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Abstract—Model Predictive Control (MPC) determines the
control input by solving a receding horizon optimal control
problem at each time instant, which may be computationally
challenging for systems with limited computing capacity. One
possible approach to address this issue in tracking problems is to
reduce the prediction horizon length and modify the conventional
MPC formulation so as to enlarge the region of attraction. Prior
work assumes that the desired admissible steady-state configu-
ration is known for each sequence of the reference, which is
unrealistic when sequences of the reference are unknown a priori.
This letter develops a steady-state-aware MPC that guarantees
tracking of piecewise constant references and satisfaction of
constraints, without requiring the desired admissible steady-
state configuration and without adding extra computational
load. Stability, recursive feasibility, and local infinite-horizon
optimality of the proposed MPC are proven analytically. The
effectiveness of the proposed MPC is investigated in comparison
with prior work.

Index Terms—Model Predictive Control, Steady-State Config-
uration, Limited Computing Capacity, Output Tracking.

I. INTRODUCTION

MODEL Predictive Control (MPC) is a widely used
method to control systems that are subject to state

and/or input constraints [1]. At each time instant, MPC deter-
mines the control input by solving a receding horizon optimal
control problem, which can be computationally challenging
[2].

Reducing the computational complexity of MPC has been
widely investigated in the literature. One method to reduce the
computational cost of MPC, employed in explicit MPC [3],
[4], is to pre-compute the optimal laws offline and store them
for future online use. Making use of triggering mechanisms
[5], [6] is another way to reduce computational load. Anytime
MPC [7] ensures stability with minimal iterations, though does
not ensure constraint satisfaction. Converting MPC problem
into the evolution of a continuous-time system has been
discussed in [8], [9], without addressing its discrete-time
implementation.

The most intuitive approach to reduce the computational
cost of MPC is to shorten the prediction horizon length, which
has been considered in [10], [11]. Although this approach
maintains stability, it may degrade feasibility by reducing the
Region of Attraction (RoA), defined as the set of all initial
conditions at which MPC is feasible.
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One possible way to enlarge the RoA of MPC problem is to
modify the structure of the conventional MPC. In this context,
[12] characterizes the set of steady-state configurations (a.k.a.
operation points) by a characterizing vector and considers
that as a decision variable in addition to control sequence;
it has been shown that adding a penalty term to the cost
function ensures output tracking without violating the con-
straints. However, when the desired reference can be tracked
with multiple steady-state configurations, [12] has no control
over the achieved steady-state configuration. One possible
approach to address this issue, which is pursued in [13], is
to determine the desired admissible steady-state configuration
for the given reference and penalize the difference between the
steady-state configuration and the desired one. Unfortunately,
[13] does not address how to compute the desired admissible
steady-state configuration, in particular, for piecewise constant
references where the sequences are not known a priori; note
that computing the desired admissible steady-state configura-
tion is not trivial and its online computation can add extra
computational burden [14]–[16]. Given a desired steady-state
configuration, [17] develops a MPC that tracks the desired
configuration if it is admissible, or else, tracks the “best”
admissible configuration; however, [17] does not guarantee
output tracking.

This letter addresses the above-mentioned issues by propos-
ing a steady-state-aware MPC for tracking piecewise constant
references. Given a desired steady-state configuration, the term
steady-state-aware indicates that the proposed MPC guarantees
that the steady-state configuration of the system converges to
the desired configuration if it is admissible, or else, to the
best admissible configuration, while ensuring output tracking
and constraint satisfaction at all times. Thus, despite prior
work, the proposed MPC addresses the problem of tracking
piecewise constant references and of steady-state configura-
tion convergence simultaneously, without requiring any prior
knowledge on the reference.

II. PROBLEM STATEMENT

Consider the following discrete-time system:

x(t+ 1) =Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the control
input y(t) ∈ Rm is the output. At any t, system (1) should
satisfy the following constraints:

x(t) ∈ X , u(t) ∈ U , (2)



where X ⊆ Rn and U ⊆ Rp are convex and compact sets.
Assumption 2.1: The pair (A,B) is stabilizable.
Let r ∈ Rm be the desired reference. Assumption 2.1

implies that there exists at least one steady-state configuration
(xs,us) such that

xs = Axs +Bus, r = Cxs +Dus, (3)

where xs ∈ Int(X ) and us ∈ Int(U). Such a reference is
called a steady-state admissible reference; we denote the set
of all such references by R ⊆ Rm. For any r ∈ R, we denote
the set of admissible steady-state configurations by Zr, i.e.,
Zr = {(xs,us) ∈ Rn+p|xs = Axs + Bus, Cxs + Dus =
r, xs ∈ Int(X ), and us ∈ Int(U)}. According to (3), given
r ∈ R, elements of Zr must satisfy the following equation:

A︷ ︸︸ ︷[
A− In B 0

C D −Im

]xs

us

r

 = 0, (4)

implying that
[
xs

⊤ us
⊤ r⊤

]⊤
belongs to the null space of

A. Assumption 2.1 ensures [15] null space of A is non-trivial;
thus, elements of Zr can be characterized [13] as:[

xs
⊤ us

⊤ r⊤
]⊤

= Mθ, (5)

where columns of M ∈ R(n+p+m)×nθ form a basis for the
null space of A, and θ ∈ Rnθ is the characterizing vector with
nθ being equal to the nullity of A. Partitioning M as M =[
M⊤

1 M⊤
2 L⊤]⊤, where M1 ∈ Rn×nθ , M2 ∈ Rp×nθ , and

L ∈ Rm×nθ , elements of Zr can be expressed as xs = M1θ,
us = M2θ, and r = Lθ.

Remark 2.2: According to the above-mentioned discussion,
to determine the characterizing matrices, one can follow the
following procedure: i) find a basis for the null space of A
given in (4); ii) construct a matrix with basis vectors as its
columns; iii) partition the matrix into three row blocks, where
the number of rows of the first, second, and third blocks are
n, p, and m, respectively.

Problem 2.3: Given r ∈ R, the desired steady-state con-
figuration (xdes, udes) ∈ Rn × Rp, and the initial condition
x(0) ∈ X , obtain an optimal control input that drives the
output of system (1) to r and its steady-state configuration to
(xdes, udes), without violating constraints (2).

III. STEADY-STATE-AWARE MPC FOR TRACKING

Let N ∈ Z>0 be the prediction horizon length. At time
instant t, the proposed MPC computes the optimal character-
izing vector θ∗(t) ∈ Rnθ and the optimal control sequence

u∗(t) :=
[
(u∗(0|t))⊤ · · · (u∗(N − 1|t))⊤

]⊤
∈ RNp as:

θ∗(t),u∗(t) = arg min
u,θ

(N−1∑
k=0

∥x̂(k|t)−M1θ∥2Qx

+
N−1∑
k=0

∥u(k|t)−M2θ∥2Qu
+ ∥x̂(N |t)−M1θ∥2QN

+ ∥r − Lθ∥2Qr
+ f (θ)

)
, (6a)

subject to the following constraints:

x̂(k + 1|t) = Ax̂(k|t) +Bu(k), x̂(0|t) = x(t), (6b)
x̂(k|t) ∈ X , u(k|t) ∈ U , k ∈ {0, · · · , N − 1}, (6c)
(x̂(N |t), θ) ∈ Ω. (6d)

In (6), x̂(k|t) represents state prediction at instant k, Qx =
Q⊤

x ⪰ 0, Qu = Q⊤
u ≻ 0, QN ⪰ 0, Qr = Q⊤

r ≻ 0, and f :
Rnθ → R≥0 is convex, µ-Lipschitz, and twice-differentiable,
such that f(θ) = 0 ⇔ (xs,us) = (xdes, udes). Given a termi-
nal control law u(k) = κ

(
x̂(k|t), θ

)
with κ : Rn×Rnθ → Rp,

the terminal constraint set Ω ⊂ Rn×Rnθ is designed to ensure
that if

(
x̂(N |t), θ

)
∈ Ω, then

(
x̂(k|t), κ

(
x̂(k|t), θ

))
∈ X ×U

for all k ≥ N .
Remark 3.1: Similar to conventional MPC (see, e.g., [8],

[9]), it is convenient to select QN in (6a) as the solution of the
algebraic Riccati equation QN = A⊤QNA−(A⊤QNB)(Qu+
B⊤QNB)−1(B⊤QNA) + Qx, and use the terminal control
law κ(x(t), θ) = M2θ +K(x(t)−M1θ) with K = −(Qu +
B⊤QNB)−1(B⊤QNA).

Remark 3.2: The most intuitive choice for the function
f(θ) is the quadratic form f(θ) = ∥xs − xdes∥2Qsx

+

∥us − udes∥2Qsu
, where Qsx = Q⊤

sx ⪰ 0 (Qsx ∈ Rn×n),
Qsu = Q⊤

su ⪰ 0 (Qsu ∈ Rp×p), and xdes ∈ Rn and udes ∈ Rp

are desired steady state and control input determined by the
designer. Note that in many applications (see, e.g., [15]), it
is desired to minimize the steady-state control effort without
any particular preference on the steady state (i.e., udes = 0,
without any preference on xdes); selecting f(θ) = ∥us∥2Qsu

would steer the system to a steady-state configuration at which
the control effort is minimized.

A. Determining the Terminal Constraint Set Ω

System (1) when controlled by the terminal control law
takes the following form:

x(t+ 1) = (A+BK)x(t) + (BM2 −BKM1)θ. (7)

Let define the maximal output admissible set as the set of
all states x and characterizing vector θ such that the predicted
states from the initial state x and with the characterizing vector
θ kept constant satisfies the constraints (2), i.e.,

O∞ = {(x, θ)|x̂(ω|x, θ) ∈ X , û(ω|x, θ) ∈ U , ω = 0, 1, · · · },
(8)

where x̂(ω|x, θ) is the predicted state at the prediction instant
k, which, according to (7), can be computed as follows:

x̂(ω|x, θ) =(A+BK)ωx

+
ω∑

j=1

(A+BK)j−1(BM2 −BKM1)θ, (9)

and û(ω|x, θ) is the control input at the prediction instant k:

û(ω|x, θ) = M2θ +K (x̂(ω|x, θ)−M1θ) . (10)

Therefore, constraint (6d) with Ω ⊆ O∞ ensures that if the
characterizing vector θ is kept constant from the time instant



N+t onward, the ensuing state when the terminal control law
is applied will always satisfy constraints (2).

Although Ω = O∞ is an acceptable choice, it is usually
avoided as the set O∞ is not finitely determined (i.e., it cannot
be described by a finite set of constraints). However, Appendix
A implies that [2], [13], [18] the terminal constraint set defined
as Ω = O∞ ∩ Oϵ, where Oϵ = {θ|M1θ ∈ (1 − ϵ)X ,M2θ ∈
(1 − ϵ)U} for some ϵ ∈ (0, 1), is finitely determined and
positively invariant. That is, there exists a finite index ω∗ such
that Ω can be defined as Ω = Oω∗ ∩ Oϵ. The value of index
ω∗ can be obtained by solving a sequence of mathematical
programming problems detailed in [18].

Remark 3.3: According to the above-mentioned discussion,
and equations (9) and (10), constraint (6d) can be implemented
by 2ω∗+2 constraints given in (11), where ϵ ∈ (0, 1) (typically
small) is a design parameter.

IV. THEORETICAL ANALYSIS

Theorem 4.1 (Recursive Feasibility): Consider system (1)
which is subject to constraints (2). Suppose that (6) is feasible
at t = 0. Then, it remains feasible for all t > 0.

Proof: Suppose that MPC (6) is feasible at
t, where the optimal characterizing vector and the
optimal control sequence are denoted by θ∗(t) and

u∗(t) =
[
(u∗(0|t))⊤ · · · (u∗(N − 1|t))⊤

]⊤
, respectively.

Also, (x̂(N |t), θ∗(t)) ∈ Ω, where x̂(N |t) is the terminal state
given the optimal control sequence u∗(t).

Since the terminal constraint set Ω is positively
invariant (see Subsection III-A and Equation (11)), it is
concluded that κ

(
x̂(N |t), θ∗(t)

)
= K(A + BK)x̂(N |t) +

K(BM2 − BKM1)θ
∗(t) + (BM2 − BKM1)θ

∗(t) ∈ U ,
x̂(N + 1|t) = Ax̂(N |t) + Bκ

(
x̂(N |t), θ∗(t)

)
∈ X ,

and (x̂(N + 1|t), θ∗(t)) ∈ Ω.Thus, the charac-
terizing vector θ∗(t) and the control sequence[
(u∗(1|t))⊤ · · · (u∗(N − 1|t))⊤

(
κ
(
x̂(N |t), θ∗(t)

))⊤ ]⊤
construct a feasible solution for the proposed steady-state-
aware MPC at time instant t+1. Therefore, feasibility at time
instant t implies feasibility at time instant t+1, meaning that
the proposed MPC is recursively feasible.

Theorem 4.2 (Closed-Loop Stability): Suppose that the MPC
given in (6) is used to address Problem 2.3. Then,

• if (xdes, udes) ∈ Zr, y(t) → r and (xs,us) →
(xdes, udes) as t → ∞.

• if (xdes, udes) /∈ Zr, y(t) → Lθ̄ and (xs,us) →(
M1θ̄,M2θ̄

)
as t → ∞, where θ̄ satisfies:∥∥θ⋄ − θ̄

∥∥ ≤ µ/λ(L⊤QrL), (12)

with θ⋄ being the solution of the following problem:

θ⋄ = argmin
θ

f(θ), s.t. (M1θ,M2θ) ∈ Zr. (13)

Proof: Let J
(
θ,u|x(t)

)
and J

(
θ,u|x(t+1)

)
be the cost

functions of the MPC given in (6) at time instants t and t+1,
respectively. Also, let

(
θ∗(t),u∗(t)

)
and

(
θ∗(t+1),u∗(t+1)

)
be the optimal solutions at time instants t and t + 1, respec-
tively. First, we show that J

(
θ∗(t+1),u∗(t+1)|x(t+1)

)
−

J
(
θ∗(t),u∗(t)|x(t)

)
≤ 0.

According to the optimality of the solution
(
θ∗(t+1),u∗(t+

1)
)
∈ Rnθ × RNp at time instant t+ 1, we have:

J
(
θ∗(t+ 1),u∗(t+ 1)|x(t+ 1)

)
≤ J

(
θ∗(t),u∗(t+ 1)|x(t+ 1)

)
. (14)

where θ∗(t) is the optimal characterizing vector at t. Subtract-
ing J

(
θ∗(t),u∗(t)|x(t)

)
from both sides of (14) yields:

J
(
θ∗(t+ 1),u∗(t+ 1)|x(t+ 1)

)
− J

(
θ∗(t),u∗(t)|x(t)

)
≤ J

(
θ∗(t),u∗(t+ 1)|x(t+ 1)

)
− J

(
θ∗(t),u∗(t)|x(t)

)
.

(15)

From (6a), and since u∗(k + 1|t) = u∗(k|t+ 1) and x̂(k +
1|t) = x̂(k|t+ 1), k = 0, · · · , N − 2, (15) implies that:

J
(
θ∗(t+ 1),u∗(t+ 1)|x(t+ 1)

)
− J

(
θ∗(t),u∗(t)|x(t)

)
≤ ∥x̂(N |t+ 1)−M1θ

∗(t)∥2QN
− ∥x̂(N |t)−M1θ

∗(t)∥2QN

+ ∥x̂(N − 1|t+ 1)−M1θ
∗(t)∥2Qx

+ ∥u(N − 1|t+ 1)−M2θ
∗(t)∥2Qu

− ∥x̂(0|t)−M1θ
∗(t)∥2Qx

− ∥u∗(0|t)−M2θ
∗(t)∥2Qu

. (16)

As shown in [19], when the matrix QN is determined via
the algebraic Riccati equation discussed in Remark 3.1, for
any θ∗(t) ∈ Rnθ , we have

∥∥x̂(N |t + 1) − M1θ
∗(t)

∥∥2
QN

−∥∥x̂(N |t)−M1θ
∗(t)

∥∥2
QN

+
∥∥x̂(N − 1|t+1)−M1θ

∗(t)
∥∥2
Qx

+∥∥u(N − 1|t+1)−M2θ
∗(t)

∥∥2
Qu

≤ 0. Thus, (16) implies that:

J
(
θ∗(t+ 1),u∗(t+ 1)|x(t+ 1)

)
− J

(
θ∗(t),u∗(t)|x(t)

)
≤ −

∥∥x̂(0|t)−M1θ
∗(t)

∥∥2
Qx

−
∥∥u∗(0|t)−M2θ

∗(t)
∥∥2
Qu

≤ 0

(17)

At this stage, we use LaSalle invariance principle [20] to
show that the only entire trajectory that satisfies J

(
θ∗(t +

1),u∗(t+1)|x(t+1)
)
−J

(
θ∗(t),u∗(t)|x(t)

)
≡ 0 is the desired

steady-state configuration (xdes, udes) if (xdes, udes) ∈ Zr,
and is

(
M1θ̄,M2θ̄

)
if (xdes, udes) /∈ Zr.

(A+BK)ωx̂(N |t) +
ω∑

j=1

(A+BK)j−1(BM2 −BKM1)θ ∈ X , ω ∈ {0, 1, · · ·ω∗}, (11a)

K(A+BK)ωx̂(N |t) +K
ω∑

j=1

(A+BK)j−1(BM2 −BKM1)θ + (BM2 −BKM1)θ ∈ U , ω ∈ {0, 1, · · ·ω∗}, (11b)

M1θ ∈ (1− ϵ)X , M2θ ∈ (1− ϵ)U . (11c)



On the one hand, as shown in Appendix B, imposing
J
(
θ∗(t + 1),u∗(t + 1)|x(t + 1)

)
− J

(
θ∗(t),u∗(t)|x(t)

)
=

0 for t ≥ t† implies that the optimal cost function
J
(
θ∗(t),u∗(t)|x(t)

)
takes the following form for t ≥ t†:

J
(
θ∗(t),u∗(t)|x(t)

)
= ∥r − Lθ∗(t)∥2Qr

+ f (θ∗(t)) . (18)

On the other hand, from optimality of the solution(
θ∗(t),u∗(t)

)
for t ≥ t†, we have:

J
(
θ∗(t),u∗(t)|x(t)

)
≤ J

(
θ⋄,u∗(t)|x(t)

)
, t ≥ t†, (19)

where θ⋄ is as in (13). Since J
(
θ⋄,u∗(t)|x(t)

)
= f (θ⋄), (18)

and (19) imply that:

∥r − Lθ∗(t)∥2Qr
+ f (θ∗(t)) ≤ f (θ⋄) , t ≥ t†. (20)

Now, consider the following two cases.
• Case I—(xdes, udes) ∈ Zr: We have θ⋄ = θdes, where
θdes ∈ Rnθ is the characterizing vector corresponding
to the desired steady-state configuration (xdes, udes). Since
f (θ⋄ = θdes) = 0, (20) implies that ∥r − Lθ∗(t)∥2Qr

=

f (θ∗(t)) = 0 for t ≥ t†; consequently Lθ∗(t) = r,
M1θ

∗(t) = xdes, and M2θ
∗(t) = udes for t ≥ t†.

• Case II—(xdes, udes) /∈ Zr: From (13), we have
Lθ⋄ = r. Furthermore, we have λ(L⊤QrL) ∥θ⋄ − θ∗(t)∥2 ≤
∥Lθ⋄ − Lθ∗(t)∥2Qr

. Thus, according to Lipschitz continuity of
the function f(θ), (20) implies that

λ(L⊤QrL) ∥θ⋄ − θ∗(t)∥2 ≤ f (θ⋄)− f (θ∗(t))

≤ ∥f (θ⋄)− f (θ∗(t))∥ ≤ µ ∥θ⋄ − θ∗(t)∥ , (21)

for t ≥ t†, which yields the inequality (12).
Remark 4.3: Since Qr and the function f(θ) are design

parameters, the upper-bound in (12) can be made arbitrarily
small; thus, the output tracks r and the steady-state configu-
ration converges to the best admissible one.

Remark 4.4: Consider the reference r, desired steady state
xdes, and desired steady input udes. It is not unusual that
the steady-state configuration (xdes, udes) is not admissible
associated with the desired reference r. To deal with such sit-
uations in predictive controllers, prior work [21], [22] suggests
to add an upper level steady-state optimizer to decide the best
admissible steady-state configuration; note that this approach
can add extra computational burden [14]–[16]. According to
Theorem 4.2, the proposed MPC scheme steers the system to
the optimal steady-state configuration according to the offset
cost function f(θ), while ensuring output tracking. Then, it
can be concluded that the proposed MPC scheme has a built-
in steady-state configuration optimizer, and f(θ) defines the
function to be optimized.

V. LOCAL INFINITE-HORIZON OPTIMALITY

Let r ∈ R be the desired reference and (xdes, udes) ∈ Zr be
the desired steady-state configuration. Let θdes ∈ Rnθ be the
characterizing vector corresponding to the desired steady-state
configuration, i.e., xdes = M1θdes and udes = M2θdes. Fur-
thermore, let f(θ) = ∥M1θ − xdes∥2Qsx

+ ∥M2θ − udes∥2Qsu

(see Remark 3.2). Thus, we have

λ(L⊤QrL) ∥θ − θdes∥2 ≤ λM ∥θ − θdes∥2 (22)

where λM := λ(L⊤QrL)+λ(M⊤
1 QsxM1)+λ(M⊤

2 QsuM2).
It is obvious that λM ≥ λ(L⊤QrL).

The standard MPC control law to regulate the output of the
system to r can be derived from the solution of the optimiza-
tion problem (6) subject to the constraint ∥θ − θdes∥2 = 0; we
use Js

(
θ,u|x(t)

)
to denote the cost function of the resulting

optimization problem and XMPC
N to denote its RoA.

Theorem 5.1: For sufficiently large λ(L⊤QrL), we have:
• The proposed MPC is equal to the MPC for regulation.
• If the terminal control gain K is chosen as in Remark 3.1,

then the control law generated by the proposed MPC is
equal to the constrained Linear Quadratic Programming
(LQR) control law.
Proof: Consider the optimization problem (6) where

the term ∥r − Lθ∥2Qr
+ f(θ) in (6a) is replaced with

λ(L⊤QrL) ∥θ − θdes∥2; we denote the resulting cost func-
tion by J1

(
θ,u|x(t)

)
. Also, we use J2

(
θ,u|x(t)

)
to de-

note the cost function in which the term ∥r − Lθ∥2Qr
+

f(θ) is replaced with λM ∥θ − θdes∥2. It is obvious
that J1

(
θ∗(t),u∗(t)|x(t)

)
≤ J

(
θ∗(t),u∗(t)|x(t)

)
≤

J2
(
θ∗(t),u∗(t)|x(t)

)
, where

(
θ∗(t),u∗(t)

)
∈ Rnθ × RNp is

the optimal solution at time instant t.
In virtue of the exact penalty method, there exist

σ ∈ R>0 such that for λ(L⊤QrL) ≥ σ, we have
J1

(
θ∗(t),u∗(t)|x(t)

)
= Js

(
θ∗(t),u∗(t)|x(t)

)
. Also, since

λM ≥ λ(L⊤QrL) ≥ σ, we have J2
(
θ∗(t),u∗(t)|x(t)

)
=

Js
(
θ∗(t),u∗(t)|x(t)

)
. Therefore, according to the above-

mentioned discussion, we have J
(
θ∗(t),u∗(t)|x(t)

)
=

Js
(
θ∗(t),u∗(t)|x(t)

)
, which implies the first statement.

For what regards the second statement, let θ = θdes and
let XIH

N be the set of all states such that the infinite-horizon
optimal trajectories enter the terminal constraint set Ω after
N steps. Then, the second statement can be derived according
to the fact [12], [17] that XIH

N ⊆ XMPC
N .

VI. COMPARISON STUDY

Consider a system with the following matrices [13]:

A =

[
1 1

0 1

]
, B =

[
0.0 0.5

1.0 0.5

]
, C =

[
1 0

]
, (23)

which is subject to the constraints |xi(t)| ≤ 5 and |ui(t)| ≤
0.3, i ∈ {1, 2}. The characterizing matrices are:

M1 =

[
1 0

0 1

]
, M2 =

[
0 1

0 −2

]
, N =

[
1 0

]
. (24)

Let r = 4.95, and the weighting matrices be chosen as
Qx = diag{1, 1} and Qu = diag{1, 1}. We use the method
described in [9] to determine the terminal control law κ(·),
matrix QN , and the terminal constraint set Ω. To implement
the proposed steady-state-aware MPC, we set Qr = 1. We
want to minimize the steady-state control effort, without any
particular preference on the steady state; thus, according to
Remark 3.2, we select f(θ) = ∥us∥2.

Simulations are run on an 13th Gen Intel® Core™ i9-13900K
processor with 64GB RAM. We use YALMIP toolbox to
implement the computations of the methods.



Fig. 1. RoA of the conventional MPC, of the proposed steady-state-aware
MPC, and of MPC schemes presented in [12] and [17] for N = 3.

Fig. 2. Achieved steady-state configuration with the proposed steady-state-
aware MPC and MPC scheme described in [17]; in the right figure, solid line
represents u1(t) and dashed line represents u2(t).

A. Comparison with respect to the RoA

The RoA of the conventional MPC, of the proposed MPC,
and of the MPC in [12] and [17] are shown in Fig. 1 for
N = 3. As seen in this figure, the proposed MPC and those
described in [12] and [17] provide the same RoA.

B. Comparison with respect to computing time

To provide a quantitative comparison, we consider 2,000
experiments with initial condition x(0) = [α 0]⊤, where in
each experiment, α is uniformly selected from the interval [-
5,5]. TABLE I reports the computing time of the proposed
MPC and MPC schemes described in [12] and [17]; for any
N , the methods have a comparable computing time.

C. Comparison with respect to output tracking performance

TABLE II reports the statistics of 2,000 experiments on
the achieved performance with the proposed MPC and the
one described in [12], where Performance Index (PI) :=∑50

t=0 ∥y(t)− r∥2. From this table, both methods yield a
comparable performance index.

For what regards MPC in [17], let xdes = [α β]⊤ and
udes = [0 0]⊤, where α, β ∈ R. When α ∈ [−5, 5] and
β ∈ [−0.15, 0.15], MPC in [17] steers the steady state and
input to xs = [α β]⊤ and us = [β,−2β]⊤, respectively,
implying that the output converges to α; thus, if α ̸= r, [17]
does not guarantee output tracking; see Fig. 2.

D. Comparison with respect to steady-state configuration

It can be shown that for the system given in (23), we
have Zr = {(xs,us)|xs = [r θ]

⊤
, us = [θ − 2θ]

⊤
, θ ∈

[−0.15, 0.15]}. Suppose that xdes = [r β]⊤ and udes = [0 0]⊤.

Fig. 3. Distribution of the achieved steady-state configuration with the MPC
scheme described in [12].

The proposed MPC steers the characterizing vector θ to zero,
which implies that us converges to [0 0]

⊤.
When the MPC in [17] is applied, even though the steady

input us converges to a single value, it does not converge
to udes; using the MPC in [17], the characterizing vector θ
converges to β implying that us converges to [β − 2β]

⊤.
When the MPC in [12] is employed, θ may converge to any

value between -0.15 and 0.15, which implies that the steady
input us does not converge to a single value. Fig. 3 presents the
distribution of θ for 2,000 experiments (details are provided
above) with MPC in [12].

VII. CONCLUSION

This letter proposed a steady-state-aware MPC which is
capable of addressing tracking objectives and guaranteeing
constraint satisfaction with any prediction horizon length,
without adding any extra computational burden to the system.
Closed-loop stability, recursive feasibility, and local infinite-
horizon optimality of the proposed MPC have been proven
analytically. The effectiveness of the proposed MPC has been
assessed in comparison with prior work.
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APPENDIX A
SUPPLEMENTARY DISCUSSION FOR SET Ω

For a fixed θ, consider the extended state ϕ(t) =[
x(t)⊤ θ⊤

]⊤
. System (7) can be expressed as follows:

ϕ(t+ 1) = Ψϕ(t), Y(t) = x(t) = Cϕ(t), (A.1)

where Ψ =

[
A+BK BM2 −BKM1

0 Inθ

]
, and C =

[
In 0

]
.

Since A + BK is Schur (see Remark 3.1), it can be easily
shown that |λi(Ψ)| ≤ 1, ∀i, and |λi(Ψ)| = 1 implies that
λi(Ψ) is simple, where λi(Ψ) indicates the ith eigenvalue of

matrix Ψ . Also, it is obvious that the pair (C, Ψ ) is observable,
implying [18] that O∞ given in (8) is bounded.

APPENDIX B
SUPPLEMENTARY DISCUSSION FOR THEOREM 4.2

According to (17), imposing J
(
θ∗(t + 1),u∗(t + 1)|x(t +

1)
)
− J

(
θ∗(t),u∗(t)|x(t)

)
= 0 for t ≥ t† implies that:

x̂(0|t) = M1θ
∗(t), u∗(0|t) = M2θ

∗(t), t ≥ t†. (A.2)

Since x̂(0|t) = x(t) and x̂(1|t) = x̂(0|t+ 1) = x(t+ 1), it
follows from (1) and (A.2) that for any t ≥ t†, we have:

M1θ
∗(t+ 1) = AM1θ

∗(t) +BM2θ
∗(t). (A.3)

Since M1θ
∗(t) = AM1θ

∗(t)+BM2θ
∗(t) for all t (see Eq.

(4)), it follows from (A.3) that M1θ
∗(t+ 1) = M1θ

∗(t), t ≥
t†, which implies that x̂(1|t) = x̂(0|t) = M1θ

∗(t), t ≥ t†.
Following the same procedure, it can be easily shown that

x̂(k|t) = x̂(0|t) = M1θ
∗(t), t ≥ t†, k ∈ Z≥0. Hence,{ ∑N−1

k=0 ∥x̂(k|t)−M1θ
∗(t)∥2Qx

= 0

∥x̂(N |t)−M1θ
∗(t)∥2QN

= 0
, ∀t ≥ t†. (A.4)

As a result, the optimal cost function J
(
θ∗(t),u∗(t)|x(t)

)
takes the following form for t ≥ t†:

J
(
θ∗(t),u∗(t)|x(t)

)
=

N−1∑
k=0

∥u∗(k|t)−M2θ
∗(t)∥2Qu

+ ∥r − Lθ∗(t)∥2Qr
+ f (θ∗(t)) . (A.5)

Let ũ(t) :=
[
(u∗(0|t))⊤ · · · (u∗(0|t))⊤

]⊤
∈ RNp. From the

optimality of the solution at any t ≥ t†, we have

J
(
θ∗(t),u∗(t)|x(t)

)
≤ J

(
θ∗(t), ũ(t)|x(t)

)
, (A.6)

which implies that
∑N−1

k=0 ∥u∗(k|t)−M2θ
∗(t)∥2Qu

≤∑N−1
k=0 ∥u∗(0|t)−M2θ

∗(t)∥2Qu
. According to (A.2), the

right-hand side of this last inequality is zero, which implies
that

∑N−1
k=0 ∥u∗(k|t)−M2θ

∗(t)∥2Qu
= 0. Thus, it follows

from (A.6) that the optimal cost function takes the following
form for t ≥ t†:

J
(
θ∗(t),u∗(t)|x(t)

)
= ∥r − Lθ∗(t)∥2Qr

+ f (θ∗(t)) , t ≥ t†.

(A.7)


