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A B S T R A C T   

Over the past few years, Deep Learning (DL) methods have garnered substantial recognition within the field of 
hydrology and water resources applications. Beginning with a discussion on fundamental concepts of DL, we 
discussed the state-of-the-art DL architectures such as Long-Short-Term-Memory (LSTM), Convolutional Neural 
Networks (CNN), Generative Adversarial Networks (GAN), and Encoder-Decoder models that have gained much 
attention over the recent years. The recent advancements in the DL model, such as the Attention model and 
Transformer Neural Network, that are designed to handle sequential time series data, are also discussed. An 
overview of integrating physics-based hydrological models with state-of-the-art DL models, known as Physics- 
Guided Deep Learning (PGDL), and its potential for improving the accuracy and interpretability of hydrologi
cal predictions are discussed. We emphasized that PGDL has the potential to enhance the physical consistency 
and robustness of the hydrologic predictions. We further delve into Explainable Artificial Intelligence (XAI), 
examining various techniques for constructing interpretable models. The objective is to empower users to 
comprehend and confidently trust machine learning algorithms’ results (model outputs). Furthermore, we delved 
into the diverse applications of Deep Learning (DL) in hydrology and water resources sectors, encompassing 
areas such as drought and flood forecasting, remote sensing applications, water quality assessments, subsurface 
flow inversion problems, groundwater level prediction, and hydro-climate variable downscaling.   

1. Introduction 

Hydrology and water resources disciplines rely on diverse data sets 
and modeling techniques to study the water distribution, circulation, 
quantity, and quality on and below the earth’s surface. Different types of 
models are often used to study spatio-temporal variability of hydrologic 
fluxes, water security (Gowri et al., 2021; Veettil et al., 2022), extreme 
events (Arnold et al., 1998; Liang et al., 1994; Mukherjee and Mishra, 
2021; Tripathy et al., 2023), water quality (Arnold et al., 1998; Donigian 
et al., 1995), sediment and contaminant transport (Brunner, 1996), and 
climate change impact assessments (Bhatta et al., 2019; Liang et al., 
1996, 1994; Niu et al., 2011; Oleson et al., 2008; Sreeparvathy and 
Srinivas, 2022). However, a crucial challenge lies in understanding the 
non-linear interactions between various processes at different spatio- 
temporal scales, which significantly influences the dynamics and pre
dictability of the water cycle and extreme events (Abrahart and See, 
2007; Konapala and Mishra, 2020; Sivapalan et al., 2003). 

Physics (process) based hydrological models have been in use since 

the 1960s (Arnold et al., 1998; Beven, 1989; Crawford and Linsley, 
1966; Singh and Woolhiser, 2002), for example, Soil and Water 
Assessment Tool (SWAT; Arnold et al., 1998), the Hydrologic Modeling 
System (HEC-HMS; Scharfferberg and Fleming, 2006), Joint UK Land 
Environment Simulator (JULES; Best et al., 2011), and Variable Infil
tration Capacity (VIC; Liang et al., 1994) model. However, these models 
often face limitations over the adequacy of model parameterizations, 
data quality and uncertainty, computational constraints, complexity, 
and usability (Clark et al., 2017; Fatichi et al., 2016). Some of the 
physics-based models may not adequately capture the spatial depen
dence structure of the hydrologic processes occurring at different 
spatiotemporal scales (Blöschl and Sivapalan, 1995; Troy et al., 2008; 
Wood et al., 2011), and the likelihood of higher uncertainties due to 
discrepancies in data sets, model parameters, and model structure (Liu 
and Gupta, 2007; Wiens et al., 2009). 

The application of data-driven models in hydrology and water re
sources has gained momentum in recent decades. These data-driven 
models are built upon statistical and machine learning techniques that 
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learn patterns directly from the observed data. Examples include Arti
ficial Neural Networks (ANN; Maier and Dandy, 1996), Support Vector 
Machines (SVM; Drucker et al., 1999), and Random Forest algorithms 
(Breiman, 2001). The data-driven methods used in model calibration, 
parameter estimation, and handling various sources of uncertainties are 
perceived as less challenging compared to the physics-based models 
(Ghaith et al., 2020; Liu et al., 2021; Sikorska et al., 2015). 

The recent surge in hydrological, geological, and climate science- 
related data sets’ volume, variety, and veracity provides new opportu
nities (Reichstein et al., 2019) for studying hydro-climatic processes and 
real-world water resources applications. Hydrological data typically 
emanates from multiple sources, such as observed and reanalysis data
bases (e.g., ERA5; Hersbach et al., 2020), remote sensing products (e.g., 
Landsat, MODIS, and soil moisture missions; Entekhabi et al., 2010), 
climate models (e.g., Coupled Model Intercomparison Project Phase 6 
(CMIP6); Weather Research and Forecasting Model, Skamarock et al., 
2008), sensor data (Wang et al., 2008), camera rain gauges (Allamano 
et al., 2015), unmanned aerial photogrammetry, Internet of Things (IoT) 
measurements (Oguz et al., 2022), and crowdsourcing data sets (Sermet 
et al., 2020). The key challenge in dealing with these heterogeneous data 
sets is primarily associated with the difference in spatial and temporal 
resolution as well as the volume of the data sets. For example, the total 
volume of the CMIP-6 data archive is estimated to be approximately 
15–30 petabytes (Reichstein et al., 2019). The main challenge is 
extracting and detecting patterns of hidden information from the data 
deluge, also known as the data discoverability problem (Máchová et al., 
2018). Therefore, extracting useful information from high-dimensional 
and multi-scale hydrological datasets will provide new avenues for 
quantifying hidden processes, thereby advancing hydroclimatic pre
diction, detection, and attribution. 

In the past decade, data-driven models such as Machine Learning 
(ML) and Deep Learning (DL) methods have garnered interest in hy
drology and water resources communities. Commonly used data driven 
models are neural network models (Adamowski and Chan, 2011; 
Amaranto et al., 2019; Elshorbagy et al., 2010; Guzman et al., 2017; Sun 
et al., 2022), self-organized map (SOM; Chang et al., 2021; Nourani 
et al., 2013), boosted regression trees (Rosecrans et al., 2017), multi
variate adaptive regression splines and M5 model trees (Rezaie-balf 
et al., 2017), random forest (RF; Konapala and Mishra, 2020; Schoppa 
et al., 2020; Yu et al., 2017) and support vector machines (SVM; Liu 
et al., 2021; Raghavendra. N and Deka, 2014; Shabri and Suhartono, 
2012). 

The DL methods are instrumental in addressing challenging prob
lems in the field of hydrology and water resources, such as time-series 
forecasting (Kao et al., 2020; Yang et al., 2019a), land use and land 
cover (LULC) classification (Maggiori et al., 2017; Zhang et al., 2020), 
hydrodynamic modeling, downscaling (Wang et al., 2021), change and 
anomaly detection (Zhong et al., 2019), hurricane tracking (Kim et al., 
2019), water quality assessment (Prasad et al., 2022), extreme weather 
prediction (Zhou et al., 2019), generation of complex multimodal data 
distributions (Laloy et al., 2018). DL models’ performance can be su
perior to the state-of-the-art process-based models and traditional ML 
approaches, especially in data-rich environments (e.g., large volumes 
and high-quality data). The DL models have improved the multi-scale 
(Fang et al., 2017), multi-task (Sadler et al., 2022), and multimodality 
barrier with high-fidelity solutions (Laloy et al., 2018). One of the key 
advantages of DL is its ability to ease the manual task of feature engi
neering. However, it’s important to note that the effectiveness of this 
automation is highly dependent on the specific use case and data type, 
and careful manual feature engineering is still essential in many appli
cations. Feature engineering is the process of transforming raw data into 
suitable representations or features using mathematical functions. DL 
enables the detection of complex nonlinear relationships between inputs 
and outputs through successive, deeper layers of feature engineering. 
Several factors complemented the emergence of DL in hydrology and 
water resource disciplines, which includes: (1) availability of large 

volumes of data, (2) rapid progress in the parallel computing machines 
with multi-core options, graphical processing units (GPU), and multi- 
threaded execution, (3) Niche software platforms including Tensor
Flow (Abadi et al., 2016), Keras (Chollet, 2021), PyTorch (Paszke et al., 
2017), BigDL (Dai et al., 2019), Theano (The Theano Development Team 
et al., 2016) and Caffe (Jia et al., 2014) that allow building hierarchical 
DL architectures without exploring much complex mathematical details, 
(4) robust optimization performance achieving near-optimal solutions, 
and (5) improved regularization methods to overcome overfitting. 

DL methods are critical to the Fourth Industrial Revolution (4IR or 
Industry 4.0), particularly in big data analysis (Oosthuizen, 2022). The 
shift towards data-driven models and data-intensive research in hy
drology and water resources disciplines offers immense potential in the 
coming years. Although the application of DL concepts and tools has 
gained momentum, a comprehensive discussion of DL concepts, meth
odologies, applications, challenges, research gaps, and potential op
portunities in hydrology and water resources disciplines is still lacking, 
which is the fundamental motivation for this review. 

Our study outlines the DL concepts and methodologies (sections 2 
and 3) and summarizes the progress of DL applications in hydrology and 
water science (section 5). Our review compliments recent review papers 
(Camps-Valls et al., 2021; Shen, 2018; Shen et al., 2018; Sit et al., 2020; 
Yaseen et al., 2019) by emphasizing the novel facets of DL models, such 
as Physics-Guided Deep Learning (PGDL) and Explainable Artificial In
telligence (XAI; Section 4), which were not discussed in previous studies. 
We also highlighted the advantages of the latest DL architectures, such 
as Transformers and Attention models, which outperform state-of-the- 
art LSTM networks and efficiently use parallel computing abilities that 
were overlooked in previous reviews. We examined the challenges and 
opportunities that DL provides for hydrology and water resources dis
ciplines provided in section 6. Additionally, we delved into the unex
plored potential of Physics-Guided Deep Learning and discussed the 
importance of Explainable Artificial Intelligence XAI. 

2. DL concepts 

2.1. Background of DL 

Artificial Intelligence (AI) was first introduced in the 1950s to 
perform intellectual tasks commonly performed by humans (Dick, 
2019). ML, a branch of AI draws its roots from mathematical statistics, 
which require a vast amount of training data to continuously discover 
underlying patterns, which may be linear or nonlinear. ML models 
possess numerous parameters that aim to capture the nonlinear patterns 
in the data distribution (Chollet, 2021). 

DL, a subfield of ML, is a powerful method for mapping input data to 
target outputs using successive layers of nonlinear transformations, 
typically learned through neural networks (Chollet, 2021). Unlike 
traditional ML techniques such as Support Vector Machines (SVM; 
Vapnik, 1999) and Random Forests (RF; Breiman, 2001), which employ 
simple transformations and limited representations of the data, DL le
verages multiple layers of representation to learn complex feature 
mappings from the input data automatically. The term “deep” in Deep 
Learning refers to this multi-layer architecture, and it can discover 
complex, nonlinear relationships in data. DL algorithms have become 
crucial in various applications across diverse scientific disciplines. 

DL methods can be broadly classified into supervised, unsupervised, 
and self-supervised learning (Kotsiantis et al., 2006) (Fig. 1). In super
vised learning, essential features or rules that map the input data to 
desired targets are generated. When new testing data is provided, it 
produces the output based on the learned features. Apart from classifi
cation or regression tasks, some canonical examples of supervised 
learning include single-step/multi-step time-series prediction, object 
detection, and image segmentation. Unlike supervised learning, unsu
pervised learning analyzes and clusters unlabeled datasets and discovers 
hidden patterns or data groupings to discover similarities and 
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differences in information, making it an ideal solution for exploratory 
data analysis (Hastie et al., 2009). This form of machine learning at
tempts to better understand the structure and distribution of the input 
dataset by data visualization, denoising, data compression, or the as
sociation among variables before applying supervised learning. K-mean 
clustering (MacQueen, 1967), Principal Component Analysis (PCA; 
Pearson, 1901), and Generative Adversarial Networks (GAN; section 
3.4) are popular unsupervised techniques. Self-supervised learning is a 
special type of supervised learning where there are pseudo-labels, unlike 
labels or ground truths in supervised learning. These pseudo-labels are 
usually generated from the input data using a heuristic algorithm. 
Autoencoders (section 3.3) are well-known examples of self-supervised 
learning, where the DL model learns to compress and encode data so 
that the reduced encoded information can be reconstructed as close to 
the original input as possible. There is another branch of machine 
learning called Reinforcement Learning (RL; Sutton and Barto, 2018) 
which slightly varies from DL. In DL, the idea is to decode the features/ 
rules that map a set of inputs to certain outputs; in contrast, in RL, an 
intelligent agent continuously learns by trial and error procedure in an 
interactive environment using feedback from its own actions and ex
periences. However, it’s important to mention that DL and RL can 
overlap, such as in Deep Reinforcement Learning. This approach in
tegrates DL methods within an RL framework, creating a powerful tool 
to enhance learning and predictive capabilities. 

2.2. How does DL work? 

DL works by mapping inputs to outputs through multiple layers that 
perform various mathematical transformations. The model’s “ 

parameters, ” including weights and biases, are iteratively adjusted to 
optimize this mapping - a process known as learning (Chollet, 2021; 
Gulli and Pal, 2017). 

In a DL network, hidden layers apply nonlinear transformations on 
inputs using activation functions (Fig. 2). After an output is predicted, a 
loss function computes the difference between this prediction and the 
actual output, indicating the model’s accuracy. This error is then used to 
adjust the weights and minimize future errors through backpropagation, 
an optimization algorithm (Rumelhart et al., 1986; Fig. 2). For a simple 
neural network model demonstration, the reader can follow supple
mentary section A1 for the backpropagation algorithm concept. Starting 
with random weights, iterations refine these values to reduce the loss 
function and accurately predict the target. Further information on key 
components like loss functions, activation functions, and optimizers is 
available in supplementary sections A2 and A3. 

2.3. Paradox of Underfitting-Overfitting issues 

Fig. 3a illustrates underfitting, overfitting, and optimal fitting in a 
regression model. Underfitting, indicative of a too simplistic model, fails 
to capture the relationship between variables, causing high bias and 
underperformance on all data. Overfitting, conversely, happens when an 
overly complex model incorporates noise from training data, causing 
high variance and suboptimal test data performance. Optimal fitting 
strikes a balance between complexity and simplicity, accurately repre
senting variable relationships without fitting to noise, thus ensuring 
good performance on training and test data. 

Fig. 1. (A) Illustrates the hierarchical relationship between Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL), with AI representing a 
broader field, ML as its subset, and DL as a subset of machine learning, and (B) Details the three core components of DL: supervised learning for classification and 
regression tasks, self-supervised learning for clustering and classification, and unsupervised learning for clustering and dimensionality reduction. 
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2.4. Regularization 

Regularization is a crucial aspect of DL model training, balancing 
optimization (adjusting model weights to achieve the best results on the 
training set) with generalization (the model’s performance on unseen 
data). A DL algorithm aims to maximize this generalization capability 
(Goodfellow et al., 2016). At the onset of training, the model learns data 
patterns, improving its performance as the number of epochs increases. 
However, further optimization doesn’t enhance generalization beyond a 
certain point, leading to overfitting as the model begins learning pat
terns exclusive to the training data that are misleading when applied to 
new data (Kukačka et al., 2017). Unfortunately, the model’s general
ization capability can not be controlled directly; instead, we opt for 
various regularization methods to improve the model’s generalization 
capability. The regularization techniques are one of the critical steps for 
developing architectures of the DL models. We briefly discuss the 
commonly used regularization techniques. 

2.4.1. Weight regularization 
The concept of weight regularization is to adjust the weights by 

updating the learning algorithm to reduce overfitting and improve the 
model’s generalization. The overfitting problems are likely to be 
observed in complex models compared to simple models (fewer pa
rameters and/or lesser variability in parameters). We penalize the 
higher weight values in weight regularization by adding a cost to their 
loss function (Tian and Zhang, 2022). For example, in the least Absolute 
Shrinkage and Selection Operator (LASSO; Tibshirani, 1996), linear 
regression model Y = XTβ, where Y is the response variable, X is the 
predictor set and β is the vector of linear regression coefficients, we seek 
to minimize the cost function 

∑n
i=1

[
Y − XTβ

]2
+ λ

∑p
j=1|β|, where λ is the 

regularization parameter and λ
∑p

j=1|β| is the penalty term. 
The weight regularization in a DL task is performed either via L1 or 

L2 regularization methods. In the L1 regularization method (Tibshirani, 
1996), the cost added is proportional to the absolute value of weight 
coefficients. This is analogous to the LASSO linear regression, where we 
seek to minimize the following: 

β̂ =
argmin

β

[
∑n

i=1

(

yi −
∑p

j=1
xijβj

)2

+ λ
∑p

j=1

⃒
⃒βj

⃒
⃒

]

(1) 

In L2 regularization method (Hoerl and Kennard, 1970), the cost 
added is proportional to the square of the value of weight coefficients, 
which is analogous to the Ridge regression as provided below: 

β̂ =
argmin

β

[
∑n

i=1

(

yi −
∑p

j=1
xijβj

)2

+ λ
∑p

j=1
β2

j

]

(2) 

The penalized term improves the model performance by addressing 
overfitting. 

2.4.2. Dropout regularization 
Dropout regularization is widely used to prevent overfitting prob

lems in DL models (Srivastava et al., 2014). It works by randomly 
deactivating a fraction of the nodes in a layer during each training 
epoch. This randomness ensures no unit is entirely dependent on 
another, boosting the model’s generalization capability by breaking co- 
adaptations among nodes (Hinton et al., 2012). In other words, dropout 
prevents overfitting by decreasing the dependence between the nodes in 
the hidden layers. Essentially, dropout results in an ensemble of smaller, 
less biased subnetworks that yield more robust predictions (Baldi and 
Sadowski, 2013). 

However, using dropout requires caution. Applying it just before the 
output layer can degrade performance, as the network doesn’t get the 
chance to correct errors adequately. Similarly, in small networks, 
dropout can excessively reduce the network size, affecting the learning 
process. Lastly, dropout before Recurrent Neural Networks (RNNs) or 
Long Short-Term Memory (LSTM) layers can hinder proper back
propagation due to the random zeroing of temporal units (Gal and 
Ghahramani, 2016). 

2.4.3. Early stopping 
Identifying the stopping time (number of epochs) for training the DL 

model is often unclear. Too many epochs lead to overfitting, and too 
little results in underfitting of the models. Early stopping criteria 
(Fig. 3c) ensure that the training should be stopped when the validation 
error starts building up after a certain number of epochs, indicating no 
improvement of generalization (Yao et al., 2007). Stopping the training 
before the generalization error increases (when the validation loss is the 
least) will help reduce overfitting. 

2.4.4. Batch normalization 
Batch normalization is a technique (see Fig. 4a) used to optimize the 

training of deep neural networks by addressing the problem of internal 
covariate shifts (Ioffe and Szegedy, 2015). Internal covariate shift refers 
to the change in the input data distribution to subsequent layers during 
the network’s training process due to frequent weight adjustments, 
which can destabilize learning. 

Batch normalization optimizes deep network training by standard
izing each mini-batch’s input data, maintaining a steady distribution, 
and enhancing efficiency. It computes each mini-batch’s mean and 
standard deviation for normalization and incorporates learned scale and 
shift parameters for flexible training. Note that batch normalization 
should not be used with dropout as the random deactivation of neurons 
can interfere with the standardization process (Goodfellow et al., 2016). 

2.4.5. k-fold cross-validation 
K-fold cross-validation (Fig. 4b) is an effective resampling approach 

for evaluating the DL models when limited training data are available 
(Gulli and Pal, 2017). This procedure randomly splits the data sample 
into k number of groups; for example, when k = 5, it is called 5-fold 
cross-validation. This procedure helps estimate the skills of a DL 
model for unseen data not used during the model’s training. The data are 

Fig. 2. Schematic representation of the training process in a DL model. The 
diagram demonstrates the forward pass through the hidden layers, the calcu
lation of loss using the loss function, and the iterative refinement of model 
parameters via the backpropagation algorithm. 
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randomly split into training and validation sets. The model performance 
is then averaged over all k iterations to get a more robust estimate of the 
model’s performance on new, unseen data. 

2.4.6. Data augmentation 
Data augmentation enhances datasets by generating new training 

samples from existing data (Simard et al., 2003). In image-related ap
plications, this involves transformations like flipping or rotating images, 
which expand the data’s diversity and help counter overfitting (Good
fellow et al., 2016). This exposure to varied data can improve the 
model’s generalization, making it more robust (Krizhevsky et al., 2012). 
For time series data, augmentation methods such as shifting or adding 
noise can bolster the model’s resilience to data variation, like changing 
trends or seasonal patterns (Iwana and Uchida, 2021; Wen et al., 2021). 

3. Deep learning architectures 

The following section discusses DL architectures commonly used in 
hydrology and water resources applications. A quick overview and 

comparison of these architectures in terms of their specific uses in hy
drology and water resources disciplines, along with their advantages 
and disadvantages, are provided in Table 1. 

3.1. Convolutional neural network (CNN) 

Convolutional Neural Networks (CNN; Krizhevsky et al., 2012; Lecun 
et al., 1998) are a special kind of DL model suitable for analyzing image- 
based datasets and grid-based cross-sectional time-series data due to 
their ability to capture spatial structure (relation between neighboring 
pixels) and local connectivity between the pixels. This ability to capture 
spatial relationships in hydrology is advantageous when dealing with 
geospatial datasets such as satellite imagery or digital elevation models 
(DEMs), making CNNs a powerful tool for hydrological modeling. Over 
the years, CNNs have seen remarkable advancements with powerful 
architectures such as AlexNet (Krizhevsky et al., 2012), VGGNet 
(Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2014), and 
ResNet (He et al., 2016), which have made significant strides for image 
classification including land cover classification, identification of water 

Fig. 3. (A) Illustrating the concepts of underfitting, overfitting, and optimal fitting between independent and dependent variable data. (B) Dropout regularization is 
applied to the DNN (B-2) with dropout rates of 0.5 and 0.25 to the hidden layer-1 and −2. (C) Early stopping by monitoring the validation loss during training and 
stopping the training process when the validation loss increases after a certain number of epochs. 
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bodies, and forecasting of rainfall events based on cloud imagery. 
The major disadvantage of early-generation Multi-Layer Perceptron 

(MLP) is that the spatial information is lost by flattening the 2-D image 
input data to 1-D. In contrast, CNNs retain spatial information by 
employing a linear mathematical operation called convolution. Fig. 5 
illustrates a typical CNN model for an image classification task. Typi
cally, a CNN includes three types of layers: convolution layers, and 
pooling layers, followed by an MLP or fully connected neural network 
(FCNN). 

The convolution operation involves traversing 2D convolution ker
nels (filters) to detect the critical features/patterns from the input image 
(See Fig. 5b). The parameters of these filters are updated iteratively 
using the backpropagation algorithm. The features extracted after the 
convolutional layer are subsampled by a pooling layer. For example, a 
two-by-two max-pooling layer will select the maximum values from 
each two-by-two neighboring window (Fig. 5b), which shrinks the input 
feature map by 75 %. A real-world image classification task involves 
multiple convolutional filters (such as 32 or 64) that transform original 
input images by a series of convolution and pooling layers, which helps 
to capture high-level feature maps in the input images. This feature 
extraction process is highly relevant in hydrological studies where pat
terns and anomalies in water bodies, land use changes, or soil moisture 
distribution can be effectively detected. These extracted feature maps 

thus have much fewer parameters than the original input image, 
allowing the model to learn more quickly than the MLPs. Finally, an MLP 
or FCNN model is implemented to classify the images based on the 
extracted feature maps from the convolution and pooling operations 
series. CNN can also be used for hydrologic time series prediction/ 
forecasting. Just like 2D-CNNs capture the spatial dependence by 
extracting features from local input 2D patches, their 1D counterparts, 
called 1D-CNN, can recognize the local patterns in time series or 
sequential problems. 

3.2. Long-Short term Memory (LSTM) networks 

Recurrent Neural Networks (RNNs) are proficient in processing time- 
series data, an important aspect when predicting hydrological variables 
like streamflow, groundwater level, or rainfall intensity. However, 
standard RNNs struggle to handle large volumes of contextual infor
mation due to the “vanishing gradient problem” (Hochreiter, 1998). The 
LSTM model, a specialized form of RNN, was introduced to overcome 
this issue. It emphasizes preserving relevant past information while 
disregarding irrelevant data (Hochreiter and Schmidhuber, 1997). 

The LSTM network depicted in Fig. 6a is comprised of a sequence of 
LSTM cells followed by a fully connected neural network (FCNN) layer. 
The network processes input data at each time step, with each LSTM cell 

Fig. 4. (A) Batch Normalization is applied after a layer in a deep neural network (DNN + BN). BN introduces two additional trainable parameters: scale (γ) and shift 
(β) along with the weights and biases for each neuron in the layer. (Bottom panel) All the trainable parameters are updated using the backpropagation algorithm in 
each iteration using an optimizer such as Adam optimizer. (B) The K-fold Cross-Validation Process: The training data is divided into distinct sets (folds), with each 
subset serving as a validation set in turn, while the remaining data is used for training. The final validation score is the mean of the validation losses across all folds, 
offering a more robust performance estimate on unseen data. 
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generating an output. These outputs are then collectively processed by 
the FCNN layer to generate the final prediction. Fig. 6b demonstrates an 
LSTM cell at timestep t. Its core is the cell state (Ct), regulated by three 
gates: input, output, and forget gate. The forget gate (ft) decides whether 
to retain or discard the previous time step’s information using a sigmoid 
activation by examining the previous hidden state output (ht−1) and 
input (xt). 

ft = sigmoid
(
wf [ht−1, Xt] + bf

)
(3) 

where, w and b are the weights and biases. 
The input gate determines what new information content can be 

added to the cell state (Ct). It has two components: a sigmoid layer and a 
tanh layer. The sigmoid layer decides which values to update, and the 
tanh layer filters whether the new information is relevant to the context 
of time series prediction; if it’s relevant, it gets updated to the cell state; 
otherwise, it is removed. Both sigmoid and tanh layers update new in
formation to the cell state through pointwise multiplication. This 

mechanism of updating new information based on relevance is crucial 
for hydrological modeling as it helps in capturing only significant pat
terns from past data. 

it = sigmoid(wi[ht−1, Xt] + bi ) (4)  

C̃t = tanh(wc[ht−1, Xt] + bC ) (5)  

Ct = ft × Ct−1 + it × C̃t (6) 

The output gate of an LSTM cell determines the information to be 
transferred to the next cell and the final output. Using a sigmoid layer 
and a tanh layer, it filters and transmits only the relevant information 
from the current cell state (Ct) to the subsequent time step t + 1 through 
a tanh layer. 

ot = sigmoid(wo[ht−1, Xt] + bo) (7)  

ht = ot × tanh(Ct) (8) 

The output of the cell at time t is a function of the long-term memory 
(cell state Ct) and the short-term memory (current hidden state ht), 
allowing the network to remember both long-term and short-term in
formation. This is particularly beneficial in hydrological scenarios 
where both short-term (e.g., recent precipitation events) and long-term 
(e.g., seasonal variations) factors play a role in the outcomes (Jiang 
et al., 2022). 

An extension to the standard LSTM is the Bidirectional LSTM 
(BiLSTM; Graves and Schmidhuber, 2005). BiLSTM incorporates two 
LSTM layers, one for positive time direction (forward state) and another 
for negative time direction (backward state). This architecture allows 
the model to have access to both past (backward) and future (forward) 
contexts, which can lead to improved performance on various tasks by 
capturing the patterns that depend on the context of the input sequence 
(Graves and Schmidhuber, 2005). For instance, understanding past 
precipitation events and future weather forecasts in flood prediction is 
vital, making BiLSTM highly advantageous. 

There are other variants of the GRU also exist. The Gated Feedback 
Recurrent Network (GRFN; Chung et al., 2014) is an example where 
gating mechanisms are used to control the flow of information in the 
hidden state of recurrent neural networks, allowing for better control 
over the learning process. The GRFN improves upon the GRU by adding 
a gating unit that modulates the hidden-to-hidden recurrent connec
tions, thereby providing additional complexity in learning the temporal 
dependencies. 

3.3. Autoencoders (AE) 

Autoencoders (See Fig. 7), a type of self-supervised network, are 
relevant in hydrology for feature extraction and data dimensionality 
reduction (Jiang, 2018). They typically consist of an encoder, a bottle
neck, and a decoder. The input data are compressed via an encoder to 
form a bottleneck, and then the decoder reconstructs the input using this 
reduced feature space (Ballard, 1987; Rumelhart et al., 1985). 

Autoencoders are self-supervised, as their training assigns their own 
inputs as the output targets. They create an information bottleneck by 
restricting the hidden layer dimension to smaller than the input, leading 
the encoder to learn salient data features, which the decoder uses for 
reconstruction. In hydrology, autoencoders’ ability to capture key fea
tures from input data can be critical, assisting in predicting future hy
drologic events or understanding processes. 

The training of autoencoders involves iteratively minimizing the loss 
function and updating the network weights. After training, only the 
encoder block is used to generate a low-dimensional representation of 
the input data. Autoencoders have an advantage over PCA, capturing 
both linear and non-linear patterns present in the training data (Good
fellow et al., 2016; Hinton and Salakhutdinov, 2006), useful when 
dealing with complex, non-linear hydrological systems. 

Table 1 
Comparison of Deep Learning Models for Hydrological Applications.  

DL Model Examples of 
Hydrologic 
Applications 

Advantages Disadvantages 

Convolutional 
Neural 
Network 
(CNN) 

Analyzing spatial 
patterns in 
hydrological data (e. 
g., precipitation, soil 
moisture maps), 
Land-use/Land-cover 
(LULC) classification 
from satellite images 

Effectively 
captures spatial 
dependencies 
and requires 
fewer 
parameters, thus 
limiting 
overfitting. 

Potential 
challenge in 
dealing with 
heterogenous data 
that doesn’t 
represent grid-like 
topology. 

Long Short- 
Term 
Memory 
(LSTM) 

Time-series 
forecasting of 
hydrological 
variables 
(streamflow, 
groundwater levels), 
Weather forecasting 

It efficiently 
captures 
temporal 
dependencies 
and is robust to 
the vanishing 
gradient 
problem. 

Computationally 
intensive, model 
interpretability is 
limited. 

Autoencoders Anomaly detection in 
hydrological data, 
Extraction of 
important features 
from high- 
dimensional data (e. 
g., multispectral 
images) 

Efficiently learns 
data codings, 
useful for 
unsupervised 
learning tasks 

It can be sensitive 
to the input data 
and might 
reproduce noise. 

Generative 
Adversarial 
Networks 
(GANs) 

Generation of 
synthetic yet realistic 
hydrological data, 
Downscaling of 
climate variables 

Capable of 
generating new 
data with the 
same statistics as 
the training set 

Training can be 
complex and 
requires a balance 
between the 
generator and 
discriminator. 

Encoder- 
Decoder 
model 

Multi-step ahead 
prediction in 
hydrological 
modeling, Data 
assimilation 

Separation of 
encoding and 
decoding tasks 
enables better 
performance 

Requires paired 
examples for 
training, may 
struggle with very 
long input 
sequences of time 
series data 

Attention 
Model 

Handling seq2seq 
prediction tasks with 
long-range 
dependencies (e.g., 
seasonal 
precipitation 
forecasting) 

Focuses on 
specific parts of 
the input 
sequence, which 
can improve 
results for 
specific tasks 

Increases 
computational 
complexity 

Transformer Multivariate 
hydrological 
forecasting (e.g., 
simultaneous 
prediction of rainfall, 
streamflow, and 
evapotranspiration) 

Achieves high 
performance 
with 
parallelization, 
efficient 
handling of long 
sequences 

Requires higher 
volume of training 
data and more 
computationally 
intensive than 
RNNs  
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Depending on the modeling task, either MLP, CNN, or LSTM layers 
can be used for the encoder and decoder parts. For instance, in hydrol
ogy, Denoising autoencoders (DAE) can be used for remote sensing ap
plications like reconstructing or denoising satellite imagery related to 
water bodies or land use. 

3.4. Generative Adversarial networks (GAN) 

Generative Adversarial Networks (GANs) are unsupervised DL 
models that provides an ability to learn deep representations without 
extensively annotated training data (Creswell et al., 2018), which can be 
useful in hydrological applications where comprehensive and accurately 
labeled data is scarce. GANs used a clever approach by framing the 
problem using two sub-models (a) the generator model and (b) the 
discriminator model (Goodfellow et al., 2014), working in opposition to 
each other to learn the underlying distribution of the data. 

During the training of GAN, the Generator (G) uses random input 
noisy data (z) from an arbitrary distribution p(z) to generate synthetic 
(fake) data (G(z)), which is further fed to the discriminator module 
(Fig. 8). The discriminator has access to the real data (X) and the syn
thetically generated data G(z) from the generator. The goal of the 
generator model is to generate samples as close as possible to real data 
(x), while the purpose of the discriminator is to detect whether the 
generated sample from the generator is real or fake, thus the name 
adversarial network (Goodfellow et al., 2014). The outputs from the 
discriminator model vary between 0 and 1 and they are derived using a 
sigmoid activation function. The loss functions of the generator and the 
discriminator as given by (Goodfellow et al., 2014): 

LDiscriminator = − EX[log(D(x) ) ] − EZ[log(1 − D(G(z) ) ) ] (9)  

LGenerator = − EZ[log(D(G(z))] (10) 

The discriminator tries to minimize the loss function either by 
maximizing D(x) or by minimizing the D(G(z)), whereas the generator 
attempts to maximize the D(G(z)). Remember that the function D(.) 
gives a real number between 0 and 1 since it has a sigmoid activation 
function. The training is said to be converged when the discriminator 
can no longer detect fake images produced by the generator and outputs 
a number close to 0.5 every time. 

Mirza and Osindero (2014) proposed conditional GANs that learn to 
generate synthetic samples from the conditional distribution p(z|y) 
instead of the marginal distribution p(z). In this approach of generative 
modeling, both the generator and discriminator are fed with some 
auxiliary feature labels (y), which help the generator produce samples 
consistent with the auxiliary information. This could be a valuable tool 
in hydrology where certain conditions or features, such as precipitation 
or temperature, could be used as conditional information to generate 
synthetic data for different scenarios. 

In addition to Conditional GANs, other GAN variants have been 
formulated to optimize the original GAN model. One such example is 
Deep Convolutional GANs (DCGANs), which apply deep CNNs within 
the GANs framework to enhance their potential to generate high-quality 
images by learning hierarchical data representations (Radford et al., 
2016). Another variant is Wasserstein GANs (WGANs), which introduces 
a new loss function based on the Wasserstein distance. This improves 
GANs’ training stability, mitigates mode collapse issues, and provides 
meaningful learning for model training and evaluation (Arjovsky et al., 
2017). 

3.5. Encoder-Decoder model 

The encoder-decoder network (Sutskever et al., 2014) provides a 
way to train RNNs for sequence-to-sequence (seq2seq) prediction 
problems (Cho et al., 2014). The encoder-decoder model (Fig. 9) consists 

Fig. 5. A schematic representation of a CNN architecture for binary classification. The architecture comprises three key components: convolutional layers, pooling 
layers, and fully connected neural networks (FCNN). 
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of two RNNs: an encoder and a decoder. The encoder, usually built by 
stacking RNNs, encodes the input sequences and produces a fixed-length 
context (feature) vector, a simple function of the final hidden state. The 
decoder RNN receives the context vector to generate the output se
quences. In a seq2seq model, these two RNNs are trained jointly to 
maximize the conditional likelihood of generating output sequences 
given the input sequence training datasets. The encoder-decoder model 
is effective for hydrological forecasting, where the encoder processes 
past historical record (e.g., rainfall) to predict future conditions (e.g., 
river discharge). Sometimes, the encoder-decoder framework can be 
modified by stacking multiple LSTMs to enhance the model’s accuracy 
by preserving contextual information over long periods (Asadi and 
Safabakhsh, 2020; Du et al., 2020). 

The major drawback of the encoder-decoder model is when the 

dimension of the context vector from the encoder RNN is too small to 
encode long input sequences. Bahdanau et al. (2016) proposed “Atten
tion” model (Section 3.6), which overcomes the problems of long-term 
dependency of the RNN-based encoder-decoder frameworks. Although 
encoder-decoder architectures were initially developed for seq2seq 
modeling tasks using RNNs, recent studies have stacked CNNs in the 
encoder-decoder models for extracting spatial representations for object 
detection and image classification tasks. 

3.6. Attention model 

In the domain of hydrological forecasting, sequence-based modelling 
plays a crucial role. The attention model, a recent development in DL, 
has become a significant focus seq2seq based time series forecasting, 

Fig. 6. The architecture of an LSTM model at time step t consists of three gates: forget gate, input gate, and output gate.  
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particularly when modeling long-term hydrological sequences (Bahda
nau et al., 2016). The key strength of attention models lies in their ability 
to focus on specific parts of the input data sequence when generating an 
output, thereby improving the model’s ability to handle longer input 
data sequences and their complex dependencies. Unlike LSTM and 
encoder-decoder-based RNN models, which assign equal weights to all 
past lags, attention models assign more weightage to the most critical 
past lag information, thus enhancing efficiency and reducing computa
tional time. 

In the encoder-decoder models, the context vector is a simple func
tion of the last hidden state of the encoder RNN, and their accuracy 
declines with more extended input time-series data. Bahdanau et al. 
(2016) improved the encoder-decoder models with slight modification 
by considering feeding all the hidden states of the encoder with different 
weights of their importance to the context vector instead of taking the 
last hidden state only. So, every time the decoder generates a sequence, 
it searches for a subset of hidden states from the encoder RNN that 
maximizes the conditional likelihood of generating an output sequence 
given the input sequence. This mechanism is called Attention. 

The attention model, shown in Fig. 10, assigns different weights to 
hidden states based on their importance in the output sequence 

generation (Bahdanau et al., 2016). The context vector Ci for the output 
sequence Yi is calculated by taking the weighted sum of the hidden 
states, h. 

Ci =
∑Tx

j=1
αijhj (11) 

Here Tx denotes the total number of hidden states and the weights αij 

are calculated by a softmax function as: αij =
exp(eij)

∑Tx
k=1

exp(eik)
and eij = a(si−1,

hj). 
Where, eij is a fully connected neural network that measures how 

well the inputs around position j and outputs in position i match. The 
values of eij and αij are iteratively updated with every epoch of training. 

In recent years, attention mechanisms have considerably improved 
RNNs’ ability to handle long sequences and intricate dependencies, 
marking a significant advancement in the field (Dikshit et al., 2022). 
When integrated with the encoder-decoder-based LSTM model, the 
attention model produces remarkable results compared to the LSTM 
model alone (Ding et al., 2020). Although attention was initially 
developed for seq2seq time series problems, the concept is now applied 
to image-based tasks that involve object detection (Li et al., 2020), and 
semantic segmentation (Hu et al., 2021). 

3.7. Transformer network 

The Transformer network, proposed by Vaswani et al. (2017), is the 
most recent DL architecture that has gained attention after it surpassed 
the performance of the state-of-the-art LSTM models in time series 
forecasting/prediction problems. The accuracy of the RNN/LSTM model 
declines as the length of the input sequence increases since it becomes 
difficult for the model to capture the longer historical time lags with 
recurrence time steps, which is called the vanishing gradient problem. 
On the other hand, the transformer model discards the recurrence op
erations and utilizes a self-attention mechanism, a feature that could be 
leveraged for multi-step time-series prediction (Ahmed et al., 2022). 

The transformer model comprises an encoder-decoder-based archi
tecture (Fig. 11; Wu et al., 2020). The encoder block consists of an input 
layer, a positional encoding layer, and a series of encoders. The input 
layer is an FCNN that transforms the input sequence (t1,t2,⋯,tk) into a d- 
dimensional vector. The positional encoding layer preserves the 
sequential information, a critical aspect when dealing with time series 
hydrological data. 

Each encoder comprises two sub-layers – a self-attention and an 
FCNN sub-layer. The self-attention sub-layer measures the relevance 
score of each value at a particular time step with respect to all other 
values at the different time steps. These relevance scores capture inter
dependence relationships among the different time steps and are rep
resented as attention vectors (Wu et al., 2020). The self-attention 
mechanism allows the network to focus on crucial historical lag time 

Fig. 7. Schematic diagram depicts an autoencoder architecture. Fig. 7 (A) 
provides a more detailed view of the autoencoder, highlighting the encoder, 
decoder, and a ’bottleneck’ component, instrumental in capturing and com
pressing salient features from the input for efficient data reconstruction. Fig. 7 
(B) provides the process of transforming an input (x) via an encoder function to 
a hidden representation (h) followed by the reconstruction to output (o) 
through a decoder function. The discrepancy between the original input and the 
output forms the loss. 

Fig. 8. Schematic diagram of Generative Adversarial Network (GAN) model.  
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steps for very long input sequences. 
The decoder block comprises the input layer, the same number of 

decoder layers as the encoder block, followed by an output layer. In 
addition to the self-attention and FCNN sub-layers, each decoder layer 
consists of a third sub-layer called the encoder-decoder attention that 
applies the same self-attention operation over the last encoder output. A 
look-ahead masking scheme is employed in each decoder layer that 
efficiently helps train the transformer. It involves passing the decoder 
input sequences (tk, tk+1) to the decoder block by hiding the next 
sequence (tk+2) that allows the network to learn to predict the next 
sequence correctly and iteratively update the weights using a loss 
function. This operation is carried out in each decoder and sent to the 
output layer that maps the output of the last decoder to the target time 
sequence using a linear activation function. 

Further improvements of the Transformer model include the appli
cation of multi-head attention, which allows the model to capture 
different types of information from the input in parallel. In this way, the 
model can focus on different positions and create a more comprehensive 
representation of the input data (Vaswani et al., 2017), which could be 
beneficial in dealing with the multiscale and multivariate nature of 
hydrological processes. Although the applications of novel architectures 
(i.e., attention model and transformers) are very limited in hydrology, 
their demonstrated success in other disciplines (Braşoveanu and Ando
nie, 2020; Camps-Valls et al., 2020; Feng et al., 2021; He et al., 2022) 
suggests potential for exponential growth within the field in future. 

3.8. Transfer learning (TL) 

Transfer Learning (TL) offers an innovative solution to address the 
challenges of training DL models on limited datasets and reducing 
overall training time. This method leverages previously trained models 
by reusing their feature maps, or model parameters, to facilitate the 
learning process for new models (Weiss et al., 2016). TL assumes that 
feature maps, once learned, remain applicable across different tasks and 

datasets (Fig. 12). This ability to transpose learned features enhances the 
versatility and reusability of DL models, making them adaptable for 
analogous tasks on different datasets or for various tasks on a single 
dataset (Yu and Ma, 2021). 

A classic application of the TL concept can be found in hydrological 
forecasting. For example, trained weights and biases from a model used 
for drought forecasting could serve as initial parameters for streamflow 
forecasting with a different dataset (Subramanian et al., 2022; Fig. 12). 
Furthermore, TL allows us to exploit feature maps extracted from a 
single dataset, like temperature data, for distinct tasks such as predicting 
and classifying heatwaves. This approach saves substantial training time 
by retaining the lower layers of the network while modifying the higher 
layers according to the task. 

TL can also be especially beneficial in scenarios where training data 
is scarce. It leverages the knowledge gained from a DL model trained on 
a rich, labelled dataset and applies this knowledge to situations where 
training samples are limited. An excellent illustration of this is predict
ing runoff in ungauged catchments based on models trained in gauged 
areas with similar climate patterns, thereby broadening the model’s 
practical applicability (Xu et al., 2023b). 

4. Deep Learning: Future perspectives 

4.1. Physics-Guided Deep learning (PGDL) 

Hydrological models are quite complex, representing the physical 

Fig. 9. The diagram depicts the encoder-decoder LSTM architecture designed 
for seq2seq prediction tasks. 

Fig. 10. The Attention model architecture based on an encoder-decoder model 
for seq2seq prediction problems. 
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and conceptual relationships between multiple variables (processes) at 
different spatiotemporal scales. Traditional approaches to build hydro
logical models include physics-based concepts that aim to map the 
cause-effect relationship among the variables. These models use nu
merical simulations that encode physical laws as differential equations 
and numerical methods (Brunner and Simmons, 2012; Pinder and Gray, 
2013; Yeh, 1986). However, these methods require significant compu
tational resources as the complex dynamical processes require accurate 
discretization of the domain attributes and optimization of the con
straints (Wang and Yu, 2022). Unfortunately, physics-based models 
often struggle to capture the complex and nonlinear hydroclimatic 
processes and nonstationary patterns that dynamically vary over space 
and time. On the other hand, data-driven DL models provide alternative 
tools for extracting useful information through complex pattern recog
nition and emulating nonlinear dynamics, thus limiting computationally 
demanding calculations (e.g., numerical approximation). Yet, one of the 
criticisms is that DL models may not capture the underlying laws of 
physics, which may lead to physically implausible and spurious pre
dictions (Khandelwal et al., 2020; Shen et al., 2021). 

Considering the above differences, it is essential to delve deeper into 
the comparison between DL/AI models and traditional physics-based 
models. DL models excel in capturing complex, nonlinear relationships 
in hydrological data. At the same time, physics-based models, despite 
their demand for high computational resources, incorporate the physical 
processes involved and are often guided by rigorous laws and principles. 
DL and physics-based models have shown considerable success in hy
drology and water resources applications, albeit in different ways and 
under varying circumstances. 

Recently, Physics-Guided Deep Learning (PGDL) or Theory-Guided 
Data Science (TGDS; (Ganguly et al., 2014; Karpatne et al., 2017) has 
gained attention by integrating the physical/processes based principles 
with deep neural networks. PGDL (supplementary Fig. S1) aims to 
maximize the benefits of physics-based and deep-learning models to 
handle scientific problems better. Combining physical mechanisms and 
data-driven approaches offers complementary strengths: data-driven 
methods extract valuable information from data, while physical 
models provide interpretability and generalization beyond the obser
vation space. PGDL aims to enhance standalone deep learning models’ 

physical consistency and generality, making it useful for the dynamical 
modeling of nonlinear and nonstationary processes and situations where 
system parameters change (Wang and Yu, 2022). 

Karpatne et al. (2017) introduced a framework to combine domain 
knowledge with data-driven models for better physical consistency. The 
scientific principles can be incorporated into the design of data-driven 
approaches by selecting a suitable response function or redesigning 
the model architecture. This is very useful in hydrologic modeling as 
certain hydrological variables follow specific patterns or distributions or 
have a particular form of input–output relationship. Further, scientific 
knowledge can be used for identifying initial values or physics-guided 
regularization/optimization steps. Appropriate initial values can 
improve learning and generalization through pre-training networks and 
transfer learning. Few studies have modified the objective function to 
include scientific constraints like conservation of mass, energy, and 
momentum (Beucler et al., 2021; Daw et al., 2022). The DL model 
outputs can be post-processed using domain knowledge to improve 
physical consistency and interpretability. 

Data-driven Deep Learning (DL) methods and physics-based models 
complement each other (Karpatne et al., 2017). DL methods excel in 
capturing the spatial and temporal dependencies and nonlinear patterns 
in data. At the same time, physics-based models provide a deeper un
derstanding of the physical processes involved and offer interpretable 
results. The combination of these two models through hybrid modeling 
can lead to the acquisition of their individual strengths. There are two 
ways to construct a hybrid model. One approach is to use the outputs of 
the physical models as additional training inputs for the DL models, 
allowing the physical models to guide the learning process of the DL 
models with physically consistent training data. Another approach is to 
have the DL models predict specific intermediate steps in the physical 
models and feed the DL model outputs back into the physical models. 
This is especially useful when equations in the physical models are based 
on empirical relationships that can be difficult to interpret, such as 
Manning’s formula. Modeling these intermediate relationships with DL 
can improve the prediction accuracy and correct the outputs of physics- 
based models. The DL model can learn the unknown parameterization of 
physics-based models, such as global hydrologic models (GHM), which 
will help improve their realizations (Yang et al., 2019b; Zaherpour et al., 

Fig. 11. The schematic representation of the encoder-decoder-based Transformer network for seq2seq timeseries prediction problems.  
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2019). Additionally, with a large number of physical parameters, it 
becomes expensive for the DL model to learn the optimal combination 
that maximizes the likelihood (Krizhevsky et al., 2012; Rasp et al., 
2018). 

In conclusion, while AI and physics-based models have their 
strengths and limitations, the synergy of these approaches, as evidenced 
by PGDL, suggests promising directions in advancing the hydrological 
modeling science. 

4.2. Explainable Artificial Intelligence (XAI) 

Although DL has gained success in numerous scientific fields, these 
models are sometimes criticized as “black boxes” as they don’t provide 
insights to understand how they make predictions (Castelvecchi, 2016). 
This is primarily due to their hierarchical nonlinear nature and over
parameterization — involving a large number of parameters and stacked 
with several layers. For any parametric statistical modeling, more pa
rameters can capture the influence of diversely interacting variables. 
However, this shadows their interpretability, known as the accuracy- 
interpretability trade-off, where the model accuracy increases with 

more parameters but at the cost of model interpretability. Interpret
ability refers to the degree to which inference results of a DL network are 
predictable or understandable to humans. For example, the streamflow 
of a basin can be modeled as a linear function of several covariates in a 
naïve approach. In this case, the parameters of the multiple linear 
regression model are easily interpretable, and we can infer the relative 
contribution of covariates on the runoff generation. However, in reality, 
the runoff generation is influenced by a complex nonlinear relationship 
between hydrological variables under various physiographic conditions, 
requiring the use of nonlinear models with a large number of parameters 
(Konapala and Mishra, 2020; Woods and Sivapalan, 1999). This 
nonlinearity accounts for a more significant number of parameters, 
which hampers the model interpretability. 

The complex network architectures of DL models involve many pa
rameters set to gain higher accuracy; however, learning representations 
are difficult to extract and present in a human-readable form. Re
searchers have been continuously working to explain the behavior of the 
deep models in making decisions/predictions, a field called explainable 
AI (XAI; Ribeiro et al., 2016). Successful interpretation of deep models 
can help us to gain domain insights and extend our knowledge about 

Fig. 12. An illustration of Transfer Learning in hydrology. (a) This panel demonstrates how transfer learning operates across similar tasks. It displays the process 
where weights and biases from a Deep Learning model trained on drought forecasting (Task-1) serve as initial parameters for streamflow forecasting (Task-2). This 
exchange of information between models enhances efficiency and saves computational resources. (b) Here, transfer learning across different tasks within the same 
dataset is depicted. Specifically, early layer feature maps from a model trained on heatwave prediction (Task-1) are reused by another model to classify heatwaves 
(Task-2). This demonstrates the utilization of shared information for cross-task learning, leading to improved model performance. 
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unknown mechanisms, causation, and linkages. This motivates to go 
beyond DL as a knowledge discovery tool rather than a data-fitting 
model. Three main categories of XAI techniques are used to interpret 
the predictions of deep learning models: 

1. Model-Agnostic Techniques: These techniques do not require inter
nal knowledge of the model architecture and can be applied to any 
DL model. They aim to provide a global understanding of the model’s 
behavior by focusing on the relationships between the inputs and 
outputs. Examples of these techniques include partial dependence 
plots (Friedman, 2001; Konapala and Mishra, 2020), individual 
conditional expectation plots (Goldstein et al., 2015), integrated 
gradients (Sundararajan et al., 2017), and saliency maps (Simonyan 
et al., 2014).  

2. Model-Specific Techniques: These techniques are based on a specific 
model architecture and require an understanding of the model’s in
ternal workings. They offer a deeper understanding of the model’s 
behavior and help identify the neurons and layers important for 
making the prediction. Examples of these techniques include layer- 
wise relevance propagation (Bach et al., 2015) and guided back
propagation (Springenberg et al., 2015).  

3. Post-hoc Techniques: These techniques are applied after the model 
has been trained and provide an explanation for a specific prediction. 
They aim to highlight the specific input features that contribute the 
most to the model’s prediction. Examples of these techniques include 
LIME (Local Interpretable Model-agnostic Explanations (Ribeiro 
et al., 2016) and SHAP (SHapley Additive exPlanations; (Lundberg 
and Lee, 2017). 

Recent advances in DL research have also developed software tools 
for interpreting DL algorithms. TF-Explain is a TensorFlow-based 
interpretation algorithm focusing on features with gradient-based 
model agnostics techniques. Captum (Kokhlikyan et al., 2020) is based 
on PyTorch and works similar to TF-Explain. 

5. Applications of DL in hydrology and water resources 
disciplines 

During past decades, first-generation neural networks were widely 
used to solve a multitude of hydrological problems, such as water quality 
modeling (Singh et al., 2009), hydrological prediction/forecasting 
(Maqsood et al., 2004; Mishra et al., 2007; Mishra and Desai, 2006; 
Taylor and Buizza, 2002), remote sensing image object recognition/ 
classification (Mas and Flores, 2008; Tatem et al., 2001), water re
sources management (Iliadis and Maris, 2007; Jain et al., 2001; Kingston 
et al., 2005), and subsurface flow systems (Kerem Cigizoglu and Kisi, 
2006; Lallahem et al., 2005; Shigidi and Garcia, 2003). Over recent 
years, the applications of DL in the hydrology discipline have emerged. 
The following sections provide an overview of recent applications of DL 
models, and a summary is provided in Table 2. 

5.1. Time series modeling and forecasting 

Hydrological time series forecasting involves extracting meaningful 
statistical information from sequential data for developing forecasting 
models. The forecasting models are widely used for various applications, 
such as predicting extreme hydroclimatic events, streamflow/runoff, 
and other hydrological variables (Coulibaly and Baldwin, 2005; 
Mujumdar and Kumar, 2012). The DL methods performed well 
compared to the statistical and stochastic models (e.g., Auto-Regressive 
Integrated Moving Average (ARIMA)) and processes-based hydrologic 
models. The commonly used traditional models have limitations, such as 
the choice of model formulation, parameter estimation, and assimilation 
scheme (Camps-Valls et al., 2021; Chawla et al., 2018). At present, the 
DL methods rapidly emerge as a legitimate alternative to classical time 
series modeling frameworks. An overview of DL applications for time 

series forecasting of floods, droughts, streamflow, soil-moisture, and 
weather forecasting are discussed. 

5.1.1. Flood forecasting 
Natural disasters like floods result in substantial loss of life, agri

cultural production, socioeconomic systems, and environmental sus
tainability (Bulti and Abebe, 2020; Mishra et al., 2022). Accurate flood 
modeling and forecasting are challenging in hydrology. Recent studies 
successfully applied DL methods and outperformed the process-based 
flood forecasting models in many cases. Wu et al. (2018) developed an 
LSTM model with an attention mechanism for hourly flood prediction, 
providing accurate and timely forecasts. Likewise, Fang et al. (2021) 
developed a hybrid model incorporating feature engineering with LSTM 
for flood susceptibility mapping. They implemented batch normaliza
tion and data augmentation, improving the model accuracy to approx
imately 94 %. In terms of streamflow prediction, Kratzert et al. (2019) 
made robust runoff predictions across 531 catchments throughout the 
continental United States using LSTM. Further, Feng et al. (2020) used a 
combination of Data Integration (DI) and LSTM, enhancing performance 
in basins with high autocorrelation. Ding et al. (2020) proposed an 
interpretable flood forecasting model that integrates a spatiotemporal 
attention mechanism with an LSTM network. The model outperformed 
all other benchmark models and the spatiotemporal attention layer, 
providing the importance of previous lagged values on flood prediction. 

5.1.2. Drought forecasting 
Drought prediction is paramount for water resources planning and 

management and for improving water security (Mishra and Singh, 
2010). Dikshit et al. (2021) introduced a stacked LSTM model for 
drought predictions based on the Standardized Precipitation Evapo
transpiration Index (SPEI) in New South Wales, Australia. In a subse
quent study, Dikshit et al. (2022) improved the model by integrating an 
attention mechanism, yielding impressive accuracy for short- and long- 
term meteorological droughts. Xu et al. (2022) combined an autore
gressive integrated moving average (ARIMA) model with LSTM for 
drought prediction based on SPEI over China. The hybrid model ach
ieved better prediction ability than the selected ML and DL benchmark 
models. Mokhtar et al. (2021) applied two machine learning (Random 
Forest (RF), Extreme Gradient Boosting (XGBoost)) and two deep 
learning (CNN and LSTM) models for SPEI based meteorological drought 
prediction in Tibetan Plateau, China. The XGBoost and LSTM models 
showed the best performances in most of the scenarios. 

5.1.3. Weather forecasting 
The weather system is quite complex, and there is a high degree of 

uncertainty in predicting the state and conditions of the atmosphere in 
space and time. A hybrid spatiotemporal-LSTM model with self- 
attention scheme yielded promising results for weather forecasting, 
especially for moderate to heavy rainfall events (Zhang et al., 2022). 
Additionally, Wei and You (2022) implemented a combination of 
Discrete Wavelet Transform (DWT), LSTM, and Deep Convolutional 
Complementary Neural Network (DCCNN), improving forecasting ac
curacy for up to 4 months lead times. Chen et al. (2019) combined 3-D 
CNN and LSTM to develop a CNN-LSTM hybrid model that can capture 
the spatial correlation and temporal sequence of relations in typhoon 
progression. The proposed model showed superiority in predicting 
typhoon formation and intensity compared to the existing typhoon 
models. (Giffard-Roisin et al., 2020) proposed a DL model based on CNN 
integrating the past tropical cyclone trajectory information and atmo
spheric variable 3-D image fields such as wind and geopotential heights. 

5.1.4. Soil moisture prediction 
Statistical and ML models are commonly used for soil moisture 

prediction (Karthikeyan and Mishra, 2021; Martínez-Fernández and 
Ceballos, 2005; Yan et al., 2015). DL-based nowcasting of soil moisture 
has also produced remarkable results (Fang and Shen, 2020). Li et al. 
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Table 2 
Application of DL models for various hydrological and water resources applications.  

Applications References DL Model used Significant Findings 

Flood Forecasting Hourly flood forecasting (Wu et al., 
2018) 

Context-aware LSTM with an attention 
mechanism 

Better forecasting accuracy than MLP and LSTM models. 

Runoff prediction from short term 
extreme rainfall data (Li et al., 2021) 

LSTM Accurate prediction of runoff with low computational time. 

Flood forecasting (Ding et al., 2020) LSTM with spatiotemporal attention 
mechanism 

Outperformed selected process-based and ML models. 

Weather 
Forecasting 

(Zhang et al., 2022) Spatiotemporal-LSTM with self- 
attention 

Superior accuracy, especially for moderate to heavy rainfall events. 

(Zhang et al., 2022) CNN Improved spatial predictions, though accuracy was unchanged. 
(Chen et al., 2019) 3-D CNN + LSTM Superior in predicting typhoon formation and intensity. 
(Giffard-Roisin et al., 2020) CNN Fast and accurate tracking of cyclone paths. 
(Ham et al., 2019) CNN Skillfully predicted the Nino 3.4 index for up to 18 months. 

Streamflow 
prediction 

(Saha et al., 2022) CNN Highest prediction accuracy for flood susceptibility maps. 
(Feng et al., 2020) DI + LSTM Improved prediction, especially in basins with high autocorrelation. 

Soil moisture 
prediction 

Short-term soil moisture forecasting ( 
Li et al., 2022) 

LSTM with an attention mechanism Outperforms traditional ML and DL models; attention weights of the 
predictors and temporal dependencies provide valuable insights into the 
model’s interpretation. 

Soil moisture modeling (Fang et al., 
2017) 

LSTM DL-based dynamic modeling approaches can approximate soil moisture 
accurately with only two years of data, outperforming statistical methods. 

Multilayer soil moisture estimation ( 
Karthikeyan and Mishra, 2021) 

XGBoost trained region-wise and layer 
wise 

The XGBoost algorithm effectively estimated soil moisture across various 
depths, capturing temporal dynamics and spatial variability. It revealed 
the relative importance of different factors in prediction and exhibited 
superior performance in deeper soil layers. 

Remote-sensing 
applications 

Object Detection and Classification ( 
Yang et al., 2022) 

CNN Classified urban wetlands from high-resolution multispectral images with 
an accuracy of 90 % 

Landslide Detection (Tang et al., 
2022) 

Transformer-based DL model Detected coseismic landslides from high-resolution remote sensing images 
and outperformed other models 

Land cover classification (Paul and 
Nagesh Kumar, 2018) 

Mutual-information-based stacked 
autoencoder model 

Used to extract spatial-spectral features from hyperspectral images for 
land cover classification 

LULC Classification (Zhang et al., 
2019) 

3-D CNN and 3-D DenseNet Achieved over 99 % accuracy in LULC classification from hyperspectral 
images 

Hurricane detection (Kaur et al., 
2022) 

CNN Used for hurricane damage assessment, achieving an accuracy of over 95 
% 

Anomalous precipitation detection ( 
Murakami et al., 2022) 

Autoencoder model Used to identify and classify anomalous precipitation events 

Rainfall-runoff 
modeling 

Runoff estimation (Xiang et al., 
2020) 

Encoder-decoder LSTM Improved rainfall-runoff modeling accuracy. 

Runoff estimation (Jiang et al., 2020) Hybrid Physics-RNN and 1D-CNN Hybrid model outperformed individual LSTM and EXP-HYDRO. 
Inverse Problem 

Modeling 
Geostatistical inversion of geological 
media 
(Laloy et al., 2017) 

Variational Autoencoder (VAE) VAE outperformed traditional methods in a 2D steady flow case study. 

Geostatistical inversion of geological 
media 
(Laloy et al., 2018) 

Spatial GAN Spatial GAN required fewer training images and was faster than the VAE. 

Macro-dispersivity and hydraulic 
conductivity field mapping (Zhou 
et al., 2020) 

CNN Promising for mapping between complex subsurface structures and solute 
transport behavior. 

Downscaling Downscale surface soil moisture (Liu 
et al., 2022b) 

LSTM Efficiently addressed multi-scale and multi-source data challenges. 

Generating high-resolution daily 
precipitation data (Tu et al., 2021) 

Hybrid WRF-CNN model Downscaled 80 km resolution to 6 km in less time, with satisfactory 
results. 

Downscaling extreme temperature 
and precipitation (Wang et al., 
2020b) 

RNN-RandExtreme hybrid model Outperformed ANN models in predicting extreme temperature and 
precipitation. 

Water quality Dissolved Oxygen level prediction ( 
Zhi et al., 2021) 

LSTM Successfully captured DO level peaks and troughs during periods of low 
streamflow and DO data fluctuations. 

Short-term water quality prediction ( 
Wan et al., 2022) 

SOD-VGG-LSTM hybrid model The hybrid model achieved high accuracy compared to other statistical 
and DL models in capturing extreme values. 

Predicting spatiotemporal variations 
of Dissolved Oxygen levels (Yu et al., 
2020) 

DL model Data-driven DL model provided accurate predictions of DO level 
variations and hypoxic conditions. 

Water quality variables prediction ( 
Bi et al., 2021) 

LSTM-based encoder-decoder Predicted water quality variables with satisfactory accuracy after 
denoising the data. 

Water quality prediction (Bi et al., 
2023) 

Hybrid Encoder-decoder based BiLSTM 
with an attention mechanism 

The proposed model outperforms current state-of-the-art algorithms in 
prediction accuracy by efficiently handling noise, capturing long-term 
correlations, performing dimensionality reduction, and optimizing 
hyperparameters. 

River water quality (DO) prediction ( 
Zhi et al., 2021) 

LSTM The LSTM model successfully predicts dissolved oxygen dynamics across 
minimally disturbed basins on a continental scale, leveraging sparse DO 
and daily hydrometeorology data. 

Water level 
prediction 

Surrogate Water level prediction in 
Yangtze River (Pan et al., 2020) 

CNN-GRU model Outperformed ARIMA, WANN, and LSTM models in predicting water 
levels. 

Daily water level variation prediction 
(Xu et al., 2023a) 

Transformer model Outperformed LSTM based on 7-day lead time predictions. 

(continued on next page) 
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(2022) successfully combined the LSTM model with an attention 
mechanism to forecast soil moisture and temperature up to 7 days lead 
time. This innovative approach not only captures the attention of the 
predictors, but also incorporates self-attention to account for temporal 
dependencies. The results demonstrated that this model outperforms a 
majority of traditional machine learning and deep learning models. 
Furthermore, the attention weights of the predictors and temporal de
pendencies provide valuable insights into the model’s interpretation, 
aligning with existing physical knowledge of soil moisture and tem
perature forecasts. Ahmed et al. (2021) implemented a hybrid DL ar
chitecture (CEEMDAN + CNN + GRU) to predict the remotely sensed 
surface soil moisture (SSM) for up to 30 days lead time. The results 
demonstrate that the proposed model can successfully forecast surface 
soil moisture compared to benchmark models. 

5.2. Remote sensing image-based applications 

Remote sensing allows for monitoring hydrological variables and 
processes across time and space. The current remote sensing-based ap
plications in hydrology can be broadly classified into three categories: 
(1) object detection and classification, (2) land use land cover classifi
cation, and (3) change and anomaly detection, which are discussed in 
the following section. 

Object detection and classification in remote sensing images have 
undergone significant advancements with the advent of DL techniques. 
This process, which entails differentiating and categorizing objects 
within these images, was previously fraught with challenges. A crucial 
issue was the difficulty of identifying rotation-invariant features in raw 
image data before the application of data augmentation. However, 
introducing a rotation-invariant layer to the CNN can address this lim
itation, which improves multiclass object detection (Cheng et al., 2016). 
Similarly, an object-based CNN model integrated with an autoencoder 
mechanism can enhance high-level feature extraction (Jiang, 2018). The 
CNN model achieved an impressive accuracy rate over 95 % using data 
augmentation and fractal net evolution. 

DL architectures, notably autoencoders and CNN are proficient in 
extracting high-level spatial features from remote-sensing images, 
enhancing the LULC classification process (Maggiori et al., 2017). For 
example, Xing et al. (2018) utilized a deep CNN (DCNN) with a pre- 
trained VGG-16 network for LULC classification using geo-tagged 
photos, marking a notable improvement in classification accuracy 
compared to traditional methods. Similarly, DL models have been uti
lized in change and anomaly detection to identify variations and ab
normalities from remote sensing data, such as cloud detection or 
hurricane damage assessment. Jeppesen et al. (2019) developed a 
Remote Sensing Network (RS-Net), a DL model, especially for detecting 
clouds from remote sensing images. RS-Net uses spatial and spectral 
signatures and is trained/validated with Landsat-8 Biome and Spatial 
Procedures for Automated Removal of Cloud (SPARCS) data. The RS-net 
model delivers the highest accuracy even over snowy and icy regions. 
Additionally, the model performs well for smaller satellite images with 
limited multispectral capabilities. 

5.3. Rainfall-Runoff modeling 

Rainfall-runoff modeling is among the most important steps in hy
drologic modeling and flood prediction. Traditional rainfall-runoff 
modeling approaches commonly involve statistical methods and 
physics-based hydrological models (Blöschl, 2006; Coles et al., 2003). 
However, the challenges remain while dealing with non-linearity and 
complex temporal dependencies inherent in hydrological processes. DL 
models can capture complex nonlinear relationships and temporal de
pendencies; thus, they have emerged as a promising approach to 
enhance rainfall-runoff modeling accuracy. 

Kratzert et al. (2018) employed an LSTM model to generate 
streamflow from 241 catchments in the CAMELS database. They used 
various meteorological forcings data and observed discharge data as the 
input to the LSTM model. The models trained with a collective group of 
basins demonstrated superior performance, especially in snow and 
precipitation-dominated regions. Han and Morrison (2022) proposed 
using DL models as a post-processor to correct the outputs of traditional 
hydrologic models. They developed an encoder-decoder LSTM model to 
enhance the National Water Model’s predictive performance for hourly 
runoff forecasts. The results showcased a dramatic reduction in root 
mean squared error, highlighting the potential of DL in enhancing runoff 
estimates. 

5.4. Modeling Inverse problems 

Inverse problem modeling is a significant area within groundwater 
studies, often approached as a high-dimensional inversion problem. 
Traditional approaches like Markov Chain Monte Carlo and Ensemble 
Kalman Filtering can be resource-intensive and suffer from the curse of 
dimensionality (Evensen, 1994; Vrugt, 2016). DL can efficiently handle 
high-dimensional problems and capture the critical spatiotemporal 
features inherent in inverse problem modeling. 

Mo et al. (2019) applied a deep autoregressive neural network using 
a CNN-based encoder-decoder framework to create surrogate models for 
contaminant transport problems. The model was capable of handling 
high dimensionality with improved fidelity. Despite this, the study 
suggested that the accuracy and generalizability of the network could be 
enhanced by using more training samples. In another interesting 
application, Wu et al. (2019) used an image-based framework employ
ing CNN to model the effective diffusivity of 2D porous media. The re
sults demonstrated improved accuracy with less computational cost 
than traditional Lattice Boltzmann simulations. 

5.5. Uncertainty quantification 

DL has emerged as a compelling tool in quantifying uncertainty and 
can significantly enhance the accuracy and reliability of predictions. For 
instance, Klotz et al. (2022) explored using DL to estimate uncertainties 
in hydrological predictions, specifically rainfall-runoff modeling. The 
results highlighted improved mixture density networks (MDN) perfor
mance in terms of reliability and accuracy in uncertainty estimates than 
the Monte Carlo dropout method, especially for low- and high-flow 

Table 2 (continued ) 

Applications References DL Model used Significant Findings 

Surrogate groundwater level model ( 
Cai et al., 2022) 

Hybrid PGDL model The model was more generalizable and robust than pure deep learning 
models. 

Groundwater patterns investigation ( 
Clark, 2022) 

SOM-LSTM model The two-step modeling improved the predictive performance 
significantly. 

Addressing 
multiscale 
problems 

Multiscale Groundwater Level (GWL) 
Forecasting (Rahman et al., 2020) 

XG Boost, RF, and Support Vector 
Regression, coupled with Wavelet 
Transforms (WT). 

The coupling of ML approaches with WT improved the performance of 
GWL forecasting. XG Boost variants and RF provide an internal measure of 
variables’ importance, making the models more interpretive over other 
black-box approaches such as SVR. 

Multiscale Soil Moisture Prediction ( 
Liu et al., 2022a) 

Multiscale LSTM model The novel multiscale model achieved a record-breaking accuracy with a 
median correlation of 0.901 and RMSE of 0.034 m3/m3.  
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scenarios. The study also underscores the potential for further ad
vancements in model development, metrics, and benchmarking for un
certainty estimation, urging community-wide collaboration to overcome 
these challenges. Abbaszadeh Shahri et al. (2022) introduced a new 
approach, Automated Random Deactivating Connective Weights 
(ARDCW), for estimating uncertainty in deep learning models for 
groundwater table (GWT) predictions. This technique employs 
randomly turned-off weights, enhancing model predictability without 
altering optimization processes. Notably, ARDCW outperformed the 
traditional models in performance, demonstrating its efficacy in a real- 
world project in Stockholm, Sweden. 

5.6. Downscaling 

Downscaling large-scale hydro-meteorological variables to a local 
scale is crucial for regional impact assessment (Tripathi et al., 2006). DL, 
especially CNN, has become an advantageous tool due to their ability to 
capture the spatial features of spatiotemporal datasets. Pan et al. (2019) 
enhanced precipitation downscaling by applying a stacked CNN to 
extract critical circulation features. They used predictors like geo
potential height and precipitable water at a 3-hour frequency, out
performing other weather models and enhancing precipitation-related 
information retrieval. On a different approach, Wang et al. (2021) 
leveraged a deep CNN-based Super Resolution Deep Residual Network 
(SRDRN) for downscaling daily precipitation and temperature. This 
network excelled in capturing spatiotemporal patterns and statistical 
characteristics, thereby accurately reconstructing temperature and 
precipitation extremes across different locations. In a recent study, 
Gavahi et al. (2023) applied DL-based convolutional neural network ar
chitecture to merge and downscale multiple user-defined precipitation 
products using targeted rain gauge observations. 

5.7. Water quality modeling and monitoring 

Reliable water quality prediction can minimize water-borne diseases 
(Mishra et al., 2021) and improve environmental flow monitoring, water 
security, and the sustainability of the stream ecosystem ((Alnahit et al., 
2022)). Different methods are employed to predict depth-wise lake and 
river water temperatures, dissolved oxygen (DO) levels, and other non- 
point pollutant sources. In a lake water temperature modeling study, 
Daw et al. (2022) utilized a physics-based neural network model for lake 
water temperature prediction, providing improved results over process- 
based models for two major U.S. lakes. Similarly, Willard et al. (2021) 
applied meta-transfer learning approaches to predict depth-specific lake 
water temperatures for unmonitored lakes, leveraging models from well- 
monitored lakes. Their findings suggest that the PGDL model out
performs the standard model, particularly in regions with sparse 
monitoring. 

Moreover, accurate prediction of DO levels is vital for aquatic or
ganisms, which is often challenging due to the sparse availability of DO 
data. Zhi et al. (2021) developed an LSTM model to forecast DO levels 
across numerous undisturbed catchments, showing promising results, 
particularly during periods of low streamflow. On the other hand, Bar
zegar et al. (2020) designed a hybrid CNN-LSTM model for predicting 
DO and chlorophyll-a levels, surpassing standalone models and tradi
tional ML approaches. This hybrid model was particularly effective in 
capturing DO level fluctuations. Willard et al. (2021) adopted meta- 
transfer learning approaches for correctly predicting the depth-specific 
lake water temperature in unmonitored lakes by reusing the models 
from well-monitored lakes across the Western United States. They 
applied meta-transfer learning to the process-based general lake model 
(MTL-PB) and physics-guided deep-learning model (MTL-PGDL). The 
results suggested that the MTL-PGDL model performed better than the 
MTL-PB model. Even for regions with sparsely monitored lakes, the 
MTL-PGDL model outperformed the standard PGDL model. 

5.8. Surface and ground water level prediction 

Accurate forecasting of surface and groundwater levels is crucial for 
effective resource management, environmental monitoring, agricultural 
planning, and drought management (Liu et al., 2021). Recently, hybrid 
DL models blended between different DL architectures and physics- 
based models have been found to perform well compared to tradi
tional methods. For example, Xu et al. (2023) demonstrated the effec
tiveness of a transformer model in simulating daily water level 
variations in Poyang Lake, surpassing the LSTM model’s up-to-7-day 
lead time predictions. Similarly, Barzegar et al. (2021) found that a 
CNN-LSTM hybrid model outperformed traditional machine learning 
models in predicting water levels in North American lakes. In ground
water level prediction, Cai et al. (2022) proposed a hybrid PGDL model 
that outperformed pure DL models in accuracy and generalizability for 
measuring groundwater level fluctuations. Clark (2022) employed a 
combination of Self-Organizing Maps and LSTM models to classify 
groundwater level time series into unique temporal patterns, leading to 
significantly improved predictive performance. 

5.9. Applications of Physics-Guided Deep learning (PGDL) 

In the past few years, there has been increasing usage of PGDL in 
hydrology and similar fields such as geoscience and climate science, 
addressing several key challenges related to image classification (Huang 
et al., 2021), hydrological system modeling (Jia et al., 2021; Wang et al., 
2020a; Xie et al., 2021), time series forecasting (Deman et al., 2022; Liu 
et al., 2022b), and anomaly/change detection (Zhong et al., 2019). 
Applications of DL in subsurface flow through porous media are limited 
due to large-scale heterogeneity, and obtaining adequate amounts of 
data is often challenging due to the difficulty in installing and main
taining the sensors. In this scenario, domain knowledge can complement 
the data-driven models to develop hybrid DL models. For example, 
Tartakovsky et al. (2020) developed a PGDL model for estimating hy
draulic conductivity and learning its constitutive relationships with 
capillary pressure in subsurface flow. They tested the model for esti
mating the unknown space-dependent diffusion coefficients from a 
linear diffusion equation for saturated flow in a heterogeneous medium. 
They also evaluated the constitutive relationship in a nonlinear diffusion 
equation for unsaturated flow in a homogeneous medium. They trained 
a DNN model that used physical knowledge from the partial differential 
equations and data from ground-based observations. The proposed 
hybrid model showed superior performance over the physics-based and 
the standalone DNN models in evaluating the hydraulic conductivity by 
as much as 50 %. He et al. (2021) employed a theory-guided CNN ar
chitecture to model the contaminant transport in subsurface flow. The 
addition of physical constraints to DL complemented the predictive 
power and generalization of the CNN model alone. The results demon
strate that the PGDL approach can capture the localized features, is 
robust, and is less time-consuming. 

Read et al. (2019) used the PGDL modeling framework to improve 
the predictions of lake water temperature based on LSTM. They modi
fied the LSTM model by adding a penalty term to the LSTM loss function 
for violating the conservation of energy. The PGDL predictions showed a 
0.5 ◦C lower root mean square error (RMSE) relative to a physics-based 
model alone. The proposed model showed higher generalization capa
bility and scalability (the model can be used for predictions in many 
other lakes without compromising accuracy). Flood risk assessment 
using runoff data from global hydrologic models (GHM) is a popular 
concept in hydrology but is often inaccurate and needs further im
provements. Yang et al. (2019) evaluated flood simulations from the 
CaMa-flood model based on the inputs from GHMs and compared their 
performance with the LSTM. They designed the LSTM network to 
receive meteorological forcing inputs from the CaMa-flood model to 
output daily streamflow. The proposed PGDL model demonstrated 
excellent performance over the CaMa-flood model, especially capturing 
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the amplitudes of peak flood discharge. The authors urged that inte
grating physics-based models with DL can be a powerful tool for more 
robust and confident flood risk assessments. Xie et al. (2021) adopted 
PGDL to investigate the effects of extreme events and monotonic re
lationships in the simulation of rainfall-runoff processes across CONUS. 
They accommodate the effects of losses from the hydrological processes 
in the optimization of the objective function of the LSTM DL model. In 
addition, the synthetic outputs of the physical mechanisms were further 
passed to LSTM, which improved the simulation of the flood peaks 
during heavy storm events. The proposed approach achieved greater 
physically consistent estimates (avoiding negative values and capturing 
the flood peaks). 

5.10. Applications related to explainable Artificial Intelligence (XAI) 

In recent years, hydrologists have started using various interpreta
tion algorithms to interpret the black-box nature of the DL models. Jiang 
et al. (2022) investigated different flooding mechanisms from an LSTM 
model trained on meteorological forcings, such as temperature, pre
cipitation, and daily streamflow across CONUS. They used a model 
agnostic interpretation method (expected gradient; Erion et al., 2021) to 
reveal three dominant flooding patterns: snowmelt induced, recent 
rainfall induced flooding, and historical rainfall induced flooding. They 
used another model-specific interpretation method (additive decompo
sition; Du et al., 2019) to understand the internal hidden layers’ output 
from various gates of the LSTM model. Althoff et al. (2021) combined 
ML and conceptual hydrologic models to create hybrid models to 
improve the streamflow predictions across three gauging stations within 
the Brazilian Cerrado biome. They used XAI techniques to reveal how 
the data-driven component of the hybrid model handles the runoff 
routing. They demonstrated the superior performance of the hybrid 
model over the conceptual hydrologic model and XAI untangled soil- 
moisture as the dominant factor for predicting streamflow, which 
agrees with the previous studies. Dikshit and Pradhan (2021) investi
gated the relative contribution of various climate indices and meteoro
logical variables in drought prediction across different drought 
conditions and drought events using various Shapely additive explana
tions (SHAP; Lundberg and Lee, 2017) models. They reported that their 
LSTM model achieved good accuracy, and the SHAP models could 
correctly interpret the various drought mechanisms. Wang et al. (2022) 
used several ML and DL models to predict the NH4 + -N concentration in 
the Xiaoqing estuary, China. They used shapely additive explanation 
methods to interpret the DL model outputs and to understand the role of 
upstream of the river in the estuary. The XAI methods revealed that two 
stations monitoring water quality in the upper reaches of the river are 
mainly responsible for the water quality in the estuary. The authors 
asserted that the SHAP methods are conducive to understanding the 
direction and magnitude of the influence of input covariates on the es
tuary water quality. 

6. Challenges and opportunities of DL applications in hydrology 
and water resources 

DL has led to unprecedented success in computer vision in natural 
language processing (NLP), image classification, speech recognition, 
and language translation. However, implementing DL methods in water 
resources disciplines has been an emerging topic over the past few years. 
This section highlights challenges and opportunities for DL applications 
in water resources disciplines.  

• Multi-source, Multiscale, and High-dimensional Data 

Data sets used in hydrology and water resources are collected from 
various sources (e.g., observed, reanalysis, climate models, sensors), 
often inconsistent in spatiotemporal resolutions. Hydrologic modeling 
and robust quantification of spatiotemporal extreme events (e.g., 

droughts and floods) require a high-dimensional learning environment 
to capture the nonlinear interaction between multiple climate and 
catchment processes that evolve at different spatial and temporal scales 
(Konapala and Mishra, 2020). Multi-source and multiscale high- 
dimensional input data can make the learning task (e.g., computa
tional and statistical learning) more difficult in a complex learning 
environment. DL models have the potential to advance water resources- 
related research by capturing the interaction between different hydro
climatic processes within high-dimensional learning and complex 
environments.  

• Poor Data Quality and Lack of Labeled Dataset 

Data mining and acquisition is a foremost challenge in applying DL/ 
ML models to perform a hydrological modeling task. In computer vision 
exercises such as Natural Language Processing, the availability of a large 
volume of the labeled dataset makes the supervised learning task easier. 
However, hydrology-related research often suffers from a lack of labeled 
data sets. With little labeled data, a supervised learning task may lead to 
erroneous results as it may not decode enough feature maps (patterns) 
from the data. Besides the quantity of labeled data, the quality is much 
more crucial (Kusiak, 2017), as the poor quality of labeled data incurs 
noisy datasets and missing values, which can substantially affect the 
accuracy of the model. Therefore, an important practice is to maintain 
both quality and quantity of labeled dataset before performing a hy
drological task. Additionally, in situations with limited labeled data or 
poor data quality, it is recommended to use unsupervised models (e.g., 
autoencoders).  

• Model Interpretability 

The black-box perception of the DL models is one of the major crit
icisms. Which means generating the final outputs (target) without a 
proper understanding of processes, interactions, and feedback between 
variables associated with the outputs. The black-box models are chal
lenging to interpret, and the degree of interpretability depends on the 
level of model complexities. Therefore, the way forward is to design 
inherently interpretable DL models by appropriately explaining the 
features involved in model development (Rudin, 2019). For example, 
interpreting the DL model outputs with respect to the weights associated 
with neurons, identifying the set of important weights, and quantifying 
the role of inputs based on their corresponding weights. The DL models 
also do not explain the cause-effect relationships among hydrological 
variables in hydrological processes. One of the key limitations of 
decoding the connection between inputs and weights is primarily asso
ciated with the compressed information carried by the neurons after 
applying nonlinear activation functions. DL model interpretability is 
likely to be an important area of research in the future, and appropriate 
metrics should be developed to optimize the models based on high ac
curacy versus high interpretability or to optimize both of them.  

• Integrating Data-driven DL models with Physics-based models 

Although DL models have demonstrated significantly high accuracy 
in recent years, they often lack interpretability and produce physically 
inconsistent estimates. DL models are known for deriving data-definitive 
solutions for a task without truly understanding the underlying physical 
mechanisms, cause-effect relationships, and interconnected systems/ 
processes. Reichstein et al. (2019) proposed using PGDL approaches that 
integrate domain knowledge from physics-based models with DL models 
to produce physically consistent predictions to address this issue. PGDL 
approaches have gained considerable attention in hydrology and water 
resources applications due to their ability to improve accuracy, better 
generalization, and work well with limited training data.  

• Addressing Nonstationarity and Uncertainties 
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Hydrological processes evolve with space and time; in other words, 
they are often not stationary. Nonstationarity refers to changes in sta
tistical measures (e.g., mean and variance) of hydrological variables/ 
phenomena over time (Chandra et al., 2015; Cheng et al., 2014; Rubin 
et al., 1995). The state-of-the-art DL models may not capture the effects 
of nonstationarity since they presume the training and testing data 
distributions are identical. Modeling nonstationary phenomena requires 
novel DL architectures dealing with statistically time-varying parame
ters. One approach to model them can be the PGDL approach, where the 
time-varying trend components can constrain neural network training. 

Modeling uncertainty is an inherent challenge in hydrologic phe
nomena or processes. These uncertainties arise either due to the 
parametrization of the hydrological model or related to the data (e.g., 
due to the use of land surface models or general circulation models). 
While advanced DL architectures such as Bayesian Deep Learning have 
been applied to model uncertainties in other disciplines (Abdar et al., 
2021; Kendall and Gal, 2017; Wang and Kadıoğlu, 2021), there is a 
scope to implement such concepts for hydrology and water resources 
disciplines.  

• Internet of Things (IoT) and Web-based Data Analytics Framework for 
Real-time Applications 

One of the significant challenges in hydrology and water resources 
management is the need for real-time monitoring and decision-making. 
Traditional data analysis and modeling methods may not be able to keep 
up with the high volume and velocity of data generated in real-time, 
making it difficult to extract insights and make informed decisions 
quickly. With the advancement in graphical processing units (GPU), 
there is ample scope for using web systems for large-scale data pro
cessing, analysis, and visualization for real-time hydrological applica
tions. The pre-trained benchmark networks can be created using massive 
datasets and tested based on various stakeholder applications in a 
transfer learning framework. 

The Internet of Things (IoT) is an emerging technology that can be 
leveraged in hydrological and water resources applications. With IoT, it 
is possible to deploy a large number of sensors to capture real-time data 
and transmit it to a central location for analysis and decision-making 
(Abdul Ghapar et al., 2018). By combining the power of IoT with web- 
based data analytics frameworks, it is possible to build systems that 
can handle the large volume of data generated by hydrological and 
water resources systems. The IOT-enabled web-based framework also 
enables collaboration and sharing of data and models, improving the 
decision-making process’s accuracy and efficiency.  

• High Computational Demand 

DL models typically require a lot of computational resources, 
including high-performance computing (HPC) systems and graphics 
processing units (GPUs) for training and decision-making. As hydro
logical datasets become huge and more complex, the computational 
demands of DL models also increase. For example, analyzing the global 
scale data at a fine resolution of 10 km can be a significant challenge in 
terms of computational (time) demand as the number of grids will be 
approximately 3600x1800 pixels. Supercomputing and advanced hard
ware such as GPUs and TPUs can handle a massive number of operations 
per cycle. Still, they may not provide the level of computational power 
required for fine-resolution water resource applications (Reichstein 
et al., 2019). However, recent advancements in cloud computing and 
parallel processing techniques have made it easier to train and deploy 
DL models on a larger scale. 

Additionally, researchers have been developing more efficient DL 
architectures and optimization algorithms to reduce the computational 
demand while maintaining high accuracy (Thompson et al., 2022). The 
use of transfer learning techniques can significantly reduce the training 
time and computational cost without sacrificing performance. As DL 

models continue to improve and evolve, the computational demand will 
likely become less of a barrier to their adoption in hydrology and water 
resources research.  

• Model Generalization and Transferability 

DL models often face the challenge of transferability and general
ization across different regions and climatic conditions. DL models 
trained on data from one region may not perform well in another region 
due to differences in hydrological processes, data characteristics, soil 
properties, vegetation, and human influence. Consequently, developing 
robust transfer learning and domain adaptation methods could signifi
cantly enhance the ability of models to generalize across regions (Pan 
and Yang, 2010). Transfer learning could allow models to discern pat
terns from various climatic areas, potentially improving performance in 
unseen or underrepresented regions. However, implementing these 
techniques requires careful consideration of differences in feature space, 
distribution, and even structural differences in hydrological processes 
across regions. Therefore, significant research opportunities exist in 
developing effective transfer learning methods for hydrological 
modeling, universally applicable across diverse regions and conditions.  

• Data Augmentation and Synthetic Data Generation 

Methods such as data augmentation and synthetic data generation, 
which have proven useful in other disciplines, are notably challenging to 
implement in hydrology. For instance, creating new climate scenarios 
based on existing simulations is a common practice, but its validity for 
training DL models remains unclear. The use of DL models to generate 
realistic synthetic data for augmenting training datasets could poten
tially enhance model performance (Shorten and Khoshgoftaar, 2019). 
However, creating synthetic data that accurately represents complex 
hydrological processes raises many questions about the synthetic data’s 
quality, physical validity, and potential impact on model training. 
Additionally, it poses questions about the computational resources and 
expertise needed for such data generation, potentially limiting its 
implementation. Therefore, the development of effective and valid 
techniques for data augmentation and synthetic data generation in hy
drology presents both a significant challenge and an opportunity for 
improving DL model performance. 

7. Conclusions 

DL models have the potential to handle and discover hidden patterns 
in complex and high-dimensional data sets, which are valuable for hy
drology and water resources disciplines. In this review, we highlighted 
the recent developments in DL concepts, methodologies, and applica
tions. The following conclusions can be drawn from this study: 

(a) DL methods have gained momentum for predicting various hy
drologic fluxes in the water cycle, hydroclimatic extreme events, 
and extracting meaningful information for various water resource 
applications. The state-of-the-art RNN architectures like LSTM, 
variants of CNNs, and hybrid models based on the combination of 
these models can provide superior configurations that can 
outperform the traditional conceptual and statistical models.  

(b) DL methods can complement traditional physical (processes) 
based models; for example, the Physics-Guided Deep Learning 
(PGDL) modeling framework combines domain and processed- 
based knowledge and DL concepts, a valuable tool for various 
applications. Incorporating domain (expert) knowledge related to 
the physical understanding of hydrological processes can reduce 
the search space of model parameters, leading to more accurate 
simulations, physically consistent predictions, and improved 
generalization (Karpatne et al., 2017; Wang and Yu, 2022). By 
incorporating physical constraints, PGDL offers physically 
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consistent and robust solutions that outperform state-of-the-art 
DL models in many applications.  

(c) It is essential to comprehend and retrace how the DL algorithm 
came to a result or a decision. Therefore, it is crucial to under
stand the DL models’ architecture better instead of trusting them 
unquestioningly (i.e., referred to as a “black box“). The concept of 
XAI allows the users to comprehend and gain confidence in the 
results and output created by DL algorithms. XAI can be used as a 
scientific knowledge discovery tool rather than just a data-fitting 
tool. Using techniques like saliency maps, activation visualiza
tion, and attribution methods, XAI aims to make DL models more 
transparent and interpretable in dealing with complex hydro
logical processes evolving over different landscapes.  

(d) The applications of the Attention Model and the Transformer 
Network models in hydrology are currently limited. These con
cepts demonstrate significant advantages over traditional RNN/ 
LSTM and CNN models regarding computational efficiency and 
accuracy. With the rapid growth in related fields and the avail
ability of advanced computing tools like GPU/TPU, we expect 
that hydrologists will increasingly adopt these innovative models 
to tackle time-series related problems.  

(e) DL methods can help deal with hydro-climatic non-stationary 
time series that often witness ‘data bursts,’ seasonality, structural 
break, and heteroscedasticity, a key challenge in traditional sta
tistical predictions. Therefore, new concepts and models must be 
developed to adapt to the abrupt (unforeseen) changes in 
hydroclimatic time series for decision-making. DL models offer 
promising opportunities by integrating domain knowledge and 
hidden patterns in underlying data sets.  

(f) Real-time decision-making is critical in the context of climate 
extremes for minimizing their risk in water resources related 
sectors. Integrating DL with emerging technologies such as the 
Internet of Things (IoT) can provide real-time data analytics and 
decision-making capabilities for various applications by water 
resources communities. DL models can be trained and deployed 
in real-time web-based frameworks for applications such as flood 
forecasting and water resource management using IoT devices to 
collect and transmit data from various sources such as sensors 
and satellites. 
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Glossary 

AE: Autoencoder 
AI: Artificial Intelligence 
ANN: Artificial Neural Network 
CNN: Convolutional Neural Network 
DAE: Denoising Autoencoder 
DL: Deep Learning 
FCNN: Fully Connected Neural Network 
GAN: Generative Adversarial Network 
GPU: Graphical Processing Unit 
GRU: Gated Recurrent Unit 
IOT: Internet of Things 
LSTM: Long Short-Term Memory 
ML: Machine Learning 
MLP: Multi-Layer Perceptron 
PCA: Principal Component Analysis 
PGDL: Physics Guided Deep Learning 
ResNet: Residual Neural Network 
RF: Random Forest 
RNN: Recurrent Neural Network 
SOM: Self Organizing Maps 
SVM: Support Vector Machines 
TL: Transfer Learning 
VAE: Variational Autoencoders 
WRF: Weather Research Forecast 
XAI: eXplanable Artificial Intelligence 
XGBoost: Extreme Gradient Boosting 
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