
the y-implicit unsteady A-increment & .

02 03 04 05
min {[|xf* — 0.5 0.5]7|,, [|x{=t —[1.5 0.5]7]|,}

As in the previous two examples, we follow Steps 7-9 to examine how well Algorithm 1
approximates complete fluid particle trajectories. Recall that for five values of A, we have built
five NNs with Nigy = 3, Npew = 30 for the y-explicit unsteady A-increment 5, and five NNs
with Niay = 3, Nypeuw = 45 for the y-implicit unsteady A-increment & [see Tables 6, 7, and
Figs. 14(b) and 14(d) for their performance]. We first simulate Ny,; trajectories with end time 7'
in Step 7, and then repeat Steps 8 and 9 for every version of Algorithm 1 equipped with one of
the 10 trained NN, that is, Algorithm 1 (P, A, 3, 30, T') and Algorithm 1 (Ea, A, 3,45, T) for
the five values of A considered in Figs. 14(b) and 14(d). The statistics of the trajectory relative
error 5? ¥ (21) associated with every version of Algorithm 1 are depicted in Figs. 16(a) and 16(c).
Similar to what has been observed for the segment relative error E,ieg (19) from Figs. 14(b) and
14(d), for every A, the mean/median & associated with Algorithm 1 (&4, A, 3, 45, T)) is about
one order of magnitude higher than the mean/median £;"™ associated with Algorithm 1 (P, A,
3, 30, T)), even though the NN model used in the former has about twice as many network
parameters as the NN model used in the latter (see Tables 6 and 7).

In Fig. 17(a), we also show the fifty most-inaccurate trajectories (marked by circles) esti-
mated using Algorithm 1 ({4, 7'/200, 3, 45, T'). The exact trajectories are shown in solid lines
for comparison. All fifty pairs of trajectories are near the boundary of the domain D, which is
consistent with our observation based on Fig. 15 that the NN models are less accurate away from
the gyre centers. In Fig. 17(b), we zoom in on the five least-accurate estimated trajectories and
the true trajectories corresponding to them. The errors E;raj (21) associated with them are also
displayed.

Next, we extend the trajectory end time 7" in Step 7 to as large as 27 and examine the
performance of Algorithm 1 again. The end time used in Step 2 to acquire the data set (18)

Volume 5, Issue 2, 2024

100 Wei et al.

A-increment- 1h .

2
10 —JEror
[JEror —O— Mean Error

—©— Mean Error

Exrror in Estimated Traje

Relative

L
TI25

(a) (b)

. .
- - : - . T 1257
Ti25 TI50 /100 T/200 T/400 End time of traj

Time duration between segment starting and end points (A) (end time of trajec

(c) (d)

FIG. 16: Box plots of the trajectory relative error (21) associated with Algorithm 1 in the double-gyre
example. A log scale is used on the vertical axis. (See the caption of Fig. 3 for interpretation of box
plots.) (a) Algorithm 1 (W 5, A, 3, 30, T') where A equals 7'/25 = 0.16, T//50 = 0.08, 7'/100 = 0.04,
T/200 = 0.02, or T/400 = 0.01. (b) Algorithm 1 (A, T7//200, 3, 30, T') where T” equals T = 4,
1.25T = 5, 1.5T = 6, or 2T = 8. (c) Algorithm 1 (§a, A, 3, 45, T') where A equals 7'/25 = 0.16,
T/50 = 0.08, T/100 = 0.04, T'/200 = 0.02, or 7'/400 = 0.01. (d) Algorithm 1 (§, T/200, 3, 45, T")
where T” equals T = 4, 1.25T = 5, 1.5T = 6, or 2T = 8.

for the NNs remains 7' and does not change. For each end time 7" considered, we estimate
the Ny, trajectories simulated in Step 7 using two versions of Algorithm 1: Algorithm 1 (A,
T/200, 3, 30, T") and Algorithm 1 (£, T/200, 3, 45, T"). The trajectory relative errors &,
(21) associated with them are illustrated in Figs. 16(b) and 16(d), respectively. As expected,
for both versions of Algorithm 1, £™ grows as the end time 7" increases beyond T'. However,

comparing the two figures, we notice that the growth of Sfaj is considerably more rapid in the
case of Algorithm 1 (&4, 7/200, 3, 45, T") than in the case of Algorithm 1 (A, 7'/200, 3, 30,

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 101

A-increment: &

0.017083 0.013216 0.012766 0.010224 0.0071208
06f T ' '
0.6r 0.95
0.4 1
0.5F 0.9
0.2r 1
0.4f 0.85
> > 0.1 >
O'ﬂi 0.3} 0.8
02t] 0.2} {1 04} { 075
01F . 0.2¢ 1 0.7
-04r R 0.1F -0.3+]
1 1 1 1 1 1 11 1 1 1 1 1 0-65
0.1 1.9 1.96 0 0.1 0.2
X X X X X
(b)

FIG. 17: The fifty most-inaccurate trajectories estimated by Algorithm 1 (&a, 7/200, 3, 45, T') and the
corresponding true trajectories in the double-gyre example. The circles mark the estimated trajectories, and
the solid lines represent the true trajectories. The starting point of each trajectory is marked with a star.
(a) All 50 pairs of trajectories. (b) The five most-inaccurate estimated trajectories and the corresponding
true trajectories. The trajectory relative error Ezt-mj (21) in each estimated trajectory is displayed at the top
of the respective panel.

Volume 5, Issue 2, 2024

102 Wei et al.

T"). In particular, the mean/median/maximum 51-" ¥ associated with Algorithm 1 (&, T/200, 3,
45, 1.25T) is already of order 10~!, suggesting that Algorithm 1 (£, 7/200, 3, 45, T") should
not be applied to trace fluid particles beyond the end time 7" = 1.257. In stark contrast, as
observed in Fig. 16(b), for 7" as large as 27, the mean/median &;™ associated with Algorithm 1
(W4, T/200, 3,30, T') is below 10~#, and the maximum &, associated with it is below 102,
demonstrating the overwhelming superiority of the NN models for {p o over the NN models for
& at extrapolating trajectory data. (See Appendix C for additional graphics.)

3.4 Unsteady ABC Flow

The unsteady ABC flow (Haller, 2005) resembles the steady ABC flow but incorporates time-
dependent oscillations in the velocity field.
The velocity field u(x,y(t)) where w = [u v w]? and x = [z y 2]7 is as follows:

u(z,y(t)) = A(t)sinz 4+ C cosy, (34)
v(x,y(t)) = Bsinz + A(t) cos z, (35)
w(x,v(t)) = Csiny + Bcosz, (36)

where A(t) = Ap + (1 — e~?")sin wt characterizes the growth and saturation of an unstable
mode, and y(t) coincides with A(t). The parameter values are A9 = /3, ¢ = 0.1, w =
27, B =+/2, and C = 1 as in Haller (2005). Since this flow is also unsteady, we proceed as in
the previous example. One major difference is that the flow is 3D in this example. In Steps 1 and
7, we sample the particles within the cube D = [0, 27] x [0, 27] x [0, 27] and let the edge length
27 be the characteristic length. The largest amplitude in all three components of the velocity,
Ag + B, is chosen to be the characteristic speed. Consequently, as in Section 3.2 for the steady
ABC flow, we employ T' = 2 as the characteristic time, which is approximately 27 /(Ao + B).

As in Section 3.3, we first follow Steps 1-6 to examine the performance of NN models
for the y-explicit unsteady A-increment P o and the y-implicit unsteady A-increment & . The
time-dependent term v in the fluid velocity vector field (34)—(36) is again not a polynomial. For
the starting time point ¢; of each trajectory segment in (18) selected in Step 3, we again use
the second-degree Taylor polynomial of 'y around ¢, to approximate y locally on that segment,
between time points ¢;, and ¢;, + A. Since the flow is 3D, according to Table 1, 5 is from R® to
R3, and &, is from R* to R3. Various network structures and values of A are again considered.
The statistics of the segment relative error &, ° (19) are summarized in Tables 8, 9, and Fig. 18.
As seen in Figs. 18(a) and 18(c), the network structure plays an important role in the accuracy of
NN models for both 1 o and €. When the total number of network parameters, Nparam, remains
more or less the same, the NN for { o with two hidden layers (/Vj,y = 2) is the most accurate,
while the NN for £ with one hidden layer (/Vj,y = 1) is the most accurate. Figures 18(b) and
18(d) suggest that the accuracy of NN models is not very sensitive to the value of A. For every
A considered, the mean/median &, is in the order of 10~* for the NN models of both 1 5 and
En.

As in the previous three examples, we follow Steps 7-9 to examine the performance of
Algorithm 1 at approximating fluid particle trajectories. For five values of A, we report the
statistics of the trajectory relative error £ (21) associated with Algorithm 1 (P, A, 2, 55, T)
and Algorithm 1 (£a, A, 1, 400, T') in Figs. 19(a) and 19(c). The median/mean of £, is in the
order of 10~* across the board.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 103

TABLE 8: The minimum, mean, and maximum segment relative errors
&7 (19) for four NN models of the y-explicit unsteady A-increment) o
in the unsteady ABC example. A = 7'/200 = 0.01 is fixed. (See Table 3
for the meaning of Niay, Npew and Nparam)
Niay Npeu Nparam Min. % Mean £;°% Max. £;°%
1 400 4003 1.62-107 577-107% 2.19.1072

2 55 3633 2.58-107% 1.07-107* 7.11-1073
3 40 3683 6.04-107¢% 236-107* 1.27-1072
5 30 4023 6.83-107°% 478 .10=* 1.91-1072

TABLE 9: The minimum, mean, and maximum segment relative errors
&8 (19) for four NN models of the y-implicit unsteady A-increment &
in the unsteady ABC example. A = 7/200 = 0.01 is fixed. (See Table 3
for the meaning of Niay, Npey and Nparam)
Niay DNneu Nparam Min.E°% Mean &% Max. £,°%
1 400 3604 2.06-107°% 1.04-10"* 3.29.-1072

2 55 3579 128-107° 529-107* 1.93.1072
3 40 3644 501-107°% 4.28.107* 1.40-1072
5 30 3994 222-107% 874.107% 2.52-1072

Finally, we apply Algorithm 1 (W 5, 7'/400, 2, 55, T") and Algorithm 1 (&, 7'/400, 1, 400,
T") to estimate trajectories with end time 7" between T and 27T'. Recall that 7" is the end time
of the trajectories from which the training data (15) are collected. For each T” considered, the
trajectory relative error 5;”” (21) is reported in Figs. 19(b) and 19(d). As expected, whether an
NN model for W5 or &, is employed in Algorithm 1, £ increases with 7", It is again evident
that the NN models for & o are worse at extrapolating than the NN models for 1 5 . For example,
the median £;™ is about 102 for Algorithm 1 (£, T'/400, 1, 400, 1.5T)) and less than 10> for
Algorithm 1 (P A, T'/400, 1, 400, 1.57).

In this example, the NN models for the y-implicit unsteady A-increment & A are as accurate
as the NN models for the y-explicit unsteady A-increment 1\ o at interpolating, when the time
domains of the training data and test data coincide [see Tables 8, 9, Fig. 18, and Figs. 19(a) and
19(c)]. However, the former are less accurate at extrapolating, when the test data are collected
outside of the time domain of the training data [see Figs. 19(b) and 19(d)]. We emphasize again
that training an NN for & o does not require any knowledge of the time-dependent term y in the
fluid velocity, which is a huge advantage in scenarios where only trajectory data are available.

4. DISCUSSION

The position of a fluid particle is governed by an autonomous or a non-autonomous dynamical
system, depending on whether the the flow is steady or unsteady. This system can be simulated
using a numerical ODE solver, given that the fluid velocity field is known or can be resolved.
Our main contribution is demonstrating that given abundant trajectory data, we can learn the
solution to this system and thus track the fluid particle without knowledge of the fluid velocity.

Volume 5, Issue 2, 2024

104 Wei et al.

A-increment: 1 A

107 107"
[——JError [——JError

s —©— Mean Error fa —©— Mean Error
e - Is
< 102 2 107
2 100k 2 100k
Z %
) =
£ 10 2 10
a &
é 108 é 105 F
& &

10 . . . 10

1 2 3 5 T/25 T/50 T/100 T/200 T/400
Number of hidden layers (N,,) Time duration between segment starting and end points (A)
(a) (b)

A-increment: &

107 107
[——JError [——JError

s —©— Mean Error fa —©— Mean Error
W o3 5
= 107 N = 107
2 100k 2 100k
% %
= =
R = 10
a &
é 108 é 105 F
& &

10 . . . 10

1 2 3 5 T/25 T/50 T/100 T/200 T/400
Number of hidden layers (Nq;) Time duration between segment starting and end points (A)
(c) (d)

FIG. 18: Box plots of the segment relative error £ (19) in the unsteady ABC example. A log scale is
used on the vertical axis. (See the caption of Fig. 3 for interpretation of box plots.) (a) The NNs for the
v-explicit unsteady A-increment 1 o with fixed A = 7/100 = 0.02 and four different network structures
(see Table 8). (b) The NNs for P o with Niay = 2, Nyeu = 55 and five different values of A (7'/25 = 0.08,
T/50 = 0.04, T//100 = 0.02, and 7'/200 = 0.01, and 7"/400 = 0.005). (c) The NNs for the y-implicit
unsteady A-increment & with fixed A = T/100 = 0.02 and four different network structures (see
Table 9). (d) The NNs for £ with Niay = 1, Npew = 400 and five different values of A (7'/25 = 0.08,
T/50 = 0.04,7/100 = 0.02, and 7'/200 = 0.01, and 7'/400 = 0.005).

Our work is based on and inspired by Qin et al. (2019, 2021), where DNNs were used to
approximate the flow map of an autonomous system (Qin et al., 2019) or a non-autonomous
system (Qin et al., 2021), which, given the solution to the system at one time point, produces
the solution at a later time point. The flow map was built on an increment function that outputs
the change in the solution between the two time points. One of our contributions is finding novel
analytic expressions for the increment function for an autonomous system (Qin et al., 2019) and
the one for a non-autonomous system (Qin et al., 2021), termed the steady A-increment and the

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 105

A-increment: b .

107 10°
- [Error o [Error
g —©— Mean Error i —6— Mean Error
< g
: 210
g S
£ z
= 107 ¢])
= i
=] <
5 z
g g
o SRR
i =i
P 2 10*
2 3
'L:]
= o~
B 10° : . .
10° . ' ' . T 1257 15T 2T
T/25 T/50 T/100 T/200 T/400 End time of trajectories for testing
Time duration between segment starting and end points (A) (end time of trajectories for training remains 7")
(a) (b)
A-increment- £ .
102 100 ¢
[Error - [Error
g —©6— Mean Error 5. —6— Mean Error

<

=)
&

Relative Error in Estimated Trajectory (£7)
Relative Error in Estimated Trajectory (£

10
10°° L L L L T 1.25.T 15T 2T
T/25 T/50 T/100 T/200 T/400 End time of trajectories for testing
Time duration between segment starting and end points (A) (end time of trajectories for training remains 7")
© (d)

FIG. 19: Box plots of the trajectory relative error 5;“” (21) associated with Algorithm 1 in the unsteady
ABC flow example. A log scale is used on the vertical axis. (See the caption of Fig. 3 for interpretation of
box plots.) (a) Algorithm 1 (P A, A, 2,55, T') where A equals 7'/25 = 0.08, T//50 = 0.04,7/100 = 0.02,
T/200 = 0.01, or 7/400 = 0.005. (b) Algorithm 1 (i o, 0.005, 1, 400, T”) where T” equals T = 2,
1.257 = 2.5, 1.5T = 3, 0or 2T = 4. (c) Algorithm 1 (§a, A, 2, 55, T)) where A equals T//25 = 0.08,
T/50 = 0.04, T/100 = 0.02, T//200 = 0.01, or T//400 = 0.005. (d) Algorithm 1 (£, 0.005, 1, 400, T")
where T' equals T' = 2, 1.25T = 2.5, 1.57 = 3, or 2T = 4.

v-explicit unsteady A-increment in this work, and thus providing new insights into how they
relate to the forcing terms in these dynamical systems.

A disadvantage of the y-explicit unsteady A-increment is that to learn it, we need to know
the time-dependent term 7y in the velocity field in addition to trajectory data, which can be un-
realistic in real-world applications where an analytic expression of the velocity field is truly
unknown and only trajectory data are available. To remedy this, we propose a new increment
function for a non-autonomous system that can be learned from time-stamped trajectory data
alone, termed the y-implicit unsteady A-increment. This is another contribution of our work.

Volume 5, Issue 2, 2024

106 Wei et al.

Numerical results show that the DNNs built for the y-explicit unsteady A-increment are more
accurate and also better at extrapolating trajectory data, compared to the DNN models of the
proposed y-implicit unsteady A-increment. This is not surprising since the former are also in-
formed by additional knowledge of the flow (specifically, how the fluid velocity changes with
time) besides the trajectory data.

Furthermore, we look into how the physical features of a fluid flow affect the accuracy of a
DNN model for the increment function. For example, we observe that near the boundary of a
vortex, the model is the least accurate. Such information could lead to more clever sampling of
the trajectory data as well as adaptive refinement of the model that improves its performance in
certain regions of the flow.

One limitation of this work is that the fluid velocity is known analytically in all examples con-
sidered. This allows for computationally cheap simulation of trajectory data but fails to account
for the noises that will inevitably arise from resolving the fluid velocity field by a numerical
method for the PDEs governing the fluid dynamics, such as the Navier-Stokes equations, or by a
flow measurement technique such as the PIV. Our future directions include using more realistic
trajectory data generated by these means.

ACKNOWLEDGMENTS

Wei and Rostami were supported, in part, by the National Science Foundation (NSF) under
Grants DMS-1818833 and DMS-2146191, 2408964 (CAREER) awarded to Rostami. Green
was supported by the Computational Mathematics program of the Air Force Office of Scien-
tific Research under Grant FA9550-07-1-0139. Shen was supported by the NSF under Grant
DMS-2208385.

REFERENCES
Brunton, S.L., Noack, B.R., and Koumoutsakos, P., Machine Learning for Fluid Mechanics, Ann. Rev. Fluid
Mech., vol. 52, no. 1, pp. 477-508, 2020.

Chen, Z., Churchill, V., Wu, K., and Xiu, D., Deep Neural Network Modeling of Unknown Partial Differ-
ential Equations in Nodal Space, J. Comput. Phys., vol. 449, p. 110782, 2022.

Chen, Z. and Xiu, D., On Generalized Residual Network for Deep Learning of Unknown Dynamical Sys-
tems, J. Comput. Phys., vol. 438, p. 110362, 2021.

Elman, H., Silvester, D., and Wathen, A., Finite Elements and Fast Iterative Solvers: With Applications in
Incompressible Fluid Dynamics, 2nd ed., Oxford, UK: Oxford University Press, 2014.

Fu, X., Chang, L.B., and Xiu, D., Learning Reduced Systems via Deep Neural Networks with Memory, J.
Mach. Learn. Model. Comput., vol. 1, no. 2, pp. 97118, 2020.

Goodfellow, 1., Bengio, Y., and Courville, A., Deep Learning, Cambridge, MA: MIT Press, 2016.
Haller, G., An Objective Definition of a Vortex, J. Fluid Mech., vol. 525, pp. 1-26, 2005.
Haller, G., Lagrangian Coherent Structures, Ann. Rev. Fluid Mech., vol. 47, no. 1, pp. 137-162, 2015.

He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, in 2016 IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770-778, 2016.

Hunt, J.C.R., Wray, A.A., and Moin, P., Eddies, Streams, and Convergence Zones in Turbulent Flows, in
Proc. of the Summer Program, Center for Turbulence Research, pp. 193-208, 1988.

Jain, A., Mao, J., and Mohiuddin, K., Artificial Neural Networks: A Tutorial, Computer, vol. 29, no. 3,
pp- 3144, 1996.

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 107

Lin, G., Moya, C., and Zhang, Z., On Learning the Dynamical Response of Nonlinear Control Systems
with Deep Operator Networks, arXiv:2206.06536[math.DS], 2023.

Long, Z., Lu, Y., Ma, X., and Dong, B., PDE-Net: Learning PDEs from Data, in Proc. of the 35th Intl. Conf.
on Machine Learning, Vol. 80 of Proc. of Machine Learning Research, Stockholm, Sweden, pp. 3208—
3216, 2018.

Long, Z., Lu, Y., and Dong, B., PDE-Net 2.0: Learning PDEs from Data with a Numeric-Symbolic Hybrid
Deep Network, J. Comput. Phys., vol. 399, p. 108925, 2019.

Lu, L., Jin, P,, Pang, G., Zhang, Z., and Karniadakis, G.E., Learning Nonlinear Operators via DeepONet
Based on the Universal Approximation Theorem of Operators, Nat. Mach. Intell., vol. 3, pp. 218-229,
2021.

Marquardt, D.W., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Indust.
Appl. Math., vol. 11, no. 2, pp. 431-441, 1963.

Proctor, J.L., Brunton, S.L., and Kutz, J.N., Dynamic Mode Decomposition with Control, SIAM J. Appl.
Dyn. Syst., vol. 15, no. 1, pp. 142-161, 2016.

Qin, T., Wu, K., and Xiu, D., Data Driven Governing Equations Approximation Using Deep Neural Net-
works, J. Comput. Phys., vol. 395, pp. 620—635, 2019.

Qin, T., Chen, Z., Jakeman, J.D., and Xiu, D., Data-Driven Learning of Nonautonomous Systems, SIAM J.
Sci. Comput., vol. 43, no. 3, pp. A1607-A1624, 2021.

Raffel, M., Willert, C.E., Scarano, F., Kéhler, C.J., Wereley, S.T., and Kompenhans, J., Particle Image
Velocimetry: A Practical Guide, 3rd ed., Cham: Springer, 2018.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Multistep Neural Networks for Data-Driven Discovery of
Nonlinear Dynamical Systems, arXiv:1801.01236[math.DS], 2018.

Rockwood, M.P., Loiselle, T., and Green, M.A., Practical Concerns of Implementing a Finite-Time Lya-
punov Exponent Analysis with Under-Resolved Data, Exp. Fluids, vol. 60, no. 4, p. 74, 2019.

Schanz, D., Gesemann, S., and Schréder, A., Shake-the-Box: Lagrangian Particle Tracking at High Particle
Image Densities, Exp. Fluids, vol. 57, no. 5, p. 70, 2016.

Shadden, S.C., Lekien, F., and Marsden, J.E., Definition and Properties of Lagrangian Coherent Structures
from Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows, Physica D: Nonlinear
Phenomena, vol. 212, no. 3, pp. 271-304, 2005.

Su, W.H., Chou, C.S., and Xiu, D., Deep Learning of Biological Models from Data: Applications to ODE
Models, Bull. Math. Biol., vol. 83, no. 3, p. 19, 2021.

Tang, B., Orthogonal Array-Based Latin Hypercubes, J. Am. Stat. Assoc., vol. 88, no. 424, pp. 1392-1397,
1993.

van Sebille, E., Griffies, S.M., Abernathey, R., Adams, T.P., Berloff, P., Biastoch, A., Blanke, B., Chas-
signet, E.P., Cheng, Y., Cotter, C.J., Deleersnijder, E., D66s, K., Drake, H.F., Drijthout, S., Gary, S.F.,
Heemink, A.W., Kjellsson, J., Koszalka, .M., Lange, M., Lique, C., MacGilchrist, G.A., Marsh, R.,
Mayorga Adame, C.G., McAdam, R., Nencioli, F., Paris, C.B., Piggott, M.D., Polton, J.A., Riihs, S.,
Shah, S.H.A.M., Thomas, M.D., Wang, J., Wolfram, P.J., Zanna, L., and Zika, J.D., Lagrangian Ocean
Analysis: Fundamentals and Practices, Ocean Model., vol. 121, pp. 49-75, 2018.

Wu, K., Qin, T., and Xiu, D., Structure-Preserving Method for Reconstructing Unknown Hamiltonian Sys-
tems from Trajectory Data, SIAM J. Sci. Comput., vol. 42, no. 6, pp. A3704-A3729, 2020.

Wu, K. and Xiu, D., Data-Driven Deep Learning of Partial Differential Equations in Modal Space, J. Com-
put. Phys., vol. 408, p. 109307, 2020.

Zhuang, Q., Lorenzi, J.M., Bungartz, H.J., and Hartmann, D., Model Order Reduction Based on Runge—
Kutta Neural Networks, Data-Centric Eng., vol. 2, p. e13, 2021.

Volume 5, Issue 2, 2024

108 Wei et al.

APPENDIX A. PROOF OF THE THEOREMS

In this section and the next, we assume that the dimension of the flow, dy,, is 3. In order to prove
Theorem 1 for the autonomous system Eq. (1), we first prove the following lemma.

Lemma 1. Let {u},- , be a sequence of functions from R3 to R? defined as follows:
1. u) = u, where u is the fluid velocity on the right-hand side of Eq. (1),
2. for any integer k > 1, uy, = Jy_1u, where Ji_1 is the 3 x 3 Jacobian matrix of u_.
Then for any x satisfying Eq. (1) and any integer k > 1,
dFx

5 = w(x(t)). (A1)

The definition of Jy, is as follows:

[Ou Ow D]
ox dy 0z
8vk 6vk 8’Uk
Jp=| — — —— A2
k Ox Oy 0z |’ (A2)
8wk 5‘wk 8wk
L Ox oy 0z |
where wi = [u v, wy])” andx =[x y z]7T.
Proof. — For k =1, Eq. (A.1) follows immediately from the definition of w; and Eq. (1).
— Assume that for K = m > 2, Eq. (A.1) holds, that is,
dm
o = wm(x(1). (A3)
By the definition of uy, the definition of Ji, Eq. (1), Eq. (A.3), and the chain rule,
dm“x_g d™x _dum_J dj_J N
atm+t T A\ dem) ae Mae o o™ b
that is, Eq. (A.1) holds for £ = m + 1 as well.
— By the principle of mathematical induction, Lemma 1 holds.
O

We are now ready to prove Theorem 1.

Proof. Let t, be an arbitrary, fixed time point in [0, T — A]. Using the Taylor expansion of x ()
around ¢y, we get

dx A? d’x A3 d3x
A) — =A—| += 2 =] 4. A4
X(tO +) X(to) dt i 2 ds2 o 6 de3 " + ()
By Lemma 1, Eq. (A.4) can be rewritten as
x(to + A) —x(to) = Z Fuk(x(to)) = da(x(to)) (A.5)
k=1 "

for any x satisfying Eq. (1). Since ¢ is arbitrary, Eq. (2) and Theorem 1 follow immediately. O

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 109

In the case of the non-autonomous system Eq. (4), depending on whether we rewrite it into
the autonomous system Eq. (6) or the autonomous system Eq. (10), we can prove Theorem 2 or
Theorem 3 in a similar fashion.

APPENDIX B. EXPRESSIONS OF THE A-INCREMENTS

We note that the proof of Theorem 1 is constructive. From Eq. (A.5), we obtain the following
expression of the steady A-increment ¢ 5 in terms of {uy } -,

o0
Ak
ba = Fuk (B.1)
k=1
Similarly, we can write down an expression of the y-explicit unsteady A-increment 1 5 in

terms of {@y, },- , defined as follows:

1. u; = u, where wu the fluid velocity on the right-hand side of Eq. (4);

~ u
2. for any integer k > 1, up = Jy_ T |, where
COh O 0% O Oh O
or 9y 0z Oy oyW oy(m)
~ v Ovr Ovx Ovg Ovg Ovy,
= | == = £ ¥ B.2
T or oy 0z 0oy oy Hym) |’ (B2
owy, Ow, Owy Owr Owg owy,
L Oz Oy 0z dy oy Oy(m |
and ﬂk = [ﬂk 5]@ @k]T.
This expression is
(e’e] Ak _
Yo = ?uk (B.3)
k=1 "

We can also write down an expression of the y-implicit unsteady A-increment & in terms
~ 00
of {uy, },_, defined as follows:

1. w; = u, where u the fluid velocity on the right-hand side of Eq. (4);

u
] , where

2. for any integer k > 1, Uy, = T {)

[Ou, Oup Oup Oup]

ox dy 0z ot

~ | U, Ovp OUp OV
Ox Oy 0z ot |

owy, 0w, 0w, 0wy

ox dy 0z ot

(B.4)

and ﬁk = [ﬂk i)\k Q/U\k]T.

Volume 5, Issue 2, 2024

110 Wei et al.

This expression is
fe’e) Ak ~
Ep = <7 e (B.5)
k=1

APPENDIX C. ADDITIONAL GRAPHICS OF THE PARTICLE TRAJECTORIES

We present additional figures that illustrate the growth of the error of Algorithm 1 with time. We
consider one steady flow and one unsteady flow: the Hill’s spherical vortex example (Section 3.1)
and the double-gyre example (Section 3.3).

Recall that in Section 3.1, we apply Algorithm 1 (¢ A, 7/100, 5, 20, T") to track 1000 par-
ticles from time 0 to 7", where the end time 1" varies between 1" and 27", and the NN model for
@ A is trained on trajectory data collected on the time domain [0, 7] with T' = 8 [see Fig. 5(b)].
For the end time 77 = 1.5T", we plot the x, y, and z components of the least accurately estimated
trajectory as well as their exact counterparts against time in Fig. C1. The relative error, Eq. (21),
associated with this trajectory is about 1.04 x 10~!. Even though 7" is 1.5 times as large as T,
the « and y components of the estimated and exact trajectories are almost indistinguishable (see
the top and center panel of Fig. C1); the error in the z component of the estimated trajectory
becomes noticeable as time approaches T”.

Recall that in Section 3.3, we apply both Algorithm 1 ({5, 7//200, 3, 30, T”) and Algo-
rithm 1 (&a, T/100, 3, 45, T") to track 1000 particles from time 0 to 7", where the end time
T’ varies between T and 27", and the NN models for 1 o and & are trained on trajectory data
collected on the time domain [0, 7] with T' = 4 [see Figs. 16(b) and 16(d)]. Also recall that the

0 T

Exact
= == = Estimated

o

"o 2 4 6 8 10 12

FIG. C1: The z, y, and z components of the least accurate trajectory estimated by Algorithm 1 (¢,
T7/100, 5, 20, 1.57") as functions of time (¢) in the Hill’s spherical vortex example (Section 3.1). The
red dashed line represents the x, y, or z component of the estimated trajectory, and the solid black line
represents the x, y, or z component of the exact trajectory. The trajectory end time is 1.57", whereas the
training data are sampled from the time domain [0, T'] (T = 8).

Journal of Machine Learning for Modeling and Computing

Predicting Fluid Particle Trajectories without Flow Computations 111

A-increment: aly . A-increment: ¥

Exact T Exact >
= = = Estimated = = = Estimated ~

05 L L L L L 05 L L L L L
0 1 2 3 4 5 0 1 2 3 4 5 6

0.8 T T T T T 0.8

06 06

(a) (b)

FIG. C2: The = and y components of the least-accurate trajectory estimated by Algorithm 1 as functions of
time (t) in the double-gyre example (Section 3.3). The red dashed line represents the x or y component of
the estimated trajectory, and the solid black line represents the or y component of the exact trajectory. The
trajectory end time is 1.57, whereas the training data are sampled from the time domain [0, 7] (T = 4).
(a) Algorithm 1 (1 5, T/200, 3, 30, 1.5T). (b) Algorithm 1 (£, /200, 3, 45, 1.5T).

training of NN models for ¢ 5 requires knowing the time-dependent term y(¢) in the fluid veloc-
ity u(a, y(t)) explicitly, whereas the training of NN models for & does not. As in the previous
example, we consider the end time 77 = 1.57. In Fig. C2(a), we plot the = and y components
of the least-accurate trajectory estimated by Algorithm 1 (P, 7/200, 3, 30, 1.57") as well as
their exact counterparts against time. The relative error associated with this trajectory is about
1.3 x 1073, As displayed in Fig. C2(a), both the 2 and i components of the estimated trajectory
are indistinguishable from the exact ones between time 0 and 1.57".

We also plot the = and y components of the least-accurate trajectory estimated by Algo-
rithm 1 (&, T/200, 3, 45, 1.5T) as well as their exact counterparts against time in Fig. C2(b).
Both estimated components lose accuracy rapidly around time 1.17"; and the relative error in the
estimated trajectory is as large as 1.37. The comparison between Figs. C2(a) and C2(b) shows
that although both the NN model for i o and the NN model for Ea are able to make predictions
beyond the time domain of the training data, the former, due to the additional knowledge of the
time-dependent term y(¢), remains accurate for a much longer period of time.

Volume 5, Issue 2, 2024

