L)
Py Algorithms for Identifying Flagged and Guarded Linear Systems

Guillaume O. Berger
UCLouvain
Belgium
guillaume.berger@colorado.edu

ABSTRACT

We present an approach for identifying two subclasses of piecewise
affine (PWA) systems that we call flagged and guarded linear sys-
tems. Flagged linear system dynamics are given by a sum of k linear
dynamical modes, each activated based on a latent binary variable,
called a flag. Additionally, guarded linear systems define each flag
as the sign of an affine “guard” function. We term the discovery
of the latent flag values and the corresponding linear dynamics as
the “flagged regression” and “guarded regression” problems, respec-
tively. We show that the system identification problem is NP-hard
even for these models, making the identification problem computa-
tionally challenging. For both problems, we provide approximation
algorithms that identify a model whose error is within some user-
defined constant away from the optimum. The time complexity of
these algorithms is linear in the number of data points but exponen-
tial in the state-space dimension and the number of flags. The linear
complexity in data size allows our approach to potentially scale to
large data sets. We evaluate our algorithms on benchmark problems
in order to learn models for mechanical systems with contact forces
and a nonlinear robotic arm benchmark. Our approach compares
favorably against neural network learning and the PARC algorithm
for identifying PWA models proposed by Bemporad.

ACM Reference Format:

Guillaume O. Berger, Monal Narasimhamurthy, and Sriram Sankaranarayanan.
2024. Algorithms for Identifying Flagged and Guarded Linear Systems. In
27th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC °24), May 14-16, 2024, Hong Kong SAR, China. ACM, New
York, NYY, USA, 13 pages. https://doi.org/10.1145/3641513.3650140

1 INTRODUCTION

Piecewise affine systems (PWA) have been widely studied as a
subclass of switched/hybrid systems models. Examples include
mixed-logical dynamical (MLD) systems defined by Bemporad et
al. [6] that are governed by a differential/difference equation whose
right-hand sides involve discrete logic in the form of flags (Boolean
variables) and constraints that relate the values of the flags to the
system variables. These systems appear naturally in a wide range of
applications including mechanical systems with impact, electrical
circuits with switching and networked systems [6]. Identifying a
system model from observed data enables applications ranging from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0522-9/24/05

https://doi.org/10.1145/3641513.3650140

Monal Narasimhamurthy
University of Colorado Boulder
USA
monal.narasimhamurthy@colorado.edu

Sriram Sankaranarayanan
University of Colorado Boulder
USA
first.lastname@colorado.edu

3l

Figure 1: The cartpole with soft wall exhibits discontinuous
PWA dynamics: the force applied on the pole depends discon-
tinuously on its position. (Left) Cartpole schematics (from
[2]). (Right) Our approach (green curve) yields more accurate
predictions of future states when compared to a neural net-
work model (red curve) trained on the same data (dots).

control design to runtime monitoring. Furthermore, MLD systems
are equivalent to piecewise affine (PWA) systems [4, 22].

In this paper, we focus on two special classes of PWA/MLD
systems, that we call flagged linear systems (FLS) and guarded lin-
ear systems (GLS). The dynamics are assumed to be a sum of k
terms each involving linear dynamics that can be active or inac-
tive, depending on the value of k latent flag variables: ¥(¢ + 1) =
ApX(t) + Z?:l [ﬂagj(t)]AjJ?(t). Note that [flag; (¢)] € {-1,1}.In
FLS identification, our goal is to find the latent flags and the ma-
trices Ay, . .., Ax. In GLS identification, the flag is not exogenous
but is determined by an affine function called a guard, activating
the mode or not depending on the sign of the guard at the state. A
system with k flags has up to 2k modes.

Example 1.1 (Cartpole with Soft Walls). Fig. 1 shows a cartpole
system with two soft walls taken from Aydinoglu et al. [2]. Such a
system is described as a PWA system with three modes in continous
time that describe contacts with the two walls and the contactless
conditions. The state ¥(t) = (x, 0,9, w) represents the position,
angle, linear and angular velocities, respectively. Using data ob-
tained from simulating this continuous-time model, our approach
identifies a discrete time GLS model with time step h = 0.01.

’
X

x+0.01o, 8 =0+0.0lw

’
[

(3.99x + 1.850 + 0.420 + 2.16w — 0.69) +
sign(g1) (—4.72x — 2.130 4+ 0.610 — 2.22w + 0.64) +
sign(ga) (0.49x — 0.30 + 0.01w + 0.05)

o’ = (1.82x +0.440 — 0.230 + 1.90 — 0.31) +
sign(g1)(—2.12x — 0.960 + 0.270 — w + 0.29) +
sign(g2)(0.22x — 0.130 + 0.01w + 0.02)

91(X) = —x+60+0.110 — 0.480w + 1

g2(X) = 0.51x — 6 + 0.020 + 0.120 + 0.11

https://orcid.org/0000-0002-0633-8948
https://orcid.org/0000-0002-0628-9875
https://orcid.org/0000-0001-7315-4340
https://doi.org/10.1145/3641513.3650140
https://doi.org/10.1145/3641513.3650140
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641513.3650140&domain=pdf&date_stamp=2024-05-14

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

Here X(t + h) = (x’,60’,v’,w"). The identified model accurately
predicts the test data 100 steps into the future; see Fig. 1.

Identifying hybrid linear models (including switched and piece-
wise linear models) is NP-hard [26]. In particular, it does not scale
well with the number of data points. A straightforward encoding
into MILP or SMT problem has a complexity 2N in terms of the
number of data points N. Lauer et al. have shown how to reduce
this to NO("™) wherein n is the dimension of the state space and
m is the number of modes with a careful analysis of the number of
data points needed to fix a model [25].

The main contribution of this paper is to provide an algorithm
for FLS and GLS identification that scales linearly with the number
of data points, but exponentially in the dimension and number of
flags. This enables interesting applications to data sets of very large
size but relatively low dimensions ~ 6 and number of flags ~ 3.

Our algorithm falls into the category of approximation algo-
rithms because it does not solve the FLS/GLS identification problem
exactly, but rather a relaxed version of it. More precisely, if the best
fitting error achievable with a FLS or GLS model with k modes is
€”, then the algorithm computes a model with error €* + €gap in
time linear in the number of data points and polynomial in 1/egap.

Our algorithm is counterexample-guided and uses the principle
of cutting-planes in convex optimization [11]. Namely, it uses sub-
sets of the data to identify potential models and then uses the points
that are not fitted by the potential models, called counterexamples,
to create new subsets and identify new models, until a suitable
one is found. The counterexamples have the effect of adding new
constraints to the space of potential models, thereby enabling the
cutting-plane principle. This bounds the size of the subsets to con-
sider, from which we derive an upper bound on the number of
these subsets, that is independent of the number of data points. The
contributions of this work are as follows:

o Define the FLS and GLS models, compare against other PWA
models, and the computational complexity of their identifi-
cation problem and its MILP formulation (Sec. 2).

o Define a approximation version of these problems, and pro-
vide an algorithm with complexity linear in the number of
data points and polynomial in the accuracy gap (Sec. 3).

e Demonstrate the applicability and performance of our algo-
rithm over a set of synthetic and application benchmarks,
and compare it with the MILP formulation and other ap-
proaches. The MILP formulation fails to handle more than a
few hundred data points, while our algorithm scales up to
ten thousand data points, for similar fitting and prediction
accuracy. Other more scalable approaches, such as neural
networks, fail to learn a precise model (Sec. 4).

One limitation of our algorithm is the exponential dependence
of the complexity on the number of flags k and dimension n of the
state space. From the NP-hardness of the FLS/GLS identification
problems (proved in Sec. 2.4.3), this dependence is to be expected,
unless P = NP. Showing that this dependence is unavoidable also
for the relaxed version is a direction for future work.

1.1 Related Work

There are several techniques available in the literature for identi-
fying switched linear and piecewise linear models. We refer the

et al.

reader to [26, 31] for surveys. In particular, Vidal et al. [38] propose
an algebraic approach that utilizes polynomial factorization to iden-
tify a model in the absence of noise. However, it is important to
work with approximate fits in the presence of noise. Mixed-integer
linear programming (MILP) is a popular approach for solving the
identification problem. Roll et al. [34] and Sadraddini and Belta [35]
propose MILP formulations for identifying piecewise linear models.
The Hinging Hyperplane models introduced in [13] and studied
in [34] are a special case of GLS models, but they are less expres-
sive, since the guard is related to the dynamics of each mode. The
models studied in [35] have pieces defined by k hyperplanes. Our
GLS model is similar to that one, except that the linear dynamics on
the 2¥ pieces are not independent since they are the weighted su-
perposition of k linear dynamics. An important limitation of MILP
formulations is the exponential dependence on the number of data
points. As mentioned earlier, Lauer et al. propose an approach that
is polynomial time in the number of points [25]. However, the de-
gree of the polynomial depends on the dimension of the state space.
Our approach, by contrast, has a linear time complexity in the size
of the data. Algorithms for time series segmentation [23, 30] also
have polynomial time-dependence on the number of data points
but they are restricted to one-dimensional inputs.

Our work is closely related to the recent work of Berger et al. [8]
and can be regarded as an extension of that work to the problems of
flagged and guarded regression. Therein, a counterexample-guided
algorithm was proposed to identify switched linear models, with
complexity linear in the number of data points. The present work
differs in many ways: (a) Berger et al. focus on identifying the la-
tent modes and dynamics of a switched linear system, we solve for
a switched system whose structure is specified through flags; (b)
Berger et al. obtain an exponential complexity in the number of
modes, we obtain a complexity bound that is exponentially faster
in terms of the number of modes!; (c) we identify GLS models, an
extension that is not possible using Berger et al’s algorithm. Our
approach is loosely related to numerous counterexample-guided ap-
proaches that have been considered in formal methods and control
theory to prove properties of programs, synthesize programs, com-
pute Lyapunov functions and invariant sets [9, 10, 14-16, 33, 36].

Inexact algorithms for switched and piecewise linear regression
include clustering [24, 29], continuous optimization [21, 27, 28], and
others [3, 5, 18]. However, these algorithms offer no guarantees on
the quality of the solution, for instance, they can be stuck in a local
minimum with fitting error arbitrarily larger than the optimal one.
By contrast, our approach provides guarantees on the gap between
the optimal accuracy and that of the returned solution. We compare
our approach with some of these methods on a set of interesting
application examples in Sec. 4.

Approximation algorithms have a long history in theoretical
computer science and applied mathematics. We refer the reader
to [37] for a survey. These algorithms aim at solving computation-
ally challenging problems in a reasonable time while providing a
guarantee on the performance of the solution compared to the op-
timum. This paper investigates a unique approximation algorithm
for FLS and GLS identification.

O(m)

Im3 vs. m where m is the total number of modes.

Algorithms for Identifying Flagged and Guarded Linear Systems

2 PROBLEM STATEMENT

Notation. For n € N, let [n] := {1,...,n}. For X = (x1,...,%xn),
let ||X|| := max;e[p) |xi| be its Lo norm. For A = [aij]::fj:l, let
lAll == max;e) 2?:1 |a;j| be its induced Lo norm.

Given a data set D consisting of N data points (¥(¢),§(t))
wherein X(¢) € R™ and 3(¢) € R™ for t € [N], we seek a model
§(t) ~ F(X(t),Z(t)) for latent variables Z(t) € Z that fits the data
set with error tolerances (e, 7) defined as follows.

Definition 2.1 (Data Fit). A model F(X,Z) is said to fit the data set
D with relative error tolerance € > 0 and absolute error tolerance
7 > 0 if there exist values of Z(¢) € Z for t € [N] such that

5(t) - F(X(1).Z()l < ell¥(D)l| + 7. Vite[N].)
Since ||-|| is the Lo norm, (1) is equivalent to mN scalar inequalities:
lyi(t) = Fi(X(1). Z(1)| < el XDl + 7, Vie[m], ¥t e[N].

We study two types of regression problems: (a) flagged regression
for a linear model involving discrete latent flags and (b) guarded
regression for mixed-logical dynamic systems in discrete time.

2.1 Flagged Regression Problem

For this problem, the latent variable Z is a vector of “flags” with
values in {1, 1}, i.e., Z2(t) = (q1(¢), ..., qx(2)) for qi(¢) € {-1,1}.

Definition 2.2 (Flagged Regression Problem). Given a data set
D, norm-bound y > 0 and error tolerances € and 7, the flagged
regression problem with k flags seeks a set of matrices Ay, ..., Ag
and a series of flags’ values Z(t) = (q1(2), ..., qx(t)) € {-1, 1}* for
t € [N] such that the data points are fitted by the linear model:

[5(t) = AG0))X(D)|| < ellX(D)]| +7. Vi€ [N],

wherein A(Z) = Ag + Zle qiA; for Z = (qu,...,qx) and ||A;]| < y.

Remark 1. In general, the flags can take values in any set {a, f}
for @ # f. A set of matrices Ay, ..., Ay that fits the data for flags
q1 (1), ..., qr(t) € {-1, 1}* can be transformed into another set of
matrices By, ..., Bg that fits the data with flags ry(¢),...,r(t) €
{a By for @ # Biri(e) = B%qi () + 5%, By = Ao - FE2 3% 4,
and B; = ﬂ%aAi fori=1,..., k.

Remark 2. The bound on the norms of the matrices (y) is needed
to guarantee termination of our approach. However, setting y in
practice is problem dependent, based partly on the possible range
of the outputs and those of each inputs to the model. To alleviate
this, we may apply a “scaling” transformation to the “raw” data
(J%(t), ﬁ(t)) wherein we scale each x;(t) = A;%;(t), y;(¢) = 7;9;(t)
for some scaling factors A;, ; > 0 to ensure that ||X(¢)|], ||5(¢)]] < 1.
Such a scaling is a common practice in machine learning. In general,
a FLS model for the raw data can be transformed into one for
the scaled data and vice-versa. We can set y to a fixed but large
value ymax ~ 1000. Our approach will have running time that is
polynomial in y in the worst case.

Remark 3. For technical reasons, we assume that no data points
in D have X(t) = 0 and [|§(¢)|| > 7. Therefore, for a fixed 7, there
exists a minimal €* > 0 such that the flagged regression problem
with k flags and error tolerances €* and 7 has a solution.

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

2.2 Guarded Regression Problem

The guarded regression problem seeks a model of the form () ~
A(X(t))X(t), wherein A(X) = Ay + Z?:l sign(E;r)?)Ai. In contrast
to flagged regression, the flags are the indicator variable of a linear
inequality of the form E;r)? > 0, with value in {-1, 1}.

Definition 2.3 (Guarded Regression). Given a data set 9, norm-
bound y and error tolerances € and 7, the guarded regression prob-
lem with k guards seeks a set of matrices Ay, ..., Ag with [|A;]| <y
and nonzero coefficients ¢y, . . ., ¢y € R™ such that:

15(t) —AGO)E(D) < el XDl +7. VYt e [N],

wherein A(X) = Ag + Z?:l sign(E;r)?)Ai.z

2.3 Expressivity of Flagged and Guarded Linear
System Models

FLS are as expressive as linear switched systems. Any FLS with
k flags can be converted into a linear switched system with 2%
modes. At the same time, given a linear switched system with
modes defined by matrices By, ..., Bi, we define matrices Ay =
13k Biand A; = 1B; for i € [K]. It holds that B; = A(Z) where
Z is the vector of flags (q1,...,qx) with g; = 1if j = i and -1
otherwise. Note that to model the switched system, we need to add
the extraneous constraint Z,;=1 qj = 2 — k over the flags.

We will now turn to the issue of expressivity of Guarded Lin-
ear Systems (GLS). Hinging-Hyperplane systems [13], are models
where the next state for each component x; can be written as

k
xj(t+h) = f0(R) +) 0 max(fi,i(%), 9 (%)),
i=1

wherein fj; and g;; are affine functions from R"” to R, and oj; €
{~1,1}. They are known to be useful for approximating a wide
variety of nonlinear functions.

LEmMA 2.4. Any Hinging-Hyperplane system can be written as a
GLS. However, there are GLS that cannot be expressed as Hinging-
Hyperplane systems.

Proor. Proofis by observing that we can write each hinge func-
tion as max(f,g) = %(f+g) + %sign(f —g)(f —9g). The second part
simply notes that all Hinging-Hyperplane systems are continuous
PWA functions whereas GLS can be discontinuous. O

Similarly, it is easy to show that any one-dimensional PWA sys-
tem can be expressed as a GLS. However, GLS are not as expressive
as mixed-logical dynamical systems or general PWA systems.

LEmMA 2.5. The function f(x,y) =x+yifx >0,y > 0and0
everywhere else, cannot be written as a GLS fy + Zile sign(g;) fi for
any linear functions fy, ..., fy and g1, . . ., gk

Proof is provided in Appendix A.

Remark 4. Our approach extends to affine models (and affine guards)
by augmenting the state vector X with a 1 [8, Remark 1]. Nonlinear
models that are linear combinations of a fixed set of known basis
functions can also be learned using our approach.

For definiteness, we let sign(0) = 1.

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

2.4 Computational Complexity and MILP
Formulations

The flagged regression and the guarded regression problems can
be formulated and solved as optimization problems. In this section,
we first explain how to formulate these problems as mixed-integer
linear programs (MILP), and discuss the computational complexity
of solving them in this way. Then, we present theoretical bounds
on the computational complexity of the problems.

2.4.1 MILP Formulation of Flagged Regression. Given an instance
of the flagged regression problem (plus a bound y on the matrices
norm), the decision variables of the associated MILP are (1) mn(k+1)
continuous variables representing the entries of the m X n matrices
Ay, ..., Ag; (2) kN binary variables encoding the decision between
selecting —1 or 1 for each flag of each data point. Let b;(¢) € {0,1}
denote the binary variable corresponding to the flag g;(t) being 1 if
bi(t) = 0and —1if b;(t) = 1; (3) kNm continuous variables, labeled
y1(t),...,yk(t) € R™ for t € [N], serving as auxiliary variables.
The constraints are as follows: (1) For each i € [k], the norm
of A; is bounded by y: ||A;|| < y. (2) For each t € [N] and i € [k],
the value of b;(t) imposes constraints on the value of g;(t), and
consequently on the value of the auxiliary variable 7j;(t):

15: () —AX ()] < bi(OMII%[l, [15: ()+Aix ()] < (1-bi (1)) M|IX]\.

Here, M > vy is a sufficiently large constant, chosen so that ||3j; (¢) +
AiZ(t)|| € M||IX(t)|| holds trivially for all possible A;, ¥(t), 7;(t)°.
Thus, if b;(¢) = 0, §;(t) = A;x(¢) and if b;(t) = 1, §; (¢) = —A;X(t).
(3) For each t € [N], the fitting error is bounded:

k
[1G(t) — AoX(t) - Z Gill < ellx@®)| + 7.
i=1

The objective of the MILP can be set as a linear or convex piecewise
linear function: e.g., minimize the overall residual norm Zﬁ 1 llg(8)-
Apx(t) — Zif:l i (t)]]. The complexity of MILP solvers (e.g., using
branch-and-bound) is typically exponential in the number of binary
variables (kN). As we will see in the numerical experiments (Sec. 4),
this is a major limitation for applying the MILP approach to learn
flagged regression models for real data sets.

2.4.2 MILP Formulation for Guarded Regression. The MILP formu-
lation for the guarded regression problem includes further decision
variables and constraints in addition to the ones in the MILP for-
mulation for flagged regression (Sec. 2.4.1). The decision variables
include kn additional continuous variables to represent the guard
coefficients: ¢y, .. ., ¢, € R™. We will constrain ||¢;|| < 1. Addition-
ally, we add the constraints:

(8 = Mb; (DX < & X(1) < (M1 =bi(1) = IZD)],

wherein 0 < § < 11is an additional input parameter that represents
a lower bound on the margin of separation of the guards, and M is
a big enough such that (§ - M)[|X(1)|| < &TX(t) < (M = 8)|IX(2)||
holds for all t € [N] (when ||¢;|| < 1). Note that when b;(t) = 0,
¢/ X(t) = 8)1%(t)|| and when b;(t) = 1, &[%(t) < =5|%(¢)||. This
implies that for all t € [N], ¥(t) satisfies [¢] %(t)| = 6| [[|1X(1)]l.
Taking § ensures that the condition is not restrictive.

3This is the commonly known “big-M” trick in linear programming [40].

et al.

Here again, the complexity of solving the MILP is typically ex-
ponential in the number of binary variables (kN), which is a major
limitation for applying the MILP approach to learn guarded regres-
sion models for real data sets (see Sec. 4).

2.4.3 Complexity Bounds. We now present theoretical bounds on
the computational complexity of the flagged regression and guarded
regression problems using the NP-hardness of switched linear re-
gression as a starting point [26].

THEOREM 2.6. The flagged regression problem and the guarded
regression problem are both NP-hard.

The proof is by reduction from the switched regression prob-
lem that is previously known to be NP-hard [26] and is provided
in Appendix B. Despite being NP-hard, the problem of piecewise
linear regression is known to have a complexity polynomial in the
number of data points [26, Sec. 5.3.1]. The complexity is bounded by
O(N™(s=1)/2) wherein s is the number of modes [26, Theorem 5.3].
However, this approach is impractical for large N. Note that a simi-
lar reasoning holds for the switched linear regression problem [26,
Sec. 5.3.2].

2.5 Relaxed Problem Formulation

We introduce the following relaxed formulation of the flagged re-
gression and guarded regression problems, using the idea of a “tol-
erance gap . The resulting problem formulation is called a promise
problem or a gap problem [17, 19].

Definition 2.7 (Regression with Tolerance Gap). Given a data set
D, an absolute error tolerance 7, and two relative error tolerances
0 < €1 < €, the “gap” version of the flagged (guarded) regression
problem seeks to decide between two alternatives:

(1) YEs: There exists matrices (and guard coefficients) that fits
the data with relative error ¢ < e, and absolute error 7.
Additionally, for this case the algorithm in this paper will
find matrices that fit the data with relative error at most €5.

(2) ~o: All matrices (and guard coefficients) that fit the data
with absolute error 7 has relative tolerance € > €.

However, if the minimal relative error e (for fixed absolute error
tolerance r) satisfies € € (€1, €3], then our algorithm can provide
either YES or NO answer, since they are both correct.

An equivalent way of expressing the guarantee of our algorithm
is that for fixed absolute error tolerance 7, if there is a model that
fits the data with relative error < €, our approach is guaranteed to
find a model with relative error < e;. In practice, our algorithm can
be used in many ways by setting various values for €1, €3. (1) Setting
€1 = 0, €2 = € implies that our algorithm, upon a YEs answer, yields
amodel with relative error bounded by e. However, if the algorithm
yields a No, we conclude that there is no model with relative error
€ = 0 and absolute error 7. This is analogous to techniques that
find a local minimum, but do not establish a lower bound on the
global optimum. (2) On the other hand, given a user-input bound
€gap, our algorithm can be used repeatedly to find a model that fits
the data to a relative error € < €" + 2€gap, wherein €* is the least
relative error possible amongst all models whose absolute error
tolerance is 7. First, we place an upper bound B on €* using linear

Algorithms for Identifying Flagged and Guarded Linear Systems

regression and then repeatedly call our approach at most log (%)

times. Appendix C presents this algorithm with a detailed analysis.

3 ALGORITHM

We will first start with the algorithm for flagged regression. The
extension for the guarded regression problem will be outlined in
Sec. 3.6. At the high level, the algorithm maintains a search tree
wherein each node of the tree guesses the assignment of flags for a
subset of the data points. Each iteration of the algorithm works by
expanding a leaf node in the tree as follows:

(1) Solve least norm linear regression problem to identify a
candidate model consisting of matrices Ay, . . ., Ay that satisfy
the error tolerance bounds for just the subset of the data that
has been assigned values for the latent flags.

(2) Test the candidate model against the remaining data points
not yet assigned flag values. If the model fits these points,
we have found our desired solution. Otherwise, we have a
counterexample over which the candidate fails.

(3) For each possible assignment of latent flag values to the
counterexample, we create a new child node that retains all
the flag assignments from the parent node and additionally

assigns flag values to the newly discovered counterexample.

Through an appropriate choice of the candidate model in step (1),
we provide an upper bound on the depth of the tree constructed by
our algorithm that is independent of the number of data points N.

We describe the tree structure, the computation of the candidate,
and the validation of the candidate in Secs. 3.1-3.4 below. Then, we
analyze the algorithm in Sec. 3.5.

3.1 Tree Structure

The algorithm constructs a tree data structure wherein each node
in the tree stores a flagged core: a subset of the data with each data
point in the subset being assigned values of the latent flags.

Definition 3.1 (Flagged Core Subset). A flagged core is a tuple
(S, ¢) wherein S C [N] is a subset of time indices that selects a
subset D’ C D of the input data and ¢ : § — {-1, 1} is an
assignment of latent flag values to each element of S.

Algo. 1 shows the overall algorithm. The initial tree is a root
node containing the empty flagged core, i.e., with S =@ and ¢ = 0
(Line 1). The algorithm then picks an unexplored leaf node v from
the tree (Line 3) and computes a candidate model for this node using
the method FINDCANDIDATE (see Sec. 3.2) (Line 4). If no candidate
can be found, the algorithm moves to another unexplored leaf node
(Line 5). However, if a candidate has been found, then the algorithm
tries to find a counterexample for the candidate using the method
FINDCOUNTEREXAMPLE (see Sec. 3.3) (Line 6). If no counterexample
is found, then the algorithm stops and outputs the candidate (Line 7).
Otherwise, the algorithm expands the node with children nodes
using the counterexample (Line 8) and the method ExpANDNODE
(see Sec. 3.4) . If there are no further unexplored leaf nodes in the
tree, the algorithm returns INFEASIBLE (Line 9).

3.2 Finding a Candidate

Given a flagged core subset D’ of the data, indexed by S € [N],
and an assignment map ¢ : S — {-1, 1}¥, we define a candidate as

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

Algorithm 1: Flagged Regression Tree Search Algo.

Data: Data set D, relative error tolerances 0 < €1 < €3,
absolute error tolerance 7, bound y.

Result: Either FEASIBLE and a set of matrices Ay, ..., Ag
that fits 9 with error tolerances €2 and 7, or
INFEASIBLE.

1 T « [(0,0)] /* Initialize tree with root */
2 while T is not empty do

3 v <= Any unexplored node from T

4 (Ao, ..., Ar) < FINDCANDIDATE(V)

5 if not ExisTs(Ay, . ..,Ay) then continue

6 ¢ < FINDCOUNTEREXAMPLE (Ay, . . ., Ag)

7 if not ex1sts(c) then return (FEASIBLE, A, ..., Ay)

8 T < ExpANDNODE(T, v, ¢)

9 return INFEASIBLE

a model that fits D’ with relative error tolerance €3, using the flag
values given by ¢, i.e., a set Ay, ..., A satisfying

k
Ao+ Y qi(t)A;

i=1

4(t) - (1) < eellX(@®)| +7 Vt €S,

wherein ¢(t) = (q1(2), ..., qr(t)), plus the norm constraints || A;|| <
v, Vi € [k] U {0}. However, our algorithm requires us to select a
candidate that is robust to bounded perturbations. To achieve this,
we fix the notion of a -candidate.

Definition 3.2 (Set of 0-Candidates). Given 6 > 0 and node v =
(S, §), the set of 0-candidates at node v, denoted by C(v, 0), is defined
as the set of all tuples of matrices (Ao, . .., Ag) satisfying

k
Ao + Z qi(D)A;

i=1

y(1) - (1) < (2= OX(D) +7, YVt eS,

and Al <y - &, Vie [k]U{o}.

When 6 = 0, we denote C(v) = C(v,0), and we simply refer to
this as the set of candidates. The key observation is that 6 candidates
are robust to perturbations whose norm depends on 6.

ProrosITION 3.3. Let (Ao, ..., Ax) € C(v,0) and let Ay, . .., Ay
be perturbation matrices with norm ||A;|| < k%’ Vie [k]u{o}. It
holds that (Ay, ..., A}) defined by A} = A; + A; belongs to C(v).

Proor. For each t € [S], we have
. o o 0
lAxX (1) = A < [|A] = AilllIX ()] < Ol

Thus, ||A’X(t) — AX(¢)|| < 6]|X(t)||, wherein A = A +Z§=1 qi(t)A;
and A’ = A(’)+Z§:1 qi()A;. Since, ||5(t) —AX ()] < (e2=0)[IX(t) ||+
7, we obtain ||§(¢) — A’X(t)|| < e2||X()|| + 7. O

Furthermore, the assignment of the flag values makes the con-
straints on Ay, . . ., Ag linear and convex:

ProposITION 3.4. C(v,0) is a a bounded convex polyhedron.

Proof is simply by examining the constraints in Def. 3.2. The
boundedness of C(v, 8) comes directly from the bound on the norms
of the matrices A;.

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

et al.

Algorithm 2: FindCandidate

Algorithm 4: ExpandNode

Data: Data set D, relative error tolerances 0 < €1 < €3,
absolute error tolerance 7, matrix element bound y,
node v = (S, ¢).

1 if C(v, €2 — €1) = 0 then return FAIL
2 return a central point in C(v)

Algorithm 3: FindCounterexample

Data: Data D, errors €, and 7, matrices Ay, . . ., Ag.
1 fort € [N] do
2 L if no(q1,....qr) € {-1, 1}k satisfies (2) then return t

3 return FAIL

The procedure FINDCANDIDATE is implemented in Algo. 2. The
method first checks whether there is a set of matrices in C(v, 0) for
0 = €y — €1. If this is not the case, then the method returns FAIL.
Otherwise, the method selects a central point in C(v). Different
notions of central points can be considered, such as center of gravity,
analytic center, center of Maximum Volume Inscribed Ellipsoid,
Chebyshev center. The consequences of this choice are explained
further in Sec. 3.5. The following corollary of Prop. 3.3 shows that
the Lesbegue volume vol(C(v)) of the set of candidates in a node
will not be become too small while running Algo. 1. Let V(r) C
R™*™ denote the volume of a unit ball of radius r of m X n matrices
with respect to the induced Lo norm. Recall that V(r) = (2,:,),:7 - ;
see, e.g., [8, Lemma 4]. ‘

COROLLARY 3.5. Let Vipip = ((V(egap))kﬂ, wherein €gap = €2—€1.
Ifvol(C(v)) < Vinin, then Algo. 2 will return FAIL.

Proor. If Algo. 2 does not return FAIL, it means that C(v, €gap) #
0. Prop. 3.3, C(v) contains the Cartesian product of k + 1 balls of
radius at least r = % thereby providing the desired result. O

We clarify that our algorithm will not attempt to compute volume
of polyhedra at any point since that can be quite expensive. Instead,
Corr. 3.5 will be used to place a bound on the depth of the tree. The
choice and the computation of the central point and the impact on
the complexity of the algorithm will be discussed in Sec. 3.5.

3.3 Finding a Counterexample

Given a candidate model Ay, . .., Ay, we define a counterexample as
any data point (X(t), §(¢)) in D for which there are no flag values

qi, - . ., qx satisfying

k
Ao + Z ini
i=1

An implementation of FINDCOUNTEREXAMPLE is given in Algo. 3.
The method returns FAIL if no counterexample exists.

y(1) - X(1)|| < ellX@)[+. @

PROPOSITION 3.6. For node v = (S, ¢) and (Ao, ..., Ax) € C(v),
the result of INDCOUNTEREXAMPLE does not belong to S.

Note that each element ¢ € S has an assignment ¢(t) that satis-
fies (2), and thus cannot be the result from FINDCOUNTEREXAMPLE.

Data: Tree T, node v = (S, ¢) € T, counterexample ¢ ¢ S.
1 for (q1,...,qx) € {-1,1}F do
2 L Let v =(SU{ch, ¢ U{c (q1,---,q1)})

3 Add v’ to T as a child of v

4 return T

3.4 Expanding a Node with a Counterexample

Given a node v = (S, ¢) and an associated candidate Ay, ..., Ag,
the existence of a counterexample c to the candidate reveals that
the flagged core at v needs to be expanded with new data points.
Our strategy is to use the counterexample ¢ as the new data point.
For that, we also need to choose the flag values g;(c),. .., qx(c)
associated with the new data point. In order to be exhaustive, and
not miss any flagged core, we need to consider all possible flag
values q1(c), ..., qx(c) for c. This requires to create K = 2k new
nodes, each of them with the same index set S’ = S U {c} but with
a different map ¢’ : 8 — {~1, 1}, accounting for the 2 different
ways of assigning the values of the k flags g1 (c), ..., qx(c) to c.

The implementation of ExPANDNODE is provided in Algo. 4. The
following proposition shows that the set of candidates gets strictly
smaller from a node to any of its children (Sec. 3.5 shows how to
decrease the volume of the set of candidates).

PROPOSITION 3.7. For any node v = (S,), let (Ag,...,Ax) €
C(v) be the result of FINDCANDIDATE on node v and v/ = (S’,¢’) be
any child of v through Algo. 4. C(v') € C(v) \ {(Ao, ..., Ag)} holds.

Proor. Since S € §’, C(v’) contains the same constraints on
Ay, ..., A as C(v) plus additional constraints given by the coun-
terexample c. Hence, C(v") € C(v). Furthermore, by the choice of
¢ (Algo. 3), it holds that (A, ..., Ag) ¢ C(v'). o

The definition of the expansion makes that the tree exploration
exhaustive (meaning that no feasible node is excluded) and non-
looping (meaning that a node is never revisited or produced twice).

PrOPOSITION 3.8 (EXHAUSTIVE). Let v = ([N], ¢+) be a node
such that C(vs, €gap) # 0. Then, at the beginning of each iteration
of Algo. 1 (before Line 3 is executed), there is an unexplored node
v =S, ¢) sothat $(t) = ¢.(t) forallt € S.

Proor. The proof is by induction on the iterations of the algo-
rithm. This is obviously true at the first iteration since the only un-
explored node is the root. Now, for the induction step, assume that
the hypothesis is satisfied at the beginning of some non-terminal it-
eration ITER. We show that it is still the case at the iteration ITER+1.
Let v = (S, ¢) be an explored node at the beginning of the itera-
tion ITER such that ¢(t) = ¢.(¢) for all ¢ € S, and let vy be the
node picked during the iteration. If virzr # v, then v is still unex-
plored at the iteration ITER + 1 so that the property holds trivially
at that iteration as well. Now, assume that v;rzz = v. Then, since
@(t) = ¢«(t) for all t € S, it holds that C(v*, €gap) S C(V, €gap).
so that C(v, egap) # (. Thus, FINDCANDIDATE does not fail and v
gets expanded (because the iteration ITER is non-terminal). Let c
be the counterexample used for the expansion. By definition of
ExPANDNODE, there is a children node v/ = (S, ¢") of v such that

Algorithms for Identifying Flagged and Guarded Linear Systems

" =SuU{c}and ¢’ (c) = ¢« (c). This node is marked as unexplored,
so that at the iteration ITER + 1, the property holds with v’. This
concludes the proof by induction. O

PRrROPOSITION 3.9 (NON-LOOPING). For nodes vi = (S1,$1) and
vy = (S, ¢2) produced at different iterations of Algo. 1, S1 # Sa.

PRrROOF. Let v = (S, @) be the least common ancestor of v; and
vo. If v1 = v (or v = v), we note that S; C S, (S2 C Sp). Otherwise,
v1 and vz descend from two distinct children v; = (S],$]) and
vy = (S5, ¢5) of v. Let ¢ be the counterexample associated to v. By
definition of the expansion, it then holds that ¢7(x) # ¢7(c). Thus,
since $i(c) = ¢;(c) for i € [2], it follows that ¢1(c) # ¢2(c), so
that v; # v, concluding the proof. O

3.5 Analysis of the Algorithm

We start by showing the soundness of the algorithm, then discuss
the termination and complexity.

3.5.1 Soundness. Soundness of the algorithm means that the out-
put set of matrices must fit the data with relative error tolerance e,
and when the algorithm outputs INFEASIBLE, then no set of matrices
(with bounded norm) can fit the data with relative error tolerance
€1. This is shown in the following theorem:

THEOREM 3.10. Algo. 1is sound: (1) If it outputs (FEASIBLE, Ao, - . ., Ag.),

then Ao, ..., Ay fits the data with error tolerances €2 and t. (2) If it
outputs INFEASIBLE, then no set of matrices Ay, . . ., Ay with bounded

norm ||Ai|| <y — ZE::}I) fits the data with error tolerances €1 and t.

Proor. If case 1) occurs, this means that a candidate Ay, . .., Ag
had no counterexample and the algorithm outputted Ay, . .., Ag. By
definition of a counterexample, the non-existence of one means
that Ay, ..., Ay fits the data with error tolerances € and 7.

If case 2) occurs, this means that at the end of some iteration there
was no unexplored node since this is the only way to reach Line 9.
Assume, for a contradiction, that there is a set of matrices Ay, . . ., Ag
satisfying the hypothesis in case 2). Then, there is v« = ([N], §«)
such that C(vs, egap) # 0. This is a contradiction with Prop. 3.8,
which guarantees that at the beginning of each iteration there is an
unexplored node that either has no counterexample or is expanded
(thereby creating more unexplored nodes). O

3.5.2 Termination and Complexity. The termination of the algo-
rithm is guaranteed by the non-looping property of the exploration
process (Prop. 3.9), which guarantees that nodes never get visited
twice. Since the set of possible nodes is finite (bounded by 25N),
the algorithm terminates in finite time.

The upper bound 2kN on the number of iterations is not satisfac-
tory since it is exponential in the number of data points (it is in fact
the same as for the MILP formulation). We will show that the num-
ber of iteration can in fact be upper bounded by x(n, m, k, €gap, ¥)
for some k depending on n, m, k, €gaps ¥ but not N. For that, we rely
on an argument of volume contraction, inspired from cutting-plane

or localization methods in convex optimization [11].

Volume Contraction. To explain the argument of volume contrac-
tion, let us start with a deeper analysis of the property in Prop. 3.7.
This proposition implies that as we go deeper in the tree, the set
of candidates gets smaller with respect to set inclusion. If we can

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

show that the set of candidates actually gets a guaranteed decrease
in Lebesgue volume, then we can combine this observation with the
property in Corr. 3.5 (that a node is not expanded if the volume of
the set of candidates is too small) to bound the depth of the tree,
thereby obtaining a second bound on the number of iterations of
the algorithm. This is formalized below:

THEOREM 3.11. Leta > 1. Consider an execution of Algo.1. Assume
that whenever v and v’ are two nodes in T such that V' is a child of
v, it holds that vol(C(v")) < évol(C(v)). Then, the depth D of T

satisfies D < [(k+ 1)mn log, (M)J +1.

€gap
ProOF. Let vy,...,vp be a sequence of nodes in T such that
vjt1 is a child of v;. By definition of C(v), it holds that C(v;) C

(k+1)mn
(Ao, 4) ¢ Al < y). Hence,vol(C(v1)) < Vigin (L2)0,

€gap
Furthermore, by assumption, vol(C(vp-1) < al=Pyvol(C(vy)).
On the other side, since v, got expanded, it holds by Corr. 3.5

that vol(C(vp-1)) 2 Vinin. Hence, al=P > (%)(kﬂ)mn. Thus,

p-1< {(k + 1)mn log, (%)J. Since vy, ..., vp was arbitrary,
this gives the desired upper bound on the depth D of T. O

Remark 5. Note that it is the ratio y/egap that is relevant in the
bound in Theorem 3.11, and not y and g, separately. This shows
that the complexity depends on the desired relative precision on
the matrix entries with respect to the assumed bound y.

THEOREM 3.12. Under the assumption of Theorem 3.11, Algo. 1

kD—
zzk_ll nodes and terminates in finite time.

explores at most

Proor. For a tree with max depth D and branching factor is
. D
K = 2K, total number of nodes is Z?:Bl K/ = I% O

Guaranteed Volume Decrease. We now explain how to guarantee
the relative volume decrease with factor « > 1 required in Theo-
rem 3.11. This can be guaranteed if we choose the candidate of each
node carefully. For instance, if we select the candidate as the center
of gravity of C(v), then we can guarantee a volume decrease with
factor é =1- % ~ 0.63. Alternatively, if we select the candidate as
the center of the Maximum Volume Ellipsoid inscribed in C(v), then
we can guarantee a volume decrease with factor é =1- m

LEMMA 3.13. [11, Sec. 4.2 and 4.3] Let A, B C R? be two bounded
convex sets such that B C A. If B does not contain the center of gravity
of A, then vol(B) < (1 — %)vol(A). If B does not contain the center

of the MVE inscribed in A, then vol(B) < (1 — é)vol(A).

Note that in our case the sets C(v) are bounded convex subsets
of (RM*m)k+1 by Prop. 3.7, and C(v") is a convex subset of C(v)
that does not contain the candidate so that Lemma 3.13 applies.

We are now able to finish the complexity analysis of the algo-
rithm. Under the above assumptions on the choice of the candidate,
we first give an upper bound x on the number of iterations of the
algorithm, then we derive an upper bound on the computational
complexity of the algorithm.

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

We start with the center of gravity as the choice of the candidate.
By Theorem 3.12, the number of iterations is upper bounded by

_ y(k+1)
) K (k1) mn logy g —)+1 .

< 2O(kzmnlog(vk))

€gap

2k -1

The complexity of computing the center of gravity of a polytope
in R? described by e linear constraints can be upper bounded by
a function of d and e [32]. Since any data point in S for a node
v = (S, ¢) adds a fixed number of linear constraints to C(v), and
since the size of S is bounded by the depth D, we obtain that the
computation of the candidate has a complexity that depends only
on k, n, m and D. In particular, the complexity of computing the
candidate does not depend on N. Finally, finding a counterexample
amounts to check all remaining data points and find those for which
the candidate does not satisfy (2) for any flag values. This can be
done in time linear in n, m, 2K and N. Thus, the overall complexity
of the algorithm is linear in N.

If the MVE center is used to choose the candidate, By Theo-
rem 3.12, the number of iterations is upper bounded by*

B y(k+1)
) k(k+1)nmlog1_(kﬂl)mn(—egap)+1 »

€gap

< ZO(k3mznz log(i)).
2k -1

The complexity of computing the MVE center of a polytope in R4
described by e linear constraints can be upper bounded by a poly-
nomial function of d and e [7]. Thus, the complexity of computing
the candidate is polynomial in k, n, m and D, and again does not
depend on N, The computation of the counterexample is the same.
In conclusion, the complexity of the algorithm is linear in N, and
can be upper bounded by

vk

€gap))poly (k, n, m, log (EY)) N, (3)
gap

2O(k3 m?n? log(

wherein poly is a polynomial function. Note that the factor m? in
the exponent can be changed to m using an argument similar to
the one in [8, Lemma 9]. However, for the sake of simplicity, this
argument is not expanded here.

Note that (3) is an upper bound: to be tight, it would need that
all nodes up to maximal depth D are explored. In practice, many
nodes are deemed infeasible (and thus not expanded) way before
reaching the maximal depth, so that the tree contains only a few
deep branches. This implies that in practice the number of explored
nodes and consequently the overall algorithmic complexity is way

below the theoretical upper bound.

This concludes the presentation and analysis of the algorithm for
the flagged regression problem. We now turn to guarded regression.

3.6 Algorithm for Guarded Regression

The modification of Algo. 1 to solve the guarded regression problem
is rather straightforward. For each node v = (S, ¢), we try to find
a candidate model consisting of a set of matrices Ay, ..., A and
guard coefficients ¢y, .. ., ¢ such that

)| < (e2=-0)IX()|| +7, YVt €S,

k
(1) - (Ao +) qi(A;

i=1

“We used that the facts that log,, (x) = izgiz; andlog(1- 1) < -1

et al.

and q;(t) Bff(t) > §||X(t)|l, Vi € [k], Yt € S, wherein ¢(t) =
(@1 (D, qe(®). 1Al < y = g5, Vi € [k] U {0}, and [T < 1.
Vi € [k], for given parameters 8 > 0 and § > 0. Here, 0 plays
the same role as in Sec. 3.2, while § bounds the minimal allowed
angle between the points ¥(¢) and any of the guard hyperplanes
H; = {X : €] % = 0}, since the conditions imply that [¢] ¥(¢)| >
5||E'IT [1%Z(£)|l. Analogously to the flagged regression case, we let
C(v, 6, 6) be the set of matrices Ay, ..., Ar and guard coefficients
¢1, ..., ¢k satisfying the above conditions. The computation of the
candidate then amounts to check whether C(v, €gap, 8) # 0, and if
this is the case, compute a central point in C(v) = C(v, 0, 0).

The verification of a candidate Ay, ..., A and ¢1, . . ., Cx simply
computes for all t € [N], g; = ¢]¥(t), then checks whether (2)
is satisfied. Any t € [N] for which this fails can be returned as a
counterexample. The node expansion is the same as in Algo. 1.

Soundness. The algorithm is sound in the sense that if it returns a
set of matrices and guard coefficients, those provide a valid solution
to the guarded regression problem with error tolerances e, and 7,
while if the algorithm returns INFEASIBLE, this means that no set
of matrices and guard coefficients solves the guarded regression
problem with error tolerances €; and 7, plus the additional con-
straints on the norm of the matrices (bounded by y — %) and the
minimal angle between the input points and the guard hyperplanes

(bounded by §) as discussed above.

Remark 6. The minimal angle condition can be alleviated by in-
troducing a “gray region” in the determination of the flags from
the guards, meaning that if |¢] X(¢)| < 8||¢] ||[IX(2)]], then g;(t)
can be either —1 or 1. This formulation makes sense for instance
if the points X(t) are corrupted by noise, and is solved by simply
changing C(v, €gap, 8) to C(v, €gap, 0*) and C(v) to C(v,0,-9) in
the generation of the candidate.

Complexity. The complexity analysis follows the same reasoning
as for the flagged regression algorithm. The only difference is that
this time the unknown variables are Ay, . .., A and ¢y, . . ., ¢k so that
the volume decrease argument of C(v) must be adapted accordingly.
If we use the MVE center as the candidate, we obtain the following
upper boun on the running time (poly is a polynomial function):

20(k3mn2 log(%)”fznz log(%))

poly (k, n, m,log (Y) ,log 5) N.
€gap

Approximation of the MVE Center: The MVE center can be com-
puted in polynomial time using for instance semidefinite program-
ming [7]. Nevertheless, in practice, the computation can be cum-
bersome and subject to numerical instability. Therefore, in our
numerical experiments, we used the Chebyshev center (center of
a Maximum Volume Inscribed Ball), which can be computed effi-
ciently using Linear Programming [12].

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed ap-
proach (flagged and guarded regression), along with that of the ref-
erence MILP approach, on a set of mixed logical dynamical (MLD)
system benchmarks. We compare our approach with two local op-
timization techniques: 1) Feedforward neural networks (NN), and
2) Piecewise Affine Regression and Classification tool (PARC) [3].

Algorithms for Identifying Flagged and Guarded Linear Systems

Implementation. We assume that the number of flags k is an
input to the algorithm. One can also systematically search for k
to identify a regression model with the desired level of trade-off
between the model complexity and data fit (refer to [31]). In all our
experiments, we used €; = 0 and e as the desired bound on the
model’s relative error. See discussion in Section 2.5.

All experiments were conducted on a Linux server running
Ubuntu 22.04 OS with 24 cores and 64 GB RAM. Both the MILP and
the proposed approach were implemented in Python 3 as single-
threaded programs. The LPs for estimating the Chebyshev centers
of P in the proposed approach and the MILPs in the reference ap-
proach were encoded and solved using the Python interface of the
Gurobi optimizer (version 10.0.3) [20].

4.0.1 Micro-Benchmarks. We synthesized several micro-benchmarks

with varying number of flags k, number of inputs n, and number
of outputs m by randomly generating k + 1 matrices Ay, ..., Ag
from R™ ™, The matrices were generated by uniformly sampling
each matrix entry from the interval [-1, 1]. For guarded regres-
sion, we additionally generated the guard coefficients ¢y, . . ., ¢x by
uniformly sampling points on the unit sphere.

For each micro-benchmark, we generated N data points by uni-
formly sampling a random input point ¥(¢) € [—1,1]" and com-
puting the output 7 () according to the synthesized matrices and
the latent flag values (or guard coefficients). In the case of flagged
regression, we picked the flag values Z(#) uniformly at random from
{~1,1}*. In guarded regression, the switching signal was directly
determined by the synthesized guard coeflicients. We also added
uniform additive noise with amplitude 7 to each 3(t).

Comparison against MILP. We evaluated the timing performance
of the MILP, flagged regression and guarded regression approaches
with parameter values y = 2, e; = 0.1, and 7 = 0.05. For guarded
regression, we set § = 0.02. All the experiments were repeated 10
times and we computed the mean and standard deviation of the
computation time of the approaches. Fig. 2 shows how the proposed
approaches and the MILP approaches scale with the number of data
points N, for a micro-benchmark withn = m = 2 and k = 3.
We observed that the MILP approaches time out at N > 20 (for
timeout values Afjagged = 90 sec, Agyarded = 30 sec). The proposed
approaches, in contrast, exhibit a linear trend, consistent with the
results presented in Sec. 3.5, as we scale N from 10 to 10000.

Fig. 3a shows how the proposed approaches and the MILP ap-
proaches scale as the dimension n is varied for a micro-benchmark
with m = n outputs, k = 2 flags, and N = 100 data points (parameter
values same as above). Similarly, Fig. 3b shows how the approaches
scale as the number of flags k is varied for a micro-benchmark with
n=m=1and N = 100. These results show that i) the theoretical
complexity guarantees bear out in practice and ii) our prototype
outperforms a highly-optimized commercial MILP solver.

We now present an evaluation of the proposed approach on a
set of mixed logical dynamical system identification benchmarks.

Cartpole with Soft Walls. The benchmark from Aydinoglu et
al. [2] consists of a cartpole system moving on a frictionless track
between two walls modeled as spring contacts. A controller bal-
ances the pole in the inverted position on the cart. The benchmark
has four state variables, representing the position and velocity of

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

Timeout (MILP)
—e— Flagged Regression

.20 « Timeout (MILP)

<2 —e— Guarded Regression
2 15 —— MILP (With Guards)
)

0 2000 4000 6000 8000 10000
N

Figure 2: Timing comparison of MILP (green) with flagged
regression (top) and guarded regression (bottom) approach
on micro-benchmark with n = m = 2 and k = 3 as the number
of data points N scales from 10 to 10000. The error bars report
the average and standard deviation of the time taken across
10 experiments. The red crosses indicate timeouts.

X Timed out (MILP)
4 Flagged Regression
50 - ML

200 X Timed out (MILP) 200
—— Flagged Regression

—- MILp

Timed out (MILP)
200 X

—+— Guarded Regression
—&— MILP (With Guards)

3 s~ Guarded Regression
~&— MILP (With Guards)

(a) Scaling n

(b) Scaling k

Figure 3: Timing comparison of MILP (green) and the pro-
posed flagged regression (top) and guarded regression (bot-
tom) approach as input/output size n,m and the number of
flags k scale up. The red crosses indicate timeouts (300 sec).

both the cart and the pole. Hence, we set n = 5 (we augment the
input ¥ (¢) with 1 for affine regression; see Rem. 4) and m = 4.
Table 1 presents the performance of the proposed approaches:
flagged regression (FR) and guarded regression (GR), along with that
of a feedforward neural network (NN) and PARC on a held-out test
data set. We sampled trajectories of length T = 100 time steps and
created a data set with N data points. The relevant parameter values
for FR/GR are k = 4, € = 0.1, 7 = 0.0, § = 0.05, and y = 100. We
ran the PARC algorithm with parameter values K = 10, & = 1074,
and maxiter = 15. We trained a feedforward neural network with 2
layers, each containing 32 nodes with ReLU activation using the
Adam optimizer in Tensorflow [1] with a batch size of 32 for 100
training epochs. The MILP approach timed out after 100 sec.

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

x[0]

x[1]

et al.

£ /\/\’\Jh“mj”\c”\Mv‘“\‘h‘)\“vw

| W WLV“’ AN My VVW\‘W’\N I

x[2]

time step

x[2]

WJ U »‘WW\;WW W,‘WWM

g M Mt/x”/\/\‘(_‘q‘ u‘y”\\’_\“"l‘ ‘r\"/\ [\MM \/’

HMN \

0 J ‘MM‘

W

|

g o M/H/‘/ \/\J\m\m“u‘\

/‘H[JWW

time step

500

1500 2000

time step

2500 3000 3500

Figure 4: (Left) Simulation of the Acrobot with Soft Joint Limits (Left) and the Cartpole with Soft Walls (Middle), using flagged
regression (blue), guarded regression (green), a feedforward neural network (red), and PARC (purple) on a test trajectory with a

prediction horizon of 30 steps. (Right) Performance on the robotic arm benchmark.

Table 1: Performance of proposed approach (FR, GR) in com-
parison to the MILP, NN, PARC approaches on a test dataset

(of size N) from the Acrobot and Cart-Pole benchmarks.

N=200 N=400 N=800 N=1000

Acrobot | R%score | t(s) | RZscore | t(s) | RZscore t(s) | R%score t(s)
NN -0.75 1.90 0.74 2.84 0.87 5.17 0.89 6.9
PARC -0.95 1.34 0.94 4.23 0.99 6.9 0.96 7.04
FR 0.99 2.25 0.99 7.6 0.99 8.41 0.99 11.5
GR 0.99 13.16 0.99 12.0 0.92 21.8 0.99 19.1
Cart-Pole | R? score | t(s) | R?score | t(s) | R®score t(s) | R®score t(s)
NN 0.72 1.61 0.79 2.95 0.89 3.81 0.90 6.0
PARC -0.01 1.62 0.68 5.37 0.89 6.09 0.92 9.8
FR 0.93 4.28 0.92 3.68 0.99 11.62 0.97 18.4
GR 0.91 4.51 0.89 13.69 0.92 48.23 0.97 44.4

Table 2: Comparison using robotic arm benchmark data.

Approach | Test NMRSE | R? score | Time (s)
Linear [39] 0.83 0.31 unspecified
NN 0.30 0.88 3.02
PARC 1.78 -7.63 27.71
FR 0.14 0.98 82.32

GR 0.19 0.93 115.84

from a real-world industrial robotic arm. It includes six state vari-
ables to represent the positions of the six joints on the robot, along
with the six motor torque inputs that control and maneuver them.

Fig. 4 shows the performance of the proposed algorithm on an
(unseen) test trajectory. The identified model tracks the reference
trajectory for a prediction horizon of 30 time steps. We also observe
that the NN and PARC approaches rapidly diverge, underscoring
the challenges associated with these approaches.

Acrobot with Soft Joint Limits. This benchmark from Aydinoglu
et al. [2] features a double pendulum with an elbow actuator and
soft joint limits. It has four state variables to represent the angles
and velocities of the two links in the pendulum. Hence, for the
proposed approaches, we set n =5 and m = 4.

Table 1 presents the performance of the proposed approaches:
flagged regression (FR) and guarded regression (GR), along with
that of a feedforward neural network (NN) and PARC on a held-out
test data set. We sampled trajectories of length T = 100 time steps
and created a data set with N data points. The parameter values for
FR/GR, PARC algorithm and the neural network training are the
same as for the cartpole system. The MILP approach timed out after
100 sec with the same parameters. Fig. 4 shows the performance
of the flagged regression, guarded regression, and a feedforward
NN on an (unseen) test trajectory. The NN and PARC approaches

rapidly diverge, whereas FR and GR track the reference trajectory.

Robotic Arm Benchmark. This nonlinear system identification
benchmark from Weigand et al. [39] contains measurement data

We applied the proposed approaches (with n = 13, m = 6, k = 4,
y =10,€¢ = 0.1,7 = 1,8 = 0.01) to solve the forward model iden-
tification task as specified in the benchmark. We also applied the
NN and PARC approaches with similar parameters as specified
in the previous benchmarks. Fig. 4 shows the performance of the
flagged regression and the guarded regression algorithm on the test
data in simulation mode. The normalized-root-mean-squared-error
(NMRSE) and R? scores, averaged over all joints for the test data
set are reported in Table 2. We see that the proposed approaches
perform better (on the test data set) than the other approaches.

5 CONCLUSION

We introduced the flagged regression and guarded regression prob-
lems as interesting cases of switched linear and piecewise linear
regression. We provided an approximation algorithm for this prob-
lem, whose complexity scales very well with the number of data
points, as demonstrated in theory and in experiments. In future
work, we plan to extend this approach to other classes of hybrid
systems, such as switched/piecewise nonlinear systems, and hybrid
automata, and to take physics-informed constraints into account.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their detailed comments
and suggestions. This research was funded in part by the Belgian-
American Education Foundation (BAEF) and the US National Sci-
ence Foundation (NSF) under award numbers 1836900 and 1932189.

mdeleon11
Highlight

Algorithms for Identifying Flagged and Guarded Linear Systems

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yanggqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Alp Aydinoglu, Philip Sieg, Victor M Preciado, and Michael Posa. 2021. Stabiliza-
tion of complementarity systems via contact-aware controllers. IEEE Transactions
on Robotics 38, 3 (2021), 1735-1754.

[3] Alberto Bemporad. 2022. A piecewise linear regression and classification al-
gorithm with application to learning and model predictive control of hybrid
systems. IEEE Trans. Automat. Control (2022).

[4] Alberto Bemporad, Giancarlo Ferrari-Trecate, and Manfred Morari. 2000. Ob-
servability and controllability of piecewise affine and hybrid systems. IEEE
transactions on automatic control 45, 10 (2000), 1864—1876.

[5] Alberto Bemporad, Andrea Garulli, Simone Paoletti, and Antonio Vicino. 2005.
A bounded-error approach to piecewise affine system identification. IEEE Trans.
Automat. Control 50, 10 (2005), 1567-1580.

[6] Alberto Bemporad and Manfred Morari. 1999. Control of systems integrating
logic, dynamics, and constraints. Automatica 35, 3 (1999), 407-427.

[7] Aharon Ben-Tal and Arkadi Nemirovski. 2001. Lectures on modern convex opti-
mization: analysis, algorithms, and engineering applications. SITAM.

[8] Guillaume Berger, Monal Narasimhamurthy, Kandai Watanabe, Morteza Lahija-
nian, and Sriram Sankaranarayanan. 2022. An Algorithm for Learning Switched
Linear Dynamics from Data. Advances in Neural Information Processing Systems
35 (2022), 30419-30431.

[9] Guillaume O Berger and Sriram Sankaranarayanan. 2022. Learning fixed-

complexity polyhedral Lyapunov functions from counterexamples. In 2022 IEEE

61st Conference on Decision and Control (CDC). IEEE, 3250-3255.

Guillaume O Berger and Sriram Sankaranarayanan. 2023. Counterexample-

guided computation of polyhedral Lyapunov functions for piecewise linear sys-

tems. Automatica 155 (2023), 111165.

[11] Stephen Boyd and Lieven Vandenberghe. 2007. Localization and cutting-plane
methods. From Stanford EE 364b lecture notes 386 (2007).

[12] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[13] Leo Breiman. 1993. Hinging hyperplanes for regression, classification, and
function approximation. IEEE Transactions on Information Theory 39, 3 (1993),
999-1013.

[14] Ya-Chien Chang, Nima Roohi, and Sicun Gao. 2019. Neural lyapunov control.
Advances in neural information processing systems 32 (2019).

[15] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.
Counterexample-Guided Abstraction Refinement. In Computer Aided Verification.
Springer, Berlin, Germany, 154-169. https://doi.org/10.1007/10722167_15

[16] Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. 2021.
Lyapunov-stable neural-network control. arXiv preprint arXiv:2109.14152 (2021).

[17] Shimon Even, Alan L. Selman, and Yacov Yacobi. 1984. The complexity of promise

problems with applications to public-key cryptography. Information and Control

61, 2 (May 1984), 159-173. https://doi.org/10.1016/S0019-9958(84)80056-X

Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari.

2003. A clustering technique for the identification of piecewise affine systems.

Automatica 39, 2 (2003), 205-217.

[19] Oded Goldreich. 2006. On Promise Problems: A Survey. In Theoretical Computer

Science: Essays in Memory of Shimon Even. Springer, 254-290.

Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https:

//www.gurobi.com

[21] Andras Hartmann, Jodo M Lemos, Rafael S Costa, Jodo Xavier, and Susana Vinga.
2015. Identification of switched ARX models via convex optimization and expec-
tation maximization. Journal of Process Control 28 (2015), 9-16.

[22] Wilhemus PMH Heemels, Bart De Schutter, and Alberto Bemporad. 2001. Equiv-
alence of hybrid dynamical models. Automatica 37, 7 (2001), 1085-1091.

[23] Ath Kehagias, Ev Nidelkou, and V Petridis. 2006. A dynamic programming seg-

mentation procedure for hydrological and environmental time series. Stochastic

Environmental Research and Risk Assessment 20 (2006), 77-94.

Fabien Lauer. 2013. Estimating the probability of success of a simple algorithm for

switched linear regression. Nonlinear Analysis: Hybrid Systems 8 (2013), 31-47.

[25] Fabien Lauer. 2015. On the complexity of piecewise affine system identification.

Automatica 62 (2015), 148-153.

Fabien Lauer, Gérard Bloch, Fabien Lauer, and Gérard Bloch. 2019. Hybrid system

identification. Springer.

[27] Fabien Lauer, Gérard Bloch, and René Vidal. 2011. A continuous optimization
framework for hybrid system identification. Automatica 47, 3 (2011), 608-613.

=
A=A

[18

[20

[24

[26

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

[28

Eberhard Miinz and Volker Krebs. 2005. Continuous optimization approaches
to the identification of piecewise affine systems. IFAC Proceedings Volumes 38, 1
(2005), 349-354.

Hayato Nakada, Kiyotsugu Takaba, and Tohru Katayama. 2005. Identification of

piecewise affine systems based on statistical clustering technique. Automatica

41, 5 (2005), 905-913.

Necmiye Ozay, Mario Sznaier, Constantino M Lagoa, and Octavia I Camps. 2011.

A sparsification approach to set membership identification of switched affine

systems. IEEE Trans. Automat. Control 57, 3 (2011), 634-648.

Simone Paoletti, Aleksandar Lj Juloski, Giancarlo Ferrari-Trecate, and René Vidal.

2007. Identification of hybrid systems a tutorial. European journal of control 13,

2-3 (2007), 242-260.

Luis A Rademacher. 2007. Approximating the centroid is hard. In Proceedings of

the twenty-third annual symposium on Computational geometry. 302-305.

[33] Hadi Ravanbakhsh and Sriram Sankaranarayanan. 2019. Learning control lya-
punov functions from counterexamples and demonstrations. Autonomous Robots
43 (2019), 275-307.

[34] Jacob Roll, Alberto Bemporad, and Lennart Ljung. 2004. Identification of piece-

wise affine systems via mixed-integer programming. Automatica 40, 1 (2004),

37-50.

Sadra Sadraddini and Calin Belta. 2018. Formal guarantees in data-driven model

identification and control synthesis. In Proceedings of the 21st International Con-

ference on Hybrid Systems: Computation and Control (part of CPS Week). 147-156.

[36] Armando Solar-Lezama. 2013. Program sketching. International Journal on
Software Tools for Technology Transfer 15, 5 (Oct. 2013), 475-495. https://doi.org/
10.1007/s10009-012-0249-7

[37] Vijay V Vazirani. 2001. Approximation algorithms. Vol. 1. Springer.

[38] René Vidal, Stefano Soatto, Yi Ma, and Sankar Sastry. 2003. An algebraic geometric
approach to the identification of a class of linear hybrid systems. In 42nd IEEE
International Conference on Decision and Control, Vol. 1. 167-172 Vol.1. https:
//doi.org/10.1109/CDC.2003.1272554

[39] Jonas Weigand, Julian Gotz, Jonas Ulmen, and Martin Ruskowski. 2023. Dataset

and Baseline for an Industrial Robot Identification Benchmark. (2023).

H Paul Williams. 2013. Model building in mathematical programming. John Wiley

& Sons.

[29

[30

[31

[32

[35

[40

A PROOF OF LEMMA 2.5

We will prove that the function

| x+y ifx>0,y2>0,
floy) = { 0 otherwise

cannot be expressed as a GLS fj + Zile sign(g;) fi where fy,..., fr
and g1, . .., gi are linear functions of x and y.

Let us assume without loss of generality that no guard g; is
identically zero, i.e., g; # Oforalli € [k]. It is then a trivial fact that
the set S where no guard vanishes, i.e., S = {(x,y) € R? : gi(x,y) #
0Vi € [k]},is open, dense in R? and symmetric with respect to the
origin. Let S1 be an open subset of SN R2>0. Then, for all (x,y) € Sy,
f(x,y) =x+y,and f(—x,—y) = 0 since (—x,—y) € R2<0. Plugging
such (x,y) and (—x, —y) into the GLS expression, we get:

k
folxy)+) sign(gi(xy) filty) =x+y, @)

i=1

I
e

k
fol=x,—y) +), sign(g1 (=x,~y)) fi(—x,~y) (5)
i=1

Using the linearity of f; and g;, (5) is equivalent to

e

k
~fo(xy) +) sign(g1 () filxy) = (©)
i=1
By subtracting (6) from (4), we get that fo(x,y) = % for all
(x,y) € S;. Since Sj is an open set and since fj is linear, we de-
duce that fo(x,y) = x;—y for all (x,y) € R%. We can do the same

https://www.tensorflow.org/
https://doi.org/10.1007/10722167_15
https://doi.org/10.1016/S0019-9958(84)80056-X
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/CDC.2003.1272554
https://doi.org/10.1109/CDC.2003.1272554

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

reasoning with an open subset S, € SN (R>o X R<g). This pro-
vides the conclusion that f(x,y) = 0 for all (x,y) € R?. This is a

contradiction with fy(x,y) = X+Ty concluding the proof. O

B PROOF OF THEOREM 2.6

We will start with the proof that the flagged regression problem is
NP-hard. The “bounded-error” switched linear regression problem
with two modes can be reduced in polynomial time to the flagged
regression problem with one flag. Indeed, the first problem amounts
to find two matrices By, By € R™*" such that for all t € [N], there
is o(t) € [2] satisfying that [|§(t) — By X()|| < 1, for some given
error tolerance 1. This can be formulated as a flagged regression
problem with one flag and error tolerances € = 0 and 7 = 7. Indeed,
Bi,B; and o(t) for t € [N] is a solution of the switched linear
regression problem iff Ay = %(Bl +By) and A = %(Bl — By) and
q(t) =3 —20(t) for t € [N] is a solution of the flagged regression
problem. Since the switched linear regression problem is NP-hard
[26, Sec. 5.2.4], the flagged regression problem is too.

Secondly, the “exact” piecewise affine regression problem with
two modes can be reduced in polynomial time to the guarded regres-
sion problem with one guard. Indeed, the first problem amounts to
find two matrices By, By € R™*" and a vector § € R™\{0} such that
forallt € [N],§(t) = By (;)¥(t), wherein o(t) = 1+1sign(gTx(1)).
This can be formulated as a guarded regression problem with one
guard and error tolerances € = 7 = 0. Indeed, By, By and g is a solu-
tion of the piecewise linear regression problem iff Ay = %(Bl + By)
and A; = (B1—B;) and ¢ = §is a solution of the flagged regression
problem. Since the piecewise linear regression problem is NP-hard
[26, Sec. 5.2.3], the guarded regression problem is too. O

C APPROXIMATION OF OPTIMAL SOLUTION
USING REPEATED CALLS TO ALGO. 1

In this appendix, we show how repeated calls to Algo. 1 can be
used to construct a model that approximates the optimal solution
to within 2egp.

As inputs, we assume a fixed data set D, absolute error tolerance
7, bound y on the coefficients and €gap > 0. For technical reasons,
we require the data set D to be fit with a linear regression model (no
flags) with absolute error tolerance 7 and bound y on the coefficients
(Cf. Remark 3). However, the relative error of such a model is not
required to be within bounds. Let B be the relative error achieved
by such a linear regression model.

Let €* be the optimal relative error tolerance such that (a) there
exits a model with relative error €* and (b) no model fits the data
with absolute error tolerance 7 and bound y and relative error < €*.

LemMmA C.1. If a linear regression model with coefficients bound y,
absolute error T and relative error B exists, then 0 < €* < B.

Note that we can find a linear regression model and the corre-
sponding relative error bound B in polynomial time using linear
programming.

Algo. 5 presents the repeated-call algorithm to approximate the
optimal solution. We provide below a detailed analysis of the algo-
rithm.

LemMA C.2. Whenever control is in Line 3 of Algo. 5, the following
facts hold:

et al.

Algorithm 5: Approximation of Optimal Solution.

Data: Data set D, absolute error 7, bound y, gap €gap-
Result: Bounds (£, u) such that there is a model that fits the
data with error 7, bound y and relative error u,
u—1<2€gpandf <€ <u
1 B « findLinearRegressorWithBounds(D, 7, y)
/* Assume: linear regression succeeded and B is
an upper bound on €*. */
2 (¢,u) < (0,B)
3 while (u —) > 2¢g,, do
| om e
5 Run Algo. 1 with D, 7,y, €1 =m — egap/Z,
€2 =M+ €gap/2
6 if Feasible then

7 ‘ u « relative error of model returned by Algo. 1
8 else

Cgap
9 L l—m- -5

o return (£,u)

-

(1) There exists a flagged linear model with relative error u, abso-
lute error t, and bound y.
2 t<e" <u

Proor. Proof is by induction on the number of times, the body
of the while loop runs. The base case is when the loop has run 0
times. We have ¢ = 0, u = B and the statements hold trivially.

Suppose it were true after i iterations of the loop. If the loop ran
once more. Suppose the call to Algo. 1 was feasible, then the new
value of u corresponds to the relative error of a model. The two

statements hold at the beginning of the next iteration. Otherwise,
l+u—egap

Algo. 1 guarantees thate* > €1 = . Therefore, the statement
holds at the start of the next iteration in this case as well.]

Let ¢;, u; be the values of the program variables ¢, u after i > 0
iterations of the while loop. We can prove by induction that
B — ¢
gap
ui — 4 < T+egap.

THEOREM C.3. If there exists a linear regression model satisfying
with absolute error T, gap y and relative error B then Algo. 5 yields
bounds ¢,u such that (a) there exists a flagged linear model with
relative error u, absolute error t, and bound y; (b) ¢ < €* < u; (c)

u —{ < 2€gap. Furthermore, its running time is in O (log2 (%)).

Proor. Note that at any iteration of the algorithm, we know that
there are no models with relative error < ¢; and there is a model
with relative error < u;. This is true at the very beginning and note
that after each iteration of the while loop, the Algo 1 guarantees
either a model with relative error at most €; or no models with
relative error < €. Thus, when the algorithm exits after k iterations,
we automatically note that there are no models with relative error
< 4, there is a model with relative error < uj and u — £ < 2€gap.
This proves (a), (b).

The bound on the running time is a direct consequence of Lemma C.2.

Note that at the very beginning, Iy = 0,up = B and furthermore,

Algorithms for Identifying Flagged and Guarded Linear Systems

after i steps of the loop iteration, we have
B-¢
gap
— + Egap -
The algorithm exits when u; — ¢; < 2€gap. Combining, these ob-
servations, we obtain that the running time is upper bounded by

ui—4; <

0 ftog, (55)) °
D PARAMETERS FOR NEURAL NETWORK
AND PARC APPROACHES

The neural networks used in Sec. 4 consist of 2 layers of 32 ReLU-
activated nodes. We ensured that the neural networks used in Sec. 4
for the experimental evaluation were sufficiently large to capture
the various modes in the system. Training of these networks was

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

performed using the Adam optimization algorithm in TensorFlow.
Our training approach is “standard”: adapted from the scripts pro-
vided for training NN for regression as part of the TensorFlow
package user manual. We used a batch size of 32 for 100 training
epochs. We also ensured that in each case, the reported training
error was quite small (~ 107%). We used a (single fold) cross-
validation approach wherein 80% of the data was used for training
while 20% of the data was used for testing.

The PARC tool [3] fits a piecewise affine model over a polyhe-
dral partitioning of the feature region. The parameters of the tool
include K which represents the maximum number of regions in
the partitioning. We set this value to 10, in accordance with the
examples provided in the tool. In the experimental evaluation in
Sec. 4, all of the identified models used fewer partitions than K. We
also set & = 10~%, and maxiter = 15, as recommended by the tool.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Problem Statement
	2.1 Flagged Regression Problem
	2.2 Guarded Regression Problem
	2.3 Expressivity of Flagged and Guarded Linear System Models
	2.4 Computational Complexity and MILP Formulations
	2.5 Relaxed Problem Formulation

	3 Algorithm
	3.1 Tree Structure
	3.2 Finding a Candidate
	3.3 Finding a Counterexample
	3.4 Expanding a Node with a Counterexample
	3.5 Analysis of the Algorithm
	3.6 Algorithm for Guarded Regression

	4 Experimental Evaluation
	5 Conclusion
	Acknowledgments
	References
	A Proof of Lemma 2.5
	B Proof of Theorem 2.6
	C Approximation of Optimal Solution using Repeated Calls to Algo. 1
	D Parameters for Neural Network and PARC approaches

