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Abstract. We study equilibrium states for a class of non-uniformly expanding skew
products, and show how a family of fiberwise transfer operators can be used to define
the conditional measures along fibers of the product. We prove that the pushforward of the
equilibrium state onto the base of the product is itself an equilibrium state for a Holder
potential defined via these fiberwise transfer operators.
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1. Introduction and main results

The study of equilibrium states for uniformly hyperbolic dynamical systems via thermo-
dynamic formalism dates back to Ruelle, Sinai, and Bowen in the mid-1970s. They proved
the existence and uniqueness of an equilibrium state for Holder continuous potentials by
(semi)conjugating with two-sided subshifts of finite type (SFTs) via Markov partitions. The
Ruelle—Perron—Frobenius (RPF) operator has been a key tool in proving the existence of
equilibrium states. In particular, it is well known that given a Holder potential ¢: X — R
on an expanding dynamical system (X, f), the eigendata of the RPF operator

Loy(x)y= > Dy,
Tef~tx)

where ¥ : X — X is a continuous function, uniquely determines the equilibrium state.
The purpose of this paper is to understand the construction of equilibrium states
for higher-dimensional spaces. Let X and Y be compact connected manifold. We will
consider equilibrium states for certain non-uniformly expanding skew products F(x, y) =
(fx,gxy) on X x Y. In the 1950s, Rohklin [10] proved that every measure can be
disintegrated along measurable partitions into a unique family of conditional measures.
Denote by Y, the vertical fiber above x € X. We will show that the conditional measures
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2 G. Hemenway

given by Rohklin can be obtained via a family of fiberwise transfer operators L : C(Yy) —
C (Y fx) defined such that for any ¢ € C(Yy),

Loy(fx,y)= Y Oy, ).
yeer'y

In the setting of random dynamics, Kifer [6] used these operators to prove the existence
and uniqueness of equilibrium states that satisfy a fiberwise scaling property on almost
every fiber if the system exhibits expansion on average. Denker and Gordin were able to
strengthen this to results on every fiber in expanding systems. In their 1999 paper [4], they
used these fiberwise transfer operators to show that if a fibred system, a class of systems
including skew products, is uniformly expanding and topologically exact along fibers, then
given a Holder potential ¢: X x ¥ — IR, there is a unique equilibrium state on X x Y
that has conditionals defined by a fiberwise Gibbs property and whose transverse measure
on X is a Gibbs measure for a certain Holder potential on X.

Varandas and Viana [12] and Castro and Varandas [2] studied equilibrium states
for non-uniformly expanding maps. In particular, [2] proved that for a certain class of
non-uniformly expanding maps on compact, connected manifolds equipped with almost
constant Holder potentials, eigendata for the Ruelle operator acting on the space of Holder
potentials can be used to construct a unique equilibrium state p on X x Y. This gives us
existence and uniqueness of an equilibrium state on X x Y. Pollicott and Kempton [9] and
Piraino [8] give conditions for when Gibbsianness is preserved for factors of SFTs. Given
a Gibbs measure for a Holder (or Walters) potential and a factor of the SFT, it has been
shown that the potential

,Cn_H]l,
O(x) = lim log (25 19)

n— 00 (ﬁn.x]l,o') @

exists independent of probability measure o on Y, is Holder (or Walters, respectively) and
that the pushforward of the Gibbs measure is ®-Gibbs.

In §2 we recall some background on skew products, describe our non-uniform expansion
assumptions, and state our main result (see Theorem A). In §3, we use arguments similar
to Piraino [8] to prove the existence and regularity of ® using the Hilbert metric and the
Birkhoff contraction theorem on convex cones. This requires new arguments since the
non-uniform expansion in the fiberwise maps {g,} makes estimates on distances between
preimages more complex. The proofs in this paper are similar to those in Stadlbauer,
Suzuki and Varandas [11] and Hafouta [5]. In [11], Stadlbauer et al showed that hyperbolic
potentials for random non-uniformly expanding dynamical systems admit an equilibrium
state whose disintegration satisfies a weak-Gibbs property almost everywhere along the
base. In §3.4 we describe a process of coding the orbits of points in X x Y that are similar
to the ideas of hyperbolic time in [11]. We also show the existence of a family of Gibbs
measures in the sense of [4] (see Theorem 3.6). In §4 we complete the proof of Theorem A
by establishing that [ is the equilibrium state for ® and the existence of fiberwise measures
that form the unique family of conditional measures for the equilibrium state .

We remark that the conditional measures constructed here should satisfy a weak Gibbs
property similar to that in Stadlebauer, Suzuki and Varandas [11]. However, they assume
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Equilibrium states for non-uniformly expanding skew products 3

that almost every fiber is uniformly topologically exact, which is key to their proofs. We do
not assume this but note that a similar property should follow from topological exactness
in the product. The author also expects that it can be shown that the family of conditionals
measures we construct in §4 uniquely achieves the relative pressure of the system. The
proofs in [11] rely on hyperbolic times so the proofs of a relative variational principle
would need to be adapted in the setting of the current paper.

2. Non-uniformly expanding skew products

Let X and Y be compact, connected Riemannian manifolds. Consider the product space
X x Y. We will refer to X as the base and {Y, = {x} x Y},cx as the fibers of the product
since

Xxxy=|Jix)xv.
xeX

Note that each fiber Y, can be identified with Y. We will make the necessary distinctions
as needed. Denote by d the L distance on X x Y and by wx and 7y the natural projection
maps from X x Y onto X and Y, respectively.

2.1. Dynamics of skew products. Let F be a continuous skew product on X x Y; that s,
there are continuous maps f: X — X and {g,: Y — Y| x € X} such that

F(x,y) = (f(x), 8x(y)).
To understand the dynamics of F on X x Y, define for any n > 0 and x € X, the map
g = g1y 0 0ge: Yy = Ypny.
Then for any (x, y) € X x Y, the behavior of the system can be investigated through the
sequence F"(x, y) = (f"(x), gy (¥))-
For each n > 0, define the nth Bowen metric as
du((x, ¥), (x', ¥")) = max {d(F'(x, y), F'(x', )}
0<i<n
Also denote the nth Bowen ball centered at (x, y) of radius 6 > 0 by
B, ((x,¥),8) ={(x", y): du((x, ), (x, ¥)) < 8}.

2.2. Non-uniform expansion along fibers. The following describes our assumptions
of non-uniform expansion along the fibers on X x Y. We shall assume that F is a
topologically exact local homeomorphism and that there is a continuous function (x, y) +—
L(x, y) such that the following statements hold.

(A1) There exists open U > (x, y) such that F|y is invertible and

d(F~ (uy, u2), F~'(v1, v2)) < L(x, y)d((u1, u2), (v1, v2))

for all (uy, uz), (vi, v2) € F(U).

(A2) There exist constants ¥ > 1 and L > 1, and an open region A C X x Y such that
L(x,y) < L for every (x, y) € Aand L(x, y) < y~! for all (x, y) & A, and L is
close enough to 1 so that inequality (6) below is satisfied.
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4 G. Hemenway

Assumption (A1) gives us control of preimages in the image of small balls for which the
product map is invertible. Assumption (A2) says that F is uniformly expanding outside
of some region A and not too contracting in 4. Thus, if A is empty, then everything is
reduced to the uniformly expanding case.

We say that an open cover U of X x Y separates curves if, given a distance-minimizing
geodesic segment ¢ on X x Y, each element of U/ can intersect at most one curve in
F~(c). Denote by U the collection of open covers I/ of X x Y that separates curves
and each U € U satisfies assumption (A1). We further assume the following.

(A3) There exists a finite covering ¢ € U such that A can without loss of generality be
covered by the first ¢ < deg(F') elements of .

(A4) Forevery x € X, there exists a finite covering U, of Y, which separates curves by
sets in U NY, and A N Y, can be covered by the first ¢ < d elements of U,.

Assumption (A3) ensures that every point has at least one preimage in the expanding
region. Note that (A3) is a strengthened version of assumption H2 from Castro and
Varandas [2]. Assumption (A4) guarantees that every point in a single fiber has at least
preimage in the expanding region. This will be crucial to the arguments in §3 as discussed
below.

Amap f: X — X is uniformly expanding if there exist C, 6y > 0 and y > 1 such that

d(f"(x), f"(x") = Cy"d(x, x)

whenever d,, (x, x") < 8. One can assume without loss of generality that C = 1 by passing
to an adapted metric. This reduces the expanding property to

d(f(x), f(x) = yd(x,x")
whenever d (x, x') < 8.

LEMMA 21. If F: X XY — X XY is a skew product that satisfies assumptions
(Al)—(A4), then f is uniformly expanding.

Proof. Fix (x,y) € X x Y. Choose x’" € X such that (f(x'), gx(y)) € F(U(x, y)). Since
F is a local homeomorphism, there exists y’ € ¥ such that (x’,y’) € U(x, y) and

F(x'.y") = (f(x'), g«(¥)). Thus,
d(x,x") <d((x,y), x", y")
< L(x, y)d(F(x,y), F(x',y))
< L(x, y)d((f(x), gx(»). (f ("), gx (1))
< L(x, y)d(fx, fx").

This finishes the proof since (A4) implies infycy L(x, y) < 1. O

We remark that it would be interesting to see how the proofs in this paper would
need to be changed if we removed assumption (A4). In such a setting, the base map
could be non-uniformly expanding. It is known that the geometric potential for the
Manneville-Pomeau map is Holder continuous and has two equilibrium states. Uniqueness
of the equilibrium state on the base is crucial to the proofs in §4 about the conditional
measures of the equilibrium state w. It is well known that Holder potentials associated
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Equilibrium states for non-uniformly expanding skew products 5

to expanding maps admit a unique equilibrium states. The uniform expansion in the base
given by Lemma 2.1 is essential to proving that the potential ® defined in equation (1) is
Holder continuous.

As a consequence of Lemma 2.1, we see that the number of preimages along fibers must
be fixed. Indeed, since F is a local homeomorphism on a compact connected manifold, F
is a covering map. Thus, we have that deg(F) is constant. Similarly, since f is expanding
on a compact connected manifold onto itself, f is a covering map. Thus, d:= deg(f) is
constant in x. Thus, d := deg(g,) is constant for all x € X and y € Y, and deg(F) = dd.

The following example shows that there is a robust class of systems that satisfies the
given assumptions.

Example 2.2. The Manneville—Pomeau map y — y 4+ y?*lmod Z (p > 0) on $! is
a classic example of a system that displays non-uniform expansion. Define a map
F: X xY — X x Y by taking the base map f to be the doubling map on $' and
Manneville—Pomeau maps g.(y) = y + y?®*lmod 7Z in the fibers where p(x) > 0
varies continuously in the base point. Each of these maps has two branches so d = 2.
Note that g’ (y) > g, (0) =1 for all y # 0. Let A be any small neighborhood around
$! x {0} C T2. Then on A€ the product map F does not decrease distances; that is, if
(x,y), (x',y) € A, then

d((f(x), gV, (f (X)), g YN) = yd((x, y), (&', ¥)).

So g =1. Then F(x,y) = (f(x), g«(y)) satisfies assumptions (Al) and (A2) and thus
Theorem A holds for this example.

LEMMA 2.3. If F satisfies (Al) and (A2), then for any x,x’ € X and y, y' € Y, we can

pair off the preimages of g-'(y) = {y1,. . ., ya} and gx_/l(y/) = {¥].. ...y} where for
anyk=1,2,...,q,

d((x, yi), (x, yp)) < Ld((fx,y), (fx', "))
while foranyk =g + 1, ...,d,
d((x, yi), (' yp)) < vy d(fx, y), (Fx, y).

Proof. Let (x,y), (x',y") € X x Y and ¢ be a distance-minimizing geodesic segment
between these points. Let g;l(y) = {y1,...,yq}. Since F is a covering map, we can
uniquely lift ¢ to curves cy, ..., cg such that each ¢ starts at y; and F(cx) = ¢ for
all k. Then, letting y, be the other endpoint of cx, we get a collection of preimages
g;,l(y/ ) = {¥{, ..., ¥} Cover each c; by domains of injectivity as in (A2). Then at most
g of these balls can intersect A and each one intersects at most one of the curves cg. Thus
there are at most ¢ curves ¢ that intersect A. Without loss of generality, we can assume
that these are the first g preimages. Applying (A1) gives the desired result. O

2.3. Existence and uniqueness of equilibrium states. We say ¢: X x Y — R is
a-Holder continuous for some a > 0 if
Ol = sup lp(x, y) — o', )]
o =
oGy A Y), (75 y))*
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6 G. Hemenway

We denote by C*(X x Y) the Banach space of «-Holder continuous functions on X x Y.
The nth Birkhoff sum is defined as S,¢(x, y) = > {_o ¢ o F¥(x, y).

We denote by M(X x Y) the space of Borel probability measures on X x Y and
M(X x Y, F) those that are F-invariant. Given a continuous map F: X x Y —- X x Y
and a potential ¢: X x ¥ — IR, the variational principle asserts that

P(p) = sup{hv(F)-l—/(pdv: veM(X xY, F)} 2)

where P (¢) denotes the topological pressure of F with respect to ¢ and &, (F') denotes the
metric entropy of F. An equilibrium state for F' with respect to ¢ is an invariant measure
that achieves the supremum in the right-hand side of equation (2). For uniformly expanding
maps, every equilibrium state p satisfies the Gibbs property: for any ¢ > 0, there exists a
C > 0 such that

—1 _ BBa((x, ¥), 8)) _ c

¢ = e—nP@)+Spx,y) —

for any (x,y) € X x Y andn € N.
For our purposes in this paper, we fix a Holder potential ¢ € C¥(X x Y) satisfying

supp —infp <g, and [e’|y < sweinf‘” (P)

for some ¢, > 0 satisfying inequality (3) and equation (4) below (see §3). Almost constant
potentials satisfy (P) so Theorem A applies to an open set of potentials. In particular,
Theorem A holds for measures of maximal entropy. We assume that L is close enough to
land 0 < gy < logd — log g so that

d— — LY
esw.(( Dy " +4q ><1.

p 3)

Under these assumptions, it is known that there is a unique equilibrium state p for ¢ on
X xY.

LEMMA 2.4. If F is topologically exact and satisfies (Al), (A2), and ¢ satisfies
sup ¢ — inf ¢ < log deg(F) — log g, then there exists an expanding conformal measure
such that L’j;v = Av and supp(v) = X x Y, where the spectral radius of Ly, h:i=r(Ly) >
deg(F Ye'™ @ Moreover, v is a non-lacunary Gibbs measure and has a Jacobian with
respect to F given by J, F = re™¥.

Proof. See Theorem 4.1 in Varandas and Viana [12]. O
We will not use the non-lacunary property of v or J,, F'. For more details, see [12].

THEOREM 2.5. Let F: X XY — X xY be a local homeomorphism with Lipschitz
continuous inverse and ¢ : X x Y — IR be a Holder continuous potential satisfying (Al),
(A2), and (P). Then the RPF operator has a spectral gap property in the space of Holder
continuous observables, there exists a unique equilibrium state | for F with respect to ¢,
and the density dp/dv is Holder continuous.

Proof. See Theorem A in Castro and Varandas [2]. O

https://doi.org/10.1017/etds.2023.111 Published online by Cambridge University Press



Equilibrium states for non-uniformly expanding skew products 7

Denote by i = o 71;1 the pushforward of the equilibrium state © onto the base X.
Throughout this paper, we shall refer to this measure as the transverse measure for our
skew product.

Our main result is the following theorem.

THEOREM A. Let X and Y be compact connected Riemannian manifolds and (X x Y, F)
be a Lipschitz skew product that satisfies assumptions (Al)—(A4). Let ¢ be a Holder
continuous potential on X x Y satisfying assumption (P) and [ be its corresponding
equilibrium state. Then the following assertions are true.

(1)  The potential ® in equation (1) is independent of o, is Holder continuous, and

satisfies P(p) = P(®P).
2) a=pno ﬂ;l is the unique equilibrium state for ®.
(3) There is a unique family of measures {vy: x € X} such that vy (Yy) = 1 and

Livey = @y,

4) x — vy is weak™-continuous.

(5) Let h and D be the eigendata of Lo, that is, LGV = eP@D Loh =ePPh, and
f hd? = 1. Then the measures wy = (h(x, -)/ﬁ(x))vx are probability measures on
Y, such that

2% :/ M dji(x).
X

We remark that the existence in item (1) follows closely proofs from Piraino [8] on SFTs.
However, the proof of the Holder continuity of ® took new ideas on compact, connected
manifolds (see §3.4). It is worth noting that Stadlbauer, Varandas and Zhang proved a
similar result to item (3) for conformal measure of Ruelle expanding iterated function
systems.

2.4. Fiberwise transfer operators for skew products. As is common in the literature,
we will utilize Ruelle operators to study the equilibrium state on (X x Y, F). Define the
transfer operator £, acting on C(X x Y) by sending ¢y € C(X x Y) to

Loy, )= Y TIYE, ).
(*,y)eF~1(x,y)
Note that under the skew product representation of F, we may write
>, Fyam= Y Y fEYE .
x,y)eF~1(x,y) xef~lx yggx:ly

This gives rise to a fiberwise transfer operator on the fibers of X x Y.
We disintegrate ¢ and get the family of fiberwise potentials {¢,(-) = ¢(x, -)}xex. For
every x € X, let £, : C(Yy) — C(Yy,) be defined by

L) =Y VY@

— 1
YELx Y
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8 G. Hemenway

for any ¢ € C(X x Y). We shall iterate the transfer operator by letting
Ly=Lpiyor--0Ly: C(Yy) > C(Ypny).

Along with each of these fiberwise operators, we define its dual £} by sending a probability
measure 7 € M (Yr,) to the measure L;n € M(Yy) such that for any ¥ € C(X x Y),

fwd<£:n>=fﬁxw dn.

3. A potential for the transverse measure
Piraino [8] shows that for some factors of mixing SFTs, a Gibbs measure u is pushed onto
a Gibbs measure (i = o ngl for the potential

(ﬁ;“]l, o)

PO )

where o is any probability measure supported on Y. We will show in Theorem 3.5 that
this potential exists in our setting. Furthermore, in Theorem 3.15 we show that @ is Holder
continuous.

3.1. Birkhoff contraction theorem. It is not hard to check that the Ruelle operator
preserves the Banach space of Holder continuous potentials C*(X x Y), 0 <o < 1. A
subset A C C¥(X x Y) is called a cone if aA=A for all a>0. A cone A is convex if
Y +¢ e Aforall ¢, { € A. We say that A is a closed cone if A U {0} is closed with
respect to the Holder norm. We assume our cones are closed, convex, and A N (—A) = (.
For any probability measure n and Holder potential ¥, let (v, n) = f Y dn. Given a closed
cone A C C¥(X x Y), we can define the dual cone A*={ne (C*(X xY))*: (¢,n) =0
for all 1 € A}. For more on cones, see §4 in [7] or the appendices in [8].

Define a partial ordering < on C*(X x Y) by saying that ¢ < ¢ ifandonly if  — ¢ €
A U {0} for any ¢, ¥ € C*(X x Y). Let

A=A(p, W) =sup{t > 0:tp <y} and B = B($, V) =inflt > 0: ¥ < t¢}.

The Hilbert projective metric with respect to a closed cone A is defined as
B
O(¢, ¥) = log e

The following lemma is useful when calculating distances in the Hilbert metric. For a
proof, see §4 in [7].

LEMMA 3.1. Let A be a closed cone and AN* its dual. For any ¢, ¥ € A,

(¢, o) (¥, )
(U,o){d,m
The main idea of the proof of Theorem A is to find a cone on which the fiberwise

transfer operator is a contraction. To accomplish this, we will need the Birkhoff contraction
theorem.

O(¢, W)=10g(sup{ to,n €A and (Y, 0)($, ) #0}).
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Equilibrium states for non-uniformly expanding skew products 9

THEOREM 3.2. (Birkhoff [1]) Let Ay, Ay be closed cones and L: A1 — Aj a linear map
such that LA| C Ay. Then for all ¢,y € Ay.

di LA
mm+(l))@m 6, )

where diamp, (LA1) = sup{Op,(Lp, LY): ¢, ¥ € A1} and tanh oo = 1.

O, (Lp, LY) < tanh (

3.2. Existence of ®. We will use cones of the form
Agx =Ag(@)={y e C*(X xY): ¥ >0and V]|, < K inf ¥} U {0}.

It can be shown that Ak is a closed cone in C¥(X x Y). For these cones, we get an
alternate way of calculating distances in the Hilbert metric.

LEMMA 3.3. Forany ¢, ¥ € Ak,
Kd(z1,22)"¥(23) — (Y (21) — ¥ (22))

A(¢, = inf
@ V)= B KdGr 2% () — @G — $)
and
B.v)=  sup Kd(Zl,Zz)aI/f(Zﬁ—(W(Zl)—W(Zz))‘
wazexxy Kd(zi, 22)%¢(z3) — (9(z21) — ¢ (22))
Proof. See Lemma 4.2 in Castro and Varandas [2]. O
Denote by

AL ={ € CUX x Y): () > Oand ||y < K inf 3} U {0}

the cross-section of A g that lives on Y.
Let

d

as in inequality (3). We assume that &, > 0 is small enough that

d—q)y=% +gL®
sz:e%.(( Dy +q ><1

¢ =5+ 2se, diam(¥)* < 1. 4)

Then we have the following lemma based on similar arguments from Castro and Varandas
[2] and Stadlbauer, Suzuki and Varandas [11].

LEMMA 3.4. With ¢ as in (4), for all K sufficiently large, we have Ly(AY) C AgIX(
Jor all x € X. Moreover, there is a constant M = M (K) > 0 such that for all x € X,
diam(L Ay) < M < oc with respect to the Hilbert projective metric on A If(x.

Proof. Fix x € X and K > 0. Denote by {yi} and {y,} the preimages of y and y’ in Y,,
respectively, as given by Lemma 2.3. Now fix ¥ € Ag. Since inf £, > de™ ¢ inf ¢ and

Exllffx(y) - ﬁxl//fx(y/)

d
= D @ (e y) = Y x, y) + (W — POy (x, ),
k=1

https://doi.org/10.1017/etds.2023.111 Published online by Cambridge University Press



10 G. Hemenway

we have
d
1L (fx,y) = Ly (fx, ¥ -1 (x.y)—inf o -1
R <d k;e‘mk Y (x i) = ¥ (e, vl Gnf )
d .
+d™" Y (sup i/ inf yr)e” M| — ¥ ()|
k=1
=: 1+ I

Note that [y (x, yx) — ¥ (x, y) | < ¥ lad (yi, y;)* < K inf  d(yk, y)*. By Lemma 2.3,
d(ye, ;) < Ld(y,y') forany 1 <k < gandd(y, y;) <y~ ld(y,y)forq <k <d,so

d
Io<d™' Y TNk gy v
k=1
d
< d_les‘ﬂK Z d()’k’ yllc)a
k=1

< Ke*d ' (L% + (d — q)y~%)d(y, y)*
<sKd(y,y)*

where the second inequality holds by (P).
To estimate I», note that |¢¥*-¥%) — e‘p(x’yllc)| < |e?*|od(x, Y1), (x, y,/c))"‘ and

sup ¢ < inf ¢ + ||q diam(Y)* < (1 4+ K diam(Y)%) inf ¢
implies that
sup ¥/ inf ¢ <1+ K diam(Y)* < 2K diam(Y)*
provided that K is sufficiently large. Then (P) implies that
d
I < 2K diam(Y)%e™ "¢d™" Y " e |od (x. yo). (x, y1)*

k=1
d

< 2K diam(Y)%epd ™" ) (L%q + (d — @)y ~)d(y, y)*
k=1

< 2K diam(Y)%se,d(y, y')*
< 2s&, diam(Y)*Kd(y, y')*.

Therefore, if we let ¢ := s + 2s¢&, diam(Y)%, we have that
Lyl < (s + 258, diam(Y)*)K inf Ly < ¢K inf L

so Ly € A{fz
Note that sup £, < (1 + ¢K(diam Y)*) inf L. Let yi, y2, ¥v3 € Y. Then since
|Lx¥|e < CK inf L, we have
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Equilibrium states for non-uniformly expanding skew products 11

Kd(y1, y2)* Ly (y3) — (Lxr(y1) — Lxp (y2))
Kd(y1, y2)* Ly (y3) — (Lxd(y1) — Lxd (32))
_ (Ksup Ly + ¢ K inf Ly)d(y1, y2)*

(K inf Ly¢ — ¢ K inf Lid)d(y1, y2)*

Thus, B(Lx ¥, L) < (K sup Ly +¢K inf L) /(K inf L, — K inf L, ¢). A sim-
ilar calculation gives a lower bound on A(L;Vr, L,¢). So by Lemma 3.3, we have

Ksup Li¢p+C¢Kinf Li¢p K sup Ly + ¢ K inf L)
OUsy. L29) = log( KinfLop— K inf Lo¢  Kinf Loy — K inf Loy )
B log(K(l 1 ¢K diam(Y)*)(1 + ¢) inf qus)
= K(1—¢)inf Ly
K(1 + 2K diam(Y)¥)(1 + ¢) inf L,
-I—log( )

K —¢)inf L,

<2 log(g> + 2 log(1 + ¢ K diam(Y)%) < oo.

This proves the existence of M. O

THEOREM 3.5. Let ®7(x) = log (L1, 0)/( "1 a). There exist 0 <t <1 and
C1 > 0 such that for all k € N, n,m >k, x € X, and any probability measures o, on
Yy and oy on Y gmy, we have

| D7 (x) — D (x)] < Cy .
Thus, ®(x) = lim,— o0 P (x) exists and |P;" (x) — ®(x)| < Cit™

Proof. Fix x € X. Suppose n, m > k > 1. Then

Lo ° (L om)
‘ (L), o WL, 0 pm)

= |10
<£l};11,O'fx,n><£]};1(£x]l)’gfx,m>

|P5 (x) — P (0)| =

log

where o ¢y, = (£fk+1x)* -+ (Lnyx)*o,. By Lemma 3.1, we see that
|7 () — @ ()] < O (L), L),

n m

Clearly, 1 € A} for any K > 0. Then £, 1 € A;f( by Lemma 3.4. Fix K large and M as
in Lemma 3.4. Set T = tanh (M /4). By Theorem 3.2, we have

oLl e, L5 < e, 1) < 7w

Let C; = M/t. Hence, the sequence {®,},>¢ is Cauchy and the limit exists at every
x € X. O

This proves the existence of ®.
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12 G. Hemenway

3.3. Fiber measures. 'To completely understand the equilibrium state ; on (X x Y, F),
we need to understand how it gives weight to the fibers {Yy},ex. The first step is the
following non-stationary RPF theorem adapted from [3], whose proof we include here for
completeness (see Hafouta [5] for a similar result when the base is invertible).

THEOREM 3.6. Let F: X x Y — X x Y satisfy (Al) and (A2). For any Holder ¢: X X
Y — R satisfying (P) and its associated family of fiberwise transfer operators {Ly}xex,
there exists a unique family of probability measures v, € M(Yy) such that for all x € X,
Livey = AyVx, Where Ay = vy (Li1) = e®).

Theorem 3.6 is a consequence of the following two propositions.

PROPOSITION 3.7. LetC1 > 0and0 < t < 1 beasin Theorem 3.5. Givenanyx € X, k €
N, and o € M(Y pi,), define vy y € M(Yy) by veg = (LX) o/ (1, (L) o). If m, n > k

and ¥ € Ak, we have
‘/ 1)0d‘)x,n _f l)0de,m

In particular, (¥, vy) 1= lim,_, oo (¥, Vy.n) exists and defines a probability measure v, on

Y, with
devx,n—/wdux

Proof. Let by = infy LY (y)/LX1(y) and ¢ = sup, Ly (y)/LE1(y). Note that Ly <
LK1, So

< 1|y |tk

= Cillylic".

vy = LD o) (L (T 0n) L, (L o)
ST Do) (LKL (L) T (LA L (L )

= Ck.

A similar computation shows that by < (Y, vy ,). Then by < (Y, vy ) < ¢ for all n >
k. Therefore, (Y, vx ) — (¥, Vxm)| < ck — bx for all n, m > k. Lemma 3.4 implies that
O(Lky, £X1) < diam(Ly Ax)TF ! < MF1.So 1 < ¢ /by < M Thus, by < ¢ <

breM™ ™" which implies that cx — b < br(eM™ ' — 1). Moreover, for all y € ¥, we have
Loy =Y, 9@ < Y Sy =y lLiio).
yegr* () yeg ()

So by < ||¥||. Hence,
k—1
(W, Ven) — (Vs vem)| < ek —br < ¥l —1).
Thus, {vy,} is a Cauchy sequence. Then there is a constant C; > 0 such that

W, ven) — (W, )| < Crlly "
foralln > 0. O

PROPOSITION 3.8. Let {vy} be as in Proposition 3.7. Then Liv¢, = e®®y, .
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Equilibrium states for non-uniformly expanding skew products 13

Proof. Forall Y € C(Y,), we have
(Lx, ('Cnx)*gn—i-l)
d(LEvs) = lim
/Kb ( X f ) n—> 00 (]l, (El}x)*an+l>

_ i L o) (LY oy

n>oo (L% Loopst) (L0, 0y

o[y

Observe that
Ve (Lxl) = LEvpe (1) = e®@u (1) = PP =1 4,

This completes the proof of Theorem 3.7.

As in Denker and Gordin [4], we call a system of {vy : x € X} of conditional probabili-
ties for (X x Y, F) a family of Gibbs measures for a continuous functionp: X x ¥ — R
if there exists a positive measurable function A: X — IR with the following property: for
all x € X, the Jacobian of u, with respect to the map F is given by

dl)f(x) o gx

=A éx,
oy (x)e

COROLLARY 3.9. The measures {v,: x € X} form a family of Gibbs measures for ¢ in
the sense of Denker and Gordin [4] with A(x) = .

Proof. Choose A € Y, such that g, |4 is invertible. This implies

L@ 1)) = Y DV ?D1,3) = Y 14G) = Lgaly).
yegr'y yegr'y
Therefore, [, Axe™# dvy = [ Li(e % 14) dvyx) = Vy(x)(gcA). Since this holds for
x € X, {vy: x € X} forms a family of Gibbs measures. |

3.4. Regularity of ®. Now we will show that ® is Holder continuous. A direct
consequence of Lemma 3.4 is the following lemma, which we will need to prove the Holder
continuity of ®. For convenience, we write

)\"Xl = )"x)‘fx N )\'fn_lx — eSn':I)(X)‘

LEMMA 3.10. Let M be as in Lemma 3.4. Then e_M)Lﬁ < L11(y) < eM)LZ foralln e N
and (x,y) e X X Y.

Proof. Let ¢, = ¢, —log A, and write ZZ]I = Z;eg,z(y) e51%x() Theorem 3.7 gives
(Zx)*fo = v, for all x € X. Inductively, we get that (ZZ)*anx = v,. Then for any &, ¢,

/Zﬁﬂ dv i, :f 1d(Ly) v, = ve (V) = 1 :f 1dv .

Let AT be the cone of strictly positive continuous functions on X x Y. Since Ax C A™,

the projective metrics of the two cones satisfy @ (¢, ¥) < O(¢, V). Write ¥ = Zi]l.
Then inf 1/ < 1 < sup ¥y, so 1 < sup ¥y /inf ¥, < eM. We know that @F (v, 1) < M.

https://doi.org/10.1017/etds.2023.111 Published online by Cambridge University Press



14 G. Hemenway

This implies that e=" < v, < eM for all k € N. Thus,

e M) < £M(y) < eMAn, 0
Letn e Nand x,x’ € X,and y € Y. Let W, = {1, ..., d}". By Lemma 2.3, we can
write
Sy = ya) and g () =)
such that

d((f""x, ), (F77N ) < Lidx (f"x, X))

where Ly = L if 1 <k <gand Ly = y~!if ¢ < k < d. Continuing in this way, we get
that

&M =weYrweW,} ad g (y)={y, € Yo i w e Wyl
such that forall 0 < k <n,
d(F*(x, yw), F¥(x', ) < Luy,, - - - Lu,dx(f"x, f"x).

Let m <N and 0 < < 1. A pair of inverse branches for F of length » starting from
(f"x, y) and (f"x', y) and labeled by w € W, is good if for all j € N such that jm < n,
we have

#n—jm<i<n:w; <gq}<im.

This means that the last jm iterates of an orbit segment of length n will be in the
contraction region at most ¢jm times. We will denote the collection of words corresponding
to good trajectories by

an = an(m) ={weW,: forall j <n/m,#n— jm <i <n:w; <q} <ijm}
and the collection of words for bad trajectories by

WE = WhBm)

={w e W,: thereexists j <n/m>#n—jm <i <n:w; <q}>(jm}.

The following lemma due to Varandas and Viana gives us a way to count the number
of words that code bad trajectories of a given length. Let I (1, n) ={w e W, : #{1 <k <
n:w; <gq} >}

LEMMA 3.11. Given ¢ > 0, there exists a iy € (0, 1) such that

1
lim sup — log #1(t,n) < logqg + ¢
n—oo N

forall 1 € (19, 1). Therefore, there exists a C > 0 such that #1 (1, n) < Cq"e*" for all n.

Proof. See Lemma 3.1 in Varandas and Viana [12]. O
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b;(v)
I/—\lk/——\l

FIGURE 1. The maps a, b}, and ¢, on words of corresponding lengths.

Since it is assumed that &, < log d — log ¢, it follows that ge®s /d < 1. Choose &¢ > 0
such that
gefety

d

Lett = (e, d, q) € (0, 1) be given by Lemma 3.11. We now further our assumption on the
constant L by assuming that it is close enough to 1 so that there is a ¢ > 0 satisfying

< 1. (5)

0<y U791 < e < 1. 6)

LEMMA 3.12. There is a Q > 0 such that for all m € N, if (x,y) and (x',Y') are
preimages coded by a word in W,? (m), then

d(F*(x,3), F*(x', 7)) < Qme™2=Ra(fx, f"x")
forall) < k < n.

Proof. Fix m € N. Write n —k = jm 4 i for 0 <i < m. Since our preimage branches
are assumed to be good, we get

d(F*(x,5), F*(¢, 7)) < Luy,, -+ - Lu, d(F* (x, 3), FF (2, 7))
< Lugy, - Ly, (L9~ 0700Mya (7, f750).
Recall from (6) that we can choose ¢ > 0 so that 0 < y~(I=Y ¢ < ¢=2¢ < . Thus,
d(F*(x,5), F*(<, 7)) < L™e™29™d(f"x, f"x')
S (L€26)m€—20(n—k)d(fnx’ fnx/)- D

In what follows it will be convenient to write a: W, — Y so that a(w) = y, and
a': W, — Y sothata’(w) = y/,. Lemma 2.3 gives us bijections b, : Wj,, — g;,ff;mx(y)

n—jm

such that b; (v) = gx (a(uv)) and cy: Wy_jm — gx_(”_jm)(bj (v)) such that ¢, (1) =
a(uv) as well as their associated maps b’]. and c),. See Figure 1 for reference.

LEMMA 3.13. Let 0 as in (5) above. There exists Cy > 0 such that

Z eanox(a(w)) < C26m Z esn¢,x(a(w))
weW5B (m) weW,,g (m)

forallm e Nyne N, x,x' € X,andy €Y.
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16 G. Hemenway

Proof. Letx € Xandy € Y. For any w € W,?, there is 1 < j < n/m such that w = uv
for some u € W, and v € I(¢, jm). Thus,

Ln/m]

PIERGGRUSE S Sim® yn—jm . (b (©)) 3 eSmenlen)
weWB j=1 vel(,jm) UE€Wn—_jm
= im@ n—jm (bj(V)) M ,n—jm
< Z Z Sim® pn—jm. bj e Ay
j=1 vel(jm)

by Lemma 3.10. Note that for any j < n/m,

Z eSn(ﬂx (a(w)) — Z eSjm‘pfn—jmx (b)) Z eSn—jm(px (cv(m))
wewWw, veWin ueW,_jm
> e_M)\‘;—jm Z eSjm(an—ij(bj(v)).
vEij
Lemma 3.11 implies that #1 (¢, n) < Cq"e®" for all n > 0. Then since #WV, is finite,

D ey eSer@t) L M\ Im

Sepr@w) = Snox(@(w)) Z @Sim® pi=imy (b ()
n@x(@(w - n@x (@(Ww
ZweWn e = ZweVVn ¢ vel (t,jm)

ln/m) AT jm Sjm@ pn—jm  (bj (V)

<e oM Z vel(t,jm)e
- : n jm Sjm(pfn—jmx(bj(v))

ZUEW]'," €

< 62M Z #1(1, jm)ejm(sup @—inf @)

where the last inequality holds by Lemma 3.11 and (P). Let 6 = ge®e®¢ /d < 1. Then

ZweWnB €Sn(/’x(a(w)) - o i qeé‘e&p jm _ om gm
> ey, €@ = ¢ ~\"d ¢ \1Zon )

But

I S@m) o 3 pSwcla) 3 S,

weW, weWhB weWd

Choose m such that 1 — 6™ > % Then

T Swawn <o 2Megn( 3 Setawn 3 esn<px<a<w>>)_
weWB weWB weWy
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So if we increase m so that 2¢2M Co" < %, then

Z eSlz§0,\'(a(w)) < 4€2MC9m Z eSn%c(a(w))‘
weWB weWwyd

This achieves the desired result. O

Now we apply the above with various values of m to prove the Holder continuity of .
First, a bound on ®,,.

LEMMA 3.14. There exist C3 > 0 and B > 0 such that
|y (x) — @ ()] < C3d(f"x, f"x)*P

forall x,x" € X andn € N.

Proof. First note that along good orbit pairs, we have by Lemma 3.12 that

n—1

192005, 7) = S, ) < D lplad (F* (x, ), F¥(x', 7)*
k=0

n—1
< Z |(p|a Qoeme—an(n—k)d(fnx, fnx/)oz

k=0

00
< Qamd(f”x, fnx/)oz . Z |§0|ae_26a(n_k)-
k=0

Let V=Y 72 [¢lae™2%"=5) Then
1Sp@(x, ) — Sup (X', Y)| < VO*™d(f"x, f"x"". (7

For convenience, we write Xg =} )0 eSn¢x(@W) and T3 = Y pews eSn¢x(@w) g
well as X and X5 for the sums of the preimages associated to a’(w). By Lemma 3.13, we

get that
LI1(f"x,y) _Xg+35 - Zg(1 4+ C20™) < %G com )
LrL(f"x,y) E’g + 35 E’g(l — CL0™) Eé

Note that by (7),

Eg Z Wg eSn(Px(a(w))
weWs

55 Tueng e @@)
w n

< Zw’ean €

- Z e Sy (@' (w))
w eVvy

< eVQamd(f”X,f"X/)a.

VO[5, 3N o Sup,r (@ (w)
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18 G. Hemenway

Let ®, be as in Theorem 3.5 for the delta measure on Y, §y, (y € Y). Then

LrH(frx,y) L 10 %, y) )‘
L (fnx, y) L (L )

2 m
<2 log(—/g . eC? )
%G

< 2V Qamd(f"x, fnx/)ot + zcem

|y (x) — q)n(x/)l = ‘10g(

where the second inequality holds due to (8).
Let p; = 6/Q% and note that p; < 1. Then there is a k € IN such that

p < d(f"x, £ < ol ©)
Now set m = k. Let 8 = (log 6/log p1) and note that
gm — pmlogd _ pmlogpr _ plﬂm < /Ol_ﬂd(an, fnx/)a/S.

Thus, Q2"d(f"x, f*x')* <6™ < p: Pd(f"x, f"x')*F. Hence, letting C3 =2(V +C)p; ¥
yields

|, (x) — @y (x))] < C3d(f"x, f"x")P. 0
THEOREM 3.15. The potential ® constructed in Theorem 3.5 is Holder continuous.

Proof. Let C = max{C1, C3}. For any n > 0,
|®(x) — (x| < [P(x) = Pp(x)] + [Py (x) — Pp(x)] + [P (x)) — P(x)]
<2Ct" + Cd(f"x, f"x")*P
<2Ct" + CI%d(x, x")*P.

where the second inequality follows from Theorem 3.5 and Lemma 3.14 and T" is the
inherited Lipschitz constant for f.

Similarly to the argument in the proof of Lemma 3.14, we need to adjust the Holder
exponent to establish our bound. Let p, = v/T'*#. Then there is a k such that ,0’;rl <
d(x, x")* < ,0]2“ Letn = k and n = log 7 /log p2. Then

" — ol logz _ oM log oo _ pgn < ,Oz_nd(X, x/)ozﬁn.
SoT*Bd(x, x)F < " < pz_']d(x, x')*P"_ Therefore,
|D(x) — D(x')| < 2Cp; "d(x, x')*P", 0
4. Conditional measures of equilibrium states
Let Lo: C(X) — C(X) be defined by

Lot(x)= Y ®D &)

Teflx
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for any & € C(X). Since f is uniformly expanding on X, Theorem 3.15 implies that there is
a unique equilibrium state that can be obtained via L¢. See Theorems 6 and 8 in [13] for
details.

THEOREM 4.1. Let X be a compact, connected manifold and f: X — X is uniformly

expanding. For any Holder ®: X — R, the following assertions hold.

(1)  There is a unique probability measure b € M(X) with the property that LD is a
scalar multiple of V.

(2) There is a unique positive continuous function h € C(X) with the property that Laoh
is a scalar multiple offl and fX ﬁ(x)df)(x) =1

(3) The eigenvalues associated to V and h are the same.

(4)  The unique equilibrium state for ® is i = hb.

We shall show that it =t = pomy ! and construct the family of measures {{tyx}yxecx.
To do this, we first prove the following lemmas. Place on C(Y) the sup norm || - ||s0; that
is,if Y € C(Y), then || [loc = sup{y/(y): y € Y}.

LEMMA 4.2. For any ¢ € C(X X Y), the map x v LY is continuous with respect to
the topology induced on C(Y) by || - |l co-

Proof. Letyr € C(X x Y)and y € Y. For any x, x’ € X,

1L (9) = Lo < Y@@V |y, 5) = @ T+ [ lloo [0 — &)
yegi 'y

1

where ' are the preimages of y under g, given by Lemma 2.3. Fix € > 0. Let

M, = Sup(x,y)eny{ﬁxW()’)}- Since ¥ is continuous, there exists a §; > 0 such that
| (u, v) — YW, v')| <e/2M; whenever d((u, v), (u'v’)) < §;. Similarly, there is a
8> > 0 such that [e?®) — ?@'V)| < €/2d ||y || oo Whenever d((u, v), (U'V')) < 8.

Let §3 = min{§1, 82}/L. By the continuity of f, there exists § > 0 such that if
d(x,x") <68, then d((fx,y),(fx’,y)) <83. By Lemma 23, for all (x,y) €
F~Y(fx, y) N Yy, there exists (x’, ¥') € F~'(fx’, y) N Y, such that if (x, ) € A, then

d((x,5), (x', ) < Ld(fx, fx') < L83 < min{8;, 6}
and if (x,y) ¢ A, then
d((x, ), &, ) <y ld(fx, fx') < 8.

Thus, d((x,y), (x’, ")) < min{§;, 8,}. Hence,

¢ _ €

LYy — Loy = pey) XTI

) = Lebe W < pm DL &V Wle D S
yegr v Y8 Y

€ n €
<-4+ =-=c€.
2 2
Since this is independent of y, we have || L, ¥, — LWy ]loo < €. O

Remark 1. This proof can be extended to hold for all iterates of the transfer operator.
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LEMMA 4.3. For every continuous r: X x Y — R, the map x — v, (Vy) is continuous
with respect to the usual topology.

Proof. Fix y € Y and let vy, = (£})*8,/(1, (L})*§y) be as in Proposition 3.7. So as
shown there, vy, % vy. Forany x, x’ € X,

devx—/wdvxf < fwdvx—fwdvx,n +‘/dex,n—fwdvx/,n
+’/wdvx/,n_/wdvx/
/‘/’d"x,n_/‘//dvx’,n

where the last inequality holds by Proposition 3.7. Note that
v, (L9)*8y) L3y ()
Vv = s = B0
X
is continuous in x by Lemma 4.2. Given € > 0, choose n sufficiently large so that
2C1|¥llt" < €/2 and § > O such that d(x, x") < & implies | [ ¢ dvy, — [V dvy ] <

<2Ciy" +

€/2. Then
[ [wav szcl||w||r”+‘fwdvx,n—/wdvx/,n <e
This proves continuity of x > vy (V). ]

Define I: C(X xY) - C(X) by ({Y)(x) = fo ¥ (x, y) dvy(y). Observe that for any
n € M(X), we have

(¥, I"n) =/X(IW)(x) dn(x)=/X/Y1ﬂ(x, y) dvx(y) dn(x).
So (I, n) = (¥, I"n) where I : M(X)—> M(X x Y) is defined by I*n = fx vy dn(x).

THEOREM 4.4. The operators I and I* satisfy I o L, = Lo o I and I* o Lo = L o I*.
That is, they make their respective diagrams below commute:

C(XxY)i>C(XxY) M(XxY)(TM(XxY)
b b al al
Ly
C(X) —— C(X) M(X) <£—* M(X)

Proof. Givenyr € C(X x Y), we have

Lo Lyv(x, y) = / LoV (x,y) dvy(y)

f” > Z A INY (X, ) dve(y)

Xeflx yegrly
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_ / > L), y) dvi(y)
X><Y_ Tef-lx

= > (Lxy,vy)

xef-1

= > (W, (L) )

xef~lx

= ), Pom= ) LPUNE

xef—lx xeflx

— (Lo o DY (x).
Duality gives I* o L, = L7 o I*. O
COROLLARY 4.5. P(®) = P(¢). Moreover, v, U and h, h satisfy v = I*D and h = Ih.
Proof. By Theorem 4.4, we have

LoID) = I*L40 = I*e" DD = "D (1*D).

Then items (1) and (3) of Theorem 4.1 implies 7*D = v and P(¢) = P(®P), respectively.
Now we will show that /4 is the eigenfunction for L. We have

Lo(Th) = IL,h = TP Ph = PP (1h)

where the first equality is by Theorem 4.4 and the last is by the paragraph above. Moreover,
the paragraph above implies that [(/h)dD = [ h dv = 1 where the last equality holds by
item (2) of Theorem 4.1 for the potential ¢ : X x ¥ — R. Thus, item (2) of Theorem 4.1
for ®: X — R implies Ih = h. O

Thus, given any ¥ € C(X x Y), we have

/Wduz/lﬁhdv

_ / f (W - h)(x, y) dvs (v) dD(x)
= [ [ve h, )” dve (0 db(x)

_ / Px y) s (y) di )
X JY,

where 1, is defined by d . /dvy = h(x, y)/fl(x) and 7@ = h. Note that by Corollary 4.5

dvy(y) =

(Y):/ hx. y) UM _he)
v ke (o) (o)

Therefore, i = [ and {u, }xecx is the unique family of conditional measures for .
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