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A B S T R A C T

The recently proposed tensor correlated total variation (t-CTV) has achieved success in tensor completion.
It utilizes the low-rank structure of the gradient tensor under a unified linear transform to jointly encode
low-rankness and smoothness priors. However, fixed linear transforms have inherent limitations in fully
characterizing gradient tensors in different directions and adapting them to tensors from diverse categories.
In this work, we propose the nonlinear tensor correlated total variation (NTCTV) regularization term that
leverages the low-rank correlations of the gradient tensor under the learnable nonlinear transformation,
providing a more natural approach to fuse the low-rankness and smoothness priors. Specifically, our approach
learns the optimal nonlinear implicit low-rank structure of the gradient tensor along different modes separately,
and then achieves the expression of fused prior information in a coupled manner. Furthermore, we propose the
NTCTV-based tensor completion model and design the proximal alternating minimization (PAM) algorithm to
efficiently solve the optimization model. Moreover, we provide a theoretical proof of the global convergence of
the algorithm to a critical point. Comprehensive experimental results for hyperspectral images, medical images,
multispectral images, and videos demonstrate that the proposed method achieves substantial quantitative and
qualitative improvements over many state-of-the-art tensor completion techniques.
1. Introduction

With the exponential increase in data volume and technological
advancements, tensors, as multi-dimensional extensions of arrays, nat-
urally represent various types of high-dimensional image data, such
as hyperspectral images (HSIs), multispectral images (MSIs), computed
tomography (CT), and magnetic resonance images (MRI). Compared
to matrix and vector representations, tensor tends to represent native
multidimensional structures in data with greater fidelity and accu-
racy. Thus, there are a wide range of applications involving tensor
representations, including anomaly detection [1], computer vision [2],
iomedical imaging [3] and recommender systems [4].
Unfortunately, due to defects in the collection equipment and inter-

erence from complex real-world situations, the tensor data collected
ften exhibit overt deteriorations, such as corruptions or absent en-
ries, which significantly degrade the visual quality and affect the
ubsequent processing tasks. Tensor completion has thus evolved into
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one of the elementary issues in tensor research. Mathematically, the
problem of recovering the target tensor  ∈ R𝑛1×𝑛2×𝑛3 involves utilizing
the potential structural prior information provided by the observation
tensor P𝛺() = P𝛺(), where  represents the unknown underlying
tensor, 𝛺 represents the index of the known elements, and P(⋅) denotes
the projection operator. This problem, known as tensor completion
(TC) [5], falls under the category of typical inverse problems.

To reasonably and accurately estimate the recovery tensor in the
context of such an ill-posed problem, extracting and encoding the in-
trinsic prior structural information inherent in the tensor data into reg-
ularization terms are necessary. Low-rankness (denoted by 𝑹), which
is the most frequently employed global prior, assumes that multi-
dimensional tensor data inherently exhibit redundant properties along
specific tensor modes. This implies that major information about the
tensor is situated within an appropriate low-dimensional subspace,
elucidating its information linkage macroscopically along a certain
vailable online 9 May 2024
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tensor mode. Thus, this prior gives rise to the classical low-rank tensor
completion (LRTC) model:

min


R(), s.t. P𝛺() = P𝛺(), (1)

where R(⋅) is a regularization operator representing low-rankness. Un-
like the matrix rank definition, the tensor rank definitions are not
unique. Over the past few decades, substantial research efforts on
tensor rank have been based on different tensor decompositions, such
as the classical CANDECOMP/PARAFAC (CP) [6] decomposition and
Tucker [7] decomposition. Computing the CP rank, which represents
the minimum number of rank one factor tensors in CP decomposition,
is an NP-hard task, and its convex relaxation is intractable in practical
applications. This renders tensor completion based on CP rank challeng-
ing. To avoid this issue, the Tucker rank, which is defined as a vector
composed of ranks of each mode-𝑘 unfolding matrix of the tensor,
nd its convex relaxation are used more widely. Liu et al. [5] first
roposed the sum of nuclear norms (SNN) [5] as a convex surrogate
f the Tucker rank and designed the LRTC method based on the
NN. Xu et al. [8] proposed a new LRTC method that executes low-
ank matrix factorization on the all-mode matricizations of the tensor.
owever, the SNN is limited by the fact that it is not the tightest convex
elaxation [9]. In addition, tensor network decomposition frameworks,
ncluding tensor train (TT) [10] decomposition, tensor ring (TR) [11]
ecomposition and tensor fully-connected tensor network (FCTN) [12]
ecomposition, have been proposed. Each of these decompositions was
uccessful in the realm of high-order LRTC [13–17].
Recently, the tensor singular value decomposition (t-SVD) [18]

ramework has been proposed and widely applied in LRTC. Based
n the tensor-tensor product (t-product), t-SVD establishes a complete
ensor decomposition algebraic framework. Under the t-SVD decompo-
ition framework, the tensor tubal rank and its corresponding convex
urrogate tensor nuclear norm (TNN) [19] achieved excellent perfor-
ance. Thus, model (1) based on the t-SVD framework has received
onsiderable attention in characterizing the underlying tensor data
hat satisfy 𝑹-prior structure. Kernfeld et al. [20] observed that the
-product can be implemented using the discrete Fourier transform
DFT), which has generated substantial interest among researchers in
ovel transforms founded on the t-product. Jiang et al. [21] proposed
semi-invertible framelet transform that overcame the invertibility
onstraint. It should be noted that above transforms were predefined.
hus, more researchers have considered data-driven transforms which
an better explore the 𝑹 structure prior of real data. Luo et al. [22]
roposed a self-supervised method to learn transforms adaptively. Li
t al. [23] used single layer semi-orthogonal neural network to deter-
ine a suitable transform. Despite the favorable results achieved by all
he aforementioned purely 𝑹-prior methods, real visual data usually
ave more intrinsic prior structural information.
Apart from low-rankness prior, the smoothness (denoted by 𝑺) prior

hich is particularly evident in the data structure of visual data, is
idely used to smooth adjacent structural information within a tensor.
he 𝑺-prior describes the relative local similarity structure within the
ensor data, specifically manifested as the adjacent element values
long certain tensor modes prone to steady change. It is commonly
haracterized using total variation (TV), which can be further cate-
orized into two main types: anisotropic TV (TV-1) and isotropic TV
TV-2) [24]. Researchers continually adapt TV based on the nature of
he data being analyzed. For HSIs, spectral-spatial TV (SSTV) is often
mployed to model a smooth structure along its spatial axes [25].
imilarly, Tom and George [26] formulated a temporal–spatial TV for
ideos.
In practice, to ensure effective tensor completion, the 𝑺-prior, as
type of local prior structure, is commonly employed with the global
-prior to achieve better performance. Most related studies incorporate
he 𝑺-prior into the 𝑹-prior model in an additive manner (𝑹 + 𝑺) as
ollows:

inR() + 𝜆S(), s.t. P () = P (), (2)
2

 𝛺 𝛺 c
here S(⋅) denotes the regularization operator that measures the
moothness prior. By representing the regularization operator S in
odel (2) using various methods, a series of works have achieved
romising results for tensor completion. Qiu et al. [27] used the TNN to
xplore the 𝑹-prior and the simple TV-1 to depict the 𝑺-prior. Yokota
t al. [28] achieved tensor completion by incorporating TV-1/TV-2 into
CP-rank model. Other typical works along this line include [29–35].
While the 𝑹 + 𝑺-prior model (2) has achieved satisfactory results

n various applications, it still has some limitations. On the one hand,
he 𝑹-prior and 𝑺-prior are commonly coupled together within real-
orld natural data, making it challenging to fully represent the data
n a straightforward additive manner. On the other hand, determining
he valid trade-off parameters between the 𝑹 and 𝑺 regularizers is
on-trivial, since their interaction frequently has a pronounced impact
n the performance of (2). Recently, Wang et al. [36] overcame these
onstraints and improved the fusion prior model by proposing a novel
usion prior regularization operator called the tensor correlated total
ariation (t-CTV). This operator couples two different prior operators
and S instead of simply adding them, and provides a theoretical

recision recovery guarantee for tensor completion. This implies that
he 𝑹 + 𝑺-prior is essentially a coupled prior, denoted by 𝑹◦𝑺-prior.
hus, the corresponding model can be formulated as follows:

in


R◦S(), s.t. P𝛺() = P𝛺(), (3)

here R◦S(⋅) is a fusion prior regularization operator which measures
he coupling prior of low-rankness and smoothness. Specifically, t-CTV
escribes the redundant information inside the tensor by considering
he implicit low-rank structure of the directional difference. Suppose
hat 𝛤 is a priori set consisting of directions represented by different
odes, with cardinality 𝛾, along which  has smooth continuity. Then,
he model (3) is equivalent to

in


∑

𝑘∈𝛤

1
𝛾
‖∇𝑘()‖∗,L, s.t. P𝛺() = P𝛺(), (4)

here ∇𝑘() ∈ R𝑛1×𝑛2×𝑛3 represents the difference along the 𝑘th mode
f  , characterized by TNN ‖ ⋅ ‖∗,L under t-SVD framework with linear
ransform L. It is important to note that the gradient tensors in all direc-
ions in (4) are projected onto the same linear transform domain, which
aises some concerns. First, using an identical transform may not fully
acilitate the extraction of the intrinsic-fused-prior-structural informa-
ion from the original data across different smoothing orientations.
dditionally, linear constraints may limit the ability to adequately
odel the nonlinear traits exhibited in real-world data.
To address these issues, we propose a type of learned nonlin-

ar transform, denoted as 𝜑 ∶ R𝑛1×𝑛2×𝑛3 → R𝑟×𝑛2×𝑛3 , for the t-CTV
ethod. This enables joint low-rank and smooth tensor completion
ithout the need to balance the parameters. Specifically, for each di-
ectional difference with the fused 𝑹◦𝑺-prior, we adaptively determine
semi-orthogonal transform embedded within a nonlinear function.
he learned nonlinear transforms can effectively explore the latent
tructural knowledge present in each prior direction, while utilizing a
maller 𝑟 to project the observation tensor into a small-scale tensor to
educe computational complexity. Furthermore, processing the fused
◦𝑺-prior in the form of tensor directional difference eliminates the
eed to select trade-off parameters between the two priors. Utilizing the
roposed learnable nonlinear transform, we propose a regularization
perator to quantify the fused 𝑹◦𝑺-prior, termed nonlinear tensor
orrelated total variation (NTCTV), which simultaneously captures the
and 𝑺 priors of the underlying tensor under within the nonlinear low-
imensional subspace. Then, we formulate the fused 𝑹◦𝑺-prior model
ased on this operator. Furthermore, we developed solving algorithms
ased on multi-block proximal alternating minimization (PAM) [37,
8], and analyzed their convergence and effectiveness through theo-
etical analysis and experiments with real data. The main contributions

an be summarized as follows:
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• We propose a learnable nonlinear regularizer NTCTV to charac-
terize the fused 𝑹◦𝑺-prior with a unique term. The proposed
method adaptively learns the optimal nonlinear transform for
each gradient tensor with a fused prior.

• Under low-rankness and smoothness priors, we employ the NTCTV
for classical TC task based on the PAM algorithm, obtaining
the closed-form updating solution for each variable. Addition-
ally, we theoretically analyze the computational complexity and
convergence of the proposed algorithm.

• Comprehensive experiments on tensor completion validate the
superiority of the proposed NTCTV-based method over state-of-
the-art approaches, including those considering 𝑹, 𝑹 + 𝑺 and
𝑹◦𝑺-priors. Typically, experimental results show the remarkable
performance of our method in HSIs completion, even at high
random voxel missing of up to 95%, 98%, and 99%. Additionally,
a visual examination of the convergence and the impact of asso-
ciated parameters are conducted, yielding dependable parameter
selection guidelines for varied image categories.

The remainder of this paper is organized as follows. In Section 2,
we introduce the t-CTV framework and related definitions. In Section 3,
we propose an NTCTV regularizer for tensor completion with a fused
prior and establish the corresponding algorithm with a theoretical
convergence guarantee and computational complexity. In Section 4, we
present TC experiments on HSIs, MSIs, videos, CT, and MRI medical
images, respectively. In Section 5, we discuss the proposed algorithm.
Section 6 concludes the paper.

2. Notations and preliminaries

In this section, we provide a brief introduction to some basic nota-
tions and the t-CTV framework. For more details, please refer to [36,
39,40].

In this study, we use 𝑥, 𝐱, 𝐗 and  to denote the scalars, vectors,
matrices, and tensors, respectively. For an order-3 tensor  ∈ R𝑛1×𝑛2×𝑛3 ,
its (𝑖, 𝑗, 𝑘)th element is denoted as (𝑖, 𝑗, 𝑘) or 𝑥𝑖𝑗𝑘, and the 𝑘th frontal
slice of tensor  is denoted as (∶, ∶, 𝑘) or  (𝑘). We then denote 𝑏𝑖𝑎𝑔()
with size 𝑛1𝑛3 × 𝑛2𝑛3, as the block diagonal matrix constructed by all
frontal slices. Besides, we denote the 𝓁1 norm as ‖‖1 =

∑

𝑖𝑗𝑘 |𝑥𝑖𝑗𝑘|

and the Frobenius norm as ‖‖𝐹 =
√

∑

𝑖𝑗𝑘 𝑥
2
𝑖𝑗𝑘. Both the 𝓁1 norm and

Frobenius norm can be reduced to the vector or matrix norms. The
matrix nuclear norm of 𝐗 is denoted as ‖𝐗‖∗ =

∑

𝑖 𝜎𝑖(𝐗), where 𝜎𝑖(𝐗)
is the 𝑖th singular value of 𝐗.

Definition 1 (Tensor Mode-𝑘 Product [40]). For  ∈ R𝑛1×𝑛2×⋯×𝑛𝑑 and a
matrix 𝐌 ∈ R𝑟𝑘×𝑛𝑘 , tensor mode-𝑘 product is defined as

 ∶=  ×𝑘 𝐌 = fold𝑘(𝐌(𝑘)),

where (𝑘) is the mode-𝑘 matricization of  and fold𝑘(⋅) is the corre-
sponding inverse operator of matricization that rearranges the elements
of a matrix into a tensor.

Definition 2 (Tensor Tubal Rank [39]). For  ∈ R𝑛1×𝑛2×𝑛3 with t-SVD
 =  ∗L  ∗L T, its tensor tubal rank is defined as

𝑟𝑎𝑛𝑘𝑡() ∶= ♯{𝑖 ∶ 𝑆(𝑖, 𝑖, ∶) ≠ 𝟎},

where ∗L is the t-product under linear transform L and ♯ denotes the
cardinality of a set.

Definition 3 (TNN [39]). Under the t-SVD framework with a linear
transform L, the TNN of order-3 tensor  ∈ R𝑛1×𝑛2×𝑛3 is defined as

‖‖⋆,L ∶= 1
𝓁

𝑛3
∑

𝑖=1
‖(L())(𝑖)‖∗,

here L() =  ×3 𝐋, 𝐋 is a transform matrix sized 𝑛3 × 𝑛3 with
𝐋T = 𝓁𝐈 .
3

𝑛3 r
efinition 4 (Gradient Tensor [36]). For  ∈ R𝑛1×𝑛2×⋯×𝑛𝑑 , the gradient
tensor along the 𝑘th mode is defined as

𝑘 ∶= ∇𝑘 =  ×𝑘 𝐃𝑛𝑘 ,

where ∇𝑘 is the difference operator along the 𝑘th mode, 𝐃𝑛𝑘 ∈ R𝑛𝑘×𝑛𝑘

is a row circulant matrix of (−1, 1, 0,… , 0).

Definition 5 (t-CTV [36]). For  ∈ R𝑛1×𝑛2×⋯×𝑛𝑑 , denote 𝛤 as a priori
set consisting of directions along which  satisfies the fused 𝑹◦𝑺-prior.
The t-CTV norm is defined as follows:

‖‖𝑡−𝐶𝑇𝑉 ∶= 1
𝛾
∑

𝑘∈𝛤
‖𝑘‖⋆,L, (5)

where 𝛾 is the cardinality of priori set 𝛤 .

3. Proposed model and optimization algorithm

3.1. Motivations

As shown in (5), for  ∈ R𝑛1×𝑛2×𝑛3 with fused 𝑹◦𝑺-prior, the
t-CTV exploits the implicit structural information of gradient tensor
in the transform domain to achieve the fusion metric of 𝑹 and 𝑺.
However, it utilizes the same predefined linear transform to express
low-rank structures of different gradient tensors, which has limited
adaptability to tensor data and hinders the expression of nonlinear
structural information.

To tackle these problems, we propose a learnable nonlinear trans-
form to adapt to different types of prior structural information. The
proposed transform exhibits a composite structure in which a linear
matrix is embedded within a nonlinear function. Specifically, for 𝑘 ∈ 𝛤 ,
the learnable nonlinear transform is defined as:

𝜑𝑘(𝑘) = 𝜙(𝑘 ×3 𝐓𝑘), (6)

where 𝜙(⋅) denotes the element-wise nonlinear activation functions,
𝑘 denotes the gradient tensor of  along the 𝑘th mode and 𝐓𝑘 ∈
R𝑟×𝑛3 (𝑘 ∈ 𝛤 ) denotes the learned linear semi-orthogonal matrix
satisfying 𝐓𝑘𝐓T

𝑘 = 𝐈𝑟×𝑟. In this study, a hyperbolic tangent function
(tanh) [41] is employed as the activation transform 𝜙(⋅).

From the perspective of 𝑹-prior encoding, the gradient tensor
demonstrates a consistent low-rankness with the original tensor, as
evidenced by the singular value curve shown in Fig. 1(a). Hence,
leveraging the 𝑹-prior of the gradient tensor assists in restoring the
original tensor. For this purpose, we employ the proposed data-driven
nonlinear transform (6) and define the low-rank metric for the gradient
tensor as follows:

‖𝑘‖⋆,𝜑𝑘
=

𝑟
∑

𝑖=1
‖𝜑𝑘(𝑘)(𝑖)‖∗. (7)

Furthermore, we construct the nonlinear regularizer corresponding
to the fused 𝑹◦𝑺-prior, named the nonlinear tensor correlated total
variation (NTCTV). Fig. 1 depicts the recovery process based on NTCTV.

efinition 6 (Nonlinear Tensor Correlated Total Variation). For  ∈
𝑛1×𝑛2×𝑛3 with 𝛤 as a priori set consisting of directions along which
equips fused 𝑹◦𝑺-prior, 𝑘 (𝑘 ∈ 𝛤 ) are correlated gradient tensors.
e define the nonlinear tensor correlated total variation norm as

‖𝑁𝑇𝐶𝑇𝑉 = 1
𝛾
∑

𝑘∈𝛤
‖𝑘‖⋆,𝜑𝑘

= 1
𝛾
∑

𝑘∈𝛤

𝑟
∑

𝑖=1
‖𝜑𝑘(𝑘)(𝑖)‖∗, (8)

where 𝛾 = #{𝑘, 𝑘 ∈ 𝛤 } is the cardinality of the priori set.

From the perspective of 𝑺-prior encoding, the proposed NTCTV
encourages sparsity of the gradient tensor data along the smoothness
prior modes in the transform domain, which is similar to 𝑺-prior

∑
egularizers of TV norm, such as ‖‖𝑇𝑉1 ∶= 𝑘∈𝛤 ‖𝑘‖1 and ‖‖𝑇𝑉2 ∶=
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Fig. 1. The pipeline of the proposed NTCTV for tensor inpainting on Suzie (SR = 0.15), along with the singular value curves and pixel distribution maps of the gradient tensor.
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∑

𝑘∈𝛤 ‖𝑘‖𝐹 . Moreover, both NTCTV and TV regularization terms char-
cterize the corresponding properties by measuring the energy of the
radient tensor under a specific norm. Proposition 1 demonstrates that
the proposed NTCTV achieves a characterization of local smoothness
similar to that of the TV norm by exploiting this energy minimization
effect in the nonlinear transform domain.

Proposition 1. Suppose that 𝜙(⋅) is the nonlinear activation function
satisfying |𝜙(𝑥)| ≤ |𝑥| for 𝑥 ∈ [−1, 1], 𝐓𝑘 ∈ R𝑛3×𝑛3 (𝑘 ∈ 𝛤 ) represents
he learnable matrix corresponding to the gradient tensor of a third-order
ensor  with 𝑟𝑎𝑛𝑘𝑡() = 𝑅. Thus, it holds that

‖𝑇𝑉 ≲ ‖‖𝑁𝑇𝐶𝑇𝑉 ≲
√

𝑅‖‖𝑇𝑉 .

Proof. The proof primarily uses some properties of the t-SVD frame-
work and the inequalities between matrix norms. On the one hand, for
any 𝑘 ∈ 𝛤 , according to (7), we have

‖𝑘‖⋆,𝜑𝑘
= ‖𝑏𝑑𝑖𝑎𝑔(𝜑𝑘(𝑘))‖∗ ≤

√

𝑛3𝑟𝑎𝑛𝑘𝑡(𝑘)‖𝑏𝑑𝑖𝑎𝑔(𝜑𝑘(𝑘))‖𝐹
≤
√

𝑛3𝑅‖𝑏𝑑𝑖𝑎𝑔(𝑘 ×3 𝐓𝑘)‖𝐹
=
√

𝑛3𝑅‖𝐓𝑘𝑘,(3)‖𝐹

=
√

𝑛3𝑅
√

Tr(𝑘,(3)𝐼𝑛3×𝑛3
T
𝑘,(3))

≤
√

𝑛3𝑅‖𝑘‖𝐹 ≤
√

𝑛3𝑅
√

𝑛1𝑛2𝑛3‖𝑘‖1,

(9)

here the second inequality holds, because |𝜙(𝑥)| ≤ |𝑥|. On the other
and,

𝑘‖⋆,𝜑𝑘
= ‖𝑏𝑑𝑖𝑎𝑔(𝜑𝑘(𝑘))‖∗ ≥ ‖𝑏𝑑𝑖𝑎𝑔(𝜑𝑘(𝑘))‖𝐹 = ‖𝑏𝑑𝑖𝑎𝑔(𝜙(𝑘 ×3 𝐓𝑘))‖𝐹

≥ 𝐶‖𝑏𝑑𝑖𝑎𝑔(𝑘 ×3 𝐓𝑘)‖𝐹 = 𝐶‖𝑘‖𝐹

≥ 𝐶
𝑛1𝑛2𝑛3

‖𝑘‖1,

(10)

here the second inequality holds because 𝑘 and 𝐓𝑘 are bounded.
hus, elements of 𝑘×3𝐓𝑘 are also bounded. We find a constant 𝐶 which
atisfies 𝜑(𝑘)(𝑖, 𝑗, 𝑘) ≥ 𝐶(𝑘 ×3 𝐓𝑘)(𝑖, 𝑗, 𝑘) for all (𝑖, 𝑗, 𝑘) ∈ 𝑁𝑛1×𝑛2×𝑛3

+ . By
ombining (9) and (10), we obtain

𝑘‖1 ≲ ‖𝑘‖⋆,𝜑𝑘
≲
√

𝑅‖𝑘‖1, 𝑎𝑛𝑑 ‖𝑘‖𝐹 ≲ ‖𝑘‖⋆,𝜑𝑘
≲
√

𝑅‖𝑘‖𝐹 .

The proof is completed by combining the definitions of the TV norm
and NTCTV. □

As mentioned previously, the proposed NTCTV can effectively en-
code both 𝑹 and 𝑺 priors. This enables the adaptive exploitation
of complementary information from the two priors within a single
regularization term, fully harnessing their synergistic effects to enhance
4

the performance in applications. s
3.2. Proposed model

Suppose  ∈ R𝑛1×𝑛2×𝑛3 is the underlying unknown tensor charac-
terized by the joint 𝑹 and 𝑺-priors. Let  denote the target tensor. To
enhance brevity, we reformulate the NTCTV-based TC model as follows.
Please refer to (8) for detailed information.

min


‖‖𝑁𝑇𝐶𝑇𝑉 , s.t. P𝛺() = P𝛺(), 𝐓𝑘𝐓T
𝑘 = 𝐈𝑟×𝑟, (11)

where 𝛺 is the index of the observational elements, and P𝛺(⋅) is a
projection operator which maps the elements in 𝛺 to themselves and
projects the remaining elements to zero.

3.3. Optimization algorithm

We employ a PAM-based method to solve (11). To this end, we
introduce auxiliary variables 𝑘, 𝑘,  and indicator functions

𝛿,𝛺 =

{

0, P𝛺() = 

+ ∞, otherwise
, 𝛹 (𝐓) =

{

0, 𝐓𝐓T = 𝐈𝑟×𝑟
+ ∞, otherwise

. (12)

Then, the problem (11) is decoupled using the auxiliary variables and
(12), resulting in the following constrained optimization problem:

min


∑

𝑘∈𝛤

1
𝛾
(

𝑟
∑

𝑖𝑘=1
‖ (𝑖)

𝑘 ‖∗) + 𝛹 (𝐓𝑘) + 𝛿,𝛺 ,

s.t. P𝛺(0) =  +, ∇𝑘() = 𝑘, 𝑘 = 𝑘 ×3 𝐓T
𝑘 , 𝑘 = 𝜙(𝑘).

(13)

By imposing penalties on the constraint terms in (13), we obtain the
following unconstrained problem:

𝐿( ,𝑘,𝑘,𝑘,𝐓𝑘,)

=
∑

𝑘∈𝛤

( 1
𝛾

𝑟
∑

𝑖=1
‖ (𝑖)

𝑘 ‖∗ +
𝛼1
2
‖∇𝑘() − 𝑘‖2𝐹 +

𝛼2
2
‖𝑘 −𝑘 ×3 𝐓T

𝑘‖
2
𝐹

+
𝛼3
2
‖𝑘 − 𝜙(𝑘)‖2𝐹 + 𝛹 (𝐓𝑘)

)

+
𝛽
2
‖P𝛺(0) −  −‖

2
𝐹 + 𝛿,𝛺 ,

(14)

here 𝛼𝑖 (𝑖 = 1, 2, 3) and 𝛽 denote the penalty parameters. Utilizing the
pdate framework of the PAM,  ,𝑘,𝑘,𝑘,𝐓𝑘 and  are alternately
updated as follows:

1) The  subproblem is

𝑝+1 = 𝑎𝑟𝑔min


∑

𝑘∈𝛤

𝛼1
2
‖∇𝑘() − 𝑝𝑘‖

2
𝐹

+
𝛽
2
‖P𝛺(0) −  −𝑝

‖

2
𝐹 +

𝜌
2
‖ − 𝑝

‖

2
𝐹 .

(15)

ifferentiating (15) with respect to  , we obtain the following linear
ystem:
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(
s





w
N

𝐓

𝜌
S
t
𝐔

𝐓

3

S
t
T
t
c
u
d
i
s
c

(

(𝛽 + 𝜌) +
∑

𝑘∈𝛤
𝛼1,𝑘∇T

𝑘∇𝑘
)

() = 𝛽
(

P𝛺(0) −𝑝) + 𝜌𝑝 +
∑

𝑘∈𝛤
𝛼1∇T

𝑘 (
𝑝
𝑘),

(16)

where ∇T
𝑘 (⋅) denotes the transpose operator of ∇𝑘(⋅) and  is the

identity tensor. Since the difference operation on tensor is a linear
operator within the t-product framework [42], the difference tensor
𝑘 corresponding to ∇𝑘(⋅) can be represented diagonally by applying
FFT. Thus, based on the convolution theorem of Fourier transform, we
obtain the closed-form solution of (16) as follows:

 = −1

(

 (𝛽
(

P𝛺(0) −𝑝) + 𝜌𝑝) +
(𝛽 + 𝜌)𝟏 +

∑

𝑘∈𝛤 𝛼1 (𝑘)T ⊙  (𝑘)

)

, (17)

where  =
∑

𝑘∈𝛤  (𝑘)T⊙ (𝑝𝑘), 1 is a tensor with each element being
1, ⊙ denotes componentwise multiplication, and the division is also
performed componentwise.

2) The 𝑘 (𝑘 ∈ 𝛤 ) subproblems are

𝑝+1𝑘 = 𝑎𝑟𝑔min
𝑘

𝛼1
2
‖∇𝑘(𝑝+1) − 𝑘‖2𝐹

+
𝛼2
2
‖𝑘 −𝑝

𝑘 ×3 (𝐓
𝑝
𝑘)

T
‖

2
𝐹 +

𝜌
2
‖𝑘 − 𝑝𝑘‖

2
𝐹 .

(18)

For the above least squares problem (18), we can obtain a closed-form
solution as follows:

𝑝+1𝑘 =
𝛼1∇𝑘(𝑝+1) + 𝛼2

𝑝
𝑘 ×3 (𝐓

𝑝
𝑘)

T + 𝜌𝑝𝑘
𝛼1 + 𝛼2 + 𝜌

. (19)

3) The 𝑘 (𝑘 ∈ 𝛤 ) subproblems can be reformulated as follows:

 𝑝+1
𝑘 = 𝑎𝑟𝑔min

𝑘

1
𝛾

𝑟
∑

𝑖=1
‖ (𝑖)

𝑘 ‖∗ +
𝛼3 + 𝜌

2
‖𝑘 −𝑘‖

2
𝐹 , (20)

where𝑘 =
𝛼3𝜙(

𝑝
𝑘)+𝜌

𝑝
𝑘

𝛼3+𝜌
. By employing the singular value thresholding

SVT) operator [43], for each front slice, we can obtain the closed-form
olution of (20) as follows:
𝑝+1,(𝑖)
𝑘 = SVT1∕𝛾(𝛼3+𝜌)(

(𝑖)
𝑘 ). (21)

4) The 𝑘 (𝑘 ∈ 𝛤 ) subproblems are
𝑝+1
𝑘 = 𝑎𝑟𝑔min

𝑘

𝛼2
2
‖𝑝+1𝑘 −𝑘 ×3 (𝐓

𝑝
𝑘)

T
‖

2
𝐹

+
𝛼3
2
‖ 𝑝+1

𝑘 − 𝜙(𝑘)‖2𝐹 +
𝜌
2
‖𝑘 −𝑝

𝑘‖
2
𝐹 .

(22)

Furthermore, the subproblems (22) can be equivalently formulated as
follows:

𝑝+1
𝑘,(3) = 𝑎𝑟𝑔 min

𝑘,(3)

𝛼2 + 𝜌
2

‖𝑘,(3) −𝐖‖

2
𝐹 +

𝛼3
2
‖𝜙(𝑘,(3)) − 𝑝+1

𝑘,(3)‖
2
𝐹 , (23)

here𝐖 =
𝛼2𝐓

𝑝
𝑘

𝑝+1
𝑘,(3)+𝜌

𝑝
𝑘,(3)

𝛼2+𝜌
. Then, the problem (23) can be solved using

ewton method.
5) The 𝐓𝑘 (𝑘 ∈ 𝛤 ) subproblems can be reformulated as follows:

𝑝+1
𝑘 =𝑎𝑟𝑔min

𝐓𝑘

𝛼2
2
‖𝑝+1𝑘 −𝑝+1

𝑘 ×3 𝐓T
𝑘‖

2
𝐹 +

𝜌
2
‖𝐓𝑘 − 𝐓𝑝

𝑘‖
2
𝐹 + 𝛹 (𝐓𝑘)

=𝑎𝑟𝑔min
𝐓𝑘

𝛼2
2
‖𝑝+1𝑘,(3) − 𝐓T

𝑘
𝑝+1
𝑘,(3)‖

2
𝐹 +

𝜌
2
‖𝐓𝑘 − 𝐓𝑝

𝑘‖
2
𝐹 + 𝛹 (𝐓𝑘)

=𝑎𝑟𝑔min
𝐓𝑘

𝛼2
2
Tr[(𝑝+1𝑘,(3) − 𝐓T

𝑘
𝑝+1
𝑘,(3))

T(𝑝+1𝑘,(3) − 𝐓T
𝑘

𝑝+1
𝑘,(3))]

+ Tr[(𝐓𝑘 − 𝐓𝑝
𝑘)

T(𝐓𝑘 − 𝐓𝑝
𝑘)] + 𝛹 (𝐓𝑘)

=𝑎𝑟𝑔max
𝐓𝑘

Tr[(𝛼2
𝑝+1
𝑘,(3)(

𝑝+1
𝑘,(3))

T + 𝜌(𝐓𝑝
𝑘)

T)𝐓𝑘] − 𝛹 (𝐓𝑘),

(24)

where Tr(⋅) denotes the matrix trace. Let the SVD of [𝛼2
𝑝+1
𝑘,(3)(

𝑝+1
𝑘,(3))

T +
(𝐓𝑝

𝑘)
T] is 𝐔̃𝑘𝐒̃𝑘𝐕̃T

𝑘 . Thus, we have Tr(𝐔̃𝑘𝐒̃𝑘𝐕̃T
𝑘𝐓𝑘) = Tr(𝐒̃𝑘𝐔̃𝑘𝐕̃T

𝑘𝐓𝑘).
ince 𝐒̃𝑘 is a diagonal matrix with positive elements, maximizing
he objective in (24) involves ensuring that the diagonal elements of
̃
𝑘𝐕̃T

𝑘𝐓𝑘 are positive and maximum, with the constraint that 𝐓𝑘 is an
orthogonal matrix. By applying the Cauchy-Schwartz inequality, we
obtain 𝐓𝑘 = 𝐕̃𝑘𝐔̃T

𝑘 . Thus, the closed-form solution of (24) is
𝑝+1 ̃ ̃T
5

𝑘 = 𝐕𝑘𝐔𝑘 , (25)
Algorithm 1 PAM-based solver for NTCTV model (11)

Input: observed tensor P𝛺(); priori set 𝛤 ; proximal operator 𝜌;
penalty parameters 𝛽, 𝛼𝑖 (𝑖 = 1, 2, 3); the row number 𝑟 of 𝐓𝑘.
1: Initialization: 0, 0𝑘, 

0
𝑘 , 

0
𝑘, 𝐓

0
𝑘, 

0.
2: while not convergent do
3: Update 𝑝+1 via (17);
4: Update 𝑝+1𝑘 via (19), 𝑘 ∈ 𝛤 ;
5: Update  𝑝+1

𝑘 via (21), 𝑘 ∈ 𝛤 ;
6: Update 𝑝+1

𝑘 via (23), 𝑘 ∈ 𝛤 ;
7: Update 𝐓𝑝+1

𝑘 via (25), 𝑘 ∈ 𝛤 ;
8: Update 𝑝+1 via (26);
9: Check the convergence condition: ‖𝑝+1 −𝑝

‖𝐹 ∕‖𝑝
‖𝐹 ≤ 10−6;

10: end while
Output: completed tensor ̂ = 𝑝+1.

6) The  subproblem is the least squares problem with P𝛺() = .
The closed-form solution can be directly obtained as follows:

𝑝+1 =
𝛽(P𝛺(0) − 𝑝+1) + 𝜌𝑝

𝛽 + 𝜌
, P𝛺(𝑝+1) = . (26)

.4. Computational complexity analysis

For Algorithm 1, we consider the input tensor  ∈ R𝑛1×𝑛2×𝑛3 and
the learnable semi-orthogonal matrix 𝐓𝑘 ∈ R𝑟×𝑛3 (𝑘 ∈ 𝛤 ). As shown
in Algorithm 1, the computational complexity can be divided into six
parts in each iteration process, that is, step 3 ∼ 8. First, updating
 in step 3 primarily involves FFT, which costs 𝑂(𝑛1𝑛2𝑛3𝑙𝑜𝑔(𝑛1𝑛2𝑛3)).
econd, updating 𝑘 and  in steps 4 and step 8 is related to ma-
rix multiplication, which costs 𝑂(𝑟𝑛1𝑛2𝑛3) and 𝑂(𝑛1𝑛2𝑛3), respectively.
hird, updating 𝑘 in step 5 cost 𝑂(𝑟𝑛(1)𝑛2(2)), which corresponds to
he matrix SVT for each front slice. Fourth, updating 𝑘 in step 6
osts 𝑂(𝑛1𝑛2𝑟), primarily because of element-wise computations. Fifth,
pdating 𝐓𝑘 in step 7 involve matrix multiplication and matrix SVD
ecomposition, which cost 𝑂(𝑟𝑛1𝑛2𝑛3) and 𝑂(𝑟𝑛23), respectively. The per-
teration computational complexity of Algorithm 1 is determined by the
um of the computational complexities of the individual steps, which
an be expressed as 𝑂(𝑛1𝑛2𝑛3𝑙𝑜𝑔(𝑛1𝑛2𝑛3) + 𝑟𝑛1𝑛2𝑛3 + 𝑟𝑛(1)𝑛2(2) + 𝑟𝑛23).

3.5. Convergence analysis

This subsection presents the theoretical convergence of Algorithm 1
within the PAM algorithm framework.

Theorem 1 (Convergence). Assuming that the 𝜙(⋅) is a real analytic
function and is continuous on its domain with Lipschitz continuous on
any bounded set, the sequence {𝑝, 𝑝𝑘, 

𝑝
𝑘 , 

𝑝
𝑘, 𝐓

𝑝
𝑘, 

𝑝} generated by
Algorithm 1 converges to a critical point of the optimization problem in (11).

The proof of Theorem 1 can be found in the supplementary material,
providing theoretical assurance of the effectiveness of the iterative
sequence generated by the designed PAM-based algorithm.

4. Numerical experiments

In this section, we employ the NTCTV-TC method for completing
various types of tensor data. These include HSIs, MSIs, videos, MRI, and
CT medical images. Two missing scenarios are considered is designing
the experiment: random voxel missing and structured missing. Our
method is implemented on MATLAB (2021b) with Intel(R) Core(TM)

i7-9700 3.00 GHz CPU and 64 GB memory.
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Table 1
Quantitative comparison of all methods on HSIs completion results. The best and the sub-optimal values are highlighted in boldface and underline respectively. (/s: second).

Data SR 0.01 0.02 0.05 Average
Time/sMetric PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

HSI Pavia (200 × 200 × 80)

Observed 13.378 0.008 0.410 13.423 0.012 0.427 13.557 0.025 0.469 –
TNN 17.727 0.217 0.624 21.744 0.451 0.721 27.693 0.810 0.887 0.324
SPC+TV 19.737 0.274 0.582 21.251 0.399 0.658 26.573 0.773 0.862 0.750
TNN+TV 18.416 0.272 0.621 22.347 0.510 0.736 27.501 0.806 0.884 0.570
fMDT-Tucker 22.473 0.510 0.729 24.469 0.637 0.792 27.075 0.791 0.871 0.190
MMES 20.051 0.251 0.391 25.901 0.681 0.788 28.702 0.838 0.888 3.715
NTTNN 24.866 0.673 0.826 27.949 0.831 0.904 34.049 0.952 0.969 0.112
TCTV 25.735 0.713 0.820 28.287 0.831 0.887 32.567 0.927 0.952 1.112
NTCTV 26.578 0.755 0.854 30.852 0.903 0.938 38.127 0.980 0.988 0.347

HSI DC (256 × 256 × 191)

Observed 12.903 0.010 0.383 12.947 0.015 0.411 13.082 0.029 0.465 –
TNN 18.183 0.322 0.670 22.784 0.597 0.800 29.649 0.882 0.936 1.648
SPC+TV 19.473 0.341 0.602 22.000 0.539 0.735 27.911 0.845 0.909 2.892
TNN+TV 18.471 0.354 0.656 22.891 0.603 0.791 28.901 0.867 0.927 2.712
fMDT-Tucker 21.509 0.433 0.715 22.981 0.551 0.772 24.663 0.693 0.839 0.859
MMES 20.182 0.292 0.474 24.717 0.635 0.790 29.512 0.877 0.932 16.143
NTTNN 26.663 0.805 0.893 31.089 0.919 0.953 38.861 0.983 0.990 0.287
TCTV 25.619 0.736 0.851 28.478 0.857 0.918 33.642 0.950 0.971 5.664
NTCTV 29.416 0.885 0.933 34.530 0.962 0.976 40.719 0.989 0.992 1.378

HSI Cuprite (350 × 350 × 188)

Observed 11.045 0.007 0.547 11.089 0.011 0.528 11.224 0.020 0.525 –
TNN 19.795 0.432 0.754 28.259 0.708 0.839 35.248 0.899 0.946 2.720
SPC+TV 24.845 0.619 0.710 28.103 0.712 0.793 33.399 0.869 0.912 4.919
TNN+TV 20.104 0.504 0.752 28.931 0.743 0.844 34.959 0.897 0.942 4.449
fMDT-Tucker 25.227 0.622 0.779 28.305 0.708 0.829 32.141 0.821 0.897 1.432
MMES 21.566 0.584 0.599 28.125 0.669 0.680 33.611 0.831 0.884 32.675
NTTNN 33.054 0.865 0.928 36.765 0.932 0.961 42.125 0.971 0.984 0.516
TCTV 32.694 0.831 0.891 35.406 0.897 0.940 39.961 0.952 0.976 9.203
NTCTV 36.391 0.919 0.954 39.691 0.955 0.976 43.363 0.974 0.987 2.331
Comparison algorithm. Since our proposed method is based on the
used 𝑹◦𝑺-prior, we make comparisons with state-of-the-art tensor
ompletion methods that consider 𝑹, 𝑹 + 𝑺, or 𝑹◦𝑺 priors, as well as
methods capable of handling structured missing data. These methods
include TNN [44], SPC+TV [28], TNN+TV [27], fMDT-Tucker [45],
MMES [46], NTTNN [23] and TCTV [36]. Unless specified explicitly,
the parameters of the comparison algorithm are selected according
to reference recommendations or are manually fine-tuned for optimal
performance.

Evaluation index. The recovery performance is assessed through nu-
merical comparison using three metrics: the peak signal-to-noise ratio
(PSNR) [47], structural similarity (SSIM) [47], and feature similarity
(FSIM) [48]. All three metrics tend to perform better with a larger
value. In addition, we assess the computational complexity of the
Algorithm 1 by measuring the average time of a single iteration. A
lower average time implies lower computational complexity. In all
experiments, we define the relative error ‖𝑝+1 − 𝑝

‖𝐹 ∕‖𝑝
‖𝐹 ≤ 10−6

s the stopping criterion.

.1. Hyperspectral image completion

In this subsection, we conduct simulation experiments using three
ommonly used HSIs datasets (source: https://rslab.ut.ac.ir/data). Sub-
mages of the following sizes are extracted from each dataset: Pavia
ity (200×200×80), DC Mall (256×256×191), Cuprite (350×350×188).
he simulation data used in all tests are randomly sampled from voxel
f 3D tensor at sampling rates (SRs) of 1%, 2%, and 5%.
Parameter configuration. As shown in Algorithm 1, the proposed

TCTV method requires tuning several parameters, including penalty
arameters represented by 𝛼𝑖 (𝑖 = 1, 2, 3) and 𝛽, the proximal parameter
, and the row number 𝑟 of 𝐓𝑘 (𝑘 ∈ 𝛤 ), for an observed tensor
∈ R𝑛1×𝑛2×𝑛3 . The number of rows 𝑟 in the semi-orthogonal matrix 𝐓𝑘
mbedded in the NTCTV regularization term determines the number of
rontal slices of the essential tensor obtained by shrinking the gradient
ensor. As demonstrated by a computational complexity analysis of
he algorithm described in Section 3.4, an appropriately small 𝑟 can
effectively reduce computational costs by utilizing most of the inherent
6

tensor information to achieve reasonable resource utilization. Addition-
ally, we set the penalty parameters 𝛼𝑖 (𝑖 = 1, 2, 3) to the same value 𝛼
in all experiments, because all 𝛼 parameters serve the same purpose of
eliminating the constraints introduced by the auxiliary variables. Given
that HSIs typically exhibit highly low-rank redundancy, we select the
appropriate values of 𝑟 from the set {3, 4,… , 10}. Furthermore, we set
the hyperparameters 𝜌, 𝛼 and 𝛽 to 0.001, 30, and 150, respectively in all
experiments in this subsection (see Section 5 for the detailed reasons).

Performance analysis. For a comparison of quality metrics, Table 1
lists PSNR, SSIM, FSIM and average running time of a single iteration of
the completed HSIs with different methods, where the highest values of
PSNR, SSIM and FSIM are highlighted in boldface and the sub-optimal
values are underlined. The results show that the NTCTV method consis-
tently significantly outperforms other methods in terms of evaluation
metrics at all SRs and has certain advantages in terms of the average
time of a single iteration. Specifically, even at an extremely low SR
of 1%, the NTCTV approach achieves 0.8 ∼ 3.3-dB improvement in
PSNR compared with the next top-performing technique. HSIs typically
have strong global low-rankness and local smoothness. This excellent
performance can be attributed to the NTCTV method being able to
effectively measure the fused 𝑹◦𝑺-prior within HSIs and fully leverage
the redundancy it provides to achieve image completion.

To compare the visual quality, Fig. 2 presents the recovered visual
results of Pavia city with SR = 5%, DCMall with SR = 2% and
Cuprite with SR = 1%. To facilitate a closer examination of restoration
quality, two identical regions from each sub-image are enlarged and
displayed in blue and green boxes, respectively. As evident in Fig. 2, the
NTCTV approach demonstrates clear improvement in reconstructing
textural details and overall fidelity compared to alternative methods.
Specifically, the zoomed patches highlight NTCTV’s capabilities in re-
tain fine-scale image features and spectral characteristics. The results
validate the advantages of NTCTV’s joint modeling framework and
combined regularization priors for enhancing the quality and visual

perception of the completed hyperspectral data.

https://rslab.ut.ac.ir/data
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Fig. 2. Pseudo-color mapping of HSIs restoration results obtained from various methods. Top: Pavia (R: 10, G: 30, B: 70) with SR = 5%. Middle: DCmall (R: 60, G: 120, B: 180)
with SR = 2%. Bottom: Cuprite (R: 30, G: 90, B: 150) with SR = 1%.
Table 2
Quantitative comparison of all methods on medical images completion results. The best and the sub-optimal values are highlighted in boldface and underline respectively. (/s:
second).
Data SR 0.1 0.15 0.2 Average

Time/sMetric PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

MRI Brain (181 × 181 × 103)

Observed 9.943 0.192 0.488 10.191 0.206 0.519 10.453 0.222 0.543 –
TNN 25.508 0.665 0.833 27.496 0.752 0.872 29.208 0.813 0.901 0.362
SPC+TV 22.789 0.543 0.777 24.500 0.630 0.814 25.763 0.687 0.838 0.815
TNN+TV 27.035 0.816 0.873 29.258 0.878 0.912 31.017 0.913 0.935 0.726
fMDT-Tucker 29.206 0.901 0.907 31.315 0.935 0.934 32.934 0.952 0.950 0.287
MMES 28.004 0.808 0.890 30.252 0.855 0.921 31.699 0.877 0.938 4.849
NTTNN 26.558 0.734 0.856 28.787 0.817 0.897 30.635 0.870 0.924 0.338
TCTV 30.217 0.881 0.913 32.359 0.918 0.939 34.044 0.940 0.955 1.355
NTCTV 31.388 0.906 0.929 33.485 0.938 0.951 35.097 0.955 0.965 1.416

CT Lumbar (181 × 181 × 103)

Observed 10.129 0.442 0.544 10.378 0.454 0.571 10.640 0.467 0.591 –
TNN 23.255 0.676 0.780 24.937 0.745 0.823 26.323 0.793 0.854 0.371
SPC+TV 19.881 0.441 0.696 21.239 0.504 0.729 21.975 0.525 0.747 0.799
TNN+TV 24.564 0.812 0.844 26.563 0.871 0.885 28.067 0.904 0.911 0.697
fMDT-Tucker 25.228 0.851 0.850 26.493 0.885 0.880 27.552 0.907 0.901 0.282
MMES 24.570 0.575 0.851 25.685 0.576 0.875 26.842 0.607 0.899 4.610
NTTNN 24.728 0.733 0.830 26.627 0.823 0.871 28.206 0.870 0.900 0.336
TCTV 26.906 0.850 0.872 28.706 0.889 0.902 30.162 0.914 0.922 1.362
NTCTV 27.679 0.875 0.889 29.398 0.908 0.916 30.857 0.931 0.935 1.392

CT Sacral (181 × 181 × 103)

Observed 11.752 0.553 0.637 11.998 0.564 0.670 12.260 0.575 0.694 –
TNN 26.182 0.839 0.878 27.828 0.881 0.906 29.193 0.907 0.925 0.359
SPC+TV 23.739 0.601 0.809 25.254 0.623 0.825 26.417 0.629 0.836 0.787
TNN+TV 27.048 0.888 0.908 28.871 0.924 0.934 30.328 0.944 0.949 0.691
fMDT-Tucker 27.041 0.874 0.882 28.308 0.903 0.904 29.345 0.921 0.920 0.288
MMES 24.791 0.453 0.881 25.962 0.488 0.915 28.139 0.572 0.939 4.739
NTTNN 27.317 0.858 0.907 29.238 0.916 0.933 30.743 0.940 0.949 0.336
TCTV 28.932 0.909 0.921 30.649 0.937 0.942 32.035 0.952 0.955 1.321
NTCTV 29.704 0.931 0.938 31.372 0.951 0.954 32.733 0.963 0.965 1.371
4.2. Medical imaging completion

In this subsection, we further construct experiments targeting CT
and MRI medical images (source: https://www.cancerimagingarchive.
net/), including MRI Brain, CT Lumbar, and CT Sacral. All medical
images are resized to 181 × 181 × 103 and tested using random voxel
sampling at SRs of 10%, 15% and 20%.

Parameter configuration. Similar to the parameter settings for HSIs
completion, we select the proximal parameter 𝜌 and the penalty pa-
rameters 𝛼 and 𝛽 as 0.001, 30, and 150, respectively. Given that the
testing medical images exhibit weaker global low-rankness coupling in
7

smoothness compared to HSIs, a larger 𝑟 is necessary to retain the re-
quired information content for accurate recovery. Therefore, to balance
the improved reconstruction performance with lower computational
costs, we select suitable 𝑟 values from the candidate set {40, 50, 60} after
experimenting with the medical image data (see Section 5.2 for detailed
discussion). The choice of 𝑟 affects both the accuracy and efficiency of
the overall approach.

Performance analysis. Table 2 presents the PSNR, SSIM, FSIM and
time complexity metrics for the compared methods on the three medi-
cal images across different SRs. The proposed NTCTV approach achieves
optimal performance in terms of the evaluation metrics, as indicated
by the bolded values. Specifically, NTCTV demonstrates PSNR gains

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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Fig. 3. Grayscale representation and spectral profile curves of medical images restoration results with SR = 10%. Top: Brain. Middle: Lumbar. Bottom: Sacral. The displayed images
depict the 30th band.
of 0.7 ∼ 1.1-dB compared to the next-highest method, underlining
its effectiveness for medical image completion. It should be noted
that the sub-optimal methods in Tables 1 and 2 differ, and the time
complexity is relatively increased because of the weaker low-rankness
of the medical images versus HSIs. However, the proposed NTCTV
approach still achieves superior performance by fully utilizing the
synergistic effects between the global low-rankness and local smoothing
priors through nonlinear modeling. The learnable transforms in the
fused regularization term enable more effective exploitation of the
correlations between the priors. The results validate the benefits of
capturing nonlinear relationships within the fused 𝑹◦𝑺-prior.

Fig. 3 shows the visual comparison results and spectrum profiles
of three medical images restored by all comparison methods under
SR = 10%. The same area in each subfigure is magnified and high-
lighted with a red box to facilitate a clearer comparison. Qualitatively,
the proposed NTCTV approach demonstrates improved preservation
of textural structural details compared with competing methods, as
evidenced by the magnified images. Rather than exhibiting excessive
smoothing, NTCTV retains the necessary information for high-fidelity
medical image restoration. Furthermore, the spectral curves obtained
using the NTCTV match the profile changes corresponding to the
original data more closely.

4.3. Multispectral image completion

In this subsection, we implement all competing methods on three
MSIs from the CAVE database (source: https://www.cs.columbia.edu/
CAVE/databases/multispectral/): Beads, Face and Toys. Each tensor in
the dataset is resized to dimensions of 256 × 256 × 31 and tested using
random voxel sampling at SRs of 5%, 10% and 15%.

Parameter configuration. Given the similar data structure of MSIs and
HSIs, we utilize the same penalty parameters and proximal operator
settings as in Section 4.1 for all experiments in this subsection. How-
ever, MSIs exhibit lower spectral resolution than HSIs, resulting in less
redundant fused prior information. Based on this difference, we select
8

suitable values for 𝑟 from the larger candidate set {10, 15, 20} to balance
the reconstruction accuracy and computational efficiency.

Performance analysis. In terms of the results of the visual metrics,
Table 3 lists the detailed MSIs recovery results under varying SRs based
on the PSNR, SSIM, FSIM and average single iteration time (in seconds)
for all the comparison methods. The optimal values are highlighted
by boldface and the second-highest values are underlined. Notably,
the visual evaluation metrics of NTCTV demonstrate significant im-
provements across the different SRs. Specifically, even in the extreme
case with a SR of 5%, NTCTV achieved considerable PSNR gains of
approximately 1.7 ∼ 4.7-dB compared with the sub-optimal algorithms
for the three multispectral images. This result can be attributed to
the learnable nonlinear transform in the regularization term of the
fused 𝑹◦𝑺-prior, which can fully characterize the intrinsic connections
between different priors. This enables complementary information to
be leveraged synergistically to aid model optimization.

In terms of the visual effects of MSIs restoration, Fig. 4 displays the
pseudo-color images and associated spectral profiles for all methods
at SR = 5%. To facilitate a more distinct visual comparison, the same
region across each subfigure is magnified within a red bounding box.
On the one hand, it is evident from the locally magnified portion of
the subgraph that NTCTV is superior in restoring local texture details
while concurrently preserving global high fidelity. On the other hand,
the spectrum curve of the recovery result corresponding to the NTCTV
method not only exhibits significantly better correspondence with the
actual data, but also approximates the curvature variations of the spec-
tral curve of the actual data. This aligns with the notable strength of
NTCTV in addressing local texture details. Collectively, these localized
and spectral observations demonstrate the superiority of NTCTV in
restoring MSIs with enhanced local details and global accuracy.

4.4. Video completion

In this subsection, we conduct the experiments on three video data
named News, Suzie, and Carphone from the YUV database (source:

http://trace.eas.asu.edu/yuv/). All video data are of size 144 × 176

https://www.cs.columbia.edu/CAVE/databases/multispectral/
https://www.cs.columbia.edu/CAVE/databases/multispectral/
https://www.cs.columbia.edu/CAVE/databases/multispectral/
http://trace.eas.asu.edu/yuv/
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Table 3
Quantitative comparison of all methods on MSIs completion results. The best and the sub-optimal values are highlighted in boldface and underline respectively. (/s: second).

Data SR 0.05 0.1 0.15 Average
Time/sMetric PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

MSI Beads (256 × 256 × 31)

Observed 14.574 0.102 0.480 14.805 0.138 0.558 15.053 0.176 0.616 –
TNN 19.764 0.424 0.718 23.568 0.668 0.824 26.125 0.781 0.880 0.229
SPC+TV 18.865 0.371 0.673 22.827 0.627 0.803 26.192 0.776 0.878 0.505
TNN+TV 20.723 0.554 0.748 24.782 0.789 0.871 27.537 0.877 0.920 0.380
fMDT-Tucker 24.188 0.769 0.845 26.169 0.847 0.887 27.443 0.882 0.910 0.120
MMES 25.308 0.798 0.863 27.512 0.868 0.906 28.851 0.902 0.928 1.108
NTTNN 23.958 0.733 0.850 27.741 0.865 0.918 30.675 0.922 0.950 0.156
TCTV 25.240 0.783 0.865 28.508 0.881 0.920 30.984 0.925 0.948 0.782
NTCTV 26.996 0.856 0.903 31.866 0.944 0.959 35.445 0.972 0.979 0.926

MSI Face (256 × 256 × 31)

Observed 17.328 0.317 0.700 17.561 0.354 0.696 17.810 0.389 0.690 –
TNN 33.301 0.891 0.916 38.564 0.955 0.961 41.643 0.976 0.978 0.219
SPC+TV 33.111 0.899 0.924 37.904 0.951 0.962 40.223 0.968 0.974 0.456
TNN+TV 34.695 0.943 0.947 40.296 0.976 0.975 43.345 0.986 0.986 0.381
fMDT-Tucker 31.404 0.906 0.901 34.488 0.946 0.931 35.918 0.956 0.941 0.126
MMES 35.922 0.944 0.944 37.787 0.960 0.958 40.245 0.970 0.971 1.134
NTTNN 37.144 0.951 0.963 40.880 0.978 0.981 43.319 0.987 0.988 0.152
TCTV 38.511 0.965 0.961 42.826 0.983 0.981 45.885 0.991 0.990 0.777
NTCTV 43.292 0.989 0.988 47.439 0.995 0.995 50.021 0.997 0.997 0.885

MSI Toys (256 × 256 × 31)

Observed 11.028 0.248 0.612 11.262 0.284 0.625 11.511 0.320 0.637 –
TNN 26.725 0.797 0.847 31.455 0.898 0.917 34.274 0.937 0.947 0.218
SPC+TV 25.973 0.771 0.842 31.273 0.891 0.920 33.812 0.929 0.948 0.483
TNN+TV 27.167 0.869 0.897 32.124 0.941 0.949 35.345 0.965 0.968 0.382
fMDT-Tucker 25.374 0.857 0.843 26.921 0.897 0.871 27.986 0.916 0.888 0.120
MMES 30.378 0.899 0.920 33.102 0.942 0.953 34.663 0.953 0.963 0.984
NTTNN 31.503 0.912 0.936 36.199 0.958 0.970 39.328 0.975 0.983 0.152
TCTV 30.408 0.921 0.918 34.905 0.960 0.957 38.163 0.976 0.975 0.778
NTCTV 34.954 0.964 0.966 41.425 0.989 0.990 45.613 0.995 0.996 0.926
Fig. 4. Pseudo-color mapping and spectral profile curves of MSIs restoration results with SR = 5%. Top: Beads (R: 12, G: 11, B: 10). Middle: Face (R: 30, G: 20, B: 10). Bottom:
oys (R: 30, G: 20, B: 10).
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150 and tested using random voxel sampling at SRs of 5%, 10% and
5%.
Parameter configuration. Video data are tensors consisting of a se-

uence of image frames, with each frame containing rich spatial infor-
ation and exhibiting temporal correlation with adjacent frames. To
ffectively capture the intrinsic information within the tensor data, we
9

elect the most suitable value of 𝑟 from the candidate set {20, 50, 80}.
he other hyperparameters, namely, 𝛼, 𝛽 and 𝜌, are set to the same
alues as those used in Section 4.1 to ensure consistency across ex-
eriments. This selection strategy helps maintain consistency across
xperiments and indirectly reflects the structural information of various
ypes of data.
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Table 4
Quantitative comparison of all methods on video completion results. The best and the sub-optimal values are highlighted in boldface and underline respectively. (/s: second).

Data SR 0.05 0.1 0.15 Average
Time/sMetric PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Video News (144 × 176 × 150)

Observed 8.799 0.020 0.459 9.033 0.034 0.473 9.281 0.047 0.482 –
TNN 25.889 0.789 0.891 28.562 0.865 0.930 30.034 0.895 0.946 0.391
SPC+TV 23.517 0.715 0.845 26.493 0.809 0.897 28.281 0.853 0.920 0.926
TNN+TV 25.584 0.792 0.888 28.457 0.867 0.929 30.055 0.898 0.946 0.683
fMDT-Tucker 22.124 0.750 0.830 23.779 0.829 0.874 25.030 0.872 0.899 0.193
MMES 24.211 0.823 0.883 28.249 0.904 0.933 30.279 0.935 0.954 3.501
NTTNN 27.604 0.862 0.931 29.847 0.905 0.953 30.917 0.922 0.962 0.168
TCTV 29.209 0.895 0.937 31.661 0.931 0.959 33.163 0.947 0.969 1.359
NTCTV 29.892 0.919 0.951 32.735 0.949 0.970 34.024 0.959 0.977 0.954

Video Suzie (144 × 176 × 150)

Observed 7.259 0.009 0.454 7.494 0.014 0.427 7.743 0.017 0.407 –
TNN 25.805 0.663 0.836 28.407 0.757 0.877 29.770 0.803 0.899 0.387
SPC+TV 24.483 0.647 0.814 27.390 0.733 0.858 29.074 0.784 0.882 0.936
TNN+TV 25.951 0.689 0.841 28.407 0.765 0.879 29.827 0.809 0.900 0.691
fMDT-Tucker 28.370 0.824 0.883 30.794 0.878 0.917 32.276 0.906 0.936 0.208
MMES 29.785 0.844 0.902 31.270 0.873 0.920 32.325 0.892 0.931 3.470
NTTNN 27.720 0.739 0.871 30.055 0.819 0.906 31.315 0.854 0.923 0.164
TCTV 30.381 0.840 0.907 31.994 0.876 0.928 33.147 0.898 0.941 1.396
NTCTV 30.891 0.860 0.915 32.758 0.897 0.937 34.164 0.920 0.951 1.355

Video Carphone (144 × 176 × 150)

Observed 6.787 0.014 0.473 7.022 0.023 0.452 7.269 0.031 0.436 –
TNN 25.800 0.737 0.863 28.377 0.816 0.903 29.720 0.852 0.921 0.391
SPC+TV 24.144 0.699 0.841 27.219 0.792 0.886 28.881 0.835 0.908 0.924
TNN+TV 25.866 0.756 0.869 28.335 0.823 0.904 29.757 0.857 0.923 0.690
fMDT-Tucker 24.320 0.826 0.855 25.952 0.884 0.892 26.952 0.910 0.911 0.195
MMES 27.227 0.853 0.896 30.005 0.907 0.932 31.522 0.929 0.947 3.465
NTTNN 28.285 0.828 0.910 30.664 0.885 0.938 32.064 0.910 0.951 0.169
TCTV 29.691 0.879 0.923 31.513 0.910 0.943 32.712 0.927 0.954 1.361
NTCTV 30.456 0.904 0.935 32.484 0.933 0.955 33.769 0.948 0.965 0.561
Fig. 5. Grayscale representation and spectral profile curves of videos restoration results with SR = 10%. Top: News. Middle: Suzie. Bottom: Carphone. The displayed images depict
the 30th band.
Performance analysis. Table 4 lists the PSNR, SSIM and FSIM values
of the recovered tensor data obtained from all comparison methods un-
der different SRs. Besides, the average time (seconds) for each iteration
is included. As depicted in the figure, the proposed method exhibits a
certain improvement in the visual metrics compared to the other meth-
ods. Specifically, NTCTV achieved an improvement of approximately
0.7 ∼ 1.1-dB in PSNR. Notably, video data exhibit decreased global low-
rank and local smoothness properties versus other visual data types.
However, NTCTV can still comprehensively perform image restoration
10

t

in a collaborative manner by utilizing the complementary characteris-
tics between the different priors. This outcome effectively validates the
superiority of the learnable nonlinear transforms in characterizing the
nonlinear relationship between mixed priors.

Fig. 5 presents the grayscale representation and spectral profile
curves of the video restoration results with SR = 10%. For enhanced
visual discernibility, a localized region, denoted by a red box, is mag-
nified within each subfigure. As shown in the partially enlarged area of
the subfigure in Fig. 5, the edge textures and detailed characteristics of
he video data are restored more realistically by the proposed NTCTV.
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Fig. 6. Examples of different structured missing. Case 1: MSI Beads (sequential rows and columns missing). Case 2: MSI Beads (frontal slices 10∼12 missing). Case 3: Video News
(sequential rows and columns missing). Case 4: Video News (frontal slices 72∼77 missing). Cases 2 and 4 presented are ground truth for visualization purposes.
Fig. 7. The visual results of structured missing data completion by all competing methods. From top to bottom: Case 1 (R: 12, G: 11, B: 10), Case 2 (R: 12, G: 11, B: 10), Case
3 (band: 75) and Case 4 (band: 75).
In addition, the spectral profile curve of a single spatial position of
NTCTV is more closely with the ground truth. This outcome indicates
that the global low-rankness and local smoothness are expressed more
realistically.

4.5. Structured missing tensor completion

In this subsection, we further evaluate the performance of NTCTV
through a more challenging task of completing tensors with structured
missing. Simulation experiments are conducted using MSI Beads and
Video News as examples. Two types of structured missing are consid-
ered: sequential rows and columns missing, and consecutive frontal
slices missing. Refer to Fig. 6 for more detail.

Parameter configuration. To mitigate parameter effects on completing
the structured missing tensors, the parameter settings for all methods
are aligned with those used in the experiments on random voxel
missing.

Performance analysis. Table 5 presents a summary of the quan-
titative results obtained by all methods for four cases. Specifically,
case 2 and 4 show the PSNR, SSIM, and FSIM values of the recov-
ered frontal slices. Our method demonstrates good performance in
scenarios involving sequential rows and columns missing. However, its
performance deteriorated when dealing with consecutive frontal slices
missing. This decline in performance can be attributed to consecutive
frontal slice gaps, which pose challenges in learning suitable nonlinear
transformations along mode-3 and are inferior to using FFT.
11
Fig. 7 illustrates visual examples of the recovery results obtained
by all methods. By examining the overall image, it is observed that
the proposed method lacks saturation in cases 2 and 4. However, when
analyzing the magnified patch, the proposed method clearly captured
the intricate texture features across all four cases. These results demon-
strate the capability of our method to address the more arduous task of
completing tensors with structured missing.

5. Discussions

In this section, a sensitivity analysis of the various components
of the proposed NTCTV model is presented. This analysis examines
the influence of parameters, conducts ablation study, and assesses the
numerical convergence of the algorithm.

5.1. Analysis of proximal parameter and regularization parameters

In this subsection, we use the HSI Pavia dataset as an example to
discuss the impact of the proximal operator 𝜌, and penalty parameters
𝛼𝑖 (𝑖 = 1, 2, 3) and 𝛽 on our proposed model. Because all 𝛼𝑖 have the same
purpose of eliminating the constraints introduced by auxiliary variables
and the constraints related to 𝛽 are derived directly from the initial
constraint terms, we set all terms of 𝛼𝑖 to a uniform value 𝛼 across all
experiments. This facilitates a controlled evaluation of the effects of the
proximal operator and penalty parameters.

Fig. 8 illustrates the influence of the proximal parameter 𝜌 and the
penalty parameters 𝛼 and 𝛽. Specifically, subfigure (a) shows the PSNR
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Table 5
Quantitative comparison of all methods on structured missing completion results.
Missing Case 1 Case 2 Case 3 Case 4

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

TNN 19.751 0.682 0.824 29.187 0.882 0.956 15.906 0.597 0.743 29.385 0.902 0.935
SPC+TV 21.042 0.761 0.845 15.200 0.083 0.362 19.138 0.735 0.825 8.802 0.001 0.442
TNN+TV 21.862 0.792 0.848 29.997 0.949 0.967 27.220 0.929 0.932 29.240 0.911 0.929
fMDT-Tucker 26.773 0.892 0.921 29.660 0.949 0.964 29.019 0.943 0.951 27.361 0.892 0.909
MMES 27.512 0.896 0.925 7.078 0.017 0.599 28.258 0.919 0.939 10.112 0.298 0.578
NTTNN 26.668 0.877 0.916 21.242 0.681 0.807 29.021 0.940 0.950 27.854 0.893 0.927
TCTV 27.270 0.893 0.923 30.750 0.925 0.975 29.159 0.948 0.956 31.281 0.930 0.951
NTCTV 27.767 0.906 0.930 29.461 0.922 0.972 29.446 0.948 0.956 28.767 0.914 0.943
Fig. 8. Visual analysis of the impact of NTCTV parameters. (a) 𝜌. (b)–(d) 𝛼 and 𝛽.
Fig. 9. Visual analysis of the impact of parameter 𝑟. (a) HSI Pavia. (b) CT Sacral. (c) MSI Face. (d) Video News.
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and SSIM curves resulting from different settings of 𝜌 at SR = 10%.
Subfigure (b)–(d) show color maps, projected from the values of 𝛼 and
𝛽 onto PSNR, for SRs of 1%, 5% and 10%. The values of 𝛼 and 𝛽 are se-
lected from a candidate set {0.3, 1.5, 3, 15,… , 3×102, 15×102}. Regarding
the proximal operator parameter 𝜌, subgraph (a) demonstrates that it
xhibits robustness when selected from {10−3, 10−2,… , 103}, and shows
certain anti-interference ability during tensor completion. As for the
enalty parameters 𝛼 and 𝛽, subgraphs (b)–(d) indicate some relative
ensitivity, but they exhibit similar optimal choices across different SRs.
his finding suggests the choice of 𝛼 and 𝛽 has a degree of universality
or diverse data at varying SRs. Based on the aforementioned analysis
nd the guidance provided in Fig. 8, we select the 𝜌, 𝛼 and 𝛽 to 0.001,
0 and 150, respectively, in all experiments.

.2. Analysis of row number 𝑟 of 𝐓𝑘

In this subsection, we analyze the impact of the row number 𝑟
f the learned linear semi-orthogonal matrix 𝐓𝑘(𝑘 ∈ 𝛤 ) using four
epresentative images: HSI Pavia, CT Sacral, MSI Face, Video News.
s stated in Remark 1 of [36], the implicit low-rank structure of the
radient tensor in different directions consistently changes with that
f the original tensor in the linear transform domain. This indicates
hat the degree of structural information concentration for the gradient
ensor is similar across directions. Thus, we set the number of rows for
𝑘 to a uniform value 𝑟.
Fig. 9(a)–(d) depict the PSNR curve and average time (in seconds)

urve across varying row numbers 𝑟, at particular SRs for each dataset,
12

a

espectively. The PSNR curves demonstrate varying sensitivities to 𝑟
cross the four data types. For MSI, medical imaging, and videos, 𝑟
xhibits robustness when it exceeds a certain threshold, indicating that
is relatively stable in the proposed method for these three types of
ata. In contrast, lower values of 𝑟 demonstrate enhanced performance
or HSIs processing, suggesting that monotonically increasing 𝑟 does not
ecessarily optimize experimental results. This divergence is attributed
o the highly low-rank redundancy of HSIs under a fused prior. The
verage time curves delineate a linear relationship between 𝑟 and the
verage time of a single iteration, which aligns with the computational
omplexity derived theoretically in Section 3.4. Thus, we select an
ppropriately small 𝑟 based on the specific experimental data type to
chieve a balance between performance and cost in all the experiments.

.3. Analysis of the effectiveness of nonlinear transform

This subsection analyzes the impact of the nonlinear transform on
he proposed NTCTV. Specifically, we compare the performance of
TCTV in restoring MSI Beads without a nonlinear activation function
(⋅) (referred to as NTCTV(linear)) and with different nonlinear acti-
ation functions applied, including the sigmoid function [41], softplus
unction [49] and tanh function.
Table 6 lists the detailed recoveries of the MSI Beads in terms

f different nonlinear transforms at different SRs. This indicates that
TCTV(tanh) achieved the best performance across all SRs. In contrast,
oth NTCTV(sigmoid) and NTCTV(softplus) show inferior performances
ompared to NTCTV(linear), which differs from the result [23] that
ll nonlinear activation functions play a promoting role in the original
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Table 6
MSI Beads recovery results with different nonlinear activation functions. The optimal and the sub-optimal values are highlighted in boldface
and underline respectively.

SR 0.05 0.1 0.15

Metric PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Observed 14.574 0.102 0.480 14.805 0.138 0.558 15.053 0.176 0.616
NTCTV(linear) 26.643 0.843 0.896 30.958 0.932 0.952 34.335 0.965 0.975
NTCTV(sigmoid) 24.604 0.774 0.863 28.380 0.898 0.930 31.576 0.948 0.963
NTCTV(softplus) 25.494 0.800 0.877 29.719 0.915 0.942 33.295 0.959 0.971
NTCTV(tanh) 26.996 0.856 0.903 31.866 0.944 0.959 35.445 0.972 0.979
Fig. 10. Curves of relative changes versus iterations. (a) HSI Pavia. (b) CT Sacral. (c) MSI Face. (d) Video News.
e

R

NN framework. This result aligns with Proposition 1 because 𝜙(⋅) =
tanh(⋅) satisfies the condition |𝜙(𝑥)| ≤ |𝑥|. Thus, we employ tanh as the
nonlinear activation function.

5.4. Analysis of numerical convergence

This subsection verifies the theoretical convergence of the proposed
PAM-based algorithm through numerical convergence. We select HSI
Pavia, CT Sacral, MSI Face and Video News datasets as representatives
of each image type to test at various SRs. Fig. 10 shows the convergence
curves of the proposed PAM-based algorithm, illustrating the relative
change over iterations and reflecting the numerical convergence of the
algorithm.

6. Conclusions

In this paper, we propose NTCTV, a fusion prior regularization term
that incorporates a learnable nonlinear transform. It aims to adaptively
explore the structural information present in the fused 𝑹◦𝑺-priors,
which are commonly observed in visual tensor data. The proposed non-
linear transform effectively constrains the low-rankness and smooth-
ness of the data by incorporating linear semi-orthogonal transforms
specifically designed for the gradient tensor, followed by embedding
the nonlinear transform. Additionally, we designed a corresponding
optimization model and devised an efficient PAM-based algorithm
based on the proposed NTCTV. The theoretical analysis includes the
computational complexity and proof of convergence for the proposed
algorithm. Furthermore, extensive numerical experimental results con-
firm that the proposed NTCTV method has excellent performance and
achieves tensor recovery even under extremely low SRs.
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