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ABSTRACT

We present an abstract interpretation approach for synthesizing
nonlinear (semi-algebraic) positive invariants for systems of polyno-
mial ordinary differential equations (ODEs) and switched systems.
The key behind our approach is to connect the system under study
to a positive nonlinear system through a “change of variables”. The
positive invariance of the first orthant (R4 ) for a positive system
guarantees, in turn, that the functions involved in the change of
variables define a positive invariant for the original system. The
challenge lies in discovering such functions for a given system. To
this end, we characterize positive invariants as fixed points under
an operator that is defined using the Lie derivative. Next, we use
abstract-interpretation approaches to systematically compute this
fixed point. Whereas abstract interpretation has been applied to
the static analysis of programs, and invariant synthesis for hybrid
systems to a limited extent, we show how these approaches can
compute fixed points over cones generated by polynomials using
sum-of-squares optimization and its relaxations. Our approach is
shown to be promising over a set of small but hard-to-analyze non-
linear models, wherein it is able to generate positive invariants to
place useful bounds on their reachable sets.
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1 INTRODUCTION

In this paper, we provide solutions to the problem of synthesizing
semi-algebraic positive invariants for ordinary differential equa-
tions (ODEs) whose right-hand sides are defined by polynomials
over the system variables. We show how our approach extends
to switched systems that contain multiple modes, each described
by polynomial ODEs along with transitions between these modes,
governed by semi-algebraic guard conditions. Positive invariants
of ODEs and switched systems help us prove bounds on the sets
of states that can be reached over an infinite time horizon, thus
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proving that a certain set of unsafe states will never be reached.
The problem of automatically synthesizing such positive invariants
has been of great interest for verification. Many approaches have
been studied for this problem that include constructing finite ab-
stractions [5, 6, 50], dynamic programming-based approaches [52],
approaches based on solving nonlinear constraints in order to con-
struct barrier functions and their generalizations [7, 8, 36, 37].

The key of our approach is to relate an ODE x = f(x) to a pos-
itive system of the form & = —Aw + F(z, ), wherein w € R is
connected to the state x € R" through a polynomial map (w;, ...,
wm) = (g1(x),...,gm(x)) such that A is a fixed scalar quantity,
g1, - - -, gm are polynomials and F is a nonlinear function with the
property that for all z € R and w € R, we have F(z, w) € RT".
Here, z is taken to be an external input. In other words, we show
that our original vector field is “f-related” to that of a positive sys-
tem. Positive systems have a key property that if w(0) € R then
(t) € R for all times t over which the trajectory is defined. We
can use this property to infer that g; > 0,...,gm > 0 is a positive
invariant set for the original ODE. There are many difficulties to this
approach, including: (a) choosing the dimensions of the unknown
state space w; (b) discovering the function F; and (c) synthesizing
the functions g1, . . ., gm. We propose a method to synthesize the
polynomials gy, . . ., g that will implicitly define the positive sys-
tem, and thus, our positive invariant set. We require the user to fix
the constant A, an upper limit on the number m, and a degree limit
on the polynomials g1, . . ., gm. Our approach either converges with
positive invariants (the function F gets defined implicitly by the
generators upon convergence) or fails with a trivial answer.

To discover positive invariants, we iterate over finitely generated
polynomial cones that are defined by a basis set of polynomials. We
first derive a “refinement operator” of the cone from the given ODE.
We derive a closure condition based on this operator: i.e, for a given
finitely generated cone of polynomials C, our closure condition
requires that every polynomial in C is mapped by the refinement
operator to a related cone C. If C satisfies the closure condition, then
we prove that its generators form the required functions gy, . . ., gm
that will map the original system dynamics to a positive nonlinear
system, as described above. Therefore, g1 > 0,...,g,m > 0 will
define a positive invariant. Having defined the notion of positive
invariants in terms of closure of an operator, the challenge now
lies in computing cones that are closed in this manner. To do so,
we employ an approach based on abstract interpretation. Abstract
interpretation was originally proposed by Cousot and Cousot in
1977 as an approach for establishing invariants of programs [14, 15].
It has been very successful in proving properties of large safety-
critical software systems used in avionics [3, 16]. However, applying
abstract interpretation to our framework is challenging since we
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will observe that the closure condition used leads us from finitely
generated polynomial cones to possibly infinitely generated cones.
We show how a finite set of generators can be selected and main-
tained using a projection operator defined in this paper. Finally,
we show that a “standard” widening operator commonly used in
abstract interpretation can force termination in finitely many steps.

We provide an empirical evaluation of our approach over a set
of nonlinear polynomial ODE benchmarks and switched systems,
some of which are taken from the related work. We demonstrate
that our approach can yield useful positive invariant sets. Even
though we employ floating-point numbers in the calculation of
these invariants, they have been successfully verified using the
exact-arithmetic-based nonlinear theorem prover Z3. We also com-
pare our approach with well-established approaches for synthesiz-
ing barrier functions based on sum-of-squares programming [36].

1.1 Related Work

There have been numerous techniques to directly synthesize posi-
tive invariants for ODEs and hybrid systems. This includes barrier
function synthesis [36], approaches based on constraint solving
by assuming a template form of the nonlinear invariant [20, 26,
35, 43, 46, 48, 51] and abstract-interpretation approaches based
on forward propagation and widening [21, 42], or in other cases
through forward propagation and extrapolation [22]. Additionally,
theorem provers such as Keymaera-X support proving properties
of practical hybrid systems using positive invariant synthesis to
support human reasoning [19, 32, 33, 35]. Due to space limitations,
we do not expand on these approaches, noting that some of the
recent textbooks cover these approaches and the theory behind
them [4, 29, 34, 39].

The closest related works to our approach include the notion
of comparison systems proposed by Sogokon et al. [46], the no-
tion of a change-of-basis transformation proposed by Sankara-
narayanan [40, 41], and abstract-interpretation-based iteration over
polyhedral cones for linear systems first proposed by Sankara-
narayanan et al. for linear hybrid systems [42]. Sogokon et al. [46]
propose the notion of vector barrier function which is a vector of
functions that relates the flow of a nonlinear ODE to that of a posi-
tive linear system of the form @ = Aw +r(t), where A is a constant
Metzler (aka. essentially nonnegative) matrix and r(t) > 0. Their
approach synthesizes the polynomials gy, . . ., gm by (a) assuming
that the matrix A is given by the user and (b) the degree limits of
the polynomials are specified. Our approach extends this concept to
matrices A whose off-diagonal entries are positive definite polyno-
mials and significantly does not require the user to provide us these
matrices. However, the computational complexity of our approach
is significant and we have to rely on heuristics to select generators
from an infinitely generated cone. Nevertheless, we show success on
small but interesting nonlinear systems. Sankaranarayanan [40, 41]
proposes a similar idea of a change-of-basis transformation from a
given nonlinear system to an autonomous linear system and uses an
iterative abstract-interpretation-based procedure similar to what is
being proposed here. However, the connection to an autonomous
system essentially requires the original nonlinear system to be in-
tegrable, or in other words, have equality invariants (though these
may not be necessarily be polynomial). Finally, the idea of abstract
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interpretation on cones was developed in Sankaranarayanan et
al. [42]. But this work was restricted to linear systems where the
iterations need to be over polyhedral cones. This paper goes much
further and considers nonlinear systems as well as non-polyhedral
cones generated by polynomials.

The synthesis of positive invariants has received much attention
in the past. Taly and Tiwari provide a proof system that is sound
and relatively complete for a single polynomial inequality using
higher-order derivatives [49]. Liu et al. extend this to a powerful
relatively complete method for synthesizing semi-algebraic posi-
tive invariants for polynomial hybrid systems [26]. Their approach
fixes the form (aka. template) of the desired invariant and uses a
condition based on higher-degree Lie derivative. This is essentially
a refinement of the barrier set condition that states that the first
non-zero higher Lie derivative must be positive at the boundaries
of the invariant set. By cleverly connecting their approach to the
descending chain condition for ideals on a polynomial ring, they are
able to provide a relative completeness guarantee. The proof system
of Liu et al. is relatively complete unlike ours which is weaker than
that of Liu et al. because (a) our approach is limited to (closed) basic
semi-algebraic sets and (b) we use a weaker positive-invariance
condition based on relating to a positive nonlinear system. On the
other hand, our approach does not use expensive quantifier elimi-
nation over semi-algebraic sets: each iteration of our approach uses
sum-of-squares optimization. Ghorbal et al. provide a hierarchy of
proof rules for computing semi-algebraic invariants that places the
work of Liu et al. in context at the apex of a series of increasingly
more complex proof rules. They also provide interesting compar-
isons on the types of flows that each rule can handle [20]. Our
approach has two major differences: (a) we use the connection with
positive systems to avoid reasoning about the boundaries of the
invariant sets or explicitly compute higher-order derivatives; and
(b) we work on basic semi-algebraic sets defined as intersections of
polynomial inequalities. Our approach does not extend to general
semi-algebraic sets which are unions of these basic sets.

2 PROBLEM STATEMENT

Notation. Let N be the set of natural numbers, and R; be the
set of nonnegative real numbers. Given n € N, let [n] = {1,...,n}.
We will use bold-face to denote vectors x,y,z € R* and capital
letters to describe matrices A, B,C € R™*". For a vector x € R",
the ith component for i € [n] is denoted as x;. Let R[x] be the ring
of polynomials over variables x = (x1,- - -, x5,). Given a function
f:A — B, letdom(f) = A.

2.1 Polynomial Systems

Consider a continuous-time dynamical system ODE(f) : x =
f(x), wherein f : R®" — R" is locally Lipschitz continuous. A
trajectory of ODE(f) is defined as a differentiable function ¢ :
[0,T) — R" satisfying that for all t € [0, T), $(t) = f(o(1)).

Remark 2.1. The trajectory may exist for all time, i.e, T = co. How-
ever, since our focus is on safety, we simply assume that the trajec-
tory exists at least until some time T > 0, and place no bound on
T. Also, since we assume local Lipschitz continuity, the trajectory
must exist and be unique [28].
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(a) Example 2.2

(b) Example 2.4

Figure 1: (a) The BSA set in Example 2.2 (green area). (b)
Vector field (blue arrows), initial set (yellow area) and sample
trajectories (colored curves) of the system in Example 2.4.

Let 7 € R" be an initial set. A system X = (f, I') consists of a
dynamical system ODE(f) and an initial set 7. The system X is said
to be safe if no trajectory ¢ of ODE(f) with ¢(0) € I reaches some
given unsafe set Sypsafe- We wish to prove the safety of polynomial
systems, wherein (a) the dynamics are described by polynomials
and (b) the initial set is a basic semi-algebraic set, described by
polynomial inequalities, as follows.

Definition 2.1 (Basic Semi-Algebraic Sets). A basic semi-algebraic
set (BSA set) is a set described by a finite set of polynomial inequal-
ities of the form g;(x) > 0. More formally, for a set of polynomials
G ={91,...,9m} € R[x], we denote the BSA generated by G as

S(G)={xeR":gi(x) 20,i=1,...,m}.

Example 2.2. Fig. 1 (left) depicts the BSA set S(G) wherein G =
{1+ %xf + %xlxz - %xg, 1 —xf - %xg .

Definition 2.3 (Polynomial System). The system (f, I') is a poly-
nomial system if (a) the vector field f is defined by polynomials:
f(x) = (fi(x),..., fu(x)) with f; € R[x]; (b) 7 is a BSA set S(Ginit)
for a finite set of polynomials Gjnir € R[x].

Example 2.4. Consider the following Vanderpol oscillator:

X1 x2
ODE(f) : . ] = 1 1.2 ;
X2 §X2 - X1 — Qxle
(2 2 o 1y o= (12,2
with initial set 7 = {x{ + x5 < 3}, i.e, Ginit = {3 — x] — x3}. The

tuple (f, I') is a polynomial system. The vector field and sample
trajectories of ODE(f) are presented in Fig. 1 (right).

2.2 Constrained and Switched Polynomial
Systems

Next, we define constrained and switched systems.

Definition 2.5 (Constrained Polynomial System). A constrained
polynomial system is a triple (f, I, D) wherein the dynamics is
given by ODE(f) for f(x) = (fi(x),..., fu(x)) with f; € R[x],
D C R" is the domain of evolution (or constraint) that restricts the
state space of the system and 7 C D is the initial set. Furthermore,
I and D are nonempty BSA sets.
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A trajectory of the constrained dynamics ODE( f, D) is a trajec-
tory ¢ : [0,T) — R" of ODE(f) such that for all time ¢ € [0, T), the
state is in D, i.e., ¢(t) € D. Consequently, a constrained system is
not allowed to reach a state outside of its domain of evolution. The
constrained system (f, 7, D) is said to be safe if no trajectory ¢ of
ODE(f, D) with ¢(0) € I reaches some given unsafe set Sypsafe-

Next, we define a switched system through a combination of a
finite number of constrained systems connected by transitions.

Definition 2.6 (Switched Polynomial System). A switched polyno-
mial system is defined by a set of modes Q wherein each mode g € Q
is associated with a constrained polynomial system ( fq, Iq, Z)q)
along with a finite set of transitions 7. Each transition 7 € 7 is
a triple (ar, br, G;) with pre- and post-modes a; € Q and b; € Q
respectively and a guard set G; C Dg, N Dy, . We assume that G,
is a basic semi-algebraic set given by S(Gguard ) for a finite set of
polynomials Ggyard -

A trajectory of the switched dynamics ODE(Q, fge 0, Dge0, T)
is specified by (a) a finite, increasing sequence of times 0 = ty <
t < ... < fr < tgy1, (b) a sequence of modes qo, q1,...,qx € O,
(c) a sequence of transitions 71, 72,...,7 € 7, and (d) a function
¢ : [0, txr1) — R™ such that the following conditions hold:

(1) For each i € [k], 7; is a transition from ¢;—1 to ¢g; and the

guard condition ¢(t;) € G, holds.

(2) For each i € [k] U {0}, the function ¢; : [0, tjt1 — t;) — R”

defined by ¢;(t) = ¢(t — t;) is a trajectory of ODE(fg;, Dg; )
The switched system (fye0, Ige0, Dgep) is said to be safe if no
trajectory (@, ok to:k+1) of ODE(Q, fge0, Dgep, T) with ¢(0) €
Iy, reaches some unsafe set Sypgafe i-€., satisfies ¢(t) € Sunsafe,q;
for some t € [tj, tj41)-

2.3 Forward Invariant Sets and Safety

An invariant of a dynamical system is a property that is preserved
along the trajectories of the system. They can be used to certify
safety, for instance, if the property holds for all initial conditions
and for no unsafe states.

Definition 2.7. A set P € R" is forward invariant for ODE(f)
if for all trajectories ¢ of ODE(f) with ¢(0) € P, and forall t €
dom(¢), the state at time ¢ belongs to P: ¢(t) € P.

ProposITION 2.8. IfP is a forward invariant for ODE(f), I € P
and P N Synsate = 0, then the system (f, I') is safe.

Using Prop. 2.8 we prove safety of a given (constrained and
switched) system as follows: Search for a forward invariant set
that includes the initial set 7 that excludes S:i.e, P NSypsate = 0. If
such a forward invariant can be found, we conclude that the safety
property holds for the system.

In this paper, we seek to compute safe invariants for polyno-
mial systems in the form of basic semi-algebraic sets, that is, sets
described by polynomial inequalities. We remind below some back-
ground of polynomial inequalities. Extension of forward invariance
to constrained and switched systems will be discussed in Sec. 4.

2.4 Polynomial Inequalities

Note that the polynomial set G = {g1,...,gm} defining S(G) is
not unique. In fact, for any a1, a2 € Ry and iy,i2 € [m], it holds
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that a19;, + a2g;, and g;,g;, are also nonnegative on S(G). This
motivates the following definitions.

Definition 2.9 (Cone). A set K C R[x] is a cone if for all a1, a3 €
Ry and g1, g2 € K, it holds that @191 + a2g2 € K.
Given a set B C R[x], we define the conic hull of B as

m
ch(B) = {Zaigi :meN, gie€B, a; € R+}.
i=1

A cone K C R[x] is called finitely generated if there is a finite set
B={g1,...,9m} € R[x] such that K = ch(B).

Definition 2.10 (Product). Given two sets G1, G2 C R[x], their
product is defined by

G1- G2 ={9192 : 91 € G1, g2 € Ga2}.

Given G C R[x], we define G° = {1}, and for ¢ € Ns,

¢

G!'=G-G---G, and fo=UGf'.
=0
£ times

We are now able to define a set of polynomials that are nonneg-
ative on S(G):

PROPOSITION 2.11. Let K C R[x] be a cone containing only non-
negative polynomials (i.e., h(x) > 0 forallh € K, x € R"), and let
£ € N. Then, the set ch(K - G=*) contains only polynomials nonnega-
tive on S(G) (i.e., g(x) = 0 forall g € ch(K - G=¢), x € S(G)).

Example 2.12. Consider a set G = {g1, g2, g3} of polynomials in
R[x] and K = Ry the set of all nonnegative real numbers. The set
ch(K - G=?) contains all polynomials of the form Ao + A1g1 + A2g2 +
A3g1gz + A4gzg3 + 159193 + A(,g% + A7g§ + Agg% for ).0, BN ).g € Ry.

An example of cone K of nonnegative polynomials is the set of
sum-of-squares (SOS) polynomials.

Definition 2.13 (Sum-of-Squares). A polynomial h € R[x] is a
sum-of-squaresif h = 37, pl.z for m € N and p; € R[x]. The set of
SOS polynomials is denoted by SOS[x].

Remark 2.2. Not all nonnegative polynomials are SOS (e.g., the
so-called “Motzkin Polynomial”). However, whereas verifying that
a polynomial is nonnegative is NP-hard, SOS offer a practically
efficient way to certify positivity of polynomials [31, 45].

Remark 2.3. Note that Prop. 2.11 provides a sufficient but not nec-
essary condition for characterizing a set of positive polynomials
over a BSA set S(G). In general, for K = SOS[x] and a finite set
G, the set of polynomials ch(K - G=1) is identical to Putinar’s pos-
itivstellensatz, while ch(K - G=IC) recalls a positivstellensatz by
Schmiidgen [44].

Although we assume that K is a cone of nonnegative polynomials,
we do not assume that K is finitely generated (e.g., SOS[x] is not
finitely generated). We also assume that 1 € K, which implies
that Ry C K. We denote by K the set of cones K of nonnegative
polynomials with 1 € K. For instance, SOS[x] € K.
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3 FORWARD INVARIANCE FOR POLYNOMIAL
SYSTEMS

In this section, we present a sufficient condition on a BSA set to
be forward invariant for a polynomial dynamical system. Consider
aBSA set P = S(G) with G = {g1,...,9m} € R[x]. Given g € G,
the Lie derivative of g along the field f is defined by L¢(g)(x) =
(Vg(x), f(x)). Concretely, Ly (g9)(x) gives the rate of change of the
value of g at x along a trajectory of ODE(f).

The idea of the sufficient condition for £ = S(G) to be forward
invariant is that when a trajectory inside # reaches a point x on
the boundary, i.e, some g;(x) = 0, then its Lie derivative L¢(g;) at
x should be nonnegative so that that g; stays nonnegative. We say
that Boundaryf(G) holds iff

VgeG.VxeP. g(x) =0 = Lr(g)(x) 20. (1)

However, the Boundary ¢ condition (inspired by the theory of Lya-
punov functions and barrier certificates [36]) does not imply for-
ward invariance of S(G) under f, in general. We need additional
condition (e.g., those in Rem. 3.1 or (2) below). First, we note the
following counterexample by Platzer [32].

Example 3.1. Consider the set G = {—x?} defining P = S(G) =
{x : x* <0} = {0} and ODE(f) : x = —1. Clearly, P is not forward
invariant for ODE(f). However, whenever x? = 0 (that is, x = 0),
we have Lf(—xz) =-2xx=2x >0, 1ie, Boundaryf(P) holds. The
reason is because Lf(—xz) = 2x cannot be expressed as a Lipshitz
function of the polynomials in G (compare with (2) below).

Remark 3.1. Let us note that if the condition L¢(g)(x) > 0 in (1)
is changed to L (g) (x) > 0, then we can avoid cases such as those
mentioned above and prove soundness [13].

We refine the condition (1) using the notion of cone introduced
before. This will have the double advantage of (i) ensuring invari-
ance, and (ii) making the condition easier to verify/enforce numeri-
cally. We say that the predicate Forward¢(G; 4, K, ¢) holds iff

VgeG. Lp(g) + g € ch(K - G=5), )
wherein A € R, K € K and ¢ € N are fixed.

Example 3.2. Consider the dynamics ODE( f) with f(x) = x—x3,
and let G = {g1,92} with g1 = x + 2 and g2 = 2 — x. We show
that Forward¢(G; 4, K, £) holds for A = 2, K = SOS[x] and ¢ = 1.
Indeed, Lr(g1) +Ag1 = —x3+3x+4=(x+1)%(2-x) +2, where
(x +1)2,2 € SOS[x]. The proof is similar for gz; thus omitted.

Remark3.2. If Forward¢(G; A, K, £) holds then Boundaryf (G) holds,
but not vice-versa. In Example 3.1 above, we have Boundaryf(G)

but we can show that for any choice of K € K, 1 € Rand £ € N,
Forwardf(G; A, K, £) does not hold.

We now prove that the condition Forward is sufficient to ensure
the forward invariance of . The proof is by relating the evolu-
tion of g1 (4()), ..., gm(¢p(#)) over a trajectory ¢ and a nonlinear
(internally) positive system. We briefly define such systems.

Definition 3.3. A dynamical system of the form x = f(x, u) with
state x € R", input u € RK and f Lipschitz continuous in x and
u is (internally) positive if every trajectory ¢ : [0,T) — R" of the
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system with ¢(0) € R? (and arbitrary input signal) satisfies that
for all t € dom(¢), ¢(t) € RE.

THEOREM 3.4. Let F : R" X RK — R™ be Lipschitz continuous and
satisfy that for all x € R} andu € Rk, F(x,u) e R}. Let A € R. The
dynamical system x = —Ax + F(x, u) is (internally) positive.

This theorem is proved in [23, Theorem 1] using ideas explained
in Arnold’s textbook [10]. Song [47] proves it from Nagumo theo-
rem [30] using the convexity of R}.

ProoF. (Sketch) Using an argument based on Picard iteration,
we first show that for any trajectory if ¢(0) € R%, then there exists
an interval [0, €] such that ¢(¢) € RY for t € [0, €]. This is proved
by induction on the Picard iterates that converge to the solution ¢
starting with ¢(0) (t) = $(0).

Assume that there exists t € dom(¢) such that ¢(t) ¢ R} and
let t, be the infimum of all such times t. By the continuity of ¢ and
since ¢(0) € RY, it follows that ¢(t.) € R7. Then, by using Picard
iteration argument above, we conclude that there is € > 0 such that
#(t) € R} for all t € [t, 1« + €]. This is a contradiction with the
definition of ¢, concluding the proof. O

Soundness of the Forward condition: We now proceed to prove
the soundness of the Forward condition (2) for establishing forward
invariance of a set S(G) under a flow ODE( f).

Tueorem 3.5. If Forwards(G; A, K, ¢) holds, then # = S(G) is
forward invariant for ODE(f).

PRrROOF. Let ¢ be a trajectory of ODE(f) with ¢(0) € P. We
will show that for all g € G and ¢ € dom(¢), g(¢(#)) = 0. To do
this, consider the function @ : dom(¢) — R™ defined by w(t) =
(91(¢(2)). ..., gm(4(2))).Itholds that w(0) € R}*. Furthermore, for

all t € dom(¢), (1) = (Lr(g1)(#(1)), ..., Lr(gm)($(1))). Hence,
Forwards(G; A, K, ¢) implies that for each i € [m], L¢(g:) + Agi =

Zj'i:1 hi jgij for some s; € N, h; j € K and g; ; € G='. It follows
that w is a trajectory of the dynamical system
@ = —Ao(t) + F(w, §(1)), ®)

wherein F(w,x) = (Fi(w,x),..., Fm(w, x)) satisfies that for all
i € [m], o € RT" and x € R", F;(w, x) € Ry. Thus, by Theorem 3.4,
(3) is a positive system and w(t) € R} for all t € dom(¢). O

Finally, note that Forward is monotonic with respect to A.

ProrosITION 3.6. Let K € K, and A1, A2 € R such that Ay < As.
It holds that Forwardf(G;/ll, K, t) = Forwardf(G; A2, K, ).

ProoOF. Let us assume Forwardf(G;/h,K, ¢) holds. Then, for
eachi € [m],Lf(g,-)+}tlgi = Zj’zl hi jgi j for somes; € N, h; j € K
and g; j € G={. We have

L(gi) + A2gi = Lg(gi) + Agi + (A2 — M) gi

Si Si
= (A2 - A)gi + Z hijgij = Z b ;9ij
= =

wherein h;’j =hij+ (A2 — A1) ifgij = gi and hg’j = h; j otherwise.
Note that h;j € K since h; j € K, A2 — A; € Ry € K and K is closed
under addition since it is a cone. O
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4 FORWARD INVARIANCE FOR
CONSTRAINED AND SWITCHED
POLYNOMIAL SYSTEMS

We extend the condition Forwardf(G; A K, £) to cover forward in-
variance for constrained and switched polynomial systems. First,
we consider a constrained continuous-time dynamics

x = f(x),
wherein D = S(Ggom) is a BSA set with finite set Gy, S R[x].

ODE(f, D) : x €D,

Definition 4.1. A set P C R" is forward invariant for ODE(f, D)
if for all trajectory ¢ of ODE(f, D) with ¢(0) € P, it holds that for
all t € dom(¢), #(t) € P.

We say that Forwardf! »(G; A, K, ¢) holds iff
Vg €G. Le(g)+2g € ch(K - (G U Ggom)="), (4

wherein A € R, K € K and ¢ € N are fixed. Comparing (4) with (2)
for ODEs without constraints, we note that the set of polynomials
Ggom is combined with G. The soundness of the condition “Forward”
extends to constrained systems:

THEOREM 4.2. [fForwards 1 (G; A, K, ¢) holds, then P = S(G) is
forward invariant for ODE(f, D).

Proor. The proof follows the same structure as Theorem 3.5.
Again, we fix a trajectory ¢ of ODE(f, D) with ¢(0) € P. Since for
all t € dom(¢), ¢(t) € D, we conclude that for all h € G4,y and
t € dom(¢), h(¢(t)) = 0. Consider the function @ : dom(¢) — R™
defined by w(t) = (g1(#(1)), ..., gm($(t))). It holds that w(0) €
R*. Furthermore, Forward £ D (G; A, K, ¢) implies that for each i €
[m], Lf(gi) + Agi = Z;"Zl hi jgij for somes; € N, g; j € G=! and
hij € K- G‘fot;n. Thus, the only change from (3) in the proof of
Theorem 3.5 is that F(w, x) can be written in terms of polynomials
hij € K~G§0€n.8ince hij(¢(t)) = 0forallt € dom(¢), we conclude
that for all w € R}, t € dom(¢), F(w, #(¢)) € R}*. The rest of the
proof is identical to that of Theorem 3.5. O

4.1 Forward Invariance for Switched
Polynomial Systems
We recall switched dynamics of the form ODE(Q, fge0, Dgeo, T)

and their semantics from Section 2.2: Q is the finite set of modes and
each mode g € Q is associated with a constrained polynomial sys-
tem < fq, Z)q>. Furthermore, 7 is a finite set of transitions wherein
each 7 € 7 is a triple {ar, b7, Gr) for pre-/post modes a, b; € Q
and guard set Gr = S(Gguard,r)-

We will consider a collection of sets P = {Pg}4eo wherein for
each g € Q, Py = S(Gq) for a finite set G € R[x].

Definition 4.3 (Forward Invariance for Switched System). B is
a forward invariant for ODE(Q, quQ, DqEQ, T) if for all trajec-

tory (@, qo:k» to:k+1) of ODE(Q, fae@, Dge, T) with $(0) € Py, it
holds that for all t € dom(¢), ¢(t) € Py, if t € [ti, tiv1).

The condition Forward(Q,quQ,DqEQ,qv) ({Gqlqes ALK, t) is:
(1) Foreachq € Q, Forwardfq’oq (Gg; A, K, £) holds.



HSCC 24, May 14-16, 2024, Hong Kong SAR, China

(2) For all 7 € 7", we require that P, N G; C Pp_ . For that, we
enforce a sufficient condition over G,, and Gy, :

Gb, C ch(K - (Gg, U Gguard,r)S[)~

THEOREM 4.4. If Forwardg ({Gq}qe; 4, K, €) holds, then B is
forward invariant for S = ODE(Q,quQ, quQ, T).

PRrOOF. Let (¢, qo.k, to-k+1) be a trajectory of S with ¢(tp) €
Pqo)> and let 71,.. ., 74 be the associated sequence of transitions.
We will establish by induction the following two facts for all i €
[k] U{0}: () ¢(t;) € Pg;; and (b) for all times ¢ € [t;, ti+1), P(t) €
Pq;- These two facts will establish the forward invariance of B.

For the base case i = 0, we note that ¢(ty) € Py, by assumption.
Since Forwardg ({Gq}qe; 4, K, £) implies Forward, fror D) (Ggo)
it follows by Theorem 4.2 that Py, is forward invariant for the
mode qo. Therefore, ¢(t) € Py, for all t € [to, t1). The base case is
thus established.

Now, let us look at the case i = 1. By continuity of ¢ and because
Pq, is a closed set, we have that ¢(t1) € Pg,. Since ¢(t1) € Gr,,
we have ¢(t1) € Pg, N Gr1. Note that Forwardg ({Gg}qe0; 4, K, )
implies that Py, N G, C Gg,- Thus, ¢(t1) € Pg,. We can then
conclude in the same as the base case that for all t € [t1,t2), ¢(¢) €
Pgq,- The case i = 1 is thus established.

The proof for the cases i > 1 is identical. O

We will now turn our attention to computing such forward
invariants for a given system with initial conditions.

5 REFINEMENT OPERATORS AND FIXED
POINT FORMULATION

Given a polynomial system (f, 7 ), we wish to compute a BSA set
P = S(G) for a finite set of polynomials G € R[x] such that
P 2 I (the initial set is contained) and # is forward invariant for
ODE(f). Note that we do not explicitly enforce in this paper that
P N Sunsate = 0, as is common in many approaches to invariant
synthesis based on abstract interpretation. Explicit use of Sypgafe
(example for early termination) will be considered in future work.

Our approach is based on using the framework of abstract in-
terpretation, first introduced by Cousot and Cousot to compute
invariants for programs [14, 15]. We will present a similar approach
to compute polynomial invariants for polynomial systems. The first
step is to define the invariant we week as a pre-fixed point G, of a
monotone operator on the space of cones in R[x]. The set S(G,)
will give us the invariant set P.

Let G C R[x] be a finite set of polynomials. Recall that ch(G)
contains all the conic combinations of elements in G. Let us fix a
cone K € K of nonnegative polynomials. We define a refinement
operator that takes us from ch(G) to a new cone ch(G’).

Definition 5.1 (Refinement Operator). Given G = {gy, . ..
R[x], we define the refinement of G as follows:

af‘(G,/’{, K, f) = {g S Ch(G) : Lf(g) +/lg c Ch(K . GS[)},

,gm} <

First, note that 8f(G; A K, ) is a cone (one can easily show that
it satisfies the axioms of Def. 2.9). Furthermore, as a corollary of
Theorem 3.5, it holds that any finitely generated pre-fixed point of
the refinement operator is a forward invariant set.

Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

Algorithm 1: Fixed-Point Iterations
Data: BSA set 7 = S(Gipit), A € R,K € K, £ € N.
Result: (Possibly trivial) forward invariant # for ODE(f)
such that 7 C P.
1 Let Gy € R[x] be a finite set such that 7 C S(Gyp)
2 foro=0,1,... do
3 if IsFixedPoint(Gy; A, K, £) then return G,
L else let G541 = FiniteRefinement(Gg; A, K, £)

4

CoROLLARY 5.2. Let G C R[x] be finite and satisfy that G C
9r(G; A, K, ). Then, S(G) is forward invariant.

Finally, as a corollary of Prop. 2.11, it holds that if S(G) includes
a set S, then so does S(G’) for any finite G’ in the refinement.!

COROLLARY 5.3. Let G,G’ C R[x] be finite sets and satisfy that
G’ C 9¢(G; A, K, £). Then, S(G) € S(G'). In particular, if I C S(G),
then I € S(G’).

Using the refinement operator and Corollaries 5.2 and 5.3, we
would apply the refinement operator iteratively: Gi+1 = 9¢(Gi; A, K, £)
until Gj;+1 = G; for some j € N, wherein the initial iterate Go sat-
isfies I € S(Gyp). However, we face two problems: (a) the refined
set af(G; A, K, £) need not be finitely generated even if G is finite;
and (b) the process is not guaranteed to terminate in finitely many
steps even if we managed to keep the iterates G; finite. We will
address both issues using ideas from abstract interpretation theory,
which has been widely used in static analysis of programs [14] as
well as dynamical systems [38, 41]. Algo. 1 presents a high level
view of the approach: the procedure IsFixedPoint(G; A, K, £) checks
whether G C 8f(G;)L, K, t), whereas FiniteRefinement(G; A, K, ¢)
extracts a finite subset from af(G; A K, f) in a manner that will
guarantee termination of this process in finitely many steps.

The choice of the initial iterate (line 1) will be discussed in Sec. 5.2
and how to guarantee termination of the above procedure will be
discussed in Sec. 5.3.

Implementation for finitely generated K. As a warm-up, we start
with a specific case for which FiniteRefinement(G; A, K, £) can be
implemented in a lossless way, meaning that its output generates
(G ALK, £).2 This comes from the observation that if K is finitely
generated, then 8f(G; A, K, £) is finitely generated as well. Examples
of finitely generated cones of positive definite polynomials include
K = R, (the set of nonnegative reals) and the cone of diagonally
dominant SOS polynomials introduced by Ali Ahmadi et al [1].

LEMMA 5.4. Assume that K is finitely generated. Then, for any
finite set G C R[x], af(G; A K, £) is finitely generated, i.e., there is a
finite set G’ C R[x] such that af(G;A, K, ) = ch(G).

Proor. Let G = {g1,...,gm}, and let H = {hy,..., hs} C R[x]
be such that K = ch(H). Note that any element of ch(G) can be
written as Z?’i 1 @igi for multipliers @; > 0 and any element of K can

IThe property extends straightforwardly to infinite sets G’ but we focus here on finite
sets G’, because this is sufficient for our needs and the operator S(-) is defined only
for finite sets.

This result is presented for completeness, but as we will see the resulting implemen-
tation becomes rapidly intractable, so that a different approach will be proposed in
Sec. 5.1.
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Algorithm 2: IsFixedPoint using Projections

Algorithm 3: FiniteRefinement using Projections

Data: Fineset G C R[x],A e R,K € K, f € N.
1 LetH = af(G;A, K, ?)
2 if forall g € G, Proj(g; H) = g then return TRUE
3 else return FALSE

Data:G={g1,....9m} CR[x], e R, Ke K, feN.
1 LetH = 8f(G;/1,K, ?)
2 fori=1,...,mdo letg; = Proj(g;; H)

3 return {g,...,9,,}

be written as Z?zl a;h; for multipliers ; > 0. Also, note that G=¢
is finite, i.e., GSf = {d1,..., g} Any element of K - G=! can thus
be written as (X3_; Bih;)g; for multipliers f; > 0. It follows that
any element of ch(K - G=f) can be written as 27;21 (232, Bijhi) g
for multipliers f; ; > 0. Hence, the condition that p € ch(G) and
Le(p)+2p € ch(K- G=") can be written as two equality constraints
that are linear in the variables a; and f3; j. This, plus the nonnegativ-
ity constraints a; > 0 and f; j > 0, defines a polyhedral cone P over
these variables. Now, the projection P’ of P over the m variables a;
is also a polyhedral cone. Hence, P’ is finitely generated. Finally,
since 9p(G; A, K, €) = {X2; aigi : (a1, ..., am) € P’'}, it holds that
8f(G; A K, ?) is finitely generated, concluding the proof. m]

The constructive proof of Lemma 5.4 provides a way of im-
plementing IsFixedPoint and FiniteRefinement when K is finitely
generated. However, working with finitely generated cones K is
impractical for two reasons: (i) Using a small set of generators H
often leads to an overly conservative refinement operator, thereby
preventing us from proving invariance even for simple systems;
(i) The number of polynomials in G5 grows extremely fast (super-
exponential in the number of iterations in the worst case), thereby
preventing from applying more than a few iteration.

Therefore, in the next section, we consider a different approach
using the SOS cone and wherein the size of G, is kept constant.

5.1 Bounded-Size Iterates

In this approach, we let K be the set of SOS polynomials of degree
at most 2d, denoted by SOS;[x]. Note that SOS;[x] is not finitely
generated. The idea of the approach is to compute a finite set G’ =
{9, .. g} included in af(G;/l, K,?), wherein G = {g1,...,gm}-
Note that |G’| = |G|.

Sampling from a convex set is a problem that has received some
attention in the literature. We can for instance mention the hit-and-
run algorithm which is a Monte-Carlo method to sample random
points inside a given set [12, 27]. However, in this work, we consider
another approach based on projections.

Concretely, let ||-|| be a norm on R[x]. Given a subset H C R[x],
define the projection on H by Proj(g; H) = argmingcg ||h — gl
The key insight is that using sum-of-squares (SOS) optimization,
we can compute Proj(g; H) where H = 8f(G;)L, K,t) when G is
finitely generated set of polynomials and K = SOS;[x]. Using
the projection operator allows us to implement IsFixedPoint and
FiniteRefinement as shown in Algos. 2 and 3. The IsFixedPoint
procedure simply checks that Proj(g;; H) = g; for each g; € G.
Similarly, the FiniteRefinement procedure computes the set G’ =
{Proj(gi; H) | gi € G} wherein G = 97(G; 4K, 0).

Note that H = af(G; A, K, ?) in Algos. 2 and 3 is a convex set that
can be represented by Linear Matrix Inequalities [24, 31]. Hence,

Algorithm 4: FiniteRefinement using Robust Projections

Data:G={g1,....gm} CR[x],e >0, e R,Ke K, £ e N.
1 LetH=8f(G,e;/LK,{’)
/* Same as lines 2-5 in Algo. 3 */

computing Projg(g;) can be done efficiently, e.g., using semidefinite
programming [11].

As mentioned before, computing G441 as the output of Algo. 3 is
advantageous because it keeps the size of G4 constant throughout
the process. However, it might be slow to make progress, so that a
large number of iterations might be needed before finding invariant
(if we eventually find one). Another limitation of the approach is
the sensitivity to numerical errors. Indeed, when using a numerical
solver to compute Proj(g; H), we may get something close to but
not exactly in H. In this case, we cannot certify that a “numerical”
fixed point is an actual fixed point. To address these limitations, we
define a robust version of the above approach.

5.1.1 Robust Projection and Acceleration. The robust projection
relies on an inner-approximation of af(G; A, K, £) parameterized by
a robustness parameter € > 0:

9r(G & LK, £) = {g € ch(G) : Ly(g) + Ag — ellgll € ch(K - G=)}.

The resulting implementation of FiniteRefinement is the same as
in Algo. 3 but with H = 6f(G, €A, K, f); see Algo. 4.

The main result of this section is that if the output of Algo. 4 is
close to G, then S(G) is forward invariant.

LEMMA 5.5. Assume that S(G) is compact and let € > 0. Denote
H= af(G, €; A, K, £). There exists a constant k > 0 depending only
on G, f, A and €, such that for all g € G, if ||g — Proj(g; H)|| < «l|gll,
then S(G) is forward invariant.

Proor. Let D : R[x] — R[x] be defined by D(g) = L¢(g) + Ag,
and let § = max {|D(g)(x)| : x € S(G), ||gl| < 1}. Without loss of
generality, let g € G be such that ||g|| = 1, and assume that there is
g’ € H such that ||g — ¢’|| < x wherein we choose x < _F5. Let us
set k(G) = k. First, note that this implies that ||¢g’|| > 1 — k. Second,
by definition of §, we note that |D(g—Tg’)| < dsince |lg—-¢'|| < k.
D(+) being a linear operator, we obtain D(g) > D(g’) — 8k on S(G).
Finally, since g’ € H, it holds that D(g’) > €l|¢’|| on S(G). Hence,
D(g’) = € — ex on S(G). This implies that D(g) > € — ex — 5k on
S(G). By our choice of k, it follows that D(g) > 0 on S(G). Hence,
S(G) is forward invariant. O

Hence, in our algorithmic process, if at some point G’ is “close
enough” to G, then we stop the algorithm and return G. However,
estimating the value of «, in practice, is hard. We will simply set it
to be a constant smaller than e, typically {5, and use an SMT solver
such as Z3 to validate the final positive invariant.
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Algorithm 5: Initial iterate using Sample Points

Algorithm 6: FiniteRefinement with Widening

Data: Finite set Gipit € R[x], K € K, template
{p1,-..,pr} € R[x], sample points x1,...,xy € R".
1 LetB = {Zi-;l ajpj:aj € R}
2LetG={g€B:g(x;) >0,i=1,...,N}
3 Let G_1 C R[x] be a finite set such that G = ch(G_-1)
4 Let Go = {Proj(g; ch(K - Gjnit)) : g € G-1}
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Figure 2: The sets S(G,) for ¢ = 0,...,6 for the Vanderpol
oscillator from Example 2.4 and the template in Example 5.7.
The inner most curve corresponds to ¢ = 0, then o = 1, etc.

5.2 Initial Iterate from Simulations

The only constraint we have on the initial iterate Gy (line 1) is that
I C S(Gy). Hence, one could for instance just set Gy = Gijpjt. How-
ever, the more functions in Gy, the more expressive the subsequent
iterates since they are all subsets of ch(Gyp). This is illustrated in
the example below.

Example 5.6. Let Gipit = {1 — xf - xg}, so that J is the ball of
radius one around the origin. If Gy = Gijyjt, then all sets G, are
subsets of ch(Gipit) = {a + f — axf - ax§ :a, f > 0}. Hence, the
iterates can only describe balls of radius at least one around the
origin. However, for instance, if we let Gy = {1 — x2,1 - xg, 1-
2x1x2}, then we still have that 7 C S(Go). However, the iterates
can describe a larger variety of sets such as ellipsoids.

In order to define a rich initial iterate, we use sample points
from simulations. Then, we define the initial iterate as the set of all
polynomials in a given template that are nonnegative at the sample
points. Finally, we project on ch(K - Gjnjt). This is implemented in
Algo. 5. Note that B is a linear subspace; then, G is a subset of 8
obtained by imposing linear inequality constraints; hence, G is a
finitely generated cone; this allows to compute G_1 in line 3.

Example 5.7. Consider the system of Example 2.4. The sample
points are given by the trajectories in Fig. 1. We use {1, x%, X1X2, xg}
as template to allow any homogeneous quadratic curves. The first
seven iterates of the overall procedure are depicted in Fig. 2.

5.3 Finite Termination

Finitely, we discuss the termination of the algorithm. Unfortunately,
the approach in Sec. 5.1 does not guarantee that the iteration will
converge in finite time to a fixed point. Therefore, we introduce

Data:G={g1,....9m} CR[x], e R, Ke K, feN.
1 LetH = 8f(G;/1,K,t’)
2 LetG' =0
3 fori=1,...,mdo

4 L if Proj(gi; H) = g; then Add g; to G’

5 return G’

a widening of the refinement operator, that can be applied only
a finite number of times before obtaining the empty set, thereby
ensuring termination of the algorithm in finite time.

The widened operator removes the generators that are not in the
refinement. This is implemented in Algo. 6. Note that the condition
in line 4 can be checked efficiently, e.g., if K = SOS;[x] (see Sec. 5.1).
It holds that the output G’ of Algo. 6 has cardinality strictly lower
than the input G if G is not a fixed point.

LEmMA 5.8. If G is not a fixed point, i.e, G € af(G;A, K, ?), then
the output G’ of Algo. 6 satisfies |G’| < |G].

Proor. If G ¢ 8f(G; A K, £), then there is some g; € G such that
Proj(gi; H) # gi so that g; ¢ G’, concluding the proof. m]

As a corollary, Algo. 6 can be applied recursively at most |Gy
times before reaching a (possibly trivial) fixed point. Note that the
widening operator is applied only after several iterations of the less
conservative projection-based refinement operator is applied.

6 NUMERICAL EXPERIMENTS

We applied the algorithmic process from Sec. 5 to compute invariant
BSA sets for several polynomial systems.

Implementation Details. We implemented the algorithm in Ju-
lia.? To compute the projections in Secs. 5.1 and 5.2, we used the
package SumOfSquares.jl [53] with the SDP solver Mosek [9]. To
compute a finite set of initial iterates in Sec. 5.2, we used Polyhe-
dra.jl [25] with CDDLib [18]. We used only the robust projection
approach (Sec. 5.1.1); in particular, no widening as in Sec. 5.3 was
needed. The parameters we used for the robust projection were
A =1, K = SOS;[x] with d inferred automatically by the solver,
£=1,¢e=0.1and kx = 10”8 We believe that € is sufficiently large
and « sufficiently small to ensure sound invariants despite possible
numerical inaccuracies inherent to SDP solvers. However, a rigor-
ous analysis of the robustness to numerical errors is beyond the
scope of this paper. Therefore, whenever possible, we verified the
returned invariant using the SMT solver Z3 [17]. We compared our
approach, which uses multiple polynomials g, .. ., gm, with the
one using a single polynomial g possibly of higher degree.

Results. All computations were made on a laptop with processor
Intel Core i7-7600u and 16GB RAM running Windows. The timing
results, number of iterations and number of polynomials in the
invariants for the different numerical experiments are reported in
Table. 1. The invariants are reported in the Appendix.

3https://github.com/guberger/InvariancePolynomial
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Table 1: Results from numerical experiments. *: a modifica-
tion of the invariant was verified. T/O: Time Out (>6 hours).
# Invariants Z3

Experiment Time # Iterations

Sec. 6.1 50 sec. 94 8—3 Valid*
Sec. 6.2 (H;) <lsec. 8 1 Valid
Sec. 6.2 (Hz) 50sec. 17 11 Valid
Sec. 6.3 (H;) 1 sec. 4 12 Valid
Sec. 6.3 (Hp) 12sec. 3 1 Valid
Sec. 6.4 (Hy) 2.5sec. 8 11 Valid
Sec. 6.4 (Hp) 152sec. 8 15— 11 Valid*
Sec. 6.5 5.5sec. 4 7—>1 Valid*
Sec. 6.6 372sec. 6 16 T/O0

Sec. 6.7 110 sec. 3+3 41+ 4 Valid
Sec. 6.8 115sec. 5+9+19 8+10+1 Valid

6.1 Vanderpol Oscillator

We finish the example of the Vanderpol oscillator (Example 2.4).
The algorithm generated a BSA set described by 10 polynomials,
depicted in Fig. 3a. We tried to verify this invariant using Z3, but
the SMT solver timed out (>6 hours) before returning an output (so
that we could not validate or invalidate the invariant). However, we
manually picked a subset of three polynomials from the invariant,
and this time Z3 was able to verify the invariant. This new invariant
is depicted in Fig. 3a as well. We synthesized a forward invariant
described by a single SOS polynomial g. For degree d € {2,4,6}, no
such g could be found. For d = 8, the solver returned the polynomial
given in the Appendix and depicted in Fig. 3a. However, due to
the high degree of the polynomial, Z3 timed could not verify the
polynomial within the 12 hour timeout.

6.2 Stable 2D Nonlinear System

We consider the dynamical system given by
. 13 .
X1 = _Exl +2x9, Xp = —2x7.

with initial set 7 = {x + x2 < 4} depicted in Fig. 3b. We con-
sidered two templates to compute an invariant set for this system:
H; = {1, x%, xg} and Hy = {1, x%, X1X2, xg}. The invariants obtained
by the algorithm using each template are represented in Fig. 3b.
Both invariants were verified using Z3. A larger template provides
a stronger invariant, but requires a longer computation time. We
synthesized a forward invariant described by a single SOS polyno-
mial g with degree 4 (given in the Appendix and depicted in Fig. 3b).
Z3 was able to verify the invariant. As seen in Fig. 3b, the forward
invariant is larger than those given by our approach.

6.3 System from [2, Example 6]

We consider the dynamical system given by

. 1 .
X1 = —xf+5x2, X9 = —X1 — 2X2,

with initial set 7 = {x +x < 4} depicted in Fig. 3c. We considered
two templates to compute an invariant set for this system: H; =
{1,x1,x2} and Hy = {1, xf, xlxz,xg}, The invariants obtained by
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the algorithm using each template are represented in Fig. 3c. Both
invariants were verified using Z3.

6.4 Unstable 2D Nonlinear System
We consider the dynamical system given by

X1 = 1—xf+xg, X9 = —% +x? — X2,
with initial set 7 = {x1 +x2 } depicted in Fig. 3d. We considered
two templates to compute an 1nvar1ant set for this system: H; =
{1,x1,x2}and Hy = {1, x%, X1X2, x% }. The invariants obtained by the
algorithm using each template are represented in Fig. 3d. Note that
in this case, the invariants are not compact. Thus, Lemma 5.5 does
not apply. Hence, it is important to verify the invariants with Z3.
The first invariant (with H;) was easily verified using Z3. However,
the verification of the second invariant (with Hy) using Z3 timed
out. Nevertheless, by manually removing four polynomials from
the invariant, we obtained a new set (depicted in Fig. 3d), for which
we could prove the invariance with Z3. We synthesized a forward
invariant described by a single SOS polynomial g. For degree d €
{2,4}, no such g could be found. For d = 6, the solver returned such
a g (given in the Appendix and depicted in Fig. 3d). However, due to
the high degree of the polynomial, Z3 timed out in the verification
of the invariant (>12 hours).

6.5 3D Nonlinear System
We consider the dynamical system, inspired by [2, Example 7]:

X1 =1- x1x32. - xf + xlxg1 - xijx2
X9 = —Xg — xzx§ - x%xz - X%XQX
X3 = —4x3 - X3 +3x2 x3+3x

173

with initial set 7 = {x +x§ +x < 4} We considered the template
H= {l,x xz, x3} The algorlthm generated a BSA set described
by 7 polynormals The verification using Z3 timed out. However, by
manually selecting and keeping only one polynomial, we obtained

a larger set, for which we could verify the invariance with Z3.

6.6 4D Nonlinear System
We consider the dynamical system, inspired by [2, Example 9]:

X:z = %—xl—xg’

{ X1 = —x1 — 3x3x4 +x§, 2

X3 = —X3+X1X4, X4 = X1X3— X5,

with initial set 7 = {x + x2 + x3 + x < 4} We considered the

template H = {1, x xz, x3, x4} The algorlthm generated a BSA set
described by 16 polynom1als The verification using Z3 timed out.

6.7 Switched System with Limit Cycle

We consider the switched dynamical system

o 1 1 12,32 1 2_1.3
X1 = —7 X2~ X1+ 3xy + gxX] - 3x1x; — 3x3, £

o 1 1.3 1.7 ifx; 20
X2 = -1+ gx2+x1+ 5X1X2 — 3X; — 7X]X2,

| 1 1.2 _3.2_1 2_1.3

X1 = g = X2 = gX1 — 3%y — gX] T gX1Xy T g Xy f

- 1 1 1.3 1.2 ifx; <0
xz—1+Zx2+x1+§x1x2—sz—lexz,

with initial set I = {xf + xg < }1} depicted in Fig. 3e. We consid-
ered the template H = {1, x2, x7, } Our approach to compute an
invariant for this system was: (1) Compute an invariant $; for the
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Figure 3: Green: invariant, or invariant using H; (if applicable). Red: invariant using H, (if applicable). Purple: invariant obtained
by picking some polynomials (if applicable). Blue: invariant obtained with a single SOS polynomial (if applicable).

first mode containing J; (ii) compute the intersection 7;2 between
1 and the guard Gq2 from the first to the second mode, which
is a BSA set; (iii) compute an invariant $; for the second mode
containing 7 and I3y; (iv) compute the intersection J3; between
%P, and the guard Go1 from the second to the first mode, which is a
BSA set; (v) check that 131 is contained in P7; since it was the case,
we stopped. The resulting invariant was verified using Z3.

6.8 Switched Bistable System

We consider the switched dynamical system

4= 0.1—2xp —0.3x1 +0.3x2 — 0.1x>
1 ARt B T PR}
X9 = —2+2x1 —0.1x2,
= —0.125 — 2x3 — 0.25x7, |
x,l 2 1 if x; <0.
X2 = 0.25 — 0.25x3 + 0.5x7,

with initial set 7 = {xf +x§ < }1}, depicted in Fig. 3f. We considered
the template H = {1, xf, X1X2, x%}. We split the first mode into two
“sub-"modes, one for x, > 0 and one for x, < 0 and applied the
procedure described in Sec. 6.7 to compute invariants that were
successfully verified using Z3.

7 CONCLUSIONS

We provided an algorithmic framework to compute semi-algebraic
invariants for polynomial systems. We expressed the invariance
condition as a fixed point of a refinement operator over cones of
polynomials. A key element of the framework is the introduction
of the projection operator to compute the refinement, which allows
to keep the complexity and convergence of the refinement process
under control. In future work, we plan to apply this refine-by-
projection approach to other fixed-point approaches in abstract
interpretation. We also plan to improve the approach by allowing
to detect when the size of the iterates can be reduced because some
polynomials have become redundant.
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A COMPUTED INVARIANTS FOR THE
NUMERICAL EXPERIMENTS

A.1 Invariants in Sec. 6.1

Computed invariant:

-0.993031954986876 + 0.03778153849889998+x2
"2 - 0.0666256032861187»x1+x2 -
0.08956070963519557«x1"2,

-0.9992011592628854 + 0.007955071759038876+«
x2"2 + 0.0041018047194553466+«x1+x2 +
0.038947854357559354«x1"2,

-0.9991994975155781 + 0.007562020589211854+«
x2"2 + 0.004248519887888844»x1+x2 +
0.039052913950008275«x1"2,

-0.9992137430067909 + 0.008771034196869584+
x2"2 + 0.0036880198441712766+«x1+x2 +
0.03848848210965402+x1"2,

-0.9992827480108409 + 0.011526972259621198+«
x2"2 + 0.001663939042857424+x1+»x2 +
0.03603262057205512«x1"2,

-0.9993785554131969 + 0.01537369337658755«x2
"2 - 0.0017643808674354974xx1+x2 +
0.03167079873241948+«x1"2,

-0.9985171136578682 + 0.032865540164738846+«
x2"2 - 0.035792642202647794+x1+x2 -
0.02454214265693337+x1"2,

-0.9988802212890721 + 0.031494103922956214+«
x2"2 - 0.03135885750959462xx1+x2 -
0.016218723478656986+«x1"2.

Invariant after removing seven polynomial:

-0.993031954986876 + 0.03778153849889998+«x2
"2 - 0.0666256032861187+x1+x2 -
0.08956070963519557«x1"2,

-0.9991994975155781 + 0.007562020589211854+
x2"2 + 0.004248519887888844«x1+x2 +
0.039052913950008275+x1"2,

-0.9993785554131969 + 0.01537369337658755+«x2
"2 - 0.0017643808674354974+x1+x2 +
0.03167079873241948+x1"2.

Single SOS polynomial:
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-14.147180353695786 + 3.0119346001218656¢
-16+x2 - 2.722035062544444e-16+x1 -
.1446466139062474+x2"2 +
.364989150845086«x1%x2 -
.5856052928090498+«x1"2 -
.431534141322688e-16+x2"3 +
.1896397017199832e-15+x1+x2"2 -
.0658662861406021e-15+x1"2+x2 +
.430034012737953e-16+x1"3 +
.08136329385159524+x2"4 -
.2704342780642278+«x1+x2"3 +
.9431646915713372+x1"2«x2"2 -
.1022331889452621+x1"3+x2 +
.10534350132410865+x1"4 +
.7852391977715565e-17+x2"5 -
.8099073204583052e-16+x1+«x2"4 +
.7178771719675984e-16+x1"2+x2"3 -
.647936726088389e -16+x1"3+x2"2 +
.547447895294992e -16+x1"4+x2 +
.370924115653621e-20+«x1"5 -
.028676934757914243+x2"6 +
.12282021340742454-x1+x2"5 —
.3819521807112903+x1"2«x2"4 +
.24627925175346396+x1"3+x2"3 -
.34524587137427354»x1"4xx2"2 +
.10771573535369378+«x1"5+x2 +
.978130888933918e -6+x1"6 -
.770977101795868e-19«x2"7 +
.6637423968859206e-18+x1«x2"6 -
.3603234786515431e-17»x1"2«x2"5 +
.414552747312814e-17+x1"3+x2"4 -
.6599099673281645e—-17»x1"4+x2"3 +
.065547544821152e-17+x1"5+x2"2 +
.4742376740606324e-20+x1"6+x2 -
.0723543159897107e-22«x1"7 +
.002680016807049046+x2"8 -
.014204639190999435«x1+x2"7 +
.044234100069372326+x1"2+x2"6 -
.04910471879176629+»x1"3%x2"5 +
.06135045792368527+x1"4»x2"4 -
.00990263283303217»x1"5+x2"3 +
.02704057326139765+x1"6+x2"2 -
.062124627215044e-9+x1"8.
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A.2 Invariants in Sec. 6.2

Computed invariant with Hj:

-0.3772320184363528 + 0.9167844427079844+x2
"2 + 0.1311575002622633+x1"2.

Computed invariant with Hp:
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-0.37162601840205317 + 0.9180933839414407+x2
"2 + 0.05818669652154412«x1+x2 +
0.12495178733215878+«x1"2,

-0.36289098847525536 + 0.8581254736347127+x2
"2 - 0.2968404612144774~x1+x2 +
0.20932401335878398+x1"2,

-0.3654505214636404 + 0.8658484454133306+x2
"2 - 0.2731556539932166+x1+x2 +
0.20527633723546868+«x1"2,

-0.35555787489000495 + 0.5642858490142215+x2
"2 - 0.6868775947801282xx1+x2 +
0.2887200166165638+x1"2,

-0.3466720162664112 + 0.4056451291563513+x2
"2 - 0.7892214122321266+x1+x2 +
0.303973855461018+x1"2,

-0.3157508057881853 - 0.006483350150517508+«
x2"2 - 0.8980827744908498+x1xx2 +
0.306115541875539«x1"2,

-0.27099616631001205 - 0.34953984829125423+«
x2"2 - 0.8559147999107475+x1+x2 +
0.2679418362173937+x1"2,

-0.3305122564921238 + 0.1764518798902288+x2
"2 - 0.8735393478570359xx1+x2 +
0.3107336321307906+x1"2,

-0.36139139688398925 + 0.67178362788344+~x2"2

- 0.5868761074415546+x1+x2 +
0.2714395882701188+x1"2.

Single SOS polynomial:

-1.3180825884858496 - 4.105382662498511e~-17+
x2 + 1.0621053483771272e-16+x1 -
.5880063521402954%x2"2 -
.3131075552389977+x1+x2 -
.37633860633493227+x1"2 +
.2762431718729704e-16+x2"3 -
.5733982603058425e-17+x1+x2"2 +
.4448342975755364e-16+x1"2+x2 -
.0527221549852131e-17+x1"3 +
.0799054678022022+x2"4 +
.35650897319712777+x1"2+x2"2 -
.21125714773835375+x1"3+x2 +
.2362070686303661+x1"4.

(=R e e . =R = )

A.3 Invariants in Sec. 6.3

Computed invariant with Hj:

-0.5367809350302005 + 0.7364709881468191xx2
+ 0.41167549284132915+x1,
-0.5826353338500777 + 0.005118306539458857+«
x2 + 0.8127175835968954xx1,
-0.5254628183196984 + 0.09430856351039767+x2
+ 0.8455736049641833+x1,
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-0.5785554785195461 + 0.011247915805675145+
x2 + 0.8155654741742367+x1,
-0.5254539445790127 + 0.22757778768343134+x2
+ 0.8198210186860734+«x1,
-0.6209349329339116 - 0.7270290130231652+«x2
- 0.2930334849209576+x1,
-0.6182634217029666 - 0.7273093101463118+x2
- 0.29794547950696576+x1,
-0.5254420058132805 - 0.7146509275155337+«x2
- 0.4617193415139804+x1,
-0.5254551868283345 - 0.2785035904128786+*x2
- 0.8039481306417321+x1,
-0.5618213044784532 - 0.021696949140147616+«
x2 - 0.8269740408453817+x1.

Computed invariant with Hp:

-0.2702171797894011 + 0.6808019873006584+«x2
"2 + 1.571660199888246e-8+x1+x2 +
0.68080197549224xx1"2.

A.4 Invariants in Sec. 6.4

Computed invariant with Hj:

-0.5494478511158494 - 0.01967978663892927xx2
- 0.8352962138678838«x1,
-0.7084226824177525 - 0.014091865778762787+«
x2 - 0.7056477324805271+x1,
-0.9981365603664998 - 7.156732576621838¢e -5+
x2 - 0.06101968320018036+x1,
-0.5724744460351411 - 0.8063258458465716+«x2
- 0.14869982836765083+x1,
-0.9219306401837807 - 0.38735496799295877+x2
- 0.0001531714660703783+x1,
-0.5612419612399377 - 0.8113201777029977+x2
- 0.16360632688109705x+x1,
-0.5254741199710673 - 0.8143011604485618+«x2
- 0.24655743617412532+x1,
-0.5254687744128949 - 0.7146370028416534+«x2
- 0.46171043012532076+x1,
-0.5803704215825563 - 0.018596748271763663+«
x2 - 0.8141402426522119+x1,
-0.5254709394084618 - 0.2784999641909676+«x2
- 0.8039390908413512+x1,
-0.5406994519179427 - 0.01999582787652706+x2
- 0.8409781623580773+x1.

Computed invariant with Hp:

-0.6267041594156744 + 0.40575758632504677+x2
"2 - 0.6304192506252365+x1+x2 +
0.21254233966878333+«x1"2,

-0.6133900277700439 + 0.3137496111572383+«x2
"2 - 0.6448074954421678+x1+x2 +
0.3309639695685099+x1"2,
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-0.6167085200410728 + 0.11314322183028681«x2
"2 - 0.6868515751717251+x1+x2 +
0.36756513211502«x1"2,

-0.6332960744235467 + 0.05489446827649687+«x2
"2 - 0.6468844236616733xx1+x2 +
0.4212638388187038+x1"2,

-0.6785689434622717 + 0.25813959512251694+x2
"2 - 0.5985695368764566xx1+x2 +
0.3385596667088148+x1"2,

-0.7387678166947391 + 0.30757171959887847+«x2
"2 - 0.54938996235212+x1+x2 +
0.24040053990333135«x1"2,

-0.7639271328813163 + 0.32239414845369285+«x2
"2 - 0.5235828206629485»x1+x2 +
0.1958018860919908+x1"2,

-0.7245646226772867 + 0.11971534102676137+«x2
"2 - 0.5487267537981958+x1+x2 +
0.39946626184630585+x1"2,

-0.7561425268451387 + 0.13877899404732386+«x2
"2 - 0.5240940437640208+x1+x2 +
0.36648915836425316+x1"2,

-0.8040538669652494 + 0.24971470248063635xx2
"2 - 0.4854117256836518«x1+x2 +
0.2356170684650319+x1"2,

-0.6797764489635506 + 0.024276733350190823+«
x2"2 - 0.5747840390401819+x1»x2 +
0.4549043065491946+x1"2,

-0.6929429879867485 + 0.05571424244515854+xx2
"2 - 0.5666823473370078+x1+x2 +
0.44226355921031735«x1"2,

-0.6797412642498962 + 0.024265954560279853+«
x2"2 - 0.5748144017130071+x1=x2 +
0.45491909248628926+x1"2,

-0.6322792310032767 - 0.04268066607914269+«x2
"2 - 0.6377175075714147+x1+x2 +
0.43785581567663184+«x1"2,

-0.6478252149391743 + 0.3946513020780266+x2
"2 - 0.6164715941035325+x1+x2 +
0.21103462824991598+«x1"2.

Invariant after removing four polynomials:

-0.6133900277700439 + 0.3137496111572383+x2
"2 - 0.6448074954421678+x1+x2 +
0.3309639695685099+x1"2,

-0.6167085200410728 + 0.11314322183028681xx2
"2 - 0.6868515751717251+x1+x2 +
0.36756513211502«x1"2,

-0.6785689434622717 + 0.25813959512251694+«x2
"2 - 0.5985695368764566+x1+x2 +
0.3385596667088148+x1"2,
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-0.7387678166947391 + 0.30757171959887847+x2
"2 - 0.54938996235212+x1+x2 +
0.24040053990333135«x1"2,

-0.7245646226772867 + 0.11971534102676137+x2
"2 - 0.5487267537981958xx1+x2 +
0.39946626184630585«x1"2,

-0.8040538669652494 + 0.24971470248063635%x2
"2 - 0.4854117256836518+x1+x2 +
0.2356170684650319+x1"2,

-0.6797764489635506 + 0.024276733350190823+«
x2"2 - 0.5747840390401819»x1+x2 +
0.4549043065491946+x1"2,

-0.6929429879867485 + 0.05571424244515854+x2
"2 - 0.5666823473370078xx1+x2 +
0.44226355921031735+«x1"2,

-0.6797412642498962 + 0.024265954560279853+«
x2"2 - 0.5748144017130071»x1+x2 +
0.45491909248628926+x1"2,

-0.6322792310032767 - 0.04268066607914269+x2
"2 - 0.6377175075714147+x1+x2 +
0.43785581567663184+«x1"2,

-0.6478252149391743 + 0.3946513020780266+x2
"2 - 0.6164715941035325+x1+x2 +
0.21103462824991598+x1"2.

Single SOS polynomial:
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-0.28675786254623603 - 0.18280086902711773+« Invariant after removing all but one polynomial:

X2 + 0.12140102417765512+x1 - -0.3329552584068616 + 0.9316113015966564+«x3

0.15460754380061761+x2%2 + A2+ 0.02899739413846004xx2°2 +
0.13094023733957572+x1+x2 + 0 142829722991338 20 x1 2.
0.0179862099898157+x1"2 +

2.2518593469162838+x2"3 -

5.263539809426801+x1+x2"2 + A.6 Invariant in Sec. 6.6
5.324546770702873+x1"2+x2 — Computed invariant:

2

.119308286925807+«x1"3 -
4.230287442095737+x2"4 +
15.587357182751107«x1«x2"3 -
22.392477842104498+x1"2+x2"2 +
14.889470233666147+x1"3«x2 -
3.833726478458332+x1"4 -
.038895473765656496+x2"5 +
.683051665353735«x1+x2"4 -
.799091160948933+x1"2+x2"3 +
.6150946275380034+x1"3+x2"2 -
.809841753837602+x1"4+x2 +
.5953443364300465+x1"5 +
6.3660968391039425+x2"6 -
26.921765398893317+x1+x2"5 +
51.09020271546622+x1"2«x2"4 -
60.67932780655035«x1"3+«x2"3 +
50.30016099540679+x1"4+x2"2 -
26.462877385173247+x1"5+x2 +
6.039783458388755+x1"6.

~0.2965286550303196 + 0.31208170970389876+ x4
A2+ 0.7082105072170928+x3%2 +
0.21640225618507145+x2%2 +
0.516026844456294xx1"2,
~0.2931285206057089 + 0.15293571645387932x4
N2 4+ 0.7322811557930203+x3"2 +
0.23679999551908032+x2"2 +
0.5462384168408964+x1"2,
~0.30196009738646706 - 0.17922236853437762+
X4%2 + 0.6674810292357307+x3"2 +
0.2631004599603873+x2"2 +
0.6016200343924106+x12,
~0.27948055374478004 — 0.19415016054986303+
X412 + 0.7177643331842496+x3"2 +
0.25043753432728816+x2%2 +
0.5534363004408106+x1"2,
~0.28404229752500015 — 0.10384997528433605+
X4%2 + 0.7361300027472623%x3"2 +
0.25059687513512807+x2%2 +
0.5512249822694784+x1"2,
A.5 Invariants in Sec. 6.5 ~0.28351426258665674 — 0.156512950603628+ x4
Computed invariant: "2 + 0.7340202628325854xx3"2 +
0.2535420196275728+x2"2 +
0.5404202598327011+x1"2,
~0.28737838494253265 + 0.0952168754395378 4+
X4%2 + 0.7494453999743359+x3"2 +
0.2388086684777887+x2"2 +
0.5381908795367366+x1"2,
~0.28698981149979436 + 0.3037797367028826+x4
A2 4+ 0.7330534717006845+x3"2 +
0.20694708802792727+x2"2 +
0.4951365771667198+x1"2,
~0.3653836818924293 + 0.6429343959932746+x4
A2+ 0.3628981863579539xx3%2 +
0.14439663437203434+x2%2 +
0.5482560038664711+x1"2,
~0.328972906493326 + 0.5498664516444461+x4"2
+ 0.5717317791434137+x3"2 +
0.13562023364037898+x2"2 +
0.4941190515393182+x1"2,
~0.29127724671601685 + 0.31864066519563333+
X4%2 + 0.7227184596407003+x3"2 +
0.20228956722902733%x2%2 +
0.5003825048041624+x1"2,

S = W N O O

-0.871872297547406 - 0.21177461319034813+x3
"2 + 0.10501545362584444+x2"2 +
0.42890787411429493+x1"2,

-0.8535189933667975 - 0.17888097824420462+x3
"2 + 0.007807118789072992«x2"2 +
0.4893321698812969+x1"2,

-0.8650501279681401 - 0.200096067640876+«x3"2

+ 0.0877118073301994«x2"2 +
0.45161541013547407+x1"2,

-0.6906501877035409 + 0.6121202891787498+x3
"2 - 0.0030550649675006266+«x2"2 +
0.38509964473994507«x1"2,

-0.3329552584068616 + 0.9316113015966564+x3
"2 + 0.02899739413846004«x2"2 +
0.1428297229913382+x1"2,

-0.33337674127559513 + 0.9332427750444002+x3
"2 - 0.0032308722117315894+«x2"2 +
0.13381865590657924+x1"2,

-0.33307532808420715 + 0.9321483462528075xx3
"2 - 0.0022873854889847497+x2"2 +
0.14196849744707027+x1"2.
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-0.3126218214440174 + 0.32722389772312327+«x4
"2 + 0.6647074360040862+x3"2 +
0.22993280710647002«x2"2 +
0.5481669875621151+x1"2,

-0.290576915490207 - 0.18985024245076754+x4
"2 + 0.7622007966561133+x3"2 +
0.26171008178364713+x2"2 +
0.4796662592836452+x1"2,

-0.29141740062966376 + 0.36885793208443624+«
x4"2 + 0.7502101116845885+x3"2 +
0.2020704172890032+x2"2 +
0.4187744731134993+x1"2,

-0.29992514407576354 + 0.6598063821397299+x4
"2 + 0.6626714563508616+x3"2 +
0.10052522509054947+«x2"2 +
0.15956712097777387+«x1"2,

-0.3422412216869133 + 0.8264029971341018+«x4
"2 + 0.41570130597352023«x3"2 +
0.09779104617254651«x2"2 +
0.13250799223598367+«x1"2.

A.7 Invariants in Sec. 6.7

Computed invariant for mode 1:
Not shown because too long.
Computed invariant for mode 2:

-0.9002692709392969 + 0.4274611056124662+x2
- 0.047001881841985366+x2"2 +
0.06769834631885185+«x1"2,

-0.8983116911689949 + 0.43272028254777545+x2

- 0.039202954103108485«x2"2 +
0.06521035937996048+x1"2,

-0.8994367184266815 + 0.42966260630358305+«x2

- 0.04379822681334729+x2"2 +
0.06697275280486484+x1"2,

-0.9640047759616999 - 0.05184587153905228+«x2

+ 0.24143150505809027+x2"2 +
0.09857801931857868+«x1"2.

A.8 Invariants in Sec. 6.8

Computed invariant for mode 1:

-0.9857936879547902 + 0.09909691865399034+«x2
"2 + 0.000387618927225279+x1+x2 +
0.13561141269578034+x1"2,

-0.986140544056003 + 0.0972059879302515«x2"2

- 0.003027492093934748+x1+x2 +
0.13441970678087045+«x1"2,

-0.9847674411170849 + 0.10467633738192324+«x2
"2 + 0.01082587545043865+x1+x2 +
0.13841514270030641+x1"2,
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-0.9834456725348417 + 0.11233213610927176+x2
"2 + 0.025778192014470788+x1+x2 +
0.13982698304006194+x1"2,

-0.9834072352067391 + 0.11296145964890551+x2
"2 + 0.0269975268512748xx1+x2 +
0.13935943427317987«x1"2,

-0.9834072342091401 + 0.11295953658755152x%x2
"2 + 0.026995375099488933+x1+x2 +
0.13936141690687895«x1"2,

-0.9850066759345267 + 0.11835293336418753+x2
"2 + 0.03755265898642679«x1+x2 +
0.11976739678040782«x1"2,

-0.9842843646648725 + 0.1157526692019295+«x2
"2 + 0.03238089022904035+x1+x2 +
0.12937189415352954+«x1"2

Computed invariant for mode 2:

-0.9817527300995846 + 0.14126842778666962+x2
"2 - 0.022113062682126854»x1+x2 +
0.12536275647699704«x1"2,

-0.9430521512391482 + 0.1274811491934949xx2
"2 - 0.28290212098114437«x1+x2 +
0.1198648680301727+x1"2,

-0.959675273017751 + 0.06963989317132586+«x2
"2 - 0.24338182490186436+«x1+x2 +
0.1222249685818302+x1"2,

-0.9460438614272869 + 0.11497499259730252+x2
"2 - 0.2780506258895415+x1+x2 +
0.12028970353040606+«x1"2,

-0.944755121852421 + 0.12013698286746648+«x2
"2 - 0.2803195319354359xx1+x2 +
0.12010755636768729«x1"2,

-0.9664456245483404 + 0.04994292733097908+x2
"2 - 0.21980562893445577+«x1+x2 +
0.12318297077806359«x1"2,

-0.9715222141302825 + 0.1495897116723925+«x2
"2 - 0.1357599376728176+x1+x2 +
0.12384161229666077«x1"2,

-0.9653797047811981 + 0.1389581820496891«x2
"2 - 0.18333015075898298+x1+x2 +
0.12297440815348881«x1"2,

-0.9571361696395247 + 0.12862903115612198+x2
"2 - 0.22913553228295144«x1+x2 +
0.12182706167771154«x1"2,

-0.9401064342228134 + 0.14261960375083502+x2
"2 - 0.28564367648818584«x1+x2 +
0.11944551494775421«x1"2.

Computed invariant for mode 3:

-0.9902072318403451 + 0.13563419510408165+x2
"2 + 0.018812787726133103xx1+x2 +
0.02718606531884196+«x1"2.
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