Check for
Updates

Temporal Behavior Trees: Robustness and Segmentation

Sebastian Schirmer
DLR German Aerospace Center
Braunschweig, Germany
sebastian.schirmer@dlr.de

Johann C. Dauer

Jasdeep Singh
University of Colorado Boulder
Boulder, USA
jasdeep.singh@colorado.edu

Bernd Finkbeiner

Emily Jensen
University of Colorado Boulder
Boulder, USA
emily.jensen@colorado.edu

Sriram Sankaranarayanan

DLR German Aerospace Center CISPA University of Colorado Boulder
Braunschweig, Germany Saarbriicken, Germany Colorado, USA
johann.dauer@dlr.de finkbeiner@cispa.de srirams@colorado.edu
ABSTRACT 1 INTRODUCTION

This paper presents temporal behavior trees (TBT), a specification
formalism inspired by behavior trees that are commonly used to
program robotic applications. We then introduce the concept of
trace segmentation, wherein given a TBT specification and a trace,
we split the trace optimally into sub-traces that are associated with
various portions of the TBT specification. Segmentation of a trace
then serves to explain precisely how a trace satisfies or violates
a specification, and which portions of a specification are actually
violated. We introduce the syntax and semantics of TBT and com-
pare their expressiveness in relation to temporal logic. Next, we
define robustness semantics for TBT specification with respect to a
trace. Rather than a Boolean interpretation, the robustness provides
a real-valued numerical outcome that quantifies how close or far
away a trace is from satisfying or violating a TBT specification.
We show that computing the robustness of a trace also segments
it into subtraces.Finally, we provide efficient approximations for
computing robustness and segmentation for long traces with guar-
antees on the resultWe demonstrate how segmentations are useful
through applications such as understanding how novice users pilot
an aerial vehicle through a sequence of waypoints in desktop exper-
iments and the offline monitoring of automated lander for a drone
on a ship. Our case studies demonstrate how TBT specification
and segmentation can be used to understand and interpret complex
behaviors of humans and automation in cyber-physical systems.

KEYWORDS

Cyber-physical system, segmentation, temporal behavior trees, tem-
poral logic, offline analysis

ACM Reference Format:

Sebastian Schirmer, Jasdeep Singh, Emily Jensen, Johann C. Dauer, Bernd
Finkbeiner, and Sriram Sankaranarayanan. 2024. Temporal Behavior Trees:
Robustness and Segmentation. In 27th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC °24), May 14-16, 2024, Hong
Kong SAR, China. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3641513.3650180

This work is licensed under a Creative Commons Attribution International
4.0 License.

HSCC °24, May 14-16, 2024, Hong Kong SAR, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0522-9/24/05
https://doi.org/10.1145/3641513.3650180

Behavior trees are increasingly popular in robotic applications.
They were originally used in computer games to animate complex
sequences of actions for characters. A behavior tree is a program-
matic specification of a plan or sequence of possible actions by an
autonomous agent. It includes operators that enable us to specify a
sequence of sub-plans executed one after the other; falling back to a
different sub-plan if the current sub-plan encounters an unexpected
failure; repeating a sub-plan multiple times; and conducting many
sub-plans in parallel until the number of the sub-plans that have
succeeded exceeds a specified lower limit [9]. Figure 1 depicts such
a behavior tree for an autonomous landing of an unmanned aerial
vehicle (UAV) on a ship deck. It specifies a sequence of operations:
(1) move the UAV into position relative to the ship; (2) maintain
this position for sometime; (3) move above the touchdown point;
and (4) descend onto the ship.

In this paper, we use behavior tree operators in a specification
language. Our goal is to describe an acceptable sequence of states/ac-
tions in a manner identical to popular temporal logics such as linear
temporal logic (LTL), metric temporal logic (MTL), and signal tem-
poral logic (STL). Temporal logics have been widely adopted as
a specification language for cyber-physical systems (CPS) and ro-
botics. It forms the backbone for specifying desired behaviors in
synthesizing controllers [8, 19, 25, 26, 32]. Nevertheless, the diffi-
culty of writing complex specifications in temporal logic is well-
known [18]. Our formalism called temporal behavior trees (TBTs)

Seq

/
Seq

%ﬂ '¥ Descend @
Move to position @ Stay in position @ Move to touchdown @

Figure 1: A behavior tree that implements a maneuver for
landing on a ship deck. It uses two Sequence operators to
execute its children from left to right.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3641513.3650180
https://doi.org/10.1145/3641513.3650180
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641513.3650180
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641513.3650180&domain=pdf&date_stamp=2024-05-14

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

use the common behavior tree operators from the literature (se-
quence, fallback, parallel, kleene, and timeout) with the leaf nodes
of the behavior trees decorated by temporal logic formulas, which
are given finite trace semantics. We demonstrate that the resulting
formalism is strictly more powerful than standard temporal logic
with Next, Globally, Finally, and Until operators.

Next, we present the robustness semantics for TBTs in line with
the robustness semantics for standard temporal logics introduced
by Fainekos and Pappas [13], Donze and Maler [12] and Rizk et
al [33]. We interpret a trace under a behavior tree as yielding a
real-valued robustness wherein a non-negative value of robust-
ness indicates satisfaction of the trace by the specification while
a violation corresponds to a negative robustness. We also show
that robustness leads to a segmentation of the trace into subtraces
wherein one associates the subtraces with corresponding subtrees
of the TBT. Figure 2 shows a segmentation for the maneuver de-
picted in Figure 1. Assume that the robustness of segment (1) is
positive, whereas that for segment (2) is negative. Therefore, we
conclude that the UAV moved to the target position as required, but
then failed to stay in position. Such a segmentation is very useful
in our analysis of the trace: for a trace that violates a specification,
it shows specific portions of the trace violated which sub-parts
of the overall specification, potentially leading us to diagnostic
explanations. It also allows us to rank these failures in terms of
the robustness from worst to best. Similarly, for a satisfying trace,
we can examine which parts of the trace came closest to violating
the corresponding parts of the specifications. Although the exact
algorithm for computing robustness and segmentation is at most
cubic time in the size of the trace and linear in the size of the tree,
we find that in practice this is forbiddingly expensive for long traces
with hundreds or thousands of samples per second. We present
two systematic approaches to speeding up the computations by
orders of magnitude: (a) sub-sampling of the trace using a carefully
calculated stride length that preserves the Boolean semantics but
approximates the robustness; and (b) a lazy evaluation scheme to
rapidly compute an approximate answer.

We show that segmentation is very useful in CPS applications
through two empirical case studies based on data from realistic
applications. In one study, we examine a detailed TBT specification
of a UAV landing on a ship through one of four possible maneuvers,
each involving multiple stages to ensure a safe and robust landing
even in the presence of disturbances. We also present the use of
TBTs and segmentation to analyze human operator performance
in flying a UAV inside a desktop-based simulation environment.
By specifying the task as a TBT, we demonstrate how segmenta-
tion reveals surprising patterns in the data that were not apparent
through a whole trace analysis.

1.1 Related Work

Behavior trees (BT) first were invented to enable modular Al in
computer games [23], but have become increasingly popular in
robotics [1, 15, 20, 22, 35, 38] and beyond [21, 24, 29, 40]. There
are several properties that make them attractive including compos-
ability, reactivity, and human-readability. The purpose of behavior
trees is to specify complex behaviors and execute them. Temporal
behavior trees, introduced here, are complementary and can be

Schirmer et al.

—— Move to position (1) —— Descend (4)
—— Ship

Maneuver: at position
Stay in position @ Maneuver: above ship

—— Move to touchdown

25

20

15 E
~N

10

5

0
200
400

*m) 600

800 0
1000

Figure 2: Segmentation result of a UAV 45-Degree ship deck
landing maneuver. (1) The UAV starts with moving in posi-
tion, then (2) it stays for the required amount of time there,
before (3) moving above the touchdown, and (4) finally de-
scending. The trajectory of the ship is the purple curve at
the bottom with z = 0. Dotted lines represents best positions
relative to the ship, i.e., left diagonally behind the ship and
above touchdown. The various segments are shown in differ-
ent colors with numbers alongside. These are automatically
computed by the algorithm described in this paper.

retrofitted to BT. Their purpose is to specify successful or failed
behavior properties that can be used to segment or monitor a trace.

TBTs defined in this paper have semantics over finite traces.
Classically, however, temporal logics have their semantics defined
over infinite traces. When it comes to finite traces, the main concern
is how to handle open obligations at the end of the trace. One
approach is to provide a multi-valued semantics such as the one
based on so-called good, bad, and ugly prefixes by Bauer et al [3].
Our approach is more closely related to the semantics provided by
De Giacomo and Vardi [10]. In fact, the regular language operators
presented in that paper are identical to some of the operators used
in TBT. In this paper, we additionally consider robustness semantics
and define and solve the segmentation problem.

The notion of robustness of a trace with respect to temporal logic
specification for infinite length trace has its origins independently
in the work of Fainekos and Pappas; Donze and Maler; and Rizk et
al [12, 13, 33]. The problem of defining and computing robustness
of finite-length traces has been studied as well. Deshmukh et al [11]
provide a robust interval semantics that maps a finite length trace
(seen as a prefix of an infinite trace) and an STL formula to an
interval over robustness (/,v) such that for any suffix of the trace,
I is the greatest lower bound and v is the lowest upper bound in
respect to its robustness value. Our robust semantics of TBT is
real-valued, but works over finite traces and introduces robustness
for operators that make TBT more expressive when compared to
standard temporal logics. The sequence operator for TBTs is similar

Temporal Behavior Trees

to the “” operator in regular linear temporal logic [27] and the
“chop operator” in interval temporal logic (ITL) [7]. These ideas go
back to the work of Halpern, Manna, and Moszkowski [16] and later
further developed by many others, including Harel & Peleg [17]
and Rosner & Pnueli [34]. The tool Tempura ! by Moszkowski and
others is an interpreter for executable ITL and can be used similar
to a programming language whereas we retrofit temporal logics to
executable behaviors trees [30]. Therefore, this paper goes in the
reverse direction: we turn a framework used for specifying plans
into a temporal logic for specifying properties.

Trace segmentation is closely related to timed pattern matching
[39]. However, while timed pattern matching identifies all segments
that satisfy the pattern criteria, segmentation finds the optimal
trace assignment, which may encompass segments that violate its
specification. The pattern matching algorithm, as outlined in [39],
uses a bottom-up zone construction. In contrast, our segmentation
algorithm utilizes dynamic programming in a top-down fashion.

2 TEMPORAL BEHAVIOR TREES

In this section, we recap the definition of signal temporal logic
(STL), the notion of robustness of a formula to a trace. Next, we
define temporal behavior trees (TBTs) by providing their semantics.
We show that temporal behavior trees are strictly more expressive
than STL thanks to the “sequence” and Kleene operators [41].

A trace is a finite sequence of observable states of a system:
0(1),...,0(N), wherein o (i) denotes the state at time i € [1, N].
We write the length of the trace as |o]|. A trace with |o| = 0 is the
empty trace. Given trace o, we denote o[/ : u] as a slice of the trace
from “offsets” I to u (inclusive), as follows:

o(l+1), - ,0(min(u+1,N)), ifl<uandl <N
o[l:u] =

empty trace otherwise

For convenience, let [l :] = o[l : N — 1] and o[: u] = o[0 : u].

ExaMmpLE 1. Note that offsets begin with 0 and end at |o| — 1. For
instance, o0 : 3] = o(1),...,0(4) and 5[5 :] = 6(6),...,0(N).

Note that many real-time logics treat time as a continuous vari-
able and each state has a corresponding time stamp. Here, we will
simply assume that the trace states occur at regular time intervals
and thus o (i) is associated with some time ¢ = it for a time period
7 > 0. The precise value of 7 is not required.

ExAMPLE 2. The state 0(i) : (Xuav, Yuavs Zuavs Xs» Us, Zs, hs) for
1 <i < N describes the positions of a UAV and a ship, wherein the
subscript s denotes the state of the ship, uav to those of the UAV, and
hg is the heading angle of the ship.

An STL formula extends propositional logic by temporal oper-
ators that access future trace events. Let us define a set of atomic
propositions AP = {p1, ..., pm} where (for the sake of convenience),
each p; is associated with a function f; that maps states to a real
number such that o | p; for a state o iff f;(c(1)) > 0.

Thttp://www.antonio-cau.co.uk/ITL/itlhomepagesu14.html

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

DEFINITION 1. STL formulas over AP have the following syntax:

¢ =AP « Atomic propositions
@ |@A@|@Ve « Boolean combinations
| Or1u1 (@) «— Eventually with interval
| O[1,1 (@) « Globally over interval
Lo Uppu) @ « Until with interval

Note that some of the formulas are indexed by an interval (I, u]
wherein0 < | < u < co. We write 0(¢) as a shorthand for ¢[¢,c0) (#).
and similar conventions apply for G(¢) and p1U@2. The “next-state”
operator O(¢) is syntactic sugar for 01,11 (¢).

In general, STL formulas are defined over infinite traces, but in
this paper, we will work with finite traces, which are slices of the
form o[i : j] over a given original trace o. There have been many
approaches to provide finite trace semantics for temporal logics
[4, 14]. They differ on how they treat the truth of a formula at the
end of the trace. We will follow a simple approach along the lines of
De Giacomo and Vardi [10], suggested by the standard translation
of temporal logics into first-order logic [5]. The satisfaction of an
STL formula ¢ by a finite trace o is denoted o |= ¢. If ¢ is an atomic
proposition p; then we have

i(o(1)) =20, if]
ok piiff file(1)) 20, f|0|>0
false, if o empty.

If@: 0y e1theno | Oy 01 iff 3i€ [Lul, ofi:] F ¢1. Recall
that o[i :] is the empty trace if i > |o|. Likewise, for ¢ : Oy, 01,
we have o | O, 1 iff Vi € [Lu], ofi ;] E ¢1. Finally, for
¢ : 01U 02, we have o | @1 U, 02 iff
Jie[Lul, (Viel[oi-1], olj:]F ¢1) A oli:] Fea.

Note that, unlike the semantics for infinite traces, the semantics
of STL for finite traces can be non-intuitive especially when the
truth of formulas involves reasoning beyond the end of the trace.
For instance, the formula Op is always false for an empty trace,
whereas, = O —p is always true. ¢¢ in a finite trace semantics
specifies that ¢ becomes true before the trace ends. O¢ specifies
that ¢ remains true until the trace ends.

EXAMPLE 3. Recalling the definition of a state from Ex. 2, the STL
formula0Q[g 5| Ppenina represents that the position of the UAV should
eventually be 20 meters behind the ship, and remain in that position
for5 time steps. The function fyepina allows two meters deviation from
a point that is 20 meters behind the ship based on its current heading

angle: fyehing = 2= ‘/ ((ys+20vig:flgozfﬁzji(iBZZSS;g;()ZZ:Z)ZZJ) - zuao)?
We define the robustness of an STL formula on a trace as a numer-
ical value that we provide to a trace with respect to an STL formula.
Non-negative values of robustness denote that a trace satisfies a
property whereas negative values indicate the reverse. Finally, the
magnitude of the robustness provides us with a measure of how
“far away” a trace that satisfies the formula is from violating it, or
vice-versa [12, 13]. Robustness measures are useful for a variety of
applications, including run-time monitoring and falsification [2].

http://www.antonio-cau.co.uk/ITL/itlhomepagesu14.html

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

DEFINITION 2 (STL RoBUST SEMANTICS). The robustness of an
STL formula ¢ over a trace o, denoted p(¢, o), is defined as follows:
0o, if trace o is empty

* lpi o) = {ﬁ(a(l)), otherwise

p(=¢, o) = —p(p,0),

p(1 A 2, 0) = min(p(¢1, 0), p(@2,0)),
p(@1V @2, 0) = max(p(¢1,0), p(¢2.0)),
p(O[Lu) (), 0) = ax. p(o,oli:]),
p(@[1u) (@), 0) = ,mlin] p(o,ali]),

i€[Lu
(p(p2,ali:]),

jel[%,liril] p(polj:])

p(¢1 Upry) @2, 0) = max min

i€[Lu]
THEOREM 1. For trace o and STL formula ¢, o |= ¢ iff p(¢,0) = 0.

Proor. We prove the theorem by structural induction on ¢. The
full proof'is given in Appendix A. O

2.1 Syntax and Semantics

We will now define the notion of a temporal behavior tree (TBT),
a formalism that borrows operators from behavior trees. A TBT
uses operators known from behavior trees that control the order of
events and has temporal properties in their leaf nodes.

DEFINITION 3 (SYNTAX OF TEMPORAL BEHAVIOR TREES). Let ¢ be
an STL formula as described by the grammar in Def. 1. We construct
a temporal behavior tree using the following syntax:

T = Leaf(p),
| Fback([7,..., 7)),
| Pary ([7,...,T]), MeN
| Seq([7---.TD),
| Touts(7), teN
| Jen(T), n € NU {eo}

Informally, an STL formula at a leaf node specifies that the trace
must satisfy the formula. Likewise, Fback([77, ..., 7¢]) mimics the
semantics of a “fallback” node in a behavior tree: at least one of
the subtrees 71, ..., 7¢ must eventually be satisfied by the trace.
Parp([77, ..., T¢]) denotes a parallel operator that specifies that
at least M distinct subtrees must be satisfied simultaneously by the
trace 0. Seq([71,-- -, Tx]) is a sequential node that denotes that
o must be partitioned into k parts (some of which may be empty)
01;02;03; - -+ ; 0 such that o; £ 7;. Tout;(7) is a timeout node
denoting the subtree 7~ must be satisfied by a prefix of the trace
of size t. %,(7) is a repeat operator node denoting ¢ must be
partitioned into k < n parts oy; 0; 03; - - - ; 0 such that o; = 7.

The presence of the Seq and % operators makes temporal be-
havior trees strictly more expressive than STL (see Theorem 3).
Formally, the satisfaction of a TBT specification 7~ by a trace o,
denoted o | 7 is as follows:

o If 7 : Leaf(¢) then o £ T iff 0 £ ¢, wherein the semantics
of temporal logic have been defined earlier.

e If 7 : Fback([77,...,7¢]) then there existsa j € {1,...,k}
and an i € [0, |o] — 1] such that o[i :] | 7;. Le., at least one
of the children is eventually satisfied by o.

Schirmer et al.

o | Parp([71,. .., Tg]) iff there exists M distinct indices
it,....ip0 € {1,...,k} such that o = 7;,, 0 E 75, -+, and
o E Tiy-
o | Seq([7q, ..., Tn]) iff there exists distinct indices i1 <
ig <...<ip-1suchthatol: i1] E 71, 0li1+1:i2] E T2,
oo, olinm1+ 1] E T
o E Touty(7) iffo[: t —1] E T ift < |o|oro T if
t > |o].
o %n(7)iff 3k < nindices iy < iy < ... < i such that
ol:i) ET, olit+1:i2l ET, -+, olip+1:] ET.

We now provide some simple examples of TBTs to show how
the modularity of TBT helps in practice.

ExaMPLE 4. Let 7 be a TBT that adds formulas to the leaf nodes
of the BT depicted in Figure 1. We can add requirements “on top of”a
tree, e.g., Pary([Leaf (O —obstacle), T'] to specify that obstacles are
avoided during landing or Fback([Tout;(7), Leaf(contingency)])
to state that we need to land within t time units or otherwise a
contingency needs to be activated. Further, we can add new nodes
within T, e.g., we can replace the leaf node 4, referred to as L, with
Seq([Leaf(Opq,;above(tp)),L]) to make sure that we also remain
above the touchdown point for a period of time t before descending.

Let us denote maxps([i1, . . ., in]) as the function that outputs the
Mth largest number in the list [iy, . . ., ip] if M < n,and —c0 if M > n.
Also, for simplicity, in the following we rewrite Seq([77, - .., T¢])
as a sequence Seq([71, (Seq([72, - - - ,Seq([Tx—1,T¢])))) for k > 2.
Note that Seq([77]) is the same as 7.

DEFINITION 4 (ROBUSTNESS SEMANTICS OF TBT). The robustness
of a temporal behavior tree T on a finite execution trace o, denoted
p(T,0), is defined as shown in Figure 3. As in the case of STL formulas
(Def. 2), it evaluates a given TBT for a trace into a real number, which
denotes the “distance to satisfaction” of the specification by the trace.

We now prove that the robustness p for a TBT corresponds to
the notion of satisfaction defined above in the following manner.

THEOREM 2. For any trace o and TBTT, 0 E T iff p(T,0) > 0.

Proor. The full proof of the theorem by structural induction on
7 is shown in Appendix B. O

STL and TBT are not equivalent in terms of expressiveness.
Whereas any property in finite trace STL can be trivially expressed
as a TBT with a single leaf node, the converse does not hold.

THEOREM 3. There exists properties of finite traces specified using
TBT that cannot be written as a finite trace STL formula.

Proor. Itis well-known that temporal logics based on the ¢, O, T
and O temporal operators cannot express the property “p is true in
all odd indexed states of a sequence”, but TBT can. Pierre Wolper [41]
proves this for LTL over infinite traces. Wolper’s proof carries over
to the version of STL used in this paper. Furthermore, the STL for-
mulas subscripted by finite intervals such as Oy ,1¢ can be written
systematically using finitely many nestings of the next operator
O and the unbounded O operator. Similar considerations apply to
formulas of the form ¢[;,,1(¢) and ¢1U[;,,)¢2. Further, the proof
extends to finite trace semantics as it only requires a finite prefix
p that is sufficiently large, i.e, number next operators [< i.

Temporal Behavior Trees

p(Leaf(p), o) = p(p,0)
p(Touts(7),0) = p(T,0[: min(|o| — 1,t — 1]))

p(T1,0[: ul),
p(T2,0lu+1:])

max min

p(Seq([71, T2]), o) =
uel0,|o|-1]

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

p(Fback([71,...,7])), 0) = max max p(T;,0li:])
jelLk]iglo,|o]-1]
p(Pary([T1, ..., 7)), 0) = maxp (p(T1,0), -+, p(Tg.0))

p(seq([7—’ *n—l (‘7-)])$ 0')5
00, otherwise.

iflo] >0An>0

p(kn(T),0) = {

Figure 3: Definition of robustness semantics for temporal behavior trees.

However, the even property can be expressed as

* o (Seq([= O true A p, = O truel))

Note that = O true enforces Seq to chop the trace after reading one
position, as discussed in Sec. 2.1. The Y -operator repeats this until
reaching the end of the trace. O

2.2 Computing Robustness

We will now provide a dynamic programming approach to compute
the robustness efficiently. This will be used to define the notion of
trace segmentation in the next section. For convenience, let o be
the given original trace.

DEFINITION 5 (DYNAMIC PROGRAMMING FOR TBT ROBUSTNESS).
The robustness of a temporal behavior tree T on a finite execution
trace o can be implemented in a dynamic programming fashion by
computing ps (T, 1, j) = p(T,0li: j]), as shown in Figure 4.

The computed robustness values that are stored in a Memo-
Table T can be accessed by T(7, i, j) where 7 is a (sub-)TBT, i is
the beginning of the segment, and j its end. The size of the table is
O(N?|77)) given a trace of size |6| = N. However, the time taken
to fill out each entry in the memo table can be O(N) in the worst
case (see the definition of the Seq node). It also depends on the time
taken to compute the robustness of the temporal logic formulas at
the leaf, which we assume will take time O(N?|¢|), for a leaf node
Leaf(¢), wherein |¢| denotes the size of the formula. Assuming that
|77| includes the size of the temporal logic formulas at the leaves,
as well, we can bound the execution time as O(N3|77).

LEMMA 1. Forany trace o and TBT T, the value of p5(T, 0, |o|—1)
from Definition 5 is the same as p(T, ¢) from Definition 4.

po(Leaf (@), i, j) = p(p,oli: j]) (Cf. Definition 2),

po (Fback([71, ..., k1), i, j) = max max (po(711,7)),
le[1,k] i’ €[i,j]
po(Parp ([71,..., Tie 1), i, j) = maxyr (po (71,4,), - - -, po (Thes 1, 4)),

po(Seq([T1, T21). 4,)) = renlgaxjmin(po(fi{,i,u),po(%,u+1,1'))
ue€li,j

po(Tout (7). 4, j) = po (T i, min(j, i+ 1 — 1)),

Pa(Seq([T, *n—l(T)])>i>j),
0o, ifn=0o0ri>j

ifn>0andi < j

po(Kkn(T),i,j) = {

Figure 4: Robust semantics of temporal behavior tree ex-
pressed in a form suitable for dynamic programming,.

Proor. We prove by induction on the structure of the tree, that
for any two indices i, j, we have ps (7,1, j) = p(T,0li : j]). Base
case is for leaf formulas and formulas of the form %, (7") forn =0
or i > j.In all cases, a comparison of the cases in Figures 3 and 4
shows that they yield the same values. The proof compares each
node type to show that if p, and p agree on the children of a node,
they also agree on the node itself. Comparing Figures 3 and 4 shows
that they yield the same values. O

3 SEGMENTING TRACES

In this section, we define the problem of segmenting traces with
respect to a TBT specification. We show the connection between
segmentation and the robustness semantics as in Definition 4. The
dynamic programming formulation that computes robustness also
computes the segmentation of a trace. We briefly describe how
the segmentation can be useful, with further demonstrations of
usefulness provided in Section 4.

We begin by defining the segmentation of a trace with respect
toa TBT 7. Informally, given a TBT 77, the segmentation of a trace
o splits it into multiple subtraces of the form o[i : j] such that
(a) every subtree of 7~ is associated with a subtrace; and (b) the
satisfaction and robustness of the specification 7 by the trace o can
be linked to the satisfaction and robustness of each of the subtraces
oli: j] associated with the corresponding subtree 7. We recall the
definition of robustness p(7, o) from Definition 5 and Figure 4.

DEFINITION 6 (SEGMENTATION OF A TBT). The segmentation of a
trace o with respect to a TBT T is a graph G = (V, E) whose vertex
set V consists of triples of the form

V ={(7.i,j) | T isa subtree of T, 0 < i,j < |o] -1},

and edges E C V X V such that the following conditions hold:

(1) (7,0, |o| — 1) € V corresponding to the entire tree T and the
entire trace from indices 1 to |o].

(2) If a node v is of the form (Fback([71, ..., T¢]).i, j) € V, and
i < j then there is precisely one subtree index 1 € [1,k] and a
single trace index i’ € [i, j]| such that the edgev — (7,1, j) €
E.

(3) If a node v of the form (Seq([71, 72]), i, j) € V, there exists a
unique index u such that (71,i,u) € V, (T2,u+1,j) € V and
the edgesv — (71,i,u) andv — (Tz2,u + 1, j) belong to E.

(4) If a nodev of the form (Parp(([71, ..., Tx]), i, j) € V, we have
precisely M distinct indicesly, ..., Iyr € [1, k] such that the set
S={(T,,5 7)., (-1, j)} €V and edges from v to each
of the nodes in S belong to E.

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

(5) If a node v of the form (Tout;(71),i, j) € V, then the node
o' = (71, i,min(j, i+t — 1)) € V with an edge from v tov’ in
E.

(6) Ifv is of the form (¥n(7),i,j) € Sandn > 1 andi < j,
then either (a) the node v’ = (7,1, j) € V with an edge from
v to v’; or (b) there exists indices u; < ... < uy for some
1 < k < n such that the set of nodes S = {(7, i,u1), (T, u1 +
Luz),...,(T,ux +1,j)} €V have edges in E from v to each
node in S.

(7) The set of vertices V and edges E are minimal: i.e, no proper
subsets of V, E satisfy the conditions stated above.

Note that the last condition of minimality is important to ensure
that we do not add unneeded vertices and edges to a segmentation.

LEMMA 2. Any segmentation of a trace o and TBT T is a directed
acyclic graph. Furthermore, a node has no outgoing edges if and only
if it is of the form (a) (Leaf(¢), 1, j), (b) (k0,1 j), or (c) (kn, i, j)
withi > j.

Proor. Each edge v : (7,i,j) — o' : (77,i’,j’) in the set E
from Definition 6 goes from a TBT 7 to its subtree 7. Therefore,
no cycles can exist in the graph G. The second part also follows
from Definition 6.]

ExampLE 5. Consider a trace o of length 100 and a specification T~
of the form Fback([771, 72]) where 71 is Seq([Leaf(¢1), Leaf(¢2)])
and 7, is Seq([Leaf(¢2), Leaf(¢1)]). The TBT expresses the fact
that eventually ¢1 must be satisfied followed by @2, or the other way
around. One possible segmentation (graph) is provided in Fig. 5 (left).

Consider another TBT of the form %3 (Seq([Leaf (¢1), Leaf (p2)])).
An example segmentation is shown in Figure 5 (right).

Given a segmentation graph G = (V, E) for a TBT 7 and trace o,
it induces a value for the robustness of the specification and trace
given the segmentation. Formally, we will define g (‘7A', i, j) for each
(7,4, j) € V as follows:
(1) T = Leaf(¢) then n6(Ti,j) = p(@,oli: j]) using Def. 2.
(2) If T = %(7) or the node is of the form (%kp, i, j) with
i > j, then ng (7, i, j) = co.

(3) Otherwise, 76(7 i, j) = min({ng (7,7, j’) | (T.i,j) —
(71,7, j') € E}), i.e., to the minimum robustness of its given
existing successors in G.

1 Fback(71,72) 100 1, *3(71) 100
\L /\
15 T2 w0 1 71t 42, T1 100
© Seq([Leaf (g2), Leaf(p1)])) /\'43 /\ ’
15 ¢2 31 o1 100 1 o 31 ¢ 42, e 52 02100
>
32 32 43 753

Figure 5: Example trace segmentations for the two properties
described in Ex. 5.

Schirmer et al.

Let segs(7, o) denote all possible segmentations of the trace o
against the TBT specification 7. We say that a segmentation G is
optimal iff 76(7",0, |o| = 1) = maxgresegs(T,0) 767 (7,0, lo| = 1).
In other words, the robustness calculated by the segmentation
is maximal among all possible segmentations of the trace with
respect to the specification. Informally, this means that the trace
is segmented in the “best possible light” in an attempt to match it
against the specification.

THEOREM 4. Let G be an optimal segmentation of o w.rt. 7. It
follows that ng(T,0,|o| — 1) = p(T, 0).

Let us consider an example segmentation for the STL formula
provided in Example 3.

ExAMPLE 6. Consider once again the STL formula used in Ex. 3.
The target position p is defined by the euclidean distance as before.
Let Seq([Leaf(0p), Leaf(O[51 p)]) be the corresponding TBT for
the formula. In this way, a segmentation allows us to identify which
child was successful or not. For instance, given a segmentation that
contains (Leaf (¢p),0,99) and (Leaf(D[O)ﬂ, 100, 199) for a trace o,
where p(Leaf (0p), o[: 99])) is positive and p(Leaf (O 51, 0[100 :]))
is negative, we can conclude that the UAV reached position p but did
not hold that position for as long as necessary.

Computing an Optimal Segmentation. We will now turn to the
problem of computing an optimal segmentation given a trace o and
TBT 7. As it turns out, an optimal segmentation can be recovered
through the dynamic programming table T(7, i, j) used to compute
po(T,0,|o| — 1). We will outline the steps of this computation
below. To begin with, we will use a worklist of unprocessed vertices.
Whenever the worklist is empty, we have discovered all the nodes
and edges of the optimal segmentation G. We initialize the worklist
to contain the vertex (7,0, |o| — 1). At each iteration, we pop a
node v = (7,1, j) from the worklist:

(1) If T~ = Leaf(¢), T = %o(T’) or T = %kn(7’) with i > j,

we add no outgoing edges.

(2) If 7 = Fback([71,. .., 7]), let

(Li") = argmax ;i) e[1)x (i) T 15) -
We add the vertex v’ = (7,1, j) to the worklist if it does not
exist previously and the edge v — v’.

) I = Seq([71, 72]), letu = argmaxye|; i| (min(T(77, i, u),
T(72,u + 1,j))). We add the vertices v1 = (71,i,u), vg =
(72, u + 1, j) to the worklist (if they did not exist previously)
and the edges v — v1, v — vs.

(4) It = Parp([71, Tnl), thelist [T(71,1,), ..., T(Tn. iy j)]

is sorted in descending order, and take the first M entries
in the sorted list. We add the vertices (75,1, j), ..., (i 1, J)
corresponding to the first M sorted entries to the worklist
(if they did not exist previously) and outgoing edges form v
to all these vertices.

(5) If 7 = %, (7]) and n > 0, i < j, we take the arguments of

the maximum of Vk € [1,n].uy,...,u; = arg
max min (T(73, i w1), ..., T(T,ug, j)).

u€[1,7]e uk € [tk-1,7]
We add the vertices (71,1, u1 + 1), ..., (71, ug + 1, j) to the

worklist (if new) and create edges from v to these vertices.

Let G represent the segmentation thus obtained.

Temporal Behavior Trees

THEOREM 5. The segmentation obtained using the procedure de-
scribed above is optimal: i.e, 1g(T,0) = p(T, 0).

The proof of the theorem follows from the construction itself
since it simply “reads off” a segmentation from the dynamic pro-
gramming table T.

Dynamic programming also allows us to rapidly explore alterna-
tive segmentations. Alternative segmentations allow to go beyond
the optimal segmentation and help to better understand the ex-
ecuted behavior, e.g., to identify if there are “other” successful
segmentations. We control finding such alternatives using two pa-
rameters: 7; and 7,. 7; € R* represents how much the segment
boundary needs to differ in respect to already identified segmen-
tations. 7, € R* represents a lower bound of the robustness of
alternatives in respect to given segmentations.

DEFINITION 7 (ALTERNATIVE SEGMENTATION). Let o be a trace
and T~ be a temporal behavior tree, a segmentation G’ = (V' E’) is
an alternative to a segmentation G = (V,E) iff ng' (T, 0) > 1p and
either V.# V' or there exists a sink vertex (T, i, j) € V with no sink
vertex (7,1, j') € V' for which T = T and |[i=i'|+]j~j'| < Ttime-

EXAMPLE 7. Consider the segmentation provided in Figure 2. As can
be seen, Stay at Position was assigned to the subtrace of o, annotated
by (2), just before moving towards the ship (3). Using alternative
segmentation, we can analyze whether (2) and (3) have an earlier
or later assignment that also satisfies the specification, i.e., was it
possible to execute the next leaf node earlier or later. To obtain only
satisfying alternatives, we choose 7, = 0. We also choose Ttime as
the duration of staying in position as specified to make sure that our
alternative is significantly different to the one obtained before. Note
that by choosing t;ime = |o|, we are guaranteed to find an alternative
that uses a different landing maneuver, if existing.

Computing an alternative segmentation uses the same worklist
algorithm presented above, but imposes the additional constraints
defined in Def. 7 while accessing T. We will present the detailed
approach in an extended version of this paper.

Subsampling traces for approximating robustness. Traces are often
obtained by sampling a continuous signal at regular time intervals.
Often, if the sampling is done rapidly compared to how the sig-
nal varies, we observe the phenomenon of stuttering, wherein the
same truth values of atomic propositions repeat over multiple time
instances. We now show how the truth/robustness on a carefully
subsampled trace relates to the original trace.

DEFINITION 8 (§-STUTTERING). A trace o is §-stuttering iff (a)
0 divides |o| and (b) for all i such that i6 < |o|, the states o(id +
1),...,0((i + 1)8) are identical in terms of the atomic proposition
truth valuations: 6(i6 + 1) E p iff o(id + j) E p forj ={1,...,8}.

We say that a trace o’ is a subsampling of o with stride length
5> 1iffo’(i+1) = o(i6+1) forie {0,..., 1% —1}.

DEFINITION 9 (6-PRESERVING TBT). A TBT T is §-preserving if
(a) all occurrences of Uj,) in T hasl = 0 and u is divisible by J;
(b) all occurrences of O[14,1, 01,4 havel,u divisible by 8; and (c) all
occurrences of Tout; has t divisible by J.

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

For §-preserving TBT 77, define TBT 7 with all occurrences
of Tout; replaced by Tout; ;5 and all occurrences of temporal logic
operators b<|;,,| wherein »<€ {0, 0, U} replaced with »<|;/5.,/5]-

ExaMPLE 8. Let TBT T be Seq([O(a A —b), 0b]) and let o be a

. alse alse .
trace &7), (111, (100), (1), then 6 = 2,7 remains T, and o
is the sequence (};ll‘:e), ({f’is:), and ps(T, o) is positive.

Let 7 be §-preserving TBT and o be a §-stuttering trace.
THEOREM 6. If o’ |E T theno =T .

Proor. We prove the theorem by induction on the formula. The
full proof is given in Appendix C. O

The theorem shows that by evaluating a TBT on a subsampled
trace for a §-stuttering trace o, if the subsampled trace satisfies
the TBT, then so does the original trace. However, violations on a
subsampled trace need not necessarily be violations on the original
trace. The Seq operator is the reason for the failure of the converse.

ExaMPLE 9. Consider a trace o with atomic proposition p: =p, —p,
=p, p, P, p, —p, =p, —p, and TBTT : Seq(Leaf(0p), Leaf (¢p)). Choos-
ing 8 = 3, we obtain o’ : —p, p, —~p. The transformed TBTT' = T .
Note that o |= T whereas o’ [T'.

Also, it is necessary for Uy ,,| occurrences to have l = 0. Consider
the trace o : p, p,p,q,q,q and the formula ¢ : O((pU|3319) V Q).
Clearly o [~ ¢. However, we have § = 3 and thus o’ : p,q with
@ o((pUp,qg) v). It follows that 0" | ¢.

Note that, for simplicity, we computed the stride length § based
on the fact that p € AP remains unchanged in every subtrace o[id :
(i +1)5 — 1]. This is too stringent in practice. For instance, the for-
mula O(p;1 Vp2 Ap3) V pg with AP = {p1, p2, p3, pa} will be replaced
by AP’ that consists of p4 and g where f; = max(fp,, min(fp,, fp,))-
For our experiments in Section 4, we implemented this improve-
ment to increase J but also to reduce the size of the TBT 7.

Approximate Robustness Using Lazy Evaluation. Next, we intro-
duce a lazy evaluation for computing the robustness of a TBT given
a trace. For the lazy evaluation, we use operators common in func-
tional and dynamic programming that rely on iterators and corou-
tines [28, 31]. Using these concepts, we define miny. as follows:

define min_lazy (list_of_exprs):

min_so_far = o
initialize lazy evaluation of all expressions
list_of_gens = [lazy_eval(e) for e in list_of_exprs]

for g in list_of gens:
if has_next(g):
1 = next(g) # take the next value yielded
if 1 < 0 and 1 < min_so_far:
yield
min_so_far = min(min_so_far, 1)
return min_so_far

We define max;,,, in an analogous manner. The key idea here is
that a call to min;,,,, will yield as soon as it finds a negative value or
a value smaller than what it yielded previously. Many programming
language implement these features, e.g, Python 2. We execute the
dynamic programming starting until the overall root expression

Zhttps://realpython.com/introduction-to-python-generators/

https://realpython.com/introduction-to-python-generators/

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

yields its first value and stops. Even if this value is not the exact
robustness, we can relate this value to the exact result obtained
upon a full computation.

DEFINITION 10 (LAZY-EVvALUATION). Given a TBT 7 and a trace
o, we can evaluate the robustness in a lazy manner, denoted as
Plazy (T, 0), by replacing all instances of max by max;,,, and min
by miny, in p(7", o). In addition, we will also use memorization to
cache previously evaluated expressions in order to avoid re-evaluation.

ExaMmPLE 10. Given the same TBT and trace as in Ex. 8. The lazy
evaluation starts by sequencing the trace right after the first position
into two segments. While computing the robustness of the left segment
using O no lazy return happens since there is only one position. When
computing the right side using ¢ the first lazy return occurs right for
the second value provided by the iterator. The evaluation returns to
the sequence node, where both segments have a positive robustness.
Hence, lazy return will directly return the minimum of these segments.
If only one of the segments would have been negative, the evaluation
would backtrack to the right segment and continues to call the iterator
at the position where it returned before. Note that in this case, the
computed robustness is optimal. This is not necessarily the case.

THEOREM 7. Given a TBT 7 and a trace 0, pja,y(7,0) = 0 iff
p(T,0) =0.

PRrooF. The same algorithm as p(7, o) is used and coroutines
maintain an internal state that allows them to continue an evalua-
tion of max;,,, and min;,,, when returning to them. O

4 EMPIRICAL EVALUATION AND
CASE-STUDIES

In this section, we will present different case studies that show
how the segmentation of TBT provides useful insights. Note that
formalizing both use-cases using STL is not possible because our
TBT specification uses the “Sequence” operator, which allows to
chop a trace — an operation not supported by any STL operator.

4.1 Analysis of Human Behavior

We use segmentation to analyze human operator performance. We
obtained data from the study conducted by Byeon et al, wherein
thirteen subjects repeatedly attempted to fly a drone in a simulated
environment using a joystick setup to control the drone’s altitude
and attitude while avoiding the obstacle [6]. Each subject attempted
the same task of navigating through the waypoints 25 times. The
goal of the simulation was to see if the operator through these
repeated trials will learn how to navigate the drone to take off and
fly through six different waypoints, ending up at a pre-specified
position. We used the TBT shown in Figure 6 to specify the overall
task. Note that the entire task is a sequence of moves from one
waypoint to the next reaching the terminus.

We use segmentation of each of the traces of (x,y, z) trajecto-
ries of the human operator to understand how their performance
evolved over the trials. Note that segmentation is challenging since
human operators often behave in ways we could not predict a priori.
Figure 7 shows the segmentations obtained by our approach for
two different operators and trials (there are a total of 13 X 25 such
traces). The segmentations are obtained automatically given the

Schirmer et al.
Seq

7

¢ (reach_wpy)
A O(—obstacle) ¢ (terminus)

¢ (reach_wp;)
A O(—obstacle)

Figure 6: Temporal behavior tree that was used to specify
the task for each participant in the drone flying task. The
task consists of reaching a sequence of 6 waypoints while
avoiding two obstacles in turn and ending up at a terminus.

Trial #2 (top view)

Figure 7: Segmented trajectories of two different simulator
flights. Each segment is drawn in a different color and num-
bers are shown at the ending point of each segment. The
3D plots are shown to the left and the top view is shown to
the right. Waypoints are shown as circles and obstacles are
shaded in gray.

traces and the specification. They split the entire trajectory into
seven parts, ascribing each to a subtree which in this case corre-
sponds to reaching a waypoint. Note from Figure 7 that it is often
hard to perform this segmentation manually especially when the
specifications are violated (they are violated in both cases due to
missed waypoints and collision with the obstacle in Trial #2). The
segmentation allows us to analyze how the subjects are learning
or failing to learn the performance of the overall task over each
trial. For each trial, we collect the robustness of each segment with
respect to its corresponding node in the tree.

The plots in Figure 8 reveal consistent trends that were observed
across all the subjects: (a) Most subjects could carry out the first
phase successfully and the overall spread of robustness is relatively
small. (b) The second phase ends up being the most challenging.
Very few subjects over few trials could navigate this successfully.
We suspect that the presence of the obstacle right next to the way-
point for this phase plays a role in this. (c) Subjects are able to
navigate phases 3-6 successfully on average but their performance
varies across trials. (d) Subjects are consistently unable to navigate
the terminal phase. Our preliminary analysis clearly demonstrates
the usefulness of a systematic approach to segmentation. The full
analysis of how humans learn to teleoperate successfully over the
course of multiple trials will be described in an extended version.

Temporal Behavior Trees

Subject ID: 4 Subject ID: 5

F po0s | [o0qs

o

o

3

Fobustness

° o

oo H{TH

-8 o
Subject ID: 7 Subject ID: 12

:?o@@%? WB T s

o
o o

Robustness
L
&

ol
Lo

B .
T

1 3
Segment Number

Figure 8: Box plots showing the spread of robustness values
corresponding to each of the seven task segments for four
different subjects.

4.2 Autonomous Ship Deck Landing

Landing on a ship deck is well-known to be a challenging task,
wherein various landing aids and maneuvers need to be carefully
selected [36, 37]. The TBT presented in Figure 10 formally specifies
four different landing maneuvers: Straight-in, Lateral, 45-Degree,
and Oblique. At the top of the TBT, there is a sequence node that
executes its children from left to right. The first child is a fallback
node and the second is a leaf node that represents the descent to the
touchdown point. Each maneuver is structured as a sequence with
different atomic propositions. The maneuvers differ in their starting
position and their heading. Whereas, the 45-Degree and the Oblique
landing maneuvers specify that the UAV must be diagonally behind
the ship, they differ in the relative heading of the UAV to the ship,
i.e., aligned with versus oblique to the ship heading, respectively.
We use our TBT on simulation data provided by the authors of
[36, 37] for landing with a UAV on a ship deck under wind condi-
tions from the side (WS) and from the front (WF). All experiments
were run on a single 16-core machine with a 2.50 GHz 11" Gen
Intel(R) Core(TM) i7-11850H processor with 32 GB RAM. The algo-
rithms are implemented as a single-threaded program using Rust
3. Experimental results are given in Table 1. The first column in-
dicates the expected behavior for a landing. Each of the logfiles
have mission times between 115 and 127 seconds and contain be-
tween 22,046 and 25,313 entries. The second column reports the
stride length §. Next, Time represents the execution time required
to find a segmentation where ps refers to the presented subsam-
pling and ps © pjg; refers to first subsampling and then running a
lazy evaluation (Def. 10). Finally, we report on the Chosen Maneuver
and the Worst Segment given the computed segmentation. For the
case where only subsampling was used, at least 2,000,000 and up
to 500,000,000 evaluations could be resolved by the memo table.
The results show that subsampling is very efficient and helps to
find segmentations within seconds. Yet, the dependence on the

3https://github.com/DLR-FT/TBT-Segmentation

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

—— Descend
—— Ship

—— Move to position
Stay in position
—— Move to touchdown

Maneuver: at position
Maneuver: above ship

25
20
15

z[m]

10

0

>
201 10 &

0
400
*lmy; 800

Figure 9: Segmentation of an oblique maneuver where the
UAS deviates from the expected behavior. Ideally, the “Stay
in position” segment should align with the “Maneuver: at
position” line.

length of the trace becomes clear when we compare the required
time required for § = 25 and § = 200. Our segmentations show
that oblique maneuvers potentially failed. This also caused the lazy
evaluation to take as long as ps because early returns of miny,,,
and max,;,, are not possible in this case. Further, we can see that
the most challenging part of the maneuver is Descend, which makes
sense given the disturbances due to wind and waves when land-
ing on the ship. In fact, segmentation of the Straight-in-WF logfile
potentially failed due to its descend. Note that the best robustness
for a Descend is one since we allow a tolerable deviation from the
target position by one meter, see Figure 10. Results indicate that
wind did not play a major role during the maneuvers.

We now examine the potential failing segmentations for oblique
maneuvers. Note that by Theorem 6, given a failing segmentation,
we cannot draw conclusions about the segmentation of the original
trace. We also see that the segmentation for such a maneuver is
always a 45-Degree maneuver, depicted in Figure 2. In Figure 9, we
show an alternative segmentation that is worse but uses an oblique
landing approach. We received this alternative by using 7; that was
set greater than |o|. Choosing such a 7; ensures that the alternative
segmentation uses different nodes for its segments. Fig. 9 shows
that the stay in position is poorly assigned. We further examined the
robustness values and concluded that the oblique heading relative to
the ship expected by the TBT was not sufficiently implemented by
the controller. Hence, it behaves “closer” to a 45-degree maneuver
than an oblique maneuver. The results of both use-cases show that
segmentation provides key insights into complex behaviors. Further,
our experiments show that our current segmentation techniques
can be used for large traces through a combination of subsampling
the trace and approximation through lazy evaluation.

5 CONCLUSION

We have introduced temporal behavior trees (TBT) as a specification
formalism, defined robustness semantics, and used it to segment a
trace into subtraces that are associated with portions of the TBT
specification using a dynamic programming algorithm that has

https://github.com/DLR-FT/TBT-Segmentation

HSCC 24, May 14-16, 2024, Hong Kong SAR, China Schirmer et al.

Seq
AN
Fback/
/N

Seq Seq Seq Seq
Straight-In Lateral 45-Degree Oblique

I

¥ ¥ ¥ \

+ 4 X x

@ - \ﬁ/%\,?{
P |
(=) %/’“ﬁ

® ® ® ® © 0 ©
Leaf Description Temporal Formula
1 Behind ship ¢ behind(ps, puas)
2 Next to ship ¢ nextTo(ps, Puas)
3 Diagonal behind ship ¢ diagonal Behind(ps, puas)
4 Stay in behind O[o,1000] (behind(ps, puas) A heading(aligned, hs, huas) A wvelocity(aligned, vs, vyas))
5 Stay next to Ojo,1000] (nextTo(ps,puas) A heading(aligned, hs, huas) A wvelocity(aligned, vs, vyas))
6 Stay diagonal behind | Oy 1000] (diagonalBehind(ps, puas) A heading(aligned, hs, huas) A velocity(aligned, vs, vyas))
7 Stay diagonal behind | Oy 1000] (diagonalBehind(ps, puas) A heading(oblique, hs, huas) A velocity(aligned, vs, vyas))
8 Move to touchdown ¢ (move_to_touchdown(above, ps, puas) AN heading(aligned, h, hyqs))
9 Move to touchdown ¢ (move_to_touchdown(above, ps, puas) A heading(oblique, hs, hygs))
’ 10 | Descending ¢ (descended(pouchdowns Puas))

Figure 10: Temporal behavior tree specifying landing maneuvers on a ship deck: straight-in, lateral, 45-degree, and oblique.
They differ in their starting position and their heading relative to the ship. Computations of atomic propositions are omitted.

Logfile 3 | Time (ps, ps © Plazy) [s] | Chosen Maneuver (ps, ps © Plazy) | Worst Segment (ps, p5 © Prazy)
45-Degree-WF | 50 (4,<0) (45-Degree, 45-Degree) (Descend 0.49, Descend 0.05)
45-Degree-WS | 200 (<0,<0) (45-Degree, 45-Degree) (Descend 0.45, Descend 0.20)

Lateral-WF 100 (<0,<0) (Lateral, Lateral) (Descend 0.39, Descend 0.06)
Lateral-WS 100 (<0,<0) (Lateral, Lateral) (Descend 0.30, Descend 0.01)
Oblique-WF 25 (29, 29) (45-Degree, 45-Degree) (Move-to-pos -0.58, -c0)
Oblique-WS 25 (28, 28) (45-Degree, 45-Degree) (Move-to-pos -0.34, -c0)
Straight-in-WF | 200 (<0,<0) (Straight-in, Straight-in) (Descend -0.60, -c0)
Straight-in-WS | 200 (<0,<0) (Straight-in, Straight-in) (Descend 0.22, Descend 0.22)

Table 1: Results of segmentation using the TBT in Fig. 10. The segmenation uses subsampling (Def. 8) alone and in combination
with lazy evaluation (Def. 10). All logfiles represent realistic missions that took approximately two minutes (> 20, 000 entries).
The results show that segmentations can be computed within seconds for practical use-cases.

been approximated through subsampling and lazy evaluation. We The second use-case reports on an autonomous landing of a UAV on
show on two use-cases that segmentation is a powerful tool when a ship deck. We show that our algorithms can efficiently compute
analyzing or debugging complex behaviors. We analyzed the per- segmentations that help to better understand what parts of the

formance of 25 human-operators flying a UAV waypoint mission. mission succeeded or failed.

Temporal Behavior Trees

ACKNOWLEDGMENTS

This work was supported by the German federal aviation research
program (LuFo ID: 20D2111C and ID: 20Q1963B), and the US Na-
tional Science Foundation (NSF) under award number 1836900. S.
Schirmer carried out this work as a member of the Saarbriicken
Graduate School of Computer Science. We thank Alexander Donkels
(DLR) for providing the data for the autonomous ship deck landing.

REFERENCES

[1] Rahib H. Abiyev, Nurullah Akkaya, and Ersin Aytac. 2013. Control of soccer

robots using behaviour trees. In 9th Asian Control Conference, ASCC 2013, Istanbul,

Turkey, June 23-26, 2013. IEEE, 1-6. https://doi.org/10.1109/ASCC.2013.6606326

Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded

Maler, Dejan Ni¢kovié, and Sriram Sankaranarayanan. 2018. Specification-based

monitoring of cyber-physical systems: a survey on theory, tools and applications.

Lectures on Runtime Verification: Introductory and Advanced Topics (2018), 135—

175.

Andreas Bauer, Martin Leucker, and Christian Schallhart. 2007. The good, the

bad, and the ugly, but how ugly is ugly?. In International Workshop on Runtime

Verification. Springer, 126-138.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime ver-
ification for LTL and TLTL. ACM Transactions on Software Engineering and
Methodology (TOSEM) 20, 4 (2011), 1-64.

[5] Johan Van Benthem. 2010. Modal Logic for Open Minds (Lecture Notes). CSLI
Publications (Stanford University).

[6] Sooyung Byeon, Joonwon Choi, Yutong Zhang, and Inseok Hwang. 2023.

Stochastic-Skill-Level-Based Shared Control for Human Training in Urban Air

Mobility Scenario. J. Hum.-Robot Interact. (jun 2023). https://doi.org/10.1145/

3603194 Just Accepted.

Antonio Cau, Ben Moszkowski, and Hussein Zedan. 2006. Interval temporal logic.

URL: http://www. cms. dmu. ac. uk/~ cau/itlhomepage/itlhomepage. html (2006).

[8] Yuxiao Chen, James Anderson, Karanjit Kalsi, Aaron D. Ames, and Steven H. Low.
2021. Safety-Critical Control Synthesis for Network Systems With Control Barrier
Functions and Assume-Guarantee Contracts. IEEE Transactions on Control of
Network Systems 8, 1(2021), 487-499. https://doi.org/10.1109/TCNS.2020.3029183

[9] Michele Colledanchise and Petter Ogren. 2018. Behavior trees in robotics and Al:
An introduction. CRC Press.

[10] Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and
Linear Dynamic Logic on Finite Traces. In Proceedings of the Twenty-Third In-
ternational Joint Conference on Artificial Intelligence (Beijing, China) (IJCAI ’13).
AAAI Press, 854-860.

[11] Jyotirmoy V Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A Seshia. 2017. Robust online monitoring of signal temporal
logic. Formal Methods in System Design 51 (2017), 5-30.

[12] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic

over real-valued signals. In International Conference on Formal Modeling and

Analysis of Timed Systems. Springer, 92-106.

Georgios E Fainekos and George J Pappas. 2006. Robustness of temporal logic

specifications. In International Workshop on Formal Approaches to Software Testing.

Springer, 178-192.

[14] Bernd Finkbeiner and Henny Sipma. 2004. Checking finite traces using alternating

automata. Formal Methods in System Design 24 (2004), 101-127.

Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and An-

drzej Wasowski. 2020. Behavior Trees in Action: A Study of Robotics Applications.

In Proceedings of the 13th ACM SIGPLAN International Conference on Software

Language Engineering (Virtual, USA) (SLE 2020). Association for Computing Ma-

chinery, New York, NY, USA, 196-209. https://doi.org/10.1145/3426425.3426942

[16] Joseph Halpern, Zohar Manna, and Ben Moszkowski. 1983. A hardware semantics
based on temporal intervals. In Automata, Languages and Programming, Josep
Diaz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278-291.

[17] D. Harel and D. Peleg. 1985. Process logic with regular formulas. Theoretical
Computer Science 38 (1985). https://doi.org/10.1016/0304-3975(85)90225-7

[18] Jie He, Ezio Bartocci, Dejan Nickovi¢, Haris Isakovic, and Radu Grosu. 2022.

DeepSTL: From English Requirements to Signal Temporal Logic. In Proceedings

of the 44th International Conference on Software Engineering (Pittsburgh, Pennsyl-

vania) (ICSE °22). Association for Computing Machinery, New York, NY, USA,

610-622. https://doi.org/10.1145/3510003.3510171

Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. 2015.

Towards manipulation planning with temporal logic specifications. In IEEE In-

ternational Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA,

26-30 May, 2015. IEEE, 346-352. https://doi.org/10.1109/ICRA.2015.7139022

Zhuochao He, Xuyang Zhang, Simon Jones, Sabine Hauert, Dandan Zhang, and

Nathan F. Lepora. 2023. TacMMs: Tactile Mobile Manipulators for Warehouse

Automation. IEEE Robotics and Automation Letters 8, 8 (2023), 4729-4736. https:

[2

=

(3

=

=

[13

[15

[19

[20

[
-

[22]

[23

™
=)

[25]

[26

[27

[28

[30

(31]

[32

@
&

(34]

(35]

(36]

[37

[38

[39

[40]

N
=

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

//doi.org/10.1109/LRA.2023.3287363

Danying Hu, Yuanzheng Gong, Blake Hannaford, and Eric J Seibel. 2015. Semi-
autonomous simulated brain tumor ablation with Raven II surgical robot using
behavior trees. In 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 3863-3875.

Hao Hu, Xiaoliang Jia, Kuo Liu, and Bingyang Sun. 2021. Self-Adaptive Traffic
Control Model With Behavior Trees and Reinforcement Learning for AGV in
Industry 4.0. IEEE Transactions on Industrial Informatics 17, 12 (2021), 7968-7979.
https://doi.org/10.1109/TI1.2021.3059676

Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ogren, and Christian
Smith. 2022. A survey of behavior trees in robotics and ai. Robotics and Au-
tonomous Systems 154 (2022), 104096.

Anja Johansson and Pierangelo Dell’Acqua. 2012. Emotional behavior trees.
In 2012 IEEE Conference on Computational Intelligence and Games (CIG). IEEE,
355-362.

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. 2009. Temporal-
Logic-Based Reactive Mission and Motion Planning. IEEE Transactions on Robotics
25, 6 (2009), 1370-1381. https://doi.org/10.1109/TRO.2009.2030225

Orna Kupferman, Giuseppe Perelli, and Moshe Y Vardi. 2016. Synthesis with
rational environments. Annals of Mathematics and Artificial Intelligence 78, 1
(2016), 3-20.

Martin Leucker and César Sanchez. 2007. Regular linear temporal logic. In
International colloqguium on theoretical aspects of computing. Springer, 291-305.
Christopher D Marlin. 1979. Coroutines: A Programming Methodology, a Lan-
guage Design, and an Implementation. Ph. D. Dissertation. University of Adelaide,
Department of Computing Science.

M. Mateas and A. Stern. 2002. A behavior language for story-based believable
agents. IEEE Intelligent Systems 17, 4 (2002), 39-47. https://doi.org/10.1109/MIS.
2002.1024751

B. C. Moszkowski. 1998. Compositional Reasoning using Interval Temporal
Logic and Tempura. In Compositionality: The Significant Difference, Willem-Paul
de Roever, Hans Langmaack, and Amir Pnueli (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 439-464.

Ana Lucia De Moura and Roberto Ierusalimschy. 2009. Revisiting Coroutines.
ACM Trans. Program. Lang. Syst. 31, 2, Article 6 (feb 2009), 31 pages. https:
//doi.org/10.1145/1462166.1462167

Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray, and San-
jit A. Seshia. 2015. Reactive Synthesis from Signal Temporal Logic Specifications.
In Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control (Seattle, Washington) (HSCC ’15). Association for Computing Ma-
chinery, New York, NY, USA, 239-248. https://doi.org/10.1145/2728606.2728628
Aurélien Rizk, Grégory Batt, Frangois Fages, and Sylvain Soliman. 2008. On a
Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications
to Systems Biology. In Computational Methods in Systems Biology. Springer Berlin
Heidelberg, 251-268.

Roni Rosner and Amir Pnueli. 1986. A Choppy Logic. In Proceedings of the First
Annual IEEE Symposium on Logic in Computer Science (LICS 1986) (Cambridge,
MA, USA). IEEE Computer Society Press, 306-313.

Kirk Y. W. Scheper, Sjoerd Tijmons, Cornelis C. de Visser, and Guido C.
H. E. de Croon. 2016. Behavior Trees for Evolutionary Roboticst. Ar-
tificial Life 22, 1 (02 2016), 23-48. https://doi.org/10.1162/ARTL_a_ 00192
arXiv:https://direct.mit.edu/artl/article-pdf/22/1/23/1665258/artl_a_00192.pdf

T. Schmelz and R. Lantzsch. 2018. Abschlussbericht: F&T Studie - Pilotenassistenz
fiir Schiffsdecklandungen (PiloDeck)[Final report: F&T Study - Pilot assitance
for ship deck landing (PiloDeck)],. Technical Note AHD-TN-ESPE-302-18 (2018).
Bianca Isabella Schuchardt, Thomas Dautermann, Alexander Donkels, Stefan
Krause, Niklas Peinecke, and Gunnar Schwoch. 2020. Maritime operation of an
unmanned rotorcraft with tethered ship deck landing system. CEAS Aeronautical
Journal 12, 1 (9 2020), 1-9. https://elib.dlr.de/140951/

Aleksandr Sidorenko, Jesko Hermann, and Martin Ruskowski. 2022. Using Be-
havior Trees for Coordination of Skills in Modular Reconfigurable CPPMs. In
2022 IEEE 27th International Conference on Emerging Technologies and Factory
Automation (ETFA). 1-8. https://doi.org/10.1109/ETFA52439.2022.9921558
Dogan Ulus, Thomas Ferrére, Eugene Asarin, and Oded Maler. 2014. Timed
Pattern Matching. In Formal Modeling and Analysis of Timed Systems, Axel Legay
and Marius Bozga (Eds.). Springer International Publishing, Cham, 222-236.

A. v. Perger, P. Gamper, and R. Witzmann. 2022. Behavior Trees for Smart Grid
Control. IFAC-PapersOnLine 55, 9 (2022), 122-127. https://doi.org/10.1016/j.ifacol.
2022.07.022 11th IFAC Symposium on Control of Power and Energy Systems
CPES 2022.

Pierre Wolper. 1983. Temporal logic can be more expressive. Information and
control 56, 1-2 (1983), 72—99.

https://doi.org/10.1109/ASCC.2013.6606326
https://doi.org/10.1145/3603194
https://doi.org/10.1145/3603194
https://doi.org/10.1109/TCNS.2020.3029183
https://doi.org/10.1145/3426425.3426942
https://doi.org/10.1016/0304-3975(85)90225-7
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1109/ICRA.2015.7139022
https://doi.org/10.1109/LRA.2023.3287363
https://doi.org/10.1109/LRA.2023.3287363
https://doi.org/10.1109/TII.2021.3059676
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/MIS.2002.1024751
https://doi.org/10.1109/MIS.2002.1024751
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/2728606.2728628
https://doi.org/10.1162/ARTL_a_00192
https://arxiv.org/abs/https://direct.mit.edu/artl/article-pdf/22/1/23/1665258/artl_a_00192.pdf
https://elib.dlr.de/140951/
https://doi.org/10.1109/ETFA52439.2022.9921558
https://doi.org/10.1016/j.ifacol.2022.07.022
https://doi.org/10.1016/j.ifacol.2022.07.022
mdeleon11
Highlight

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

A PROOF OF THEOREM 1

We prove the Theorem 1 by structural induction on ¢. We show that

“For any trace o and STL formula ¢, we have o | ¢ iff p(¢,0) > 0”.

Proor.
Base Cases:
Case ¢ : p; where p; € AP and |o] > 0,

ke
= fi(e(1)) 20

Def. 2
= ppio)20

Case ¢ : p; where p; € AP and |o| = 0,
afe
— fi(e(1)) <0
Def. 2

Induction Step:

Case ¢ : —¢1,
o F -1
— oolEpn
H
— p(p1,0) <0
Def. 2
— p(=¢1,0) >0
Case ¢ : @1 A @2,
o1 A Q2
— oEpAcEe
H
= plg1,0) 20Ap(g2,0) 20
& min(p(¢1,0), p(¢2,0)) 20
Def. 2

— p(p1Ag@20)20
Case ¢ : @1 V ¢2,

cE@ Ve
— okEp VoEe

—= p(p1,0) 20 V p(p2,0) >0
& max(p(¢1,0), p(¢2,0)) 20

= p(p1V@20) 20
Case ¢ : 0[14 (1),

o E OrLuy(e1)
Jie[Lu], oli:] E¢

—
&5 3ie[Lul, plosolis]) 20
— max (p(eroli:])) 20
ie[Lu]
= p(O[u)(p1).0) 20
Case ¢ : O[14,1(¢1),

o = Opru)(@1)
— Vie[Lu], oli:] Ee:
& Vie[Lul plpnoli]) 20
— ig[llir;] (p(p1,0[i:])) 20

= p(Ou(e1).0) 20

Schirmer et al.

Case ¢ : o1 Uy 02,

a o1 Uy 02

— die[lLul,(Vjel0i-1],0[j:] E@i) Acli:] E¢2
IH

— die[Lul,(Vje[0,i-1],p(p1,0[j:]) =0)
Ap(p2.ali 1) 2 0

& max min(p(gz,0li:]), min p(e1,0[j:]) =0

ic[Lu] Jjeloi-1]
Def. 2
— plo1 Uy ¢2,0) 20

B PROOF OF THEOREM 2

We prove the theorem by structural induction on 7. We show that
“For any trace 0 and TBT 7, 0 = 7 iff p(7,0) > 0"

Proor.
Base Case 7 : Leaf(¢)

o [Leaf (o)

— okEy¢

Thm. 1
= p(p,o)20

Induction Step:
Case 7 : Fback([77, ..., 7¢]),

ok Fback([77,...,T%])

= 3Fje{l...kL3iel0lo-1]oli]ET

&5 Fje{l... kL300~ 1]p(T.oli]) 2 0

— (max max p(T;,oli:])) >0
jel[1,k]ig[o,|o]-1]

ZL (Fback([T,..., Ti]), o) > 0

Case 7 : Parpy([71, ..., Tk,

o [Pary([71, ..., T])

— 3i1,.4.,iM€{1,...,k},0':7171,4..,o"=‘7,7M

H

— Jig,....ime{L.. kL p(Ti,0) 20,...,p(Tip,0) 20
& maxy(p(71,0),...,p(T,0)) 20

Def.

& p(Pary (7.,)) > 0

Case 7 : Seq([71, 72)),

o |= Seq([71, 721)

= 3dielolo|-1l,o[:il ET1Ac[i+1:] T2

&5 Fie[olol - 1p(Tiol:il) 2 0A p(Troli+1:]) 2 0
= maXe[o,|o|-1) Min(p(T1, o[i]), p(T2, 0li +1:])) = 0
Def. 4

— p(Seq([71,72]),0) > 0

Case 7 : Tout;(77)

o | Tout(71)

— o[:min(lo|-1,t-1)] ET1
& p(T1,o[: min(lo| - 1,t —=1)]) = 0
Def.

&5 p(Touts(77),0) 2 0

Temporal Behavior Trees

Case 7 : %, (77),
o E %n(71)

— 3Jie|0|o|-1]o[:i]ETIAc[i+1:] E %n-1(71)
IH
— 3Fielo,|ol-1].p(T1,0[:i]) > 0A
p(kn-1(71),0[i+1:]) =20
max;e[o,|o|-1] min(p(71, o[: i]),
p(kn-1(71),0[i+1:])) 20
ef.
&S p(seq([7, Fen-1(TD]), 0) 2 0
E p(kn(TD)0) 2 0

C PROOF OF THEOREM 6

Let o be a §-stuttering trace for a given § > 1. Let 7 be a § preserv-
ing TBT. Recall that (a) every occurrence of Uy, has ! =0 and
u divisible by J; (b) every occurrence of ¢[;,] and Oyy,,) has L u
divisible by § and (c) every occurrence of Tout; has ¢ divisible by §.

Let 7 be the TBT with each occurrence of »<[; ,,] replaced with
><(1/6,u/5] for »<€ {U, 0,0} and every occurrence of Tout; replaced

by Tout;s.
Let ¢’ be the subsampled trace where o’ (i + 1) = o(id + 1) for
iefo....lgd 1

We say that a set of consecutive trace positions in ¢ forms a
block B; : {id+1,...,(i+1)d}. Thus, we can partition the indices

of trace o intom = % contiguous blocks By, ..., Bpm—1.

First, we will prove for every TBT 7 that is §-preserving and of
the form Leaf(¢) that if ¢ holds at the first position of the block
then it holds everywhere in the block (and vice-versa).

LEMMA 3. For a § preserving TBT T of the form Leaf(¢), a -
stuttering trace o and index i > 0 such thati§ + 1 < |o|,

olid:] Eeiffolis+k:]Ee,
forallk € {0,...,6 — 1}.

Note that the converse direction holds trivially since we can set
k=o.

Proor. Proof is by induction on the structure of the formula ¢.
Assume 0 <i<mand0 <k <§-1.
Case ¢ is an atomic proposition p: True by definition of a §-stuttering
trace (Def. 8).
Case ¢ : @1 o p2 where o € {A, V}. Since we assume the result
by induction on the subformulas ¢1, @2, the proof follows directly
from that.
Case ¢ : —¢;. By induction, we have

olis] | g1 iff olis+k] = g1,
Therefore,
olid :] [f @1 iff o[i6 +k :] | 1,
It follows that
olis:] | —eriff o[id + k] | —ey,
Case ¢ : OlLu]P1-
olid:] Eopruyer ift 3j € [i6+Lis+u] olj:] F o1

Assume o[id :] [01,91 Let j + 1 € B, for some block B; :
{ré6+1,...,(r + 1)6}. The reason we consider j + 1 is that o[j :]

HSCC °24, May 14-16, 2024, Hong Kong SAR, China

by convention begins at state o(j + 1). Therefore, j = rd + 7 for
refo,...,6 —1}

By induction hypothesis: o[rd + k :] |= ¢1 for k € {0,...,5 — 1}.
and j — id € [I,u]. Therefore, 7 +rd — id € [, u]. However, since [
and u are divisible by § and 7 < §, we obtain

(—; +r—ie [é, (ES] or, equivalently, r —i € [é, (ES] .
Therefore, r§ € i5 + [Lu]. o[id + k :] F O[14)¢1 for all k since
olréd+k:] Eeiand (ré+k) — (id+k) € [, u].

Conversely, if o[i0+k :] | 01,01 for all k, then so does o[i6 :].
Case ¢ : O[] ¢1. Proof is similar to the ¢[;) case.
Let o[i6 :] k= Oy, ¢- Therefore, for all j € i + [I, u] we have

olj:lEer.

Consider block B; : {i6 +1,...,(i+1)6}. Let I = ’§ and u = u’$6.
Then, we note by induction that all indices in the blocks:

Bi+l/’ e ,Bi+u/
satisfy ¢1.

Therefore, for all k € {0,...,6 — 1} forall j € {(i+ ") +1 +

k,...,(i+u’)6+1+k}, we have
alji:lEer.

Therefore, o[id + k :] E Oy, 01

The converse holds trivially.
Case ¢ : o1U[ou) P2

If u = 0 then ¢ is logically equivalent to ¢, and the result imme-
diately holds. Assume u > 0.

Let o[id :] = ¢. There exists j € [id,i§ + u] such that

olji:lF e
and for all j* € [i8, j — 1]

ali" 1 E o1

Once again let B, : {rd+1,..., (r+1)8} be the block containing
Jj + 1. Once again by induction, we have all indices in B, satisfy ¢a.
Also, all indices in the range j’ € [i8, rd) satisfy o[j’ :] E ¢1.

If B, is the same block as B; then we note that

olib+k:] E ¢z and thus o[id + k :] E o1U[o)02 -

Otherwise, we have r > i. Since j—i§ < u we have j = r§+7 and
ré—id+# < u’5.DiVidingby5,wegetr—i+g <vworr—i<u.
Therefore, (r6 — i) < u. Therefore, for all k € {0,...,5 — 1}, we
have

ré—(i6+k)<u-k<u.

Therefore, we conclude that

olis+k:] Eor1Upu ez
since o[r8] E @2, o[’ :] E ¢1 for all j € [i6,rd) and ré €
i0+k+[0,u].
o

To establish the main Theorem 6, we will need to establish the
following lemma. Let ¢ be an STL formula that is § preserving and
¢’ be obtained by transforming every interval [/, u] associated with
0,0, U into [(LS %]

LEMMA 4. For alli such that i§ < |o], if o’ [i :] £ ¢’ then o[id :
I Eo.

HSCC 24, May 14-16, 2024, Hong Kong SAR, China

PRroOF. Proof is once again by induction on the structure of the
formula ¢.
Case ¢ is an atomic proposition p: we have ¢’ = ¢. The rest
holds by definition of subsampling.
Case ¢ € {=¢1,¢1 V @2, 901 A ¢2}: holds by induction on the sub-
formulas.
Case ¢ : O[15,5]¢1: We have ¢’ : 017,1¢]. Therefore, o’ [i :] | ¢
iff 3j e [i+Li+u] o’[j:] E ¢]. By Ind. Hyp., 6[jé :] ¢1. Also,
jé € id + [16, ud]. Therefore, o[ié :] | O[;s,j5)01-
Case ¢ : O;5,,5]¢1: We have ¢’ : Oy, ¢]. Therefore, o’ [i :] £ ¢’
iff Vj e [i+Li+u] o’[j:] F ¢]. By Ind. Hyp., o[jd :] | o1 for all
Jj € i+ [l,u]. Using Lemma 3, we conclude that o[j§ +k :] | ¢ for
all j € i+ [Lu] and for all k € [0,5 — 1]. Therefore, we conclude
that o[id :] E O[18,us]P1-
Case ¢ : ¢1U[o u5)02: We have ¢ :] U[q)¢5 Therefore, o’ [i :
| Eo iff3j e [Li+tu] o'[j:] F ¢;and o’[j’ :] F ¢ for
j’ € [i,j). By Ind. Hyp., o[jd :] = ¢2 and o[j’5 :] £ ¢1. Lemma 3,
we conclude that o[j’6 + k :] | ¢1 for all j’ € i + [0, j) and for all
k € [0,6 — 1]. Therefore, we conclude that o[i6 :] £ o1 U[15,us)P2-

m]

Proof of Theorem 6: Now we will prove a stronger version from
which the required result follows directly.

LEMMA 5. Ifo’[i: j] E T theno[id: j5+6-1] T

Proor. Let o’[i : j] E T/.If o’[i : j] is empty then so is
olid : j6 + § — 1] and the statement holds trivially.

Proof is on the structure of the 7.
Case 7 = Leaf(¢): Follows directly from Lemma 4 applied to the
sub-trace o[id : j& + & — 1] which is also a delta-stuttering trace.
Case 7 : Seq([71, T2])-

o'[i:] Seq([7.7,'])
= Fuxioli:ul T, olu+1:] T,

Note that o[i§ : ud+ 6 — 1] and o[(u + 1) :] are & stuttering traces
and by induction hypothesis, we have

oli6:ub+6—-1lETHando[(u+1)5:] ET2.

Therefore, o |= Seq(71, 72).
Case 7 : Fback([77, ..., T¢])-
o'[i = jl E Fback([7/,...
r > iand! € [1,k] such that
dlr:jlET .
By induction, o[rd : jé+0—1] |= 7;. Therefore, o[id : j6+5—-1] |
Fback([71,. .., 7).
Case 7 : Parp([71, ..., T])-
We have o’ [i : j] | Pary ([T, .. .,7;’]) iff there are M subtrees
7171', ... ,‘71']:4 such that

,‘7;’]). It follows that there exists

o'[i:j] I:'i:j'
By induction o[i§ : jé + § — 1] [7;; and thus
olié: j6+6-1] E Parpe([T1, ..., Tk]) -

Case 7 : Touts(77).
We have o’[i : j] | Tout;7;’. Assume that j —i+1 2> t.
o’'[i:i+t-1] | 7. By induction, o[id : i6+(t-1)d+6—1] | 7.
Therefore, o[id : t6 — 1] | Tout;5(77).

Schirmer et al.

Case 7 : %, (77).

Let o’ [i : j] E %n(77). There exists indices —1 = iy, ..., ik = j
fork < n+1suchthato'[iy+1:i2] E 7/, olia+1:i3] T/
ey olips 10l E 7]’. Therefore, for each I, o[(i — [+ 1)
ijz10 + 8 — 1] E 71. Therefore, a[id : j6 + 6 — 1] E %, (71).

5

[m]

Theorem 6 follows directly.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Temporal Behavior Trees
	2.1 Syntax and Semantics
	2.2 Computing Robustness

	3 Segmenting Traces
	4 Empirical Evaluation and Case-Studies
	4.1 Analysis of Human Behavior
	4.2 Autonomous Ship Deck Landing

	5 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 6

