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A B S T R A C T   

Drought events can significantly impact water resources, agriculture, and socioeconomic sectors. Droughts are 
often quantified using numerous indices, which are widely used for forecasting, risk assessments, and spatio
temporal analysis. Quantifying the appropriate linkage between drought indices and their impact on hydro
logical and agricultural indicators will improve hazard communication with stakeholders and further advance 
impact-based forecasting tools. This study aims to quantify the thresholds associated with drought indices that 
can capture the intricate connection between droughts and impact-specific indicators. We investigated the 
performance of several drought indices, such as Palmer-based (e.g., PDSI, PMDI, and PHDI) and multiscale 
drought indices (e.g., SPI and SPEI) with the impact-specific indicators of hydrological (e.g., streamflow and 
reservoir level) and agricultural (soil moisture and crop yield) indicators. The ’threshold’ values associated with 
drought indices with impact-specific indicators are quantified using the classification and regression tree (CART) 
algorithm. Our results suggest that the decision tree approach is suitable for identifying critical thresholds of 
drought indices associated with a range of hydrological and agricultural indicators relevant to the stakeholder’s 
application to different sectors. The drought characteristics derived from selected indices broadly vary during 
extreme events. The results further indicate that the threshold associated with each drought index and the 
impact-specific indicator varies drastically within the same climate division. We argue that quantifying the 
drought indices thresholds can provide valuable information for impact-based monitoring and forecasting.   

1. Introduction 

Drought is a complex natural hazard, considered the costliest natural 
disaster affecting society and the environment (Mukherjee et al., 2018; 
Mishra and Singh, 2010). Climate change significantly alters the 
spatiotemporal distribution of precipitation, evapotranspiration, and 
soil moisture (IPCC, 2021; Sheffield et al., 2012; Veettil and Mishra, 
2020; Konapala et al., 2020). Such change in hydrologic fluxes will 
further enhance the impact of drought on different sectors. In addition, 
extreme drought cascades into multiple socio-environmental systems, 
such as wildfire (Long et al., 2021; Mukherjee et al., 2021), water 
scarcity (Veettil and Mishra, 2020; Veettil et al., 2022b), and loss of crop 
yield and livestock (Chawla et al., 2020; Rajsekhar et al., 2015), and 
conflicts (García-Herrera et al., 2010; Hsiang et al., 2013). 

Droughts are generally categorized into meteorological, agricultural, 
hydrological, and socioeconomic droughts (Wilhite, 2000; Mishra and 
Singh, 2010). These droughts are classified based on the extended 

anomalies (deficit) in precipitation as meteorological droughts, soil 
moisture as agricultural drought, and surface or subsurface water supply 
(e.g., streamflow and aquifer storage) as hydrological drought. Socio
economic drought occurs when the water supply from the regional water 
resources system cannot meet the water demands of economic goods 
(Rajsekhar et al., 2015). Quantifying the evolution of a drought event is 
often challenging because of the complex interaction between climate 
and catchment variables (Konapala and Mishra, 2020; Van Loon and 
Laha, 2015). Traditionally, different drought indices are commonly used 
as a proxy to study drought events (Pedro-Monzonís et al., 2015; Mishra 
and Singh, 2010). These drought indices are based on long-term 
anomalies using a combination of different hydrologic fluxes (Mishra 
and Singh, 2010). 

Over the past decades, over a hundred drought definitions and 
indices have been implemented in different parts of the world. Among 
them, the commonly used indicators include Palmer Drought Severity 
Index (PDSI, Palmer, 1968), Palmer Modified Drought Index (PMDI, 
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Bhalme and Mooley, 1979), Palmer Hydrologic Drought Index (PHDI, 
Guttman, 1991), Z-Index (ZNDX, Karl, 1986), Standardized Precipita
tion Index (SPI, Guttman, 1999; McKee et al., 1993), Standardized 
Precipitation and Evapotranspiration Index (SPEI, Vicente-Serrano 
et al., 2010), multivariate drought indes (Hao and AghaKouchak, 2013; 
Rajsekhar et al., 2015). These indices are commonly used for different 
types of drought investigation, such as drought forecasting (Cancelliere 
et al., 2007; Christian et al., 2021), spatio-temporal drought analysis 
(Veettil et al., 2022a; Mishra et al., 2021), non-stationary frequency 
analysis (Das et al., 2020), climate change impact assessments 
(Mukherjee et al., 2018; Kreibichet al., 2022), multivariate drought 
analysis, agricultural yields, and reservoir management (Łabędzki and 
Bąk, 2014; Wu et al., 2017; Gavahi et al., 2020). Developing drought 
monitoring tools using existing drought indices can be critical in man
aging water resources for different sectors (Wilhite et al., 2007, Mishra 
and Singh, 2011). 

Although the drought indices (e.g., SPI, SPEI, PDSI) are valuable and 
useful proxy for a variety of applications (e.g., monitoring, forecasting, 
risk assessments), there are several limitations associated with such in
dicators, such as:  

(a) Lack of integration of drought indices and impacts: existing drought 
indices are derived using a suitable probability distribution, and 
the drought events are classified (e.g., extreme, severe, moderate) 
based on standardized normal variates without capturing the 
actual drought impacts on different sectors (Mishra and Singh, 
2010, 2011).  

(b) Lack of proper communication with stakeholders: the numeric values 
associated with drought indices do not quantify the level of 
drought impacts on different sectors (e.g., agriculture, reservoir 
management); as a result, there is difficulty in communicating 
with stakeholders, for example, interpreting SPEI = 2 for a farmer 
(rancher) can be challenging.  

(c) Lack of impact-based forecasting tools: There are inconsistencies 
and uncertainties while comparing drought indices based on 
different variables and data sets for impact assessments. Gener
ating drought impact information ahead of time is a prerequisite 
for drought management is still missing, and the operational 
drought early warning systems should include drought hazards 
and impacts (Sutanto et al., 2019). A limited number of studies 
evaluated the links between reported drought impacts and 
drought hazards derived from SPI and SPEI (Blauhut et al., 2015; 
Bachmair et al., 2017; Stagge et al., 2015). 

To address the above limitations, we argue that the drought indices 
can be valuable for stakeholders by identifying appropriate ’thresholds’ 
that directly link with the drought impact-based assessment for 
advancing drought monitoring and forecasting. Quantifying the drought 
threshold can advance systematic estimation of the linkage between 
drought severity and drought impact associated with different types of 
droughts (e.g., hydrological and agricultural droughts) that are often 
connected through hierarchical and non-linear relationships. The spe
cific objectives of this study are 1) to investigate the relationship be
tween the multiple drought indices and hydrological and agricultural 
impact-specific drought indicators and 2) to identify the critical 
threshold that directly links drought indices and a range of hydrological 
and agricultural indicator variables. Impact-based indicators are quan
tified based on streamflow, reservoir level (hydrological response), soil 
moisture, and corn yield (agricultural response). We applied the classi
fication and regression tree (CART) concept for identifying drought 
thresholds that can be useful for the stakeholders and decision-makers to 
develop necessary action for minimizing drought impacts. 

The manuscript is organized as follows: section 2 discusses the study 
area and Data; Section 3 discusses the methodology, which includes an 
explanation of different drought indices (Palmer-based indices, stan
dardized precipitation index, and standardized precipitation and runoff 

index) and classification and regression trees; section 4 describes the 
results of the relationship between drought indices and the threshold 
limits of each drought index. Section 5 provides the discussion and 
concluding remarks. 

2. Study area and data 

The state of South Carolina (SC) is located in the Southeastern United 
States (US) with an area of 82,930 km2 (32,020 mi2) (Fig. 1). The pri
mary land cover of the state consists of forest (56%), agriculture (17%), 
and developed land (13.5%). South Carolina receives an annual average 
rainfall of 1220 mm of annual precipitation (Billah and Goodall, 2011; 
SCDHEC, 2010), and the coastal region receives relatively more rainfall 
during the summer, while the remaining state receives more rain during 
the spring. The distribution of monthly precipitation from 1950 to 2017 
in each climate division is shown in Fig. 1. The annual average tem
perature varies from 10 OC. in the mountains to 16 OC along the coast. 
Usually, January is the coldest month, and July is the hottest month in 
South Carolina. 

In recent decades, the state has been going through a periodic water 
shortage due to drought and growing water consumption (Veettil and 
Mishra, 2016). For example, the southeast United States experienced 
significant drought from 1965 to 1971, 1980 to 1982, 1985 to 1988, 
1998 to 2002, and 2006 to 2009 (Veettil and Mishra, 2016, 2020). The 
major rivers, such as Savannah, Pee Dee, Santee, and Edisto, play a 
critical role in meeting the state’s water demand. Most of these river 
basins share a boundary with neighboring states except the Edisto River 
Basin (Badr et al., 2004). 

There are 14 major reservoirs providing water for different sectors 
such as irrigation, domestic, and industry. Lake Strom Thurmond (area: 
290 km2), located in the Savannah River Basin, is the largest reservoir in 
the state. According to the SC Department of Agriculture, the major 
crops in the state are corn, soybean, cotton, peanuts, tobacco, and 
wheat, grown over 1.3 million acres. Four general soil groups found in 
the state are (1) loamy, clayey soils of the wet lowlands; (2) wet, sandy 
soils found in strips near the coast; (3) well-mixed soils of river flood
plains, underlain with sandy, loamy sediments; and (4) clayey, sandy 
soils of coastal-area salt marshes and dunes. 

2.1. Data 

We obtained two types of data sets, drought indices, and impact- 
based indicators. We evaluated the performance of five drought 
indices which include the Palmer Modified Drought Index (PMDI), 
Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought 
Index (PHDI), Standardized Precipitation Index (SPI), and Standardized 
Precipitation and Evapotranspiration Index (SPEI). The Palmer drought 
indices and the SPI data sets for the seven climate divisions were ob
tained from National Oceanic and Atmospheric Administration (NOAA). 
NOAA provides a long-term drought index at a divisional scale across the 
United States. The SPEI data obtained from Climatic Research Unit 
(CRU), available online at http://badc.nerc.ac.uk/data/cru/ (Mitchell 
and Jones, 2005) for the same period at a spatial resolution of 0.50. The 
streamflow records for the 18 locations were obtained from US 
Geological Survey’s (USGS) current water data for the nation. The 
reservoir level data for three major reservoirs (Hartwell, Russel, and 
Thurmond) were obtained from the US Army Corps of Engineers. The 
higher water level is observed in Hartwell Reservoir, with an average of 
200.25 m, and the lower level of the reservoir is observed in Thurmond, 
with an average of 108.8 m. The yearly corn-yield data for each climate 
division was obtained from USDA National Agricultural Statistics Ser
vice (NASS), available at https://quickstats.nass.usda.gov/. The 
observed soil moisture data was obtained from Soil Climate Analysis 
Network (SCAN) and US Climate Reference Network (CRN). The 
monthly drought indices are analyzed from 1950 to 2017. The impact- 
specific indicators used in this study are: (a) streamflow (1950 – 
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2017); (b) Three reservoirs level used in this study are Hartwell Reser
voir (1962 – 2017), Thurmond Reservoir (1954 – 2017), Russel Reser
voir (1985 – 2017); (c) four soil moisture stations used in this study are 
SM1 (1999 – 2017), SM2 (1999 – 2017), SM3 (2009 – 2017), and SM4 
(2009 – 2017), and (d) Corn yield data (1950 – 2017). 

3. Methodology 

3.1. Palmer drought indices: ZNDX, PDSI, PHDI, and PMDI 

Three Palmer’s drought indices considered in this study include 
Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought 
Index (PHDI), Palmer Modified Drought Index (PMDI), and Z-Index 
(ZNDX). PDSI can measure both wetness (positive value) and dryness 
(negative values) based on the supply and demand concepts of the water 
balance equation (Palmer, 1965), and it is useful for quantifying and 
comparing drought across different regions. PDSI is calculated based on 
temperature, precipitation, and the soil’s available water capacity 
(AWC) (Jacobi et al., 2013). Before calculating monthly values of PDSI, 
several parameters are derived from the input data sets by calculating 
climatically appropriate quantities for an existing condition. Other in
formation used in the Palmer indices are the soil’s available water ca
pacity (AWC) and the Thornthwaite potential evapotranspiration. 

ÊT = α(PE) (1)  

R̂ = β(PR) (2)  

R̂O = ϒP(RO) (3)  

L̂ = δ(PL) (4)  

P = ÊT + R̂ + R̂O − L̂ (5) 

where ET is the evapotranspiration, PE is the potential evapotrans
piration, R is the soil water recharge, PR is the potential recharge, RO is 
the runoff, L is the water loss from the soil, PL is the potential water loss 
from the soil, and P is the precipitation. The parameters α, ß, ϒ, and δ for 
each of the 12 months at each location are determined as follows, where 

the overscore quantity within parenthesis denotes the monthly average 
throughout the record. 

α = (ĒT)(P̄E)
−1 (6)  

β = (R̄)(P̄R)
−1 (7)  

ϒ = (R̄O)(P̄RO)
−1 (8)  

δ = (L̄)(P̄L)
−1 (9) 

These coefficients are used to compute the differences, d, for each 
month between the actual precipitation for the month, P, and the P̂ for 
the existing condition. Here d is regarded as moisture departed from the 
normal. 

d = P − P̂ (10)  

= P −
(
αjPE + βjPR + ϒjPRO − δjPL

)
(11) 

The standardized index is calculated to account for regional differ
ences (d), as shown below, 

Z = d*K (12) 

Here, Z is the Z-index (ZNDX), which is regarded as the soil moisture 
anomaly index. The ZNDX is a short-term drought measure without 
additional memory from previous months. Where K is a weighting factor 
for a given month used to adjust the soil moisture departures (d), to 
make it comparable among different areas and months. 

The value of the PDSI is computed from the moisture anomaly index. 
Also, PDSI may abruptly change from dry to near-normal conditions, 
even though rivers or groundwater storage may be considerably below 
their normal levels. The PDSI for the ith month is computed as follows, 

PDSIi = PDSIi−1 +
1
3
Zi − 0.103PDSIi−1 (13) 

The Palmer Hydrological Drought Index (PHDI) was derived from 
the PDSI to quantify the long-term impact of drought on hydrological 
systems. PHDI values tend to be negative for up to several months after 
PDSI has returned to normal levels (i.e., it usually returns to near-normal 

Fig. 1. Location of seven climate divisions within the state of South Carolina (USA). The boxplot represents the monthly precipitation patterns from 1950 to 2017 
across the selected climate divisions. The table provides the name of each climate division corresponding to the number. 
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levels more gradually than the PDSI (Karl et al., 1986)). Therefore, the 
PHDI is considered as a measure of long-term hydrological drought since 
streamflow, reservoir storage, and groundwater tend to stay below 
normal values for some time after a meteorological drought ends. 

The PMDI is a modification of the PDSI for real-time operational 
purposes (Jacobi et al., 2013), which is obtained from the sum of the wet 
and dry terms weighted by probability values. The PMDI has the same 
value as the PDSI during dry or wet spells but differs during transition 
periods. Overall, the PDSI and PMDI are appropriate for monitoring 
meteorological drought. 

3.2. Standardized precipitation index (SPI) 

The standardized precipitation index (SPI) introduced by McKee 
et al. (1993) is derived based on the long-term precipitation record. The 
following steps are used to derive SPI for a region: a) long-term monthly 
precipitation is extracted from available sources (e.g., in-situ, remote 
sensing), b) a suitable probability distribution (e.g., gamma distribution) 
is identified to capture the long-term precipitation distribution, c) once 
the probability density function is determined, the cumulative proba
bility of the precipitation time series at different time scale (e.g., 3, 6, 
9 months) is computed; and (d) the inverse normal Gaussian function, 
with mean zero and standard deviation one, is then applied to the cu
mulative probability distribution function, which results in the SPI. 
Positive SPI values indicate greater than median precipitation, and 
negative values indicate less than median precipitation. McKee et al. 
(1993) used the gamma distribution to transform precipitation series 
into standardized units. 

The advantages of using SPI are 1) simplicity: the SPI is based on 
rainfall; 2) its standardization, which ensures that the frequency of 
extreme events at any location and on any time scale is consistent; and 3) 
variable time scale, which is helpful for the analysis of drought dy
namics, especially the determination of onset and cessation (Angelidis 
et al., 2012). On the other hand, the length of data and different prob
ability distributions are likely to affect SPI values (Mishra and Singh, 
2010). 

3.3. Standardized precipitation and evapotranspiration index (SPEI) 

The SPEI (Vicente-Serrano et al., 2010) is calculated based on the 
precipitation minus potential evapotranspiration time series derived 
over multiple time scales. The procedure implemented to derive the SPEI 
series is almost similar to SPI. Like the PDSI, SPEI addresses the 
warming-related impacts on different hydrological and agricultural 
systems by considering the temperature variation (via potential evapo
transpiration) in the calculation. In contrast, PDSI lacks multiscale 
characteristics, which is essential for addressing the relationship be
tween temporal drought and hydrological/ agricultural systems. The 
SPEI addresses changes in evaporation demand caused by temperature 
fluctuations and trends. This is an advantage over the SPI, where the 
calculation is only based on the precipitation records. 

3.4. Statistical analysis 

We investigated the linear relationship between various drought 
indices and impact-specific indicators (i.e., streamflow, reservoir level, 
soil moisture, and crop yields) using Pearson correlation (r) analysis. 
Relationship values range from −1 to + 1, and there is no correlation 
between two variables when this value equals 0. For example, the 
Pearson correlation between reservoir level (RL) and drought indices 
(DI) is calculated as, 

r =

∑n
k=1(RL − RLm)(DI − DIm)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1(RL − RLm)
2∑n

k=1(DI − DIm)
2

√ (14) 

where RLm and DIm represent the average reservoir level and drought 

indices, respectively, and n is the number of data. Similarly, the Pearson 
correlation is calculated for streamflow, soil moisture, and crop yield. 

3.5. Classification and regression trees 

Classification and regression trees (CART) algorithms are used for 
classification and regression learning tasks. CART is a powerful 
approach commonly used in machine learning, where the data are 
partitioned into subsets with homogeneous values of the dependent 
variable (Krzywinski and Altman, 2017). The CART algorithm uses a 
hierarchical (tree structure), which includes a root node, branches, in
ternal nodes, and leaf nodes (James et al., 2013). The CART algorithm 
has several advantages: (a) the hierarchical structure of CART models 
mimics the heuristics of decision-making and is more intuitive than 
traditional regression models (Drakopoulos, 1994), (b) the model out
comes are better than standard regression models, specifically during 
the presence of non-linear relationships and interactions (Varian, 2014). 
Also, CART produces easy-to-understand models with any combination 
of continuous/ discrete variables. 

CART effectively represents the stepwise decision-making process of 
a complex system (Solomatine, 2002) by stratifying the predictor space 
into many simple regions based on the output variable (James et al., 
2013, Veettil and Mishra, 2020). This supervised learning algorithm is 
easy to interpret and can be considered one of the most appropriate 
approaches for solving complex problems (James et al., 2013). Further, 
splitting rules that divide the variable input space into various classes 
are characterized as a tree. Therefore, these approaches are known as 
decision (or classification) tree methods. In this tree-like structure, the 
nodes generate a threshold for each drought index, which can capture a 
range of drought indicator variables. The CART algorithms are useful for 
threshold analysis, where the training set (root node) is split into two 
based on the best attribute and threshold value. 

This study developed the CART models to identify the associated 
threshold between drought indices and impact-specific indicators (i.e., 
hydrological and agricultural indicators). A recursive partitioning al
gorithm, which classifies the space defined by the input variables (i.e., 
drought indices) based on the output variables (e.g., streamflow, soil 
moisture, and crop yield), is used for developing the CART. The decision 
trees for quantifying the threshold of drought indices associated with 
hydrological and agricultural indicators are formulated based on the 
following steps. (1) The response variables (i.e., hydrological and agri
cultural indicators) and input variables (i.e., drought indices) are first 
selected for a particular climate division of the South Carolina State; (ii) 
divide the input variable space X1, X2, …, Xp into J discrete and non- 
intersecting regions, such as R1, R2, …, RJ; and (iii) for every variable 
that falls into the region Rj, the tree makes the same prediction, which is 
the mean of the drought indicator values in the region Rj. The purpose of 
dividing predictor space into different regions is to reduce the residual 
sum of squares (RSS). The RSS is calculated as follows, 

RSSMin =
∑J

j=1

∑

i∈Rj

(
yi − ŷRj

)2
(15) 

Where, ŷRj 
is the mean response of the response variable (hydro

logical and agricultural indicator values) within the jth region. Gener
ally, considering every possible partition of predictor feature space into 
distinct regions is computationally challenging. Therefore, the decision 
tree algorithm utilizes recursive binary splitting, which works based on a 
top-down approach by successfully splitting the predictor space repre
sented by two new branches further down the tree. To perform the 
recursive binary splitting, we first selected the predictor Xj and the 
threshold ’s’ (equations (15) and (16) so that splitting the predictor 
space can lead to the maximum reduction in RSS, given by equation 
(15). 

R1(j, s) =
{

X
⃒
⃒Xj < s

}
(16) 
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R2(j, s) =
{

X
⃒
⃒Xj ≥ s

}
(17) 

The optimal thresholds are calculated based on the lowest RSS for the 
resulting decision tree. The tree output divides data into a series of 
nodes, and each node represents the range of hydrological and agri
cultural indicator variables in the form of a boxplot. The final tree 
provides thresholds associated with drought indices and significance (p- 
value) value. The threshold refers to the value at which a splitting 
condition is applied to partition the data into different branches. The 
threshold associated with each drought index may vary based on the RSS 
used to choose the split at each node. Therefore, this approach can 
quantify the threshold associated with each drought index and the 
corresponding range of hydrological and agricultural indicators using 
boxplot representation. 

4. Results 

4.1. Comparison between drought indices and the need for threshold 
approach 

The CART algorithm was implemented to quantify threshold values 
of drought indices and their association with impact-specific indicators. 
The drought indices considered in the present study are PDSI, PMDI, 
PHDI, ZNDX, SPI (SPI3, SPI6, and SPI12), and SPEI (SPEI3, SPEI6, and 
SPEI12) for the period 1950 to 2017. To investigate the limitations 
associated with the drought indices, first, we quantified drought char
acteristics, such as average drought duration (DD), average drought 
severity (DS), and drought frequency (DF) for each index and climate 
division (Table 1). We did not include climate division 1 (CD1) in our 

analysis due to its small geographical area, dominated by forests, and 
lack of impact-specific indicator data. Here, the drought characteristics 
are calculated based on the run theory (Yevjevich, 1967) for the events 
which exceed severity −1. Drought duration is the duration of consec
utive time series when the drought index is below the threshold value 
(-1). Severity is defined as the summation of the drought index below the 
threshold. Drought frequency can be defined as the number of occur
rences of drought events exceeding a certain threshold (Veettil et al., 
2018; Loucks and Van Beek, 2017). Here, we expressed drought fre
quency as the ratio of the total number of drought events to the total 
number of years (i.e., 67 years). 

It was observed that the drought indices provide different informa
tion based on their characteristics (DD, DS, and DF) within the same 
climate division. For example, in climate division 2, the DD, DS, and DF 
values for PDSI were 9.59, 15.54, and 0.51, respectively. Whereas in the 
case of ZNDX, it was 1.84, 1.95, and 2.19, respectively. Similarly, the 
multivariate indices showed a noticeable difference in their drought 
characteristics. Throughout 2010–2014, most of the southeastern 
United States went through a severe to extreme drought event (Rippey, 
2015). We demonstrated the difference between drought indices based 
on the drought durations calculated for climate divisions during the 
severe to extreme drought period (2010–2014) (Table 2). A significant 
variation in maximum drought duration within each climate division is 
observed. For example, the maximum drought duration in CD2 varied 
from three (SPI3 and SPEI3) to 34 (PHDI) months. These considerable 
disparities in drought characteristics will show distinct drought risk 
outcomes on various impact-specific indicators. The analysis based on 
Table 1 and Table 2 indicates that monitoring drought using different 
indices leads to various duration, severity, and frequency results. Also, 
multiple time steps of drought indices make it difficult to decide which 
time step best shows the drought condition. Therefore, quantifying the 
thresholds associated with drought indices for specific impact (i.e., 
streamflow, reservoir level, soil moisture, and crop yields) can advance 
the preparedness and planning to cope with the adverse effects of a 
regional drought event. The following sections describe the potential 
influence of drought quantified based on Palmer and multiscale indices 
on different hydrological (streamflow and reservoir level) and agricul
tural drought indicators (soil moisture and crop yield). Also, a trend 
analysis of drought indices and impact-specific indicators based on the 
Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) is performed, and 
the results are discussed in Appendix A. 

4.2. Thresholds associated with drought indices for streamflow 

Fig. 2 shows the boxplot illustrating the correlation coefficients be
tween the monthly streamflow and seven drought indices. The correla
tion is calculated for the 18 flow-gaging stations distributed in the 

Table 1 
The average drought duration (DD), severity (DS), and frequency (DF) for the 
selected climate divisions located in South Carolina, USA.  

DT ¼ -1 CD2 CD3 CD4 CD5 CD6 CD7 

PDSI DD  9.59  7.36  5.11  7.78  7.17  5.65 
DS  15.54  10.89  6.02  10.74  8.98  6.82 
DF  0.51  0.67  0.66  0.61  0.61  0.78 

PHDI DD  10.77  8.53  5.81  9.26  8.13  6.02 
DS  16.83  12.25  6.53  12.54  10.11  7.30 
DF  0.52  0.64  0.70  0.57  0.60  0.82 

ZNDX DD  1.84  1.83  1.63  1.91  1.75  1.67 
DS  1.95  1.89  1.53  1.73  1.60  1.48 
DF  2.19  2.24  2.16  2.16  2.16  2.30 

PMDI DD  6.38  5.63  3.90  5.07  4.64  4.23 
DS  10.58  8.18  4.53  7.07  5.74  5.47 
DF  0.75  0.85  0.88  0.88  0.91  0.97 

SPI3 DD  2.42  2.24  1.90  2.05  1.97  1.95 
DS  1.34  1.16  0.87  1.00  1.00  0.94 
DF  0.79  0.93  0.94  0.94  0.94  0.93 

SPI6 DD  3.81  2.89  2.87  2.80  2.58  2.95 
DS  1.95  1.50  1.41  1.29  1.53  1.52 
DF  0.55  0.69  0.57  0.69  0.64  0.61 

SPI12 DD  5.55  4.97  3.91  4.09  3.97  3.47 
DS  2.58  2.42  2.45  2.04  2.26  2.09 
DF  0.43  0.46  0.34  0.48  0.46  0.45 

SPEI3 DD  2.34  2.20  2.17  2.19  2.32  2.33 
DS  1.00  0.95  0.89  0.90  0.90  0.94 
DF  0.88  0.97  0.90  0.96  0.88  0.85 

SPEI6 DD  3.18  2.69  2.92  3.24  2.88  3.38 
DS  1.42  1.18  1.38  1.26  1.26  1.40 
DF  0.67  0.76  0.54  0.69  0.63  0.60 

SPEI2 DD  5.57  4.93  5.43  4.66  4.92  4.06 
DS  2.46  2.27  2.69  2.05  2.40  1.85 
DF  0.42  0.45  0.31  0.48  0.37  0.46 

*DT: Drought Threshold; DD: Drought Duration; DS: Drought Severity; DF: 
Drought Frequency. 

Table 2 
The maximum drought duration calculated based on different drought indices 
for selected climate divisions from 2010 to 2014.  

DT ¼ -1 CD2 CD3 CD4 CD5 CD6 CD7 

PDSI 25 34 23 34 25 23 
PHDI 34 38 33 36 33 32 
ZNDX 8 5 4 6 5 7 
PMDI 25 38 21 35 28 22 
SPI3 3 3 3 3 3 3 
SPI6 5 5 3 10 2 14 
SPI12 13 13 11 20 11 13 
SPEI3 3 5 4 3 4 4 
SPEI6 7 8 6 9 6 12 
SPEI12 4 11 20 26 20 20  
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different climatic divisions of the state. In general, it was observed that 
the correlation is higher for the Palmer indices, excluding the ZNDX, and 
PMDI tended to be higher among them. The median correlation value for 
PMDI was 0.62, followed by PHDI, with a correlation coefficient of 0.58. 
The SPI and SPEI showed a relatively low linkage between the stream
flow records. For instance, SPI3 showed a median correlation of 0.57, 
and SPI6 and SPI12 showed a median value less than SPI3. In the case of 
SPEI, SPEI3 showed maximum correlation with the streamflow, whereas 
SPEI12 showed the least correlation in the analysis. The ZNDX and SPEI 
showed a median correlation of less than 0.5 with the streamflow over 
the climate divisions. 

In the next step, we applied the classification and regression tree 
(CART) concept to identify the threshold associated with different 
drought indices for the monthly streamflow values. Using this approach, 
we generated four decision tree models for the monthly streamflow at 
the gage station USGS 02186000, located in the Northwest climate di
vision (i.e., CD2), which has minimum anthropogenic impact and is not 
influenced by large water storage structures. In addition, these stream
flow records showed the highest correlation, particularly for PHDI 
(0.66), PMDI (0.68), SPI3 (0.62), and SPEI3 (0.63). The model output of 
CART based on the drought indices that showed a higher correlation in 
the analysis is illustrated in Figs. 3 and 4. The figures summarize the 
process of estimating each drought index’s threshold and the streamflow 
range (i.e., response variable) with respect to the threshold. 

The correlation of PMDI with the monthly streamflow is higher than 
other drought indices considered in the analysis (Fig. 3a). Therefore, we 

initially investigated the threshold of PMDI on streamflow. The 
threshold of the first split in the decision tree is 0.7. For instance, if the 
PMDI is less than or equal to 0.7, the tree’s growth is towards the left. 
The tree advances towards the right side if it is higher than 0.7. Here 
p < 0.001 represents the significance of the correlation between the split 
based on PMDI and the monthly streamflow. The second split is based on 
a threshold of −2.51, followed by a threshold of −3.94, which indicates 
if the PMDI is less than or equal to −3.94, the monthly average 
streamflow will vary from 1 to 5 m3/s with a median value of 3 m3/s. 
Whereas, when the PDSI is greater than or equal to −3.94, the growth of 
the tree is towards the right, and it showed a variation of flow from 2 to 
6 m3/s. Node 6 splits the tree with a threshold of −1. For example, if the 
PMDI is less than or equal to −1, the monthly average streamflow will 
vary from 3 to 8 m3/s. Similarly, when the PMDI is greater than 0.7, the 
tree’s growth is towards the right side. Maximum flow is observed when 
the PMDI is greater than 3.18, where the flow varies from 6 to 18 m3/s 
with a median flow of 12 m3/s. 

A similar analysis is performed for the drought indices PHDI 
(Fig. 3b), SPI3 (Fig. 4a), and SPEI3 (Fig. 4b). The maximum threshold for 
PHDI, SPI3, and SPEI3 were 3.15, 1.45, and 1.59, respectively. The total 
number of nodes in the PMDI and PHDI decision tree output is 13, 
whereas the SPI3 and SPEI3 split the variable’s space to 11 (i.e., the total 
number of nodes = 11). In addition, the initial split of the tree is 1.48 
based on PHDI and 0.37 based on SPI3, and the SPEI3 decision tree 
showed the least value of the initial split in the analysis. 

Fig. 2. Boxplot showing the correlation coefficient between streamflow and drought indices. Overall 18 streamflow gaging stations are selected from all the seven 
climate divisions for the correlation analysis. 
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Fig. 3. The decision trees show the thresholds associated with drought indices (a) PMDI and (b) PHDI. The boxplot shows the streamflow (m3/s) based on different 
drought thresholds. The threshold analysis is performed for the gage station located in Northwest Climate Division, which is less affected by human influence. 
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Fig. 4. The decision trees show the thresholds associated with two drought indices (a) SPI3 and (b) SPEI3.  
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4.3. Thresholds associated with drought indices for reservoir level 

The three reservoirs considered in the analysis are Hartwell, Russel, 
and Thurmond, which are located in the Savannah River basin. The 
average storage level in the Hartwell, Russel, and Thurmond reservoirs 
is 200, 144.5, and 99 m, respectively. The Pearson correlation coeffi
cient between the drought indices and monthly reservoir storage is 
provided in Fig. 5. Unlike streamflow, PHDI showed the highest corre
lation with reservoir storage level, where Hartwell showed a correlation 
of 0.7, and Russel and Thurmond showed a correlation of 0.59 and 0.61, 
respectively. In addition, the Palmer-based drought indices (except the 
ZNDX) showed a higher correlation with reservoir storage. In the case of 
PMDI, the correlation was 0.67, 0.54, and 0.57 for the Hartwell, Russel, 
and Thurmond reservoirs, respectively. In addition, it is interesting to 
observe that the long-term drought indices (i.e., SPI12 and SPEI12) have 
a strong relationship with the reservoir level. For instance, SPI12 
showed a correlation of 0.68, 0.52, and 0.60 for the Hartwell, Russel, 
and Thurmond reservoirs, respectively. All the drought indices showed a 
higher correlation with the Hartwell reservoir storage. This may be 
because of the least influence of anthropogenic factors over the inflow to 
the reservoir. Russel reservoir storage, located downstream of the 
Savannah River Basin, showed less correlation with the drought indices. 

We quantified the threshold associated with drought indices for 
reservoir storage using the CART analysis. Here, we selected Hartwell 
reservoir data to perform threshold analysis as the anthropogenic ac
tivities have the least influence on its drainage area. Using the CART 
approach, we generated separate decision trees for the drought indices 
that are highly correlated with reservoir storage levels, which include 
PHDI, PMDI, SPI12, and SPEI12. The model output of CART analysis 
using PHDI is schematically represented in Fig. 6a. Here the primary 
split of PHDI is with a threshold value of −0.89. For example, if the PHDI 
is less than or equal to −0.89, the tree’s growth is towards the left, and 
the second and third split evolved at a threshold of −3.2 and −4.0, 
respectively. The result shows that if the PHDI is less than −4.0, the 
Hartwell reservoir level likely varies between 196 m and 199.5 m, with a 
median value of 198 m. Whereas, if the PHDI is higher than −4.0 and 
less than −3.2, the reservoir level will vary from 197 m to 201 m. The 
final split of the decision tree is with a threshold of 1.76, where we 
observed the highest range of reservoir storage levels. The decision tree 
generated for PMDI (Fig. 6b) initiated with a threshold of −2.02 

followed by −4.0. For instance, if the PMDI is less than or equal to −4.0, 
the Hartwell Reservoir level varies from 196 m to 199.8 m, with a me
dian of 198 m. In addition, the total number of nodes in the case of the 
PHDI decision tree was 13, whereas PMDI resulted in 11 nodes in the 
output tree. 

Similarly, the decision tree is generated for investigating the 
threshold of SPI12 and SPEI12 on the Hartwell reservoir level (Fig. 7a 
and 7b). The number of nodes in the SPI12 and SPEI12 decision trees 
was 11 and 9, respectively. In the case of SPI12, the first split of the 
decision tree was with a threshold of −0.36. The output tree shows that 
if the SPI12 is less than or equal to −1.75, the Hartwell reservoir level 
varies from 196 m to 198.5 m. The maximum threshold of SPI12 
observed in the decision tree was 0.38, suggesting that if the SPI12 is 
higher than 0.38, the reservoir level varies from 199.5 to 202.5 m. In the 
case of SPEI12, the initial split threshold was 0.564, followed by −1.367. 
For instance, SPEI12 is less than or equal to −1.367, and the Hartwell 
Reservoir level varies from 195 m to 201.5 m. The maximum SPEI12 
threshold in the analysis was 0.858. 

4.4. Thresholds associated with drought indices for soil moisture 

This section analyzed the relationship between the drought indices 
and observed soil moisture. The in-situ soil moisture for the Northeast 
and Southern Climate Divisions is obtained from the US CRN and SCAN 
databases. The Pearson correlation analysis is performed for the topsoil 
layer (5 cm) and the soil moisture below the root zone (100 cm). How
ever, soil moisture below the root zone is weakly correlated with all the 
drought indices. Therefore, we focused on the topsoil moisture in further 
analysis. 

Fig. 8 illustrates the correlation coefficient between the four soil 
moisture stations (i.e., SM1, SM2, SM3, and SM4) and drought indices. 
Here SM1, SM3, and SM4 are located in the Southern climate division of 
the state, and SM2 is located in the Northeast climate division. The 
correlation between the soil moisture and drought indices was relatively 
less than the streamflow and reservoir level analysis. However, we 
noticed a higher correlation for the soil moisture station SM1. For 
example, in the case of SM1, ZNDX and PMDI showed a value higher 
than 0.5. It was also observed that SM3 showed comparatively less 
correlation in the analysis. In the case of SPI and SPEI, short-duration 
drought showed a relatively better correlation with soil moisture. In 

Fig. 5. Correlation between Reservoir level with drought indices. A high correlation is observed for PHDI, SPEI12, and SPI12.  
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contrast, the long-duration drought showed less correlation with the in- 
situ data analyzed. 

The highest correlation between drought indices and soil moisture is 
observed for the soil moisture station SM1, located in the Southern 
climate division. Therefore, we performed the drought threshold anal
ysis using the decision tree between SM1 and ZNDX, PMDI, SPI3, and 
SPEI3, and the output of the tree is illustrated in Figs. 9 and 10. For 
example, in the case of ZNDX, the threshold was 0.49, indicating that if 
the ZNDX is less than or equal to 0.49, the topsoil moisture in the 
southern climate division varies from 2.5 to 20 percent, with a median 
value of 8 percent. Whereas, if the threshold is higher than 0.49, the 
topsoil moisture varies from 4.5 to 28 percent. 

4.5. Thresholds associated with drought indices for crop yields 

The crop yield of each climate division is represented based on the 
yearly corn yield data obtained from the USDA NASS. However, no clear 
records of corn crop management (e.g., growing season) are available 

for South Carolina State’s climate divisions. Therefore, we considered 
the growing season from 1st of March to 31st of October for all climate 
divisions, and the drought indices also averaged across the crop growing 
season. The boxplots based on the correlation coefficients between corn 
yield across the climate divisions and drought indices are shown in 
Fig. 11. Overall, the highest correlation (median) is observed for the 
ZNDX (0.28), followed by PDSI (0.27). In contrast, other Palmer-based 
indices showed relatively less correlation with the corn yield across 
the state. In the case of SPI and SPEI, the short-term drought showed a 
comparatively higher correlation value than SPI12 and SPEI12. 

We quantified the threshold associated with drought indices for corn 
yield. The correlation between corn yield and drought indices, partic
ularly ZNDX and PDSI, was relatively higher for the Northwest climate 
division. Therefore, the threshold analysis is performed for the North
west climate division. For instance, the PDSI showed a correlation value 
of 0.52, and ZNDX showed a correlation value of 0.47 for the Northwest 
climate division. The decision tree analysis is performed for PDSI and 
ZNDX, and the critical threshold of drought indices and corresponding 

Fig. 6. The decision trees show the drought index threshold of (a) PHDI and (b) PMDI. The boxplot shows the Reservoir level (Unit: Meters) for Hartwell Reservoir 
based on different drought thresholds. 
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Fig. 7. The decision trees show the drought index threshold of (a) SPI12 and (b) SPEI12. The boxplot shows the Reservoir level (Unit: Meters) for Hartwell Reservoir 
based on different drought thresholds. 
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Fig. 8. Correlation between soil moisture with drought indices. The topsoil moisture for the initial 5 cm is analyzed, and a higher correlation is observed for ZNDX, 
followed by SPEI3, PMDI, and SPI3 for station SM1. The soil moisture gaging stations SM1, SM3, and SM4 are in the Southern climate division, and SM2 is in the 
Northeast climate division. 

Fig. 9. The decision trees show the threshold of the drought index based on (a) ZNDX, (b) PMDI, (c) SPI3, and (d) SPEI3. The boxplot shows the soil moisture (Unit: 
Percentage) for soil moisture station SM1 based on different drought threshold. 
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yield is summarized in Fig. 11. It is observed that the PDSI split the corn 
yield with a threshold of 0.241. For example, when the PDSI of the 
climate division is less than or equal to 0.241, the tree’s growth is to
wards the left and results in a median corn yield of 6 Tonnes per Acre. 
Whereas, if the PDSI is greater than 0.241, the corn yield in the climate 
division increases to 10 Tonnes per Acre. In the case of ZNDX, the 
threshold was 0.022. Similarly, the threshold analysis is performed for 
SPI3 and SPEI3, and the output tree is illustrated in Fig. 11c and 11d. 

5. Discussion and concluding remarks 

For operational drought management, it is essential to identify the 
region-specific drought indices and their relevant thresholds for the 
stakeholders. However, to date, little effort has been made to explore 
which index (or indices) best represents drought impacts of a specific 
region using threshold concepts. Also, imprecise definitions, slow onset, 
and multiple socio-ecological interactions make drought quantification 
challenging and complicate its impacts on different sectors. This leads to 
inconsistency and uncertainty in communicating drought indices for 
early preparedness with stakeholders. This study addresses the knowl
edge gap by identifying the appropriate thresholds associated with 
drought indices and impact-specific indicators. We compared the per
formance of drought indices, such as Palmer-based (e.g., PDSI, PMDI, 
and PHDI) and multiscale drought indices (e.g., SPI, and SPEI) at 3, 6, 
and 12 months with the impact-specific indicators, such as streamflow, 
reservoir level, soil moisture, and crop yield. Palmer drought indices, 
which are widely used and implemented in the drought monitoring 
system (Zhou et al., 2022; Jacobi et al., 2013); SPI, recognized by the 
World Meteorological Organization as an effective drought monitoring 
tool for climate risk management (Hayes et al., 2012; Yaseen et al., 
2021); SPEI, which considers the potential evapotranspiration on 

drought severity quantifications (Vincente-Serrano et al., 2010; Liu 
et al., 2021). 

The SPI and SPEI are analyzed for multiple time scales (i.e., three 
months, six months, and 12 months). Here, the short-term multiscale 
indices (i.e., SPI3 and SPEI3) showed a relatively higher correlation with 
the streamflow than medium and long-term multiscale indices. This can 
be interpreted as the short-term fluctuations in the precipitation pattern 
likely to control streamflow variations for the selected watersheds. 
Whereas, long-term drought indicators (SPI 12 and SPEI 12) have a 
higher correlation with reservoir level, which suggests that the contri
bution of surface and baseflows to the reservoir storage are better rep
resented by these two drought indicators. The baseflow (delayed flow) 
may not be captured by the short-term drought indicators. In the case of 
soil moisture and crop yield, short-term drought indicators showed a 
relatively higher correlation. 

PMDI showed the highest correlation with streamflow, as they are 
derived based on the sum of the wet and dry terms weighted by prob
ability values. In the case of reservoir level, PHDI showed a relatively 
higher correlation. PHDI is a modified version of PDSI, and it is designed 
to capture longer-term dryness that is likely to affect water storage, 
reservoirs, and groundwater. PHDI responds more slowly to regional 
weather changes. The advantage of this delayed response is that while 
the weather may return to normal, a deficiency in lake levels may still 
exist. Palmer Z index responds to short-term conditions enabling it to 
capture rapidly developing drought conditions, as a result, this indicator 
likely to have a relatively higher correlation in the case of surface soil 
moisture and crop yield. 

The CART algorithm was used to identify the thresholds associated 
with drought indices and impact-specific indicators. The threshold refers 
to a splitting criterion used to divide the response variables (i.e., impact- 
specific indicators) based on the drought index at each internal node of 

Fig. 10. Boxplot showing the correlation between corn yield across the climate divisions and drought indices. Higher values of correlation are observed for PDSI and 
ZNDX. We considered the growing season from March to October for all climate divisions, and the drought indices also averaged across the crop growing season. 
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the tree. The drought thresholds create binary splits and create a dis
tribution of impact-specific indicators using a boxplot representation. 
This threshold can properly address the numerical value associated with 
each drought index and its influence on impact-specific indicators. The 
decision trees provide the mean of the responses as an output of the tree 
to generate the boxplots of impact-specific indicators associated with the 
drought indices threshold. The boxplots show an overlap in the resulting 
distribution (range) of impact-specific indicators based on the model 
performance analysis (Appendix B). For example, the trees developed 
for streamflow and reservoir level showed comparatively less overlap, 
resulting in more branches due to model accuracy. However, the median 
values showed explicit differences in each boxplot, resulting in all the 
impact-specific indicators. 

Many factors, such as supplementary irrigation, influence corn yield. 
Our study area is located in South Carolina, where rainfed agriculture is 
predominant. Also, rainfed crops are generally more sensitive to 
drought, and performing separate analyses for irrigated crops can 
separate the influence of drought on major crop yields (Lu et al., 2020). 
The following conclusions are drawn from this study,  

(a) The characteristics of drought vary substantially across different 
climate divisions. For example, in climate division 2, the average 
drought duration (DD) from 1950 to 2017 was 9.59 for the PDSI, 
while it was 1.84 for ZNDX and 6.38 for PMDI. The average 
drought severity (DS) also demonstrated wide variations within 
the climate divisions. For instance, in climate division 5, the PDSI 
showed a DS of 10.74, while it was 1.73 for ZNDX. The DS for 
SPI3 and SPEI3 was 1.0 and 0.9, respectively.  

(b) Drought indicators behave significantly differently during 
extreme drought conditions. The calculation of the maximum 
drought duration using different drought indices during the 2011 
drought showed significant differences within the climate di
visions. For example, In climate division 2, the maximum drought 
duration for PDSI and PMDI was 25 months during the 2011 
drought, while it was 34 months for PHDI and 8 months for 
ZNDX. Additionally, SPI3 and SPEI3 had the shortest drought 
duration during the 2011 drought in climate division 2. 

(c) The correlation between drought indices and impact-specific in
dicators also demonstrated significant variations in the analysis. 
The PMDI had the strongest correlation with streamflow, with a 
median correlation coefficient of 0.62, followed by PHDI, with a 
coefficient of 0.58. The correlation between SPI and SPEI and 
streamflow was relatively low. For example, SPI3 had a median 
correlation of 0.57, while SPI6 and SPI12 had a median value 
lower than that of SPI3. In the case of SPEI, SPEI3 showed the 
highest correlation with streamflow, while SPEI12 had the 
weakest correlation in the analysis. Unlike streamflow, PHDI had 
the strongest correlation with the reservoir storage level, with 
Hartwell showing a coefficient of 0.7, and Russell and Thurmond 
having a coefficient of 0.59 and 0.61, respectively. In terms of soil 
moisture and crop yield, ZNDX had the highest correlation.  

(d) Palmer indices generally showed improved performance 
compared to multiscalar index in the selected study area; how
ever, the indicator’s performances will vary across reason and 
corresponding impact-specific sectors. The multiscale indices 
strongly correlate with various system responses in different 
studies (Vicente-Serrano et al., 2012). Additionally, Haslinger 

Fig. 11. The decision trees show the threshold of the average drought index based on (a) PDSI, (b) ZNDX, (c) SPI3, and (d) SPEI3. The boxplot shows the crop yield 
(Unit: Tonnes per Acre). A maximum correlation is observed between the crop yield from Northwest Climate Division and corn yield. Therefore, the decision tree 
analysis is performed for Northwest Climate Division. 
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et al. (2014) found similar correlations between the Palmer 
drought index and SPEI and streamflow data in their study in 
Austria. The relationship between drought indices and system 
responses may vary depending on the time scale and region’s 
climate-catchment interaction (Veettil and Mishra, 2020). These 
findings highlight the need to test and compare the regional 
performance of different drought indices to relevant impact- 
specific indices.  

(e) Drought shocks can have significant socio-economic impacts. 
Therefore, understanding the influence of drought severity levels 
on impact-specific indicators is crucial for regional economic 
development. The decision tree approach quantifies critical 
thresholds of drought indices that trigger a range of hydrological 
and agricultural indicators (system response levels). The results 
indicate that the threshold associated with each drought index 
and the impact-specific indicator varies drastically within the 
climate division. For instance, the PMDI threshold for streamflow 
was roughly half the PHDI threshold for the same streamflow 
measurement. 
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