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Drought events can significantly impact water resources, agriculture, and socioeconomic sectors. Droughts are
often quantified using numerous indices, which are widely used for forecasting, risk assessments, and spatio-
temporal analysis. Quantifying the appropriate linkage between drought indices and their impact on hydro-
logical and agricultural indicators will improve hazard communication with stakeholders and further advance
impact-based forecasting tools. This study aims to quantify the thresholds associated with drought indices that
can capture the intricate connection between droughts and impact-specific indicators. We investigated the
performance of several drought indices, such as Palmer-based (e.g., PDSI, PMDI, and PHDI) and multiscale
drought indices (e.g., SPI and SPEI) with the impact-specific indicators of hydrological (e.g., streamflow and
reservoir level) and agricultural (soil moisture and crop yield) indicators. The "threshold’ values associated with
drought indices with impact-specific indicators are quantified using the classification and regression tree (CART)
algorithm. Our results suggest that the decision tree approach is suitable for identifying critical thresholds of
drought indices associated with a range of hydrological and agricultural indicators relevant to the stakeholder’s
application to different sectors. The drought characteristics derived from selected indices broadly vary during
extreme events. The results further indicate that the threshold associated with each drought index and the
impact-specific indicator varies drastically within the same climate division. We argue that quantifying the

drought indices thresholds can provide valuable information for impact-based monitoring and forecasting.

1. Introduction

Drought is a complex natural hazard, considered the costliest natural
disaster affecting society and the environment (Mukherjee et al., 2018;
Mishra and Singh, 2010). Climate change significantly alters the
spatiotemporal distribution of precipitation, evapotranspiration, and
soil moisture (IPCC, 2021; Sheffield et al., 2012; Veettil and Mishra,
2020; Konapala et al., 2020). Such change in hydrologic fluxes will
further enhance the impact of drought on different sectors. In addition,
extreme drought cascades into multiple socio-environmental systems,
such as wildfire (Long et al., 2021; Mukherjee et al., 2021), water
scarcity (Veettil and Mishra, 2020; Veettil et al., 2022b), and loss of crop
yield and livestock (Chawla et al., 2020; Rajsekhar et al., 2015), and
conflicts (Garcia-Herrera et al., 2010; Hsiang et al., 2013).

Droughts are generally categorized into meteorological, agricultural,
hydrological, and socioeconomic droughts (Wilhite, 2000; Mishra and
Singh, 2010). These droughts are classified based on the extended
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anomalies (deficit) in precipitation as meteorological droughts, soil
moisture as agricultural drought, and surface or subsurface water supply
(e.g., streamflow and aquifer storage) as hydrological drought. Socio-
economic drought occurs when the water supply from the regional water
resources system cannot meet the water demands of economic goods
(Rajsekhar et al., 2015). Quantifying the evolution of a drought event is
often challenging because of the complex interaction between climate
and catchment variables (Konapala and Mishra, 2020; Van Loon and
Laha, 2015). Traditionally, different drought indices are commonly used
as a proxy to study drought events (Pedro-Monzonis et al., 2015; Mishra
and Singh, 2010). These drought indices are based on long-term
anomalies using a combination of different hydrologic fluxes (Mishra
and Singh, 2010).

Over the past decades, over a hundred drought definitions and
indices have been implemented in different parts of the world. Among
them, the commonly used indicators include Palmer Drought Severity
Index (PDSI, Palmer, 1968), Palmer Modified Drought Index (PMDI,
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Bhalme and Mooley, 1979), Palmer Hydrologic Drought Index (PHDI,
Guttman, 1991), Z-Index (ZNDX, Karl, 1986), Standardized Precipita-
tion Index (SPI, Guttman, 1999; McKee et al., 1993), Standardized
Precipitation and Evapotranspiration Index (SPEIL, Vicente-Serrano
et al., 2010), multivariate drought indes (Hao and AghaKouchak, 2013;
Rajsekhar et al., 2015). These indices are commonly used for different
types of drought investigation, such as drought forecasting (Cancelliere
et al., 2007; Christian et al., 2021), spatio-temporal drought analysis
(Veettil et al., 2022a; Mishra et al., 2021), non-stationary frequency
analysis (Das et al, 2020), climate change impact assessments
(Mukherjee et al., 2018; Kreibichet al., 2022), multivariate drought
analysis, agricultural yields, and reservoir management (Labedzki and
Bak, 2014; Wu et al., 2017; Gavahi et al., 2020). Developing drought
monitoring tools using existing drought indices can be critical in man-
aging water resources for different sectors (Wilhite et al., 2007, Mishra
and Singh, 2011).

Although the drought indices (e.g., SPI, SPEI, PDSI) are valuable and
useful proxy for a variety of applications (e.g., monitoring, forecasting,
risk assessments), there are several limitations associated with such in-
dicators, such as:

(a) Lack of integration of drought indices and impacts: existing drought
indices are derived using a suitable probability distribution, and
the drought events are classified (e.g., extreme, severe, moderate)
based on standardized normal variates without capturing the
actual drought impacts on different sectors (Mishra and Singh,
2010, 2011).

(b) Lack of proper communication with stakeholders: the numeric values
associated with drought indices do not quantify the level of
drought impacts on different sectors (e.g., agriculture, reservoir
management); as a result, there is difficulty in communicating
with stakeholders, for example, interpreting SPEI = 2 for a farmer
(rancher) can be challenging.

(c) Lack of impact-based forecasting tools: There are inconsistencies
and uncertainties while comparing drought indices based on
different variables and data sets for impact assessments. Gener-
ating drought impact information ahead of time is a prerequisite
for drought management is still missing, and the operational
drought early warning systems should include drought hazards
and impacts (Sutanto et al., 2019). A limited number of studies
evaluated the links between reported drought impacts and
drought hazards derived from SPI and SPEI (Blauhut et al., 2015;
Bachmair et al., 2017; Stagge et al., 2015).

To address the above limitations, we argue that the drought indices
can be valuable for stakeholders by identifying appropriate ’thresholds’
that directly link with the drought impact-based assessment for
advancing drought monitoring and forecasting. Quantifying the drought
threshold can advance systematic estimation of the linkage between
drought severity and drought impact associated with different types of
droughts (e.g., hydrological and agricultural droughts) that are often
connected through hierarchical and non-linear relationships. The spe-
cific objectives of this study are 1) to investigate the relationship be-
tween the multiple drought indices and hydrological and agricultural
impact-specific drought indicators and 2) to identify the critical
threshold that directly links drought indices and a range of hydrological
and agricultural indicator variables. Impact-based indicators are quan-
tified based on streamflow, reservoir level (hydrological response), soil
moisture, and corn yield (agricultural response). We applied the classi-
fication and regression tree (CART) concept for identifying drought
thresholds that can be useful for the stakeholders and decision-makers to
develop necessary action for minimizing drought impacts.

The manuscript is organized as follows: section 2 discusses the study
area and Data; Section 3 discusses the methodology, which includes an
explanation of different drought indices (Palmer-based indices, stan-
dardized precipitation index, and standardized precipitation and runoff
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index) and classification and regression trees; section 4 describes the
results of the relationship between drought indices and the threshold
limits of each drought index. Section 5 provides the discussion and
concluding remarks.

2. Study area and data

The state of South Carolina (SC) is located in the Southeastern United
States (US) with an area of 82,930 km? (32,020 mi%) (Fig. 1). The pri-
mary land cover of the state consists of forest (56%), agriculture (17%),
and developed land (13.5%). South Carolina receives an annual average
rainfall of 1220 mm of annual precipitation (Billah and Goodall, 2011;
SCDHEC, 2010), and the coastal region receives relatively more rainfall
during the summer, while the remaining state receives more rain during
the spring. The distribution of monthly precipitation from 1950 to 2017
in each climate division is shown in Fig. 1. The annual average tem-
perature varies from 10 °C. in the mountains to 16 °C along the coast.
Usually, January is the coldest month, and July is the hottest month in
South Carolina.

In recent decades, the state has been going through a periodic water
shortage due to drought and growing water consumption (Veettil and
Mishra, 2016). For example, the southeast United States experienced
significant drought from 1965 to 1971, 1980 to 1982, 1985 to 1988,
1998 to 2002, and 2006 to 2009 (Veettil and Mishra, 2016, 2020). The
major rivers, such as Savannah, Pee Dee, Santee, and Edisto, play a
critical role in meeting the state’s water demand. Most of these river
basins share a boundary with neighboring states except the Edisto River
Basin (Badr et al., 2004).

There are 14 major reservoirs providing water for different sectors
such as irrigation, domestic, and industry. Lake Strom Thurmond (area:
290 km?), located in the Savannah River Basin, is the largest reservoir in
the state. According to the SC Department of Agriculture, the major
crops in the state are corn, soybean, cotton, peanuts, tobacco, and
wheat, grown over 1.3 million acres. Four general soil groups found in
the state are (1) loamy, clayey soils of the wet lowlands; (2) wet, sandy
soils found in strips near the coast; (3) well-mixed soils of river flood-
plains, underlain with sandy, loamy sediments; and (4) clayey, sandy
soils of coastal-area salt marshes and dunes.

2.1. Data

We obtained two types of data sets, drought indices, and impact-
based indicators. We evaluated the performance of five drought
indices which include the Palmer Modified Drought Index (PMDI),
Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought
Index (PHDI), Standardized Precipitation Index (SPI), and Standardized
Precipitation and Evapotranspiration Index (SPEI). The Palmer drought
indices and the SPI data sets for the seven climate divisions were ob-
tained from National Oceanic and Atmospheric Administration (NOAA).
NOAA provides a long-term drought index at a divisional scale across the
United States. The SPEI data obtained from Climatic Research Unit
(CRU), available online at http://badc.nerc.ac.uk/data/cru/ (Mitchell
and Jones, 2005) for the same period at a spatial resolution of 0.5°. The
streamflow records for the 18 locations were obtained from US
Geological Survey’s (USGS) current water data for the nation. The
reservoir level data for three major reservoirs (Hartwell, Russel, and
Thurmond) were obtained from the US Army Corps of Engineers. The
higher water level is observed in Hartwell Reservoir, with an average of
200.25 m, and the lower level of the reservoir is observed in Thurmond,
with an average of 108.8 m. The yearly corn-yield data for each climate
division was obtained from USDA National Agricultural Statistics Ser-
vice (NASS), available at https://quickstats.nass.usda.gov/. The
observed soil moisture data was obtained from Soil Climate Analysis
Network (SCAN) and US Climate Reference Network (CRN). The
monthly drought indices are analyzed from 1950 to 2017. The impact-
specific indicators used in this study are: (a) streamflow (1950 —
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Fig. 1. Location of seven climate divisions within the state of South Carolina (USA). The boxplot represents the monthly precipitation patterns from 1950 to 2017
across the selected climate divisions. The table provides the name of each climate division corresponding to the number.

2017); (b) Three reservoirs level used in this study are Hartwell Reser-
voir (1962 — 2017), Thurmond Reservoir (1954 — 2017), Russel Reser-
voir (1985 - 2017); (c) four soil moisture stations used in this study are
SM1 (1999 - 2017), SM2 (1999 — 2017), SM3 (2009 - 2017), and SM4
(2009 - 2017), and (d) Corn yield data (1950 — 2017).

3. Methodology
3.1. Palmer drought indices: ZNDX, PDSI, PHDI, and PMDI

Three Palmer’s drought indices considered in this study include
Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought
Index (PHDI), Palmer Modified Drought Index (PMDI), and Z-Index
(ZNDX). PDSI can measure both wetness (positive value) and dryness
(negative values) based on the supply and demand concepts of the water
balance equation (Palmer, 1965), and it is useful for quantifying and
comparing drought across different regions. PDSI is calculated based on
temperature, precipitation, and the soil’s available water capacity
(AWC) (Jacobi et al., 2013). Before calculating monthly values of PDSI,
several parameters are derived from the input data sets by calculating
climatically appropriate quantities for an existing condition. Other in-
formation used in the Palmer indices are the soil’s available water ca-
pacity (AWC) and the Thornthwaite potential evapotranspiration.

ET = a(PE) €8]
R = p(PR) @)
RO = YP(RO) 3)
L =5(PL) (4
P=ET+R+RO-L 5)

where ET is the evapotranspiration, PE is the potential evapotrans-
piration, R is the soil water recharge, PR is the potential recharge, RO is
the runoff, L is the water loss from the soil, PL is the potential water loss
from the soil, and P is the precipitation. The parameters a, B, Y, and 5 for
each of the 12 months at each location are determined as follows, where

the overscore quantity within parenthesis denotes the monthly average
throughout the record.

a = (ET)(PE)™" (6)
p=(R)(PR)" @
Y = (RO)(PRO)™" (8
§=(L)(PL)" ©)

These coefficients are used to compute the differences, d, for each

month between the actual precipitation for the month, P, and the P for
the existing condition. Here d is regarded as moisture departed from the
normal.

d=P-P 10)

=P — (@PE + ;PR + Y;PRO — §;PL) an

The standardized index is calculated to account for regional differ-
ences (d), as shown below,

Z =d*K 12)

Here, Z is the Z-index (ZNDX), which is regarded as the soil moisture
anomaly index. The ZNDX is a short-term drought measure without
additional memory from previous months. Where K is a weighting factor
for a given month used to adjust the soil moisture departures (d), to
make it comparable among different areas and months.

The value of the PDSI is computed from the moisture anomaly index.
Also, PDSI may abruptly change from dry to near-normal conditions,
even though rivers or groundwater storage may be considerably below
their normal levels. The PDSI for the i month is computed as follows,
PDSI; = PDSI;_; + %Zi —0.103PDSI;_, 13)

The Palmer Hydrological Drought Index (PHDI) was derived from
the PDSI to quantify the long-term impact of drought on hydrological
systems. PHDI values tend to be negative for up to several months after
PDSI has returned to normal levels (i.e., it usually returns to near-normal
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levels more gradually than the PDSI (Karl et al., 1986)). Therefore, the
PHDI is considered as a measure of long-term hydrological drought since
streamflow, reservoir storage, and groundwater tend to stay below
normal values for some time after a meteorological drought ends.

The PMDI is a modification of the PDSI for real-time operational
purposes (Jacobi et al., 2013), which is obtained from the sum of the wet
and dry terms weighted by probability values. The PMDI has the same
value as the PDSI during dry or wet spells but differs during transition
periods. Overall, the PDSI and PMDI are appropriate for monitoring
meteorological drought.

3.2. Standardized precipitation index (SPI)

The standardized precipitation index (SPI) introduced by McKee
et al. (1993) is derived based on the long-term precipitation record. The
following steps are used to derive SPI for a region: a) long-term monthly
precipitation is extracted from available sources (e.g., in-situ, remote
sensing), b) a suitable probability distribution (e.g., gamma distribution)
is identified to capture the long-term precipitation distribution, c) once
the probability density function is determined, the cumulative proba-
bility of the precipitation time series at different time scale (e.g., 3, 6,
9 months) is computed; and (d) the inverse normal Gaussian function,
with mean zero and standard deviation one, is then applied to the cu-
mulative probability distribution function, which results in the SPIL
Positive SPI values indicate greater than median precipitation, and
negative values indicate less than median precipitation. McKee et al.
(1993) used the gamma distribution to transform precipitation series
into standardized units.

The advantages of using SPI are 1) simplicity: the SPI is based on
rainfall; 2) its standardization, which ensures that the frequency of
extreme events at any location and on any time scale is consistent; and 3)
variable time scale, which is helpful for the analysis of drought dy-
namics, especially the determination of onset and cessation (Angelidis
et al., 2012). On the other hand, the length of data and different prob-
ability distributions are likely to affect SPI values (Mishra and Singh,
2010).

3.3. Standardized precipitation and evapotranspiration index (SPEI)

The SPEI (Vicente-Serrano et al., 2010) is calculated based on the
precipitation minus potential evapotranspiration time series derived
over multiple time scales. The procedure implemented to derive the SPEI
series is almost similar to SPI. Like the PDSI, SPEI addresses the
warming-related impacts on different hydrological and agricultural
systems by considering the temperature variation (via potential evapo-
transpiration) in the calculation. In contrast, PDSI lacks multiscale
characteristics, which is essential for addressing the relationship be-
tween temporal drought and hydrological/ agricultural systems. The
SPEI addresses changes in evaporation demand caused by temperature
fluctuations and trends. This is an advantage over the SPI, where the
calculation is only based on the precipitation records.

3.4. Statistical analysis

We investigated the linear relationship between various drought
indices and impact-specific indicators (i.e., streamflow, reservoir level,
soil moisture, and crop yields) using Pearson correlation (r) analysis.
Relationship values range from —1 to+ 1, and there is no correlation
between two variables when this value equals 0. For example, the
Pearson correlation between reservoir level (RL) and drought indices
(DI is calculated as,

. i (RL — RL,,)(DI — DI,,)
\/ZZ:1 (RL — RL,)"S"_ (DI — DI,,)

where RL;, and DI, represent the average reservoir level and drought

(14
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indices, respectively, and n is the number of data. Similarly, the Pearson
correlation is calculated for streamflow, soil moisture, and crop yield.

3.5. Classification and regression trees

Classification and regression trees (CART) algorithms are used for
classification and regression learning tasks. CART is a powerful
approach commonly used in machine learning, where the data are
partitioned into subsets with homogeneous values of the dependent
variable (Krzywinski and Altman, 2017). The CART algorithm uses a
hierarchical (tree structure), which includes a root node, branches, in-
ternal nodes, and leaf nodes (James et al., 2013). The CART algorithm
has several advantages: (a) the hierarchical structure of CART models
mimics the heuristics of decision-making and is more intuitive than
traditional regression models (Drakopoulos, 1994), (b) the model out-
comes are better than standard regression models, specifically during
the presence of non-linear relationships and interactions (Varian, 2014).
Also, CART produces easy-to-understand models with any combination
of continuous/ discrete variables.

CART effectively represents the stepwise decision-making process of
a complex system (Solomatine, 2002) by stratifying the predictor space
into many simple regions based on the output variable (James et al.,
2013, Veettil and Mishra, 2020). This supervised learning algorithm is
easy to interpret and can be considered one of the most appropriate
approaches for solving complex problems (James et al., 2013). Further,
splitting rules that divide the variable input space into various classes
are characterized as a tree. Therefore, these approaches are known as
decision (or classification) tree methods. In this tree-like structure, the
nodes generate a threshold for each drought index, which can capture a
range of drought indicator variables. The CART algorithms are useful for
threshold analysis, where the training set (root node) is split into two
based on the best attribute and threshold value.

This study developed the CART models to identify the associated
threshold between drought indices and impact-specific indicators (i.e.,
hydrological and agricultural indicators). A recursive partitioning al-
gorithm, which classifies the space defined by the input variables (i.e.,
drought indices) based on the output variables (e.g., streamflow, soil
moisture, and crop yield), is used for developing the CART. The decision
trees for quantifying the threshold of drought indices associated with
hydrological and agricultural indicators are formulated based on the
following steps. (1) The response variables (i.e., hydrological and agri-
cultural indicators) and input variables (i.e., drought indices) are first
selected for a particular climate division of the South Carolina State; (ii)
divide the input variable space Xj, Xo, ..., Xp into J discrete and non-
intersecting regions, such as Rj, Ry, ..., Ry; and (iii) for every variable
that falls into the region Rj, the tree makes the same prediction, which is
the mean of the drought indicator values in the region Rj. The purpose of
dividing predictor space into different regions is to reduce the residual
sum of squares (RSS). The RSS is calculated as follows,

RSSyin = i Z ()’i - yR,)z 15)

j=1 i€R;

Where, ?Rj is the mean response of the response variable (hydro-

logical and agricultural indicator values) within the j* region. Gener-
ally, considering every possible partition of predictor feature space into
distinct regions is computationally challenging. Therefore, the decision
tree algorithm utilizes recursive binary splitting, which works based on a
top-down approach by successfully splitting the predictor space repre-
sented by two new branches further down the tree. To perform the
recursive binary splitting, we first selected the predictor Xj and the
threshold ’s’ (equations (15) and (16) so that splitting the predictor
space can lead to the maximum reduction in RSS, given by equation
(15).

Ri(j,s) = {X|X; < 5} (16)
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Ry(j,s) = {X|X; > s} a7

The optimal thresholds are calculated based on the lowest RSS for the
resulting decision tree. The tree output divides data into a series of
nodes, and each node represents the range of hydrological and agri-
cultural indicator variables in the form of a boxplot. The final tree
provides thresholds associated with drought indices and significance (p-
value) value. The threshold refers to the value at which a splitting
condition is applied to partition the data into different branches. The
threshold associated with each drought index may vary based on the RSS
used to choose the split at each node. Therefore, this approach can
quantify the threshold associated with each drought index and the
corresponding range of hydrological and agricultural indicators using
boxplot representation.

4. Results

4.1. Comparison between drought indices and the need for threshold
approach

The CART algorithm was implemented to quantify threshold values
of drought indices and their association with impact-specific indicators.
The drought indices considered in the present study are PDSI, PMDI,
PHDI, ZNDX, SPI (SPI3, SPI6, and SPI12), and SPEI (SPEI3, SPEI6, and
SPEI12) for the period 1950 to 2017. To investigate the limitations
associated with the drought indices, first, we quantified drought char-
acteristics, such as average drought duration (DD), average drought
severity (DS), and drought frequency (DF) for each index and climate
division (Table 1). We did not include climate division 1 (CD1) in our

Table 1
The average drought duration (DD), severity (DS), and frequency (DF) for the
selected climate divisions located in South Carolina, USA.

DT=-1 CD2 CD3 CDh4 CD5 CD6 CD7
PDSI DD 9.59 7.36 5.11 7.78 7.17 5.65
DS 15.54 10.89 6.02 10.74 8.98 6.82
DF 0.51 0.67 0.66 0.61 0.61 0.78
PHDI DD 10.77 8.53 5.81 9.26 8.13 6.02
DS 16.83 12.25 6.53 12.54 10.11 7.30
DF 0.52 0.64 0.70 0.57 0.60 0.82
ZNDX DD 1.84 1.83 1.63 1.91 1.75 1.67
DS 1.95 1.89 1.53 1.73 1.60 1.48
DF 2.19 2.24 2.16 2.16 2.16 2.30
PMDI DD 6.38 5.63 3.90 5.07 4.64 4.23
DS 10.58 8.18 4.53 7.07 5.74 5.47
DF 0.75 0.85 0.88 0.88 0.91 0.97
SPI3 DD 2.42 2.24 1.90 2.05 1.97 1.95
DS 1.34 1.16 0.87 1.00 1.00 0.94
DF 0.79 0.93 0.94 0.94 0.94 0.93
SPI6 DD 3.81 2.89 2.87 2.80 2.58 2.95
DS 1.95 1.50 1.41 1.29 1.53 1.52
DF 0.55 0.69 0.57 0.69 0.64 0.61
SPI12 DD 5.55 4.97 3.91 4.09 3.97 3.47
DS 2.58 2.42 2.45 2.04 2.26 2.09
DF 0.43 0.46 0.34 0.48 0.46 0.45
SPEI3 DD 2.34 2.20 2.17 2.19 2.32 2.33
DS 1.00 0.95 0.89 0.90 0.90 0.94
DF 0.88 0.97 0.90 0.96 0.88 0.85
SPEI6 DD 3.18 2.69 2,92 3.24 2.88 3.38
DS 1.42 1.18 1.38 1.26 1.26 1.40
DF 0.67 0.76 0.54 0.69 0.63 0.60
SPEI2 DD 5.57 4.93 5.43 4.66 4.92 4.06
DS 2.46 2.27 2.69 2.05 2.40 1.85
DF 0.42 0.45 0.31 0.48 0.37 0.46

*DT: Drought Threshold; DD: Drought Duration; DS: Drought Severity; DF:
Drought Frequency.
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Table 2
The maximum drought duration calculated based on different drought indices
for selected climate divisions from 2010 to 2014.

DT=-1 CD2 CD3 Cbh4 CD5 CD6 CD7
PDSI 25 34 23 34 25 23
PHDI 34 38 33 36 33 32
ZNDX 8 5 4 6 5 7
PMDI 25 38 21 35 28 22
SPI3 3 3 3 3 3 3
SPI6 5 5 3 10 2 14
SPI12 13 13 11 20 11 13
SPEI3 3 5 3 4 4
SPEI6 7 8 6 9 6 12
SPEI12 4 11 20 26 20 20

analysis due to its small geographical area, dominated by forests, and
lack of impact-specific indicator data. Here, the drought characteristics
are calculated based on the run theory (Yevjevich, 1967) for the events
which exceed severity —1. Drought duration is the duration of consec-
utive time series when the drought index is below the threshold value
(-1). Severity is defined as the summation of the drought index below the
threshold. Drought frequency can be defined as the number of occur-
rences of drought events exceeding a certain threshold (Veettil et al.,
2018; Loucks and Van Beek, 2017). Here, we expressed drought fre-
quency as the ratio of the total number of drought events to the total
number of years (i.e., 67 years).

It was observed that the drought indices provide different informa-
tion based on their characteristics (DD, DS, and DF) within the same
climate division. For example, in climate division 2, the DD, DS, and DF
values for PDSI were 9.59, 15.54, and 0.51, respectively. Whereas in the
case of ZNDX, it was 1.84, 1.95, and 2.19, respectively. Similarly, the
multivariate indices showed a noticeable difference in their drought
characteristics. Throughout 2010-2014, most of the southeastern
United States went through a severe to extreme drought event (Rippey,
2015). We demonstrated the difference between drought indices based
on the drought durations calculated for climate divisions during the
severe to extreme drought period (2010-2014) (Table 2). A significant
variation in maximum drought duration within each climate division is
observed. For example, the maximum drought duration in CD2 varied
from three (SPI3 and SPEI3) to 34 (PHDI) months. These considerable
disparities in drought characteristics will show distinct drought risk
outcomes on various impact-specific indicators. The analysis based on
Table 1 and Table 2 indicates that monitoring drought using different
indices leads to various duration, severity, and frequency results. Also,
multiple time steps of drought indices make it difficult to decide which
time step best shows the drought condition. Therefore, quantifying the
thresholds associated with drought indices for specific impact (i.e.,
streamflow, reservoir level, soil moisture, and crop yields) can advance
the preparedness and planning to cope with the adverse effects of a
regional drought event. The following sections describe the potential
influence of drought quantified based on Palmer and multiscale indices
on different hydrological (streamflow and reservoir level) and agricul-
tural drought indicators (soil moisture and crop yield). Also, a trend
analysis of drought indices and impact-specific indicators based on the
Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) is performed, and
the results are discussed in Appendix A.

4.2. Thresholds associated with drought indices for streamflow

Fig. 2 shows the boxplot illustrating the correlation coefficients be-
tween the monthly streamflow and seven drought indices. The correla-
tion is calculated for the 18 flow-gaging stations distributed in the
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Fig. 2. Boxplot showing the correlation coefficient between streamflow and drought indices. Overall 18 streamflow gaging stations are selected from all the seven

climate divisions for the correlation analysis.

different climatic divisions of the state. In general, it was observed that
the correlation is higher for the Palmer indices, excluding the ZNDX, and
PMDI tended to be higher among them. The median correlation value for
PMDI was 0.62, followed by PHDI, with a correlation coefficient of 0.58.
The SPI and SPEI showed a relatively low linkage between the stream-
flow records. For instance, SPI3 showed a median correlation of 0.57,
and SPI6 and SPI12 showed a median value less than SPI3. In the case of
SPEI, SPEI3 showed maximum correlation with the streamflow, whereas
SPEI12 showed the least correlation in the analysis. The ZNDX and SPEI
showed a median correlation of less than 0.5 with the streamflow over
the climate divisions.

In the next step, we applied the classification and regression tree
(CART) concept to identify the threshold associated with different
drought indices for the monthly streamflow values. Using this approach,
we generated four decision tree models for the monthly streamflow at
the gage station USGS 02186000, located in the Northwest climate di-
vision (i.e., CD2), which has minimum anthropogenic impact and is not
influenced by large water storage structures. In addition, these stream-
flow records showed the highest correlation, particularly for PHDI
(0.66), PMDI (0.68), SPI3 (0.62), and SPEI3 (0.63). The model output of
CART based on the drought indices that showed a higher correlation in
the analysis is illustrated in Figs. 3 and 4. The figures summarize the
process of estimating each drought index’s threshold and the streamflow
range (i.e., response variable) with respect to the threshold.

The correlation of PMDI with the monthly streamflow is higher than
other drought indices considered in the analysis (Fig. 3a). Therefore, we

initially investigated the threshold of PMDI on streamflow. The
threshold of the first split in the decision tree is 0.7. For instance, if the
PMDI is less than or equal to 0.7, the tree’s growth is towards the left.
The tree advances towards the right side if it is higher than 0.7. Here
p < 0.001 represents the significance of the correlation between the split
based on PMDI and the monthly streamflow. The second split is based on
a threshold of —2.51, followed by a threshold of —3.94, which indicates
if the PMDI is less than or equal to —3.94, the monthly average
streamflow will vary from 1 to 5m®/s with a median value of 3 m®%/s.
Whereas, when the PDSI is greater than or equal to —3.94, the growth of
the tree is towards the right, and it showed a variation of flow from 2 to
6 m>/s. Node 6 splits the tree with a threshold of —1. For example, if the
PMDI is less than or equal to —1, the monthly average streamflow will
vary from 3 to 8 m®/s. Similarly, when the PMDI is greater than 0.7, the
tree’s growth is towards the right side. Maximum flow is observed when
the PMDI is greater than 3.18, where the flow varies from 6 to 18 m%/s
with a median flow of 12 m3/s.

A similar analysis is performed for the drought indices PHDI
(Fig. 3b), SPI3 (Fig. 4a), and SPEI3 (Fig. 4b). The maximum threshold for
PHDI, SPI3, and SPEI3 were 3.15, 1.45, and 1.59, respectively. The total
number of nodes in the PMDI and PHDI decision tree output is 13,
whereas the SPI3 and SPEI3 split the variable’s space to 11 (i.e., the total
number of nodes =11). In addition, the initial split of the tree is 1.48
based on PHDI and 0.37 based on SPI3, and the SPEI3 decision tree
showed the least value of the initial split in the analysis.
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4.3. Thresholds associated with drought indices for reservoir level

The three reservoirs considered in the analysis are Hartwell, Russel,
and Thurmond, which are located in the Savannah River basin. The
average storage level in the Hartwell, Russel, and Thurmond reservoirs
is 200, 144.5, and 99 m, respectively. The Pearson correlation coeffi-
cient between the drought indices and monthly reservoir storage is
provided in Fig. 5. Unlike streamflow, PHDI showed the highest corre-
lation with reservoir storage level, where Hartwell showed a correlation
of 0.7, and Russel and Thurmond showed a correlation of 0.59 and 0.61,
respectively. In addition, the Palmer-based drought indices (except the
ZNDX) showed a higher correlation with reservoir storage. In the case of
PMDI, the correlation was 0.67, 0.54, and 0.57 for the Hartwell, Russel,
and Thurmond reservoirs, respectively. In addition, it is interesting to
observe that the long-term drought indices (i.e., SPI12 and SPEI12) have
a strong relationship with the reservoir level. For instance, SPI12
showed a correlation of 0.68, 0.52, and 0.60 for the Hartwell, Russel,
and Thurmond reservoirs, respectively. All the drought indices showed a
higher correlation with the Hartwell reservoir storage. This may be
because of the least influence of anthropogenic factors over the inflow to
the reservoir. Russel reservoir storage, located downstream of the
Savannah River Basin, showed less correlation with the drought indices.

We quantified the threshold associated with drought indices for
reservoir storage using the CART analysis. Here, we selected Hartwell
reservoir data to perform threshold analysis as the anthropogenic ac-
tivities have the least influence on its drainage area. Using the CART
approach, we generated separate decision trees for the drought indices
that are highly correlated with reservoir storage levels, which include
PHDI, PMDI, SPI12, and SPEI12. The model output of CART analysis
using PHDI is schematically represented in Fig. 6a. Here the primary
split of PHDI is with a threshold value of —0.89. For example, if the PHDI
is less than or equal to —0.89, the tree’s growth is towards the left, and
the second and third split evolved at a threshold of —3.2 and —4.0,
respectively. The result shows that if the PHDI is less than —4.0, the
Hartwell reservoir level likely varies between 196 m and 199.5 m, with a
median value of 198 m. Whereas, if the PHDI is higher than —4.0 and
less than —3.2, the reservoir level will vary from 197 m to 201 m. The
final split of the decision tree is with a threshold of 1.76, where we
observed the highest range of reservoir storage levels. The decision tree
generated for PMDI (Fig. 6b) initiated with a threshold of —2.02
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followed by —4.0. For instance, if the PMDI is less than or equal to —4.0,
the Hartwell Reservoir level varies from 196 m to 199.8 m, with a me-
dian of 198 m. In addition, the total number of nodes in the case of the
PHDI decision tree was 13, whereas PMDI resulted in 11 nodes in the
output tree.

Similarly, the decision tree is generated for investigating the
threshold of SPI12 and SPEI12 on the Hartwell reservoir level (Fig. 7a
and 7b). The number of nodes in the SPI12 and SPEI12 decision trees
was 11 and 9, respectively. In the case of SPI12, the first split of the
decision tree was with a threshold of —0.36. The output tree shows that
if the SPI12 is less than or equal to —1.75, the Hartwell reservoir level
varies from 196m to 198.5m. The maximum threshold of SPI12
observed in the decision tree was 0.38, suggesting that if the SPI12 is
higher than 0.38, the reservoir level varies from 199.5 to 202.5 m. In the
case of SPEI12, the initial split threshold was 0.564, followed by —1.367.
For instance, SPEI12 is less than or equal to —1.367, and the Hartwell
Reservoir level varies from 195m to 201.5m. The maximum SPEI12
threshold in the analysis was 0.858.

4.4. Thresholds associated with drought indices for soil moisture

This section analyzed the relationship between the drought indices
and observed soil moisture. The in-situ soil moisture for the Northeast
and Southern Climate Divisions is obtained from the US CRN and SCAN
databases. The Pearson correlation analysis is performed for the topsoil
layer (5 cm) and the soil moisture below the root zone (100 cm). How-
ever, soil moisture below the root zone is weakly correlated with all the
drought indices. Therefore, we focused on the topsoil moisture in further
analysis.

Fig. 8 illustrates the correlation coefficient between the four soil
moisture stations (i.e., SM1, SM2, SM3, and SM4) and drought indices.
Here SM1, SM3, and SM4 are located in the Southern climate division of
the state, and SM2 is located in the Northeast climate division. The
correlation between the soil moisture and drought indices was relatively
less than the streamflow and reservoir level analysis. However, we
noticed a higher correlation for the soil moisture station SM1. For
example, in the case of SM1, ZNDX and PMDI showed a value higher
than 0.5. It was also observed that SM3 showed comparatively less
correlation in the analysis. In the case of SPI and SPEIL, short-duration
drought showed a relatively better correlation with soil moisture. In
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Fig. 6. The decision trees show the drought index threshold of (a) PHDI and (b) PMDI. The boxplot shows the Reservoir level (Unit: Meters) for Hartwell Reservoir

based on different drought thresholds.

contrast, the long-duration drought showed less correlation with the in-
situ data analyzed.

The highest correlation between drought indices and soil moisture is
observed for the soil moisture station SM1, located in the Southern
climate division. Therefore, we performed the drought threshold anal-
ysis using the decision tree between SM1 and ZNDX, PMDI, SPI3, and
SPEI3, and the output of the tree is illustrated in Figs. 9 and 10. For
example, in the case of ZNDX, the threshold was 0.49, indicating that if
the ZNDX is less than or equal to 0.49, the topsoil moisture in the
southern climate division varies from 2.5 to 20 percent, with a median
value of 8 percent. Whereas, if the threshold is higher than 0.49, the
topsoil moisture varies from 4.5 to 28 percent.

4.5. Thresholds associated with drought indices for crop yields

The crop yield of each climate division is represented based on the
yearly corn yield data obtained from the USDA NASS. However, no clear
records of corn crop management (e.g., growing season) are available
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for South Carolina State’s climate divisions. Therefore, we considered
the growing season from 1st of March to 31st of October for all climate
divisions, and the drought indices also averaged across the crop growing
season. The boxplots based on the correlation coefficients between corn
yield across the climate divisions and drought indices are shown in
Fig. 11. Overall, the highest correlation (median) is observed for the
ZNDX (0.28), followed by PDSI (0.27). In contrast, other Palmer-based
indices showed relatively less correlation with the corn yield across
the state. In the case of SPI and SPEI, the short-term drought showed a
comparatively higher correlation value than SPI12 and SPEI12.

We quantified the threshold associated with drought indices for corn
yield. The correlation between corn yield and drought indices, partic-
ularly ZNDX and PDSI, was relatively higher for the Northwest climate
division. Therefore, the threshold analysis is performed for the North-
west climate division. For instance, the PDSI showed a correlation value
of 0.52, and ZNDX showed a correlation value of 0.47 for the Northwest
climate division. The decision tree analysis is performed for PDSI and
ZNDX, and the critical threshold of drought indices and corresponding
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yield is summarized in Fig. 11. It is observed that the PDSI split the corn
yield with a threshold of 0.241. For example, when the PDSI of the
climate division is less than or equal to 0.241, the tree’s growth is to-
wards the left and results in a median corn yield of 6 Tonnes per Acre.
Whereas, if the PDSI is greater than 0.241, the corn yield in the climate
division increases to 10 Tonnes per Acre. In the case of ZNDX, the
threshold was 0.022. Similarly, the threshold analysis is performed for
SPI3 and SPEI3, and the output tree is illustrated in Fig. 11c and 11d.

5. Discussion and concluding remarks

For operational drought management, it is essential to identify the
region-specific drought indices and their relevant thresholds for the
stakeholders. However, to date, little effort has been made to explore
which index (or indices) best represents drought impacts of a specific
region using threshold concepts. Also, imprecise definitions, slow onset,
and multiple socio-ecological interactions make drought quantification
challenging and complicate its impacts on different sectors. This leads to
inconsistency and uncertainty in communicating drought indices for
early preparedness with stakeholders. This study addresses the knowl-
edge gap by identifying the appropriate thresholds associated with
drought indices and impact-specific indicators. We compared the per-
formance of drought indices, such as Palmer-based (e.g., PDSI, PMDI,
and PHDI) and multiscale drought indices (e.g., SPI, and SPEI) at 3, 6,
and 12 months with the impact-specific indicators, such as streamflow,
reservoir level, soil moisture, and crop yield. Palmer drought indices,
which are widely used and implemented in the drought monitoring
system (Zhou et al., 2022; Jacobi et al., 2013); SPI, recognized by the
World Meteorological Organization as an effective drought monitoring
tool for climate risk management (Hayes et al., 2012; Yaseen et al.,
2021); SPEI, which considers the potential evapotranspiration on
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drought severity quantifications (Vincente-Serrano et al., 2010; Liu
et al., 2021).

The SPI and SPEI are analyzed for multiple time scales (i.e., three
months, six months, and 12 months). Here, the short-term multiscale
indices (i.e., SPI3 and SPEI3) showed a relatively higher correlation with
the streamflow than medium and long-term multiscale indices. This can
be interpreted as the short-term fluctuations in the precipitation pattern
likely to control streamflow variations for the selected watersheds.
Whereas, long-term drought indicators (SPI 12 and SPEI 12) have a
higher correlation with reservoir level, which suggests that the contri-
bution of surface and baseflows to the reservoir storage are better rep-
resented by these two drought indicators. The baseflow (delayed flow)
may not be captured by the short-term drought indicators. In the case of
soil moisture and crop yield, short-term drought indicators showed a
relatively higher correlation.

PMDI showed the highest correlation with streamflow, as they are
derived based on the sum of the wet and dry terms weighted by prob-
ability values. In the case of reservoir level, PHDI showed a relatively
higher correlation. PHDI is a modified version of PDSI, and it is designed
to capture longer-term dryness that is likely to affect water storage,
reservoirs, and groundwater. PHDI responds more slowly to regional
weather changes. The advantage of this delayed response is that while
the weather may return to normal, a deficiency in lake levels may still
exist. Palmer Z index responds to short-term conditions enabling it to
capture rapidly developing drought conditions, as a result, this indicator
likely to have a relatively higher correlation in the case of surface soil
moisture and crop yield.

The CART algorithm was used to identify the thresholds associated
with drought indices and impact-specific indicators. The threshold refers
to a splitting criterion used to divide the response variables (i.e., impact-
specific indicators) based on the drought index at each internal node of
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Fig. 11. The decision trees show the threshold of the average drought index based on (a) PDSI, (b) ZNDX, (c) SPI3, and (d) SPEI3. The boxplot shows the crop yield
(Unit: Tonnes per Acre). A maximum correlation is observed between the crop yield from Northwest Climate Division and corn yield. Therefore, the decision tree

analysis is performed for Northwest Climate Division.

the tree. The drought thresholds create binary splits and create a dis-
tribution of impact-specific indicators using a boxplot representation.
This threshold can properly address the numerical value associated with
each drought index and its influence on impact-specific indicators. The
decision trees provide the mean of the responses as an output of the tree
to generate the boxplots of impact-specific indicators associated with the
drought indices threshold. The boxplots show an overlap in the resulting
distribution (range) of impact-specific indicators based on the model
performance analysis (Appendix B). For example, the trees developed
for streamflow and reservoir level showed comparatively less overlap,
resulting in more branches due to model accuracy. However, the median
values showed explicit differences in each boxplot, resulting in all the
impact-specific indicators.

Many factors, such as supplementary irrigation, influence corn yield.
Our study area is located in South Carolina, where rainfed agriculture is
predominant. Also, rainfed crops are generally more sensitive to
drought, and performing separate analyses for irrigated crops can
separate the influence of drought on major crop yields (Lu et al., 2020).
The following conclusions are drawn from this study,

(a) The characteristics of drought vary substantially across different
climate divisions. For example, in climate division 2, the average
drought duration (DD) from 1950 to 2017 was 9.59 for the PDSI,
while it was 1.84 for ZNDX and 6.38 for PMDI. The average
drought severity (DS) also demonstrated wide variations within
the climate divisions. For instance, in climate division 5, the PDSI
showed a DS of 10.74, while it was 1.73 for ZNDX. The DS for
SPI3 and SPEI3 was 1.0 and 0.9, respectively.

(b)

@
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Drought indicators behave significantly differently during
extreme drought conditions. The calculation of the maximum
drought duration using different drought indices during the 2011
drought showed significant differences within the climate di-
visions. For example, In climate division 2, the maximum drought
duration for PDSI and PMDI was 25 months during the 2011
drought, while it was 34 months for PHDI and 8 months for
ZNDX. Additionally, SPI3 and SPEI3 had the shortest drought
duration during the 2011 drought in climate division 2.

The correlation between drought indices and impact-specific in-
dicators also demonstrated significant variations in the analysis.
The PMDI had the strongest correlation with streamflow, with a
median correlation coefficient of 0.62, followed by PHDI, with a
coefficient of 0.58. The correlation between SPI and SPEI and
streamflow was relatively low. For example, SPI3 had a median
correlation of 0.57, while SPI6 and SPI12 had a median value
lower than that of SPI3. In the case of SPEI, SPEI3 showed the
highest correlation with streamflow, while SPEI12 had the
weakest correlation in the analysis. Unlike streamflow, PHDI had
the strongest correlation with the reservoir storage level, with
Hartwell showing a coefficient of 0.7, and Russell and Thurmond
having a coefficient of 0.59 and 0.61, respectively. In terms of soil
moisture and crop yield, ZNDX had the highest correlation.
Palmer indices generally showed improved performance
compared to multiscalar index in the selected study area; how-
ever, the indicator’s performances will vary across reason and
corresponding impact-specific sectors. The multiscale indices
strongly correlate with various system responses in different
studies (Vicente-Serrano et al., 2012). Additionally, Haslinger
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et al. (2014) found similar correlations between the Palmer
drought index and SPEI and streamflow data in their study in
Austria. The relationship between drought indices and system
responses may vary depending on the time scale and region’s
climate-catchment interaction (Veettil and Mishra, 2020). These
findings highlight the need to test and compare the regional
performance of different drought indices to relevant impact-
specific indices.

Drought shocks can have significant socio-economic impacts.
Therefore, understanding the influence of drought severity levels
on impact-specific indicators is crucial for regional economic
development. The decision tree approach quantifies critical
thresholds of drought indices that trigger a range of hydrological
and agricultural indicators (system response levels). The results
indicate that the threshold associated with each drought index
and the impact-specific indicator varies drastically within the
climate division. For instance, the PMDI threshold for streamflow
was roughly half the PHDI threshold for the same streamflow
measurement.
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