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ABSTRACT

Over the past few years, Deep Learning (DL) methods have garnered substantial recognition within the field of
hydrology and water resources applications. Beginning with a discussion on fundamental concepts of DL, we
discussed the state-of-the-art DL architectures such as Long-Short-Term-Memory (LSTM), Convolutional Neural
Networks (CNN), Generative Adversarial Networks (GAN), and Encoder-Decoder models that have gained much
attention over the recent years. The recent advancements in the DL model, such as the Attention model and
Transformer Neural Network, that are designed to handle sequential time series data, are also discussed. An
overview of integrating physics-based hydrological models with state-of-the-art DL models, known as Physics-
Guided Deep Learning (PGDL), and its potential for improving the accuracy and interpretability of hydrologi-
cal predictions are discussed. We emphasized that PGDL has the potential to enhance the physical consistency
and robustness of the hydrologic predictions. We further delve into Explainable Artificial Intelligence (XAI),
examining various techniques for constructing interpretable models. The objective is to empower users to
comprehend and confidently trust machine learning algorithms’ results (model outputs). Furthermore, we delved
into the diverse applications of Deep Learning (DL) in hydrology and water resources sectors, encompassing
areas such as drought and flood forecasting, remote sensing applications, water quality assessments, subsurface
flow inversion problems, groundwater level prediction, and hydro-climate variable downscaling.

1. Introduction

Hydrology and water resources disciplines rely on diverse data sets
and modeling techniques to study the water distribution, circulation,
quantity, and quality on and below the earth’s surface. Different types of
models are often used to study spatio-temporal variability of hydrologic
fluxes, water security (Gowri et al., 2021; Veettil et al., 2022), extreme
events (Arnold et al., 1998; Liang et al., 1994; Mukherjee and Mishra,
2021; Tripathy et al., 2023), water quality (Arnold et al., 1998; Donigian
et al., 1995), sediment and contaminant transport (Brunner, 1996), and
climate change impact assessments (Bhatta et al., 2019; Liang et al.,
1996, 1994; Niu et al., 2011; Oleson et al., 2008; Sreeparvathy and
Srinivas, 2022). However, a crucial challenge lies in understanding the
non-linear interactions between various processes at different spatio-
temporal scales, which significantly influences the dynamics and pre-
dictability of the water cycle and extreme events (Abrahart and See,
2007; Konapala and Mishra, 2020; Sivapalan et al., 2003).

Physics (process) based hydrological models have been in use since
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the 1960s (Arnold et al., 1998; Beven, 1989; Crawford and Linsley,
1966; Singh and Woolhiser, 2002), for example, Soil and Water
Assessment Tool (SWAT; Arnold et al., 1998), the Hydrologic Modeling
System (HEC-HMS; Scharfferberg and Fleming, 2006), Joint UK Land
Environment Simulator (JULES; Best et al., 2011), and Variable Infil-
tration Capacity (VIC; Liang et al., 1994) model. However, these models
often face limitations over the adequacy of model parameterizations,
data quality and uncertainty, computational constraints, complexity,
and usability (Clark et al., 2017; Fatichi et al., 2016). Some of the
physics-based models may not adequately capture the spatial depen-
dence structure of the hydrologic processes occurring at different
spatiotemporal scales (Bloschl and Sivapalan, 1995; Troy et al., 2008;
Wood et al., 2011), and the likelihood of higher uncertainties due to
discrepancies in data sets, model parameters, and model structure (Liu
and Gupta, 2007; Wiens et al., 2009).

The application of data-driven models in hydrology and water re-
sources has gained momentum in recent decades. These data-driven
models are built upon statistical and machine learning techniques that
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learn patterns directly from the observed data. Examples include Arti-
ficial Neural Networks (ANN; Maier and Dandy, 1996), Support Vector
Machines (SVM; Drucker et al., 1999), and Random Forest algorithms
(Breiman, 2001). The data-driven methods used in model calibration,
parameter estimation, and handling various sources of uncertainties are
perceived as less challenging compared to the physics-based models
(Ghaith et al., 2020; Liu et al., 2021; Sikorska et al., 2015).

The recent surge in hydrological, geological, and climate science-
related data sets’ volume, variety, and veracity provides new opportu-
nities (Reichstein et al., 2019) for studying hydro-climatic processes and
real-world water resources applications. Hydrological data typically
emanates from multiple sources, such as observed and reanalysis data-
bases (e.g., ERAS5; Hersbach et al., 2020), remote sensing products (e.g.,
Landsat, MODIS, and soil moisture missions; Entekhabi et al., 2010),
climate models (e.g., Coupled Model Intercomparison Project Phase 6
(CMIP6); Weather Research and Forecasting Model, Skamarock et al.,
2008), sensor data (Wang et al., 2008), camera rain gauges (Allamano
etal., 2015), unmanned aerial photogrammetry, Internet of Things (IoT)
measurements (Oguz et al., 2022), and crowdsourcing data sets (Sermet
etal., 2020). The key challenge in dealing with these heterogeneous data
sets is primarily associated with the difference in spatial and temporal
resolution as well as the volume of the data sets. For example, the total
volume of the CMIP-6 data archive is estimated to be approximately
15-30 petabytes (Reichstein et al.,, 2019). The main challenge is
extracting and detecting patterns of hidden information from the data
deluge, also known as the data discoverability problem (Machova et al.,
2018). Therefore, extracting useful information from high-dimensional
and multi-scale hydrological datasets will provide new avenues for
quantifying hidden processes, thereby advancing hydroclimatic pre-
diction, detection, and attribution.

In the past decade, data-driven models such as Machine Learning
(ML) and Deep Learning (DL) methods have garnered interest in hy-
drology and water resources communities. Commonly used data driven
models are neural network models (Adamowski and Chan, 2011;
Amaranto et al., 2019; Elshorbagy et al., 2010; Guzman et al., 2017; Sun
et al., 2022), self-organized map (SOM; Chang et al., 2021; Nourani
et al., 2013), boosted regression trees (Rosecrans et al., 2017), multi-
variate adaptive regression splines and M5 model trees (Rezaie-balf
et al., 2017), random forest (RF; Konapala and Mishra, 2020; Schoppa
et al.,, 2020; Yu et al., 2017) and support vector machines (SVM; Liu
et al., 2021; Raghavendra. N and Deka, 2014; Shabri and Suhartono,
2012).

The DL methods are instrumental in addressing challenging prob-
lems in the field of hydrology and water resources, such as time-series
forecasting (Kao et al., 2020; Yang et al., 2019a), land use and land
cover (LULC) classification (Maggiori et al., 2017; Zhang et al., 2020),
hydrodynamic modeling, downscaling (Wang et al., 2021), change and
anomaly detection (Zhong et al., 2019), hurricane tracking (Kim et al.,
2019), water quality assessment (Prasad et al., 2022), extreme weather
prediction (Zhou et al., 2019), generation of complex multimodal data
distributions (Laloy et al., 2018). DL models’ performance can be su-
perior to the state-of-the-art process-based models and traditional ML
approaches, especially in data-rich environments (e.g., large volumes
and high-quality data). The DL models have improved the multi-scale
(Fang et al., 2017), multi-task (Sadler et al., 2022), and multimodality
barrier with high-fidelity solutions (Laloy et al., 2018). One of the key
advantages of DL is its ability to ease the manual task of feature engi-
neering. However, it’s important to note that the effectiveness of this
automation is highly dependent on the specific use case and data type,
and careful manual feature engineering is still essential in many appli-
cations. Feature engineering is the process of transforming raw data into
suitable representations or features using mathematical functions. DL
enables the detection of complex nonlinear relationships between inputs
and outputs through successive, deeper layers of feature engineering.
Several factors complemented the emergence of DL in hydrology and
water resource disciplines, which includes: (1) availability of large
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volumes of data, (2) rapid progress in the parallel computing machines
with multi-core options, graphical processing units (GPU), and multi-
threaded execution, (3) Niche software platforms including Tensor-
Flow (Abadi et al., 2016), Keras (Chollet, 2021), PyTorch (Paszke et al.,
2017), BigDL (Dai et al., 2019), Theano (The Theano Development Team
et al., 2016) and Caffe (Jia et al., 2014) that allow building hierarchical
DL architectures without exploring much complex mathematical details,
(4) robust optimization performance achieving near-optimal solutions,
and (5) improved regularization methods to overcome overfitting.

DL methods are critical to the Fourth Industrial Revolution (4IR or
Industry 4.0), particularly in big data analysis (Oosthuizen, 2022). The
shift towards data-driven models and data-intensive research in hy-
drology and water resources disciplines offers immense potential in the
coming years. Although the application of DL concepts and tools has
gained momentum, a comprehensive discussion of DL concepts, meth-
odologies, applications, challenges, research gaps, and potential op-
portunities in hydrology and water resources disciplines is still lacking,
which is the fundamental motivation for this review.

Our study outlines the DL concepts and methodologies (sections 2
and 3) and summarizes the progress of DL applications in hydrology and
water science (section 5). Our review compliments recent review papers
(Camps-Valls et al., 2021; Shen, 2018; Shen et al., 2018; Sit et al., 2020;
Yaseen et al., 2019) by emphasizing the novel facets of DL models, such
as Physics-Guided Deep Learning (PGDL) and Explainable Artificial In-
telligence (XAI; Section 4), which were not discussed in previous studies.
We also highlighted the advantages of the latest DL architectures, such
as Transformers and Attention models, which outperform state-of-the-
art LSTM networks and efficiently use parallel computing abilities that
were overlooked in previous reviews. We examined the challenges and
opportunities that DL provides for hydrology and water resources dis-
ciplines provided in section 6. Additionally, we delved into the unex-
plored potential of Physics-Guided Deep Learning and discussed the
importance of Explainable Artificial Intelligence XAI

2. DL concepts
2.1. Background of DL

Artificial Intelligence (AI) was first introduced in the 1950s to
perform intellectual tasks commonly performed by humans (Dick,
2019). ML, a branch of Al draws its roots from mathematical statistics,
which require a vast amount of training data to continuously discover
underlying patterns, which may be linear or nonlinear. ML models
possess numerous parameters that aim to capture the nonlinear patterns
in the data distribution (Chollet, 2021).

DL, a subfield of ML, is a powerful method for mapping input data to
target outputs using successive layers of nonlinear transformations,
typically learned through neural networks (Chollet, 2021). Unlike
traditional ML techniques such as Support Vector Machines (SVM;
Vapnik, 1999) and Random Forests (RF; Breiman, 2001), which employ
simple transformations and limited representations of the data, DL le-
verages multiple layers of representation to learn complex feature
mappings from the input data automatically. The term “deep” in Deep
Learning refers to this multi-layer architecture, and it can discover
complex, nonlinear relationships in data. DL algorithms have become
crucial in various applications across diverse scientific disciplines.

DL methods can be broadly classified into supervised, unsupervised,
and self-supervised learning (Kotsiantis et al., 2006) (Fig. 1). In super-
vised learning, essential features or rules that map the input data to
desired targets are generated. When new testing data is provided, it
produces the output based on the learned features. Apart from classifi-
cation or regression tasks, some canonical examples of supervised
learning include single-step/multi-step time-series prediction, object
detection, and image segmentation. Unlike supervised learning, unsu-
pervised learning analyzes and clusters unlabeled datasets and discovers
hidden patterns or data groupings to discover similarities and
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Fig. 1. (A) Illustrates the hierarchical relationship between Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL), with Al representing a
broader field, ML as its subset, and DL as a subset of machine learning, and (B) Details the three core components of DL: supervised learning for classification and
regression tasks, self-supervised learning for clustering and classification, and unsupervised learning for clustering and dimensionality reduction.

differences in information, making it an ideal solution for exploratory
data analysis (Hastie et al., 2009). This form of machine learning at-
tempts to better understand the structure and distribution of the input
dataset by data visualization, denoising, data compression, or the as-
sociation among variables before applying supervised learning. K-mean
clustering (MacQueen, 1967), Principal Component Analysis (PCA;
Pearson, 1901), and Generative Adversarial Networks (GAN; section
3.4) are popular unsupervised techniques. Self-supervised learning is a
special type of supervised learning where there are pseudo-labels, unlike
labels or ground truths in supervised learning. These pseudo-labels are
usually generated from the input data using a heuristic algorithm.
Autoencoders (section 3.3) are well-known examples of self-supervised
learning, where the DL model learns to compress and encode data so
that the reduced encoded information can be reconstructed as close to
the original input as possible. There is another branch of machine
learning called Reinforcement Learning (RL; Sutton and Barto, 2018)
which slightly varies from DL. In DL, the idea is to decode the features/
rules that map a set of inputs to certain outputs; in contrast, in RL, an
intelligent agent continuously learns by trial and error procedure in an
interactive environment using feedback from its own actions and ex-
periences. However, it’s important to mention that DL and RL can
overlap, such as in Deep Reinforcement Learning. This approach in-
tegrates DL methods within an RL framework, creating a powerful tool
to enhance learning and predictive capabilities.

2.2. How does DL work?

DL works by mapping inputs to outputs through multiple layers that
perform various mathematical transformations. The model’s “

parameters, ” including weights and biases, are iteratively adjusted to
optimize this mapping - a process known as learning (Chollet, 2021;
Gulli and Pal, 2017).

In a DL network, hidden layers apply nonlinear transformations on
inputs using activation functions (Fig. 2). After an output is predicted, a
loss function computes the difference between this prediction and the
actual output, indicating the model’s accuracy. This error is then used to
adjust the weights and minimize future errors through backpropagation,
an optimization algorithm (Rumelhart et al., 1986; Fig. 2). For a simple
neural network model demonstration, the reader can follow supple-
mentary section A1 for the backpropagation algorithm concept. Starting
with random weights, iterations refine these values to reduce the loss
function and accurately predict the target. Further information on key
components like loss functions, activation functions, and optimizers is
available in supplementary sections A2 and A3.

2.3. Paradox of Underfitting-Overfitting issues

Fig. 3a illustrates underfitting, overfitting, and optimal fitting in a
regression model. Underfitting, indicative of a too simplistic model, fails
to capture the relationship between variables, causing high bias and
underperformance on all data. Overfitting, conversely, happens when an
overly complex model incorporates noise from training data, causing
high variance and suboptimal test data performance. Optimal fitting
strikes a balance between complexity and simplicity, accurately repre-
senting variable relationships without fitting to noise, thus ensuring
good performance on training and test data.
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Fig. 2. Schematic representation of the training process in a DL model. The
diagram demonstrates the forward pass through the hidden layers, the calcu-
lation of loss using the loss function, and the iterative refinement of model
parameters via the backpropagation algorithm.

2.4. Regularization

Regularization is a crucial aspect of DL model training, balancing
optimization (adjusting model weights to achieve the best results on the
training set) with generalization (the model’s performance on unseen
data). A DL algorithm aims to maximize this generalization capability
(Goodfellow et al., 2016). At the onset of training, the model learns data
patterns, improving its performance as the number of epochs increases.
However, further optimization doesn’t enhance generalization beyond a
certain point, leading to overfitting as the model begins learning pat-
terns exclusive to the training data that are misleading when applied to
new data (Kukacka et al., 2017). Unfortunately, the model’s general-
ization capability can not be controlled directly; instead, we opt for
various regularization methods to improve the model’s generalization
capability. The regularization techniques are one of the critical steps for
developing architectures of the DL models. We briefly discuss the
commonly used regularization techniques.

2.4.1. Weight regularization

The concept of weight regularization is to adjust the weights by
updating the learning algorithm to reduce overfitting and improve the
model’s generalization. The overfitting problems are likely to be
observed in complex models compared to simple models (fewer pa-
rameters and/or lesser variability in parameters). We penalize the
higher weight values in weight regularization by adding a cost to their
loss function (Tian and Zhang, 2022). For example, in the least Absolute
Shrinkage and Selection Operator (LASSO; Tibshirani, 1996), linear
regression model Y = X7, where Y is the response variable, X is the
predictor set and f is the vector of linear regression coefficients, we seek
to minimize the cost function Y, [Y — X"4] . 23F, |81, where 7 is the

regularization parameter and lzj’;l |A| is the penalty term.

The weight regularization in a DL task is performed either via L1 or
L2 regularization methods. In the L1 regularization method (Tibshirani,
1996), the cost added is proportional to the absolute value of weight
coefficients. This is analogous to the LASSO linear regression, where we
seek to minimize the following:
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In L2 regularization method (Hoerl and Kennard, 1970), the cost
added is proportional to the square of the value of weight coefficients,
which is analogous to the Ridge regression as provided below:
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The penalized term improves the model performance by addressing
overfitting.

2.4.2. Dropout regularization

Dropout regularization is widely used to prevent overfitting prob-
lems in DL models (Srivastava et al., 2014). It works by randomly
deactivating a fraction of the nodes in a layer during each training
epoch. This randomness ensures no unit is entirely dependent on
another, boosting the model’s generalization capability by breaking co-
adaptations among nodes (Hinton et al., 2012). In other words, dropout
prevents overfitting by decreasing the dependence between the nodes in
the hidden layers. Essentially, dropout results in an ensemble of smaller,
less biased subnetworks that yield more robust predictions (Baldi and
Sadowski, 2013).

However, using dropout requires caution. Applying it just before the
output layer can degrade performance, as the network doesn’t get the
chance to correct errors adequately. Similarly, in small networks,
dropout can excessively reduce the network size, affecting the learning
process. Lastly, dropout before Recurrent Neural Networks (RNNs) or
Long Short-Term Memory (LSTM) layers can hinder proper back-
propagation due to the random zeroing of temporal units (Gal and
Ghahramani, 2016).

2.4.3. Early stopping

Identifying the stopping time (number of epochs) for training the DL
model is often unclear. Too many epochs lead to overfitting, and too
little results in underfitting of the models. Early stopping criteria
(Fig. 3c) ensure that the training should be stopped when the validation
error starts building up after a certain number of epochs, indicating no
improvement of generalization (Yao et al., 2007). Stopping the training
before the generalization error increases (when the validation loss is the
least) will help reduce overfitting.

2.4.4. Batch normalization

Batch normalization is a technique (see Fig. 4a) used to optimize the
training of deep neural networks by addressing the problem of internal
covariate shifts (Ioffe and Szegedy, 2015). Internal covariate shift refers
to the change in the input data distribution to subsequent layers during
the network’s training process due to frequent weight adjustments,
which can destabilize learning.

Batch normalization optimizes deep network training by standard-
izing each mini-batch’s input data, maintaining a steady distribution,
and enhancing efficiency. It computes each mini-batch’s mean and
standard deviation for normalization and incorporates learned scale and
shift parameters for flexible training. Note that batch normalization
should not be used with dropout as the random deactivation of neurons
can interfere with the standardization process (Goodfellow et al., 2016).

2.4.5. k-fold cross-validation

K-fold cross-validation (Fig. 4b) is an effective resampling approach
for evaluating the DL models when limited training data are available
(Gulli and Pal, 2017). This procedure randomly splits the data sample
into k number of groups; for example, when k = 5, it is called 5-fold
cross-validation. This procedure helps estimate the skills of a DL
model for unseen data not used during the model’s training. The data are



K.P. Tripathy and A.K. Mishra

Journal of Hydrology 628 (2024) 130458

A. Underfitting, Overfitting and Good fitting
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Fig. 3. (A) Illustrating the concepts of underfitting, overfitting, and optimal fitting between independent and dependent variable data. (B) Dropout regularization is
applied to the DNN (B-2) with dropout rates of 0.5 and 0.25 to the hidden layer-1 and —2. (C) Early stopping by monitoring the validation loss during training and
stopping the training process when the validation loss increases after a certain number of epochs.

randomly split into training and validation sets. The model performance
is then averaged over all k iterations to get a more robust estimate of the
model’s performance on new, unseen data.

2.4.6. Data augmentation

Data augmentation enhances datasets by generating new training
samples from existing data (Simard et al., 2003). In image-related ap-
plications, this involves transformations like flipping or rotating images,
which expand the data’s diversity and help counter overfitting (Good-
fellow et al., 2016). This exposure to varied data can improve the
model’s generalization, making it more robust (Krizhevsky et al., 2012).
For time series data, augmentation methods such as shifting or adding
noise can bolster the model’s resilience to data variation, like changing
trends or seasonal patterns (Iwana and Uchida, 2021; Wen et al., 2021).

3. Deep learning architectures

The following section discusses DL architectures commonly used in
hydrology and water resources applications. A quick overview and

comparison of these architectures in terms of their specific uses in hy-
drology and water resources disciplines, along with their advantages
and disadvantages, are provided in Table 1.

3.1. Convolutional neural network (CNN)

Convolutional Neural Networks (CNN; Krizhevsky et al., 2012; Lecun
et al., 1998) are a special kind of DL model suitable for analyzing image-
based datasets and grid-based cross-sectional time-series data due to
their ability to capture spatial structure (relation between neighboring
pixels) and local connectivity between the pixels. This ability to capture
spatial relationships in hydrology is advantageous when dealing with
geospatial datasets such as satellite imagery or digital elevation models
(DEMs), making CNNs a powerful tool for hydrological modeling. Over
the years, CNNs have seen remarkable advancements with powerful
architectures such as AlexNet (Krizhevsky et al., 2012), VGGNet
(Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2014), and
ResNet (He et al., 2016), which have made significant strides for image
classification including land cover classification, identification of water
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A. Batch Normalization (BN)
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Fig. 4. (A) Batch Normalization is applied after a layer in a deep neural network (DNN + BN). BN introduces two additional trainable parameters: scale (y) and shift
(B) along with the weights and biases for each neuron in the layer. (Bottom panel) All the trainable parameters are updated using the backpropagation algorithm in
each iteration using an optimizer such as Adam optimizer. (B) The K-fold Cross-Validation Process: The training data is divided into distinct sets (folds), with each
subset serving as a validation set in turn, while the remaining data is used for training. The final validation score is the mean of the validation losses across all folds,

offering a more robust performance estimate on unseen data.

bodies, and forecasting of rainfall events based on cloud imagery.

The major disadvantage of early-generation Multi-Layer Perceptron
(MLP) is that the spatial information is lost by flattening the 2-D image
input data to 1-D. In contrast, CNNs retain spatial information by
employing a linear mathematical operation called convolution. Fig. 5
illustrates a typical CNN model for an image classification task. Typi-
cally, a CNN includes three types of layers: convolution layers, and
pooling layers, followed by an MLP or fully connected neural network
(FCNN).

The convolution operation involves traversing 2D convolution ker-
nels (filters) to detect the critical features/patterns from the input image
(See Fig. 5b). The parameters of these filters are updated iteratively
using the backpropagation algorithm. The features extracted after the
convolutional layer are subsampled by a pooling layer. For example, a
two-by-two max-pooling layer will select the maximum values from
each two-by-two neighboring window (Fig. 5b), which shrinks the input
feature map by 75 %. A real-world image classification task involves
multiple convolutional filters (such as 32 or 64) that transform original
input images by a series of convolution and pooling layers, which helps
to capture high-level feature maps in the input images. This feature
extraction process is highly relevant in hydrological studies where pat-
terns and anomalies in water bodies, land use changes, or soil moisture
distribution can be effectively detected. These extracted feature maps

thus have much fewer parameters than the original input image,
allowing the model to learn more quickly than the MLPs. Finally, an MLP
or FCNN model is implemented to classify the images based on the
extracted feature maps from the convolution and pooling operations
series. CNN can also be used for hydrologic time series prediction/
forecasting. Just like 2D-CNNs capture the spatial dependence by
extracting features from local input 2D patches, their 1D counterparts,
called 1D-CNN, can recognize the local patterns in time series or
sequential problems.

3.2. Long-Short term Memory (LSTM) networks

Recurrent Neural Networks (RNNs) are proficient in processing time-
series data, an important aspect when predicting hydrological variables
like streamflow, groundwater level, or rainfall intensity. However,
standard RNNs struggle to handle large volumes of contextual infor-
mation due to the “vanishing gradient problem” (Hochreiter, 1998). The
LSTM model, a specialized form of RNN, was introduced to overcome
this issue. It emphasizes preserving relevant past information while
disregarding irrelevant data (Hochreiter and Schmidhuber, 1997).

The LSTM network depicted in Fig. 6a is comprised of a sequence of
LSTM cells followed by a fully connected neural network (FCNN) layer.
The network processes input data at each time step, with each LSTM cell
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Table 1
Comparison of Deep Learning Models for Hydrological Applications.
DL Model Examples of Advantages Disadvantages
Hydrologic
Applications

Convolutional Analyzing spatial Effectively Potential
Neural patterns in captures spatial challenge in
Network hydrological data (e. dependencies dealing with
(CNN) g., precipitation, soil and requires heterogenous data

moisture maps), fewer that doesn’t
Land-use/Land-cover ~ parameters, thus represent grid-like
(LULCQ) classification limiting topology.

from satellite images  overfitting.

Long Short- Time-series It efficiently Computationally
Term forecasting of captures intensive, model
Memory hydrological temporal interpretability is
(LSTM) variables dependencies limited.

(streamflow, and is robust to

groundwater levels), the vanishing

Weather forecasting gradient
problem.

Autoencoders Anomaly detectionin  Efficiently learns It can be sensitive

hydrological data, data codings, to the input data
Extraction of useful for and might
important features unsupervised reproduce noise.
from high- learning tasks

dimensional data (e.

g., multispectral

images)

Generative Generation of Capable of Training can be
Adversarial synthetic yet realistic = generating new complex and
Networks hydrological data, data with the requires a balance
(GANs) Downscaling of same statistics as between the

climate variables the training set generator and
discriminator.

Encoder- Multi-step ahead Separation of Requires paired
Decoder prediction in encoding and examples for
model hydrological decoding tasks training, may

modeling, Data enables better struggle with very

assimilation performance long input
sequences of time
series data

Attention Handling seq2seq Focuses on Increases
Model prediction tasks with  specific parts of computational

long-range the input complexity
dependencies (e.g., sequence, which
seasonal can improve
precipitation results for
forecasting) specific tasks

Transformer Multivariate Achieves high Requires higher
hydrological performance volume of training
forecasting (e.g., with data and more
simultaneous parallelization, computationally
prediction of rainfall, efficient intensive than
streamflow, and handling of long RNNs
evapotranspiration) sequences

generating an output. These outputs are then collectively processed by
the FCNN layer to generate the final prediction. Fig. 6b demonstrates an
LSTM cell at timestep t. Its core is the cell state (C;), regulated by three
gates: input, output, and forget gate. The forget gate (f;) decides whether
to retain or discard the previous time step’s information using a sigmoid
activation by examining the previous hidden state output (h,;) and
input (x;).

f, = sigmoid (we[h, 1, X,] + by ) ®

where, w and b are the weights and biases.

The input gate determines what new information content can be
added to the cell state (C;). It has two components: a sigmoid layer and a
tanh layer. The sigmoid layer decides which values to update, and the
tanh layer filters whether the new information is relevant to the context
of time series prediction; if it’s relevant, it gets updated to the cell state;
otherwise, it is removed. Both sigmoid and tanh layers update new in-
formation to the cell state through pointwise multiplication. This
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mechanism of updating new information based on relevance is crucial
for hydrological modeling as it helps in capturing only significant pat-
terns from past data.

i, = sigmoid(wi[h,_1,X,| +b; ) (@)
C, = tanh(welh._, X, + bc ) 5)
Cz:f/><C14+iz><5¢ (6)

The output gate of an LSTM cell determines the information to be
transferred to the next cell and the final output. Using a sigmoid layer
and a tanh layer, it filters and transmits only the relevant information
from the current cell state (C,) to the subsequent time step t + 1 through
a tanh layer.

Or = Sigm()id(wn [hr—l 7Xt] + bu) (7)

h, = o, x tanh(C,) (8)

The output of the cell at time t is a function of the long-term memory
(cell state C,) and the short-term memory (current hidden state h,),
allowing the network to remember both long-term and short-term in-
formation. This is particularly beneficial in hydrological scenarios
where both short-term (e.g., recent precipitation events) and long-term
(e.g., seasonal variations) factors play a role in the outcomes (Jiang
et al., 2022).

An extension to the standard LSTM is the Bidirectional LSTM
(BiLSTM; Graves and Schmidhuber, 2005). BiLSTM incorporates two
LSTM layers, one for positive time direction (forward state) and another
for negative time direction (backward state). This architecture allows
the model to have access to both past (backward) and future (forward)
contexts, which can lead to improved performance on various tasks by
capturing the patterns that depend on the context of the input sequence
(Graves and Schmidhuber, 2005). For instance, understanding past
precipitation events and future weather forecasts in flood prediction is
vital, making BiLSTM highly advantageous.

There are other variants of the GRU also exist. The Gated Feedback
Recurrent Network (GRFN; Chung et al., 2014) is an example where
gating mechanisms are used to control the flow of information in the
hidden state of recurrent neural networks, allowing for better control
over the learning process. The GRFN improves upon the GRU by adding
a gating unit that modulates the hidden-to-hidden recurrent connec-
tions, thereby providing additional complexity in learning the temporal
dependencies.

3.3. Autoencoders (AE)

Autoencoders (See Fig. 7), a type of self-supervised network, are
relevant in hydrology for feature extraction and data dimensionality
reduction (Jiang, 2018). They typically consist of an encoder, a bottle-
neck, and a decoder. The input data are compressed via an encoder to
form a bottleneck, and then the decoder reconstructs the input using this
reduced feature space (Ballard, 1987; Rumelhart et al., 1985).

Autoencoders are self-supervised, as their training assigns their own
inputs as the output targets. They create an information bottleneck by
restricting the hidden layer dimension to smaller than the input, leading
the encoder to learn salient data features, which the decoder uses for
reconstruction. In hydrology, autoencoders’ ability to capture key fea-
tures from input data can be critical, assisting in predicting future hy-
drologic events or understanding processes.

The training of autoencoders involves iteratively minimizing the loss
function and updating the network weights. After training, only the
encoder block is used to generate a low-dimensional representation of
the input data. Autoencoders have an advantage over PCA, capturing
both linear and non-linear patterns present in the training data (Good-
fellow et al., 2016; Hinton and Salakhutdinov, 2006), useful when
dealing with complex, non-linear hydrological systems.
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Fig. 5. A schematic representation of a CNN architecture for binary classification. The architecture comprises three key components: convolutional layers, pooling

layers, and fully connected neural networks (FCNN).

Depending on the modeling task, either MLP, CNN, or LSTM layers
can be used for the encoder and decoder parts. For instance, in hydrol-
ogy, Denoising autoencoders (DAE) can be used for remote sensing ap-
plications like reconstructing or denoising satellite imagery related to
water bodies or land use.

3.4. Generative Adversarial networks (GAN)

Generative Adversarial Networks (GANs) are unsupervised DL
models that provides an ability to learn deep representations without
extensively annotated training data (Creswell et al., 2018), which can be
useful in hydrological applications where comprehensive and accurately
labeled data is scarce. GANs used a clever approach by framing the
problem using two sub-models (a) the generator model and (b) the
discriminator model (Goodfellow et al., 2014), working in opposition to
each other to learn the underlying distribution of the data.

During the training of GAN, the Generator (G) uses random input
noisy data (z) from an arbitrary distribution p(z) to generate synthetic
(fake) data (G(z)), which is further fed to the discriminator module
(Fig. 8). The discriminator has access to the real data (X) and the syn-
thetically generated data G(z) from the generator. The goal of the
generator model is to generate samples as close as possible to real data
(x), while the purpose of the discriminator is to detect whether the
generated sample from the generator is real or fake, thus the name
adversarial network (Goodfellow et al., 2014). The outputs from the
discriminator model vary between 0 and 1 and they are derived using a
sigmoid activation function. The loss functions of the generator and the
discriminator as given by (Goodfellow et al., 2014):

LDiscrimina&or = - EX [log(D(X) )] - EZ [102(1 - D(G(Z) ) ) ] (9)

LGeneralor = - EZ[IOE(D(G(Z))] (10)

The discriminator tries to minimize the loss function either by
maximizing D(x) or by minimizing the D(G(z)), whereas the generator
attempts to maximize the D(G(z)). Remember that the function D(.)
gives a real number between 0 and 1 since it has a sigmoid activation
function. The training is said to be converged when the discriminator
can no longer detect fake images produced by the generator and outputs
a number close to 0.5 every time.

Mirza and Osindero (2014) proposed conditional GANs that learn to
generate synthetic samples from the conditional distribution p(z|y)
instead of the marginal distribution p(z). In this approach of generative
modeling, both the generator and discriminator are fed with some
auxiliary feature labels (y), which help the generator produce samples
consistent with the auxiliary information. This could be a valuable tool
in hydrology where certain conditions or features, such as precipitation
or temperature, could be used as conditional information to generate
synthetic data for different scenarios.

In addition to Conditional GANs, other GAN variants have been
formulated to optimize the original GAN model. One such example is
Deep Convolutional GANs (DCGANs), which apply deep CNNs within
the GANs framework to enhance their potential to generate high-quality
images by learning hierarchical data representations (Radford et al.,
2016). Another variant is Wasserstein GANs (WGANSs), which introduces
a new loss function based on the Wasserstein distance. This improves
GANSs’ training stability, mitigates mode collapse issues, and provides
meaningful learning for model training and evaluation (Arjovsky et al.,
2017).

3.5. Encoder-Decoder model

The encoder-decoder network (Sutskever et al., 2014) provides a
way to train RNNs for sequence-to-sequence (seq2seq) prediction
problems (Cho et al., 2014). The encoder-decoder model (Fig. 9) consists
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Fig. 6. The architecture of an LSTM model at time step t consists of three gates: forget gate, input gate, and output gate.

of two RNNs: an encoder and a decoder. The encoder, usually built by
stacking RNNs, encodes the input sequences and produces a fixed-length
context (feature) vector, a simple function of the final hidden state. The
decoder RNN receives the context vector to generate the output se-
quences. In a seq2seq model, these two RNNs are trained jointly to
maximize the conditional likelihood of generating output sequences
given the input sequence training datasets. The encoder-decoder model
is effective for hydrological forecasting, where the encoder processes
past historical record (e.g., rainfall) to predict future conditions (e.g.,
river discharge). Sometimes, the encoder-decoder framework can be
modified by stacking multiple LSTMs to enhance the model’s accuracy
by preserving contextual information over long periods (Asadi and
Safabakhsh, 2020; Du et al., 2020).

The major drawback of the encoder-decoder model is when the

dimension of the context vector from the encoder RNN is too small to
encode long input sequences. Bahdanau et al. (2016) proposed “Atten-
tion” model (Section 3.6), which overcomes the problems of long-term
dependency of the RNN-based encoder-decoder frameworks. Although
encoder-decoder architectures were initially developed for seq2seq
modeling tasks using RNNs, recent studies have stacked CNNs in the
encoder-decoder models for extracting spatial representations for object
detection and image classification tasks.

3.6. Attention model

In the domain of hydrological forecasting, sequence-based modelling
plays a crucial role. The attention model, a recent development in DL,
has become a significant focus seq2seq based time series forecasting,
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Fig. 7. Schematic diagram depicts an autoencoder architecture. Fig. 7 (A)
provides a more detailed view of the autoencoder, highlighting the encoder,
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pressing salient features from the input for efficient data reconstruction. Fig. 7
(B) provides the process of transforming an input (x) via an encoder function to
a hidden representation (h) followed by the reconstruction to output (o)
through a decoder function. The discrepancy between the original input and the
output forms the loss.

particularly when modeling long-term hydrological sequences (Bahda-
nau et al., 2016). The key strength of attention models lies in their ability
to focus on specific parts of the input data sequence when generating an
output, thereby improving the model’s ability to handle longer input
data sequences and their complex dependencies. Unlike LSTM and
encoder-decoder-based RNN models, which assign equal weights to all
past lags, attention models assign more weightage to the most critical
past lag information, thus enhancing efficiency and reducing computa-
tional time.

In the encoder-decoder models, the context vector is a simple func-
tion of the last hidden state of the encoder RNN, and their accuracy
declines with more extended input time-series data. Bahdanau et al.
(2016) improved the encoder-decoder models with slight modification
by considering feeding all the hidden states of the encoder with different
weights of their importance to the context vector instead of taking the
last hidden state only. So, every time the decoder generates a sequence,
it searches for a subset of hidden states from the encoder RNN that
maximizes the conditional likelihood of generating an output sequence
given the input sequence. This mechanism is called Attention.

The attention model, shown in Fig. 10, assigns different weights to
hidden states based on their importance in the output sequence

Input Fake Data
Noise (z) G(z)
Generator
Real Data
X
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generation (Bahdanau et al., 2016). The context vector C; for the output
sequence Y; is calculated by taking the weighted sum of the hidden
states, h.

Ci = TZX aijhj
=

Here T, denotes the total number of hidden states and the weights a;

are calculated by a softmax function as: a; = ZC;P&

o exple)
h).

Where, ¢; is a fully connected neural network that measures how
well the inputs around position j and outputs in position i match. The
values of e; and a;; are iteratively updated with every epoch of training.

In recent years, attention mechanisms have considerably improved
RNNs’ ability to handle long sequences and intricate dependencies,
marking a significant advancement in the field (Dikshit et al., 2022).
When integrated with the encoder-decoder-based LSTM model, the
attention model produces remarkable results compared to the LSTM
model alone (Ding et al., 2020). Although attention was initially
developed for seq2seq time series problems, the concept is now applied
to image-based tasks that involve object detection (Li et al., 2020), and
semantic segmentation (Hu et al., 2021).

aan

and e; = a(s;_1,

3.7. Transformer network

The Transformer network, proposed by Vaswani et al. (2017), is the
most recent DL architecture that has gained attention after it surpassed
the performance of the state-of-the-art LSTM models in time series
forecasting/prediction problems. The accuracy of the RNN/LSTM model
declines as the length of the input sequence increases since it becomes
difficult for the model to capture the longer historical time lags with
recurrence time steps, which is called the vanishing gradient problem.
On the other hand, the transformer model discards the recurrence op-
erations and utilizes a self-attention mechanism, a feature that could be
leveraged for multi-step time-series prediction (Ahmed et al., 2022).

The transformer model comprises an encoder-decoder-based archi-
tecture (Fig. 11; Wu et al., 2020). The encoder block consists of an input
layer, a positional encoding layer, and a series of encoders. The input
layer is an FCNN that transforms the input sequence (t1,to,-+,t) into a d-
dimensional vector. The positional encoding layer preserves the
sequential information, a critical aspect when dealing with time series
hydrological data.

Each encoder comprises two sub-layers — a self-attention and an
FCNN sub-layer. The self-attention sub-layer measures the relevance
score of each value at a particular time step with respect to all other
values at the different time steps. These relevance scores capture inter-
dependence relationships among the different time steps and are rep-
resented as attention vectors (Wu et al., 2020). The self-attention
mechanism allows the network to focus on crucial historical lag time

Discriminator

Sigmoid

Probability of
G(z) being real

Fig. 8. Schematic diagram of Generative Adversarial Network (GAN) model.
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Fig. 9. The diagram depicts the encoder-decoder LSTM architecture designed
for seq2seq prediction tasks.

steps for very long input sequences.

The decoder block comprises the input layer, the same number of
decoder layers as the encoder block, followed by an output layer. In
addition to the self-attention and FCNN sub-layers, each decoder layer
consists of a third sub-layer called the encoder-decoder attention that
applies the same self-attention operation over the last encoder output. A
look-ahead masking scheme is employed in each decoder layer that
efficiently helps train the transformer. It involves passing the decoder
input sequences (t, tx;1) to the decoder block by hiding the next
sequence (tx,o) that allows the network to learn to predict the next
sequence correctly and iteratively update the weights using a loss
function. This operation is carried out in each decoder and sent to the
output layer that maps the output of the last decoder to the target time
sequence using a linear activation function.

Further improvements of the Transformer model include the appli-
cation of multi-head attention, which allows the model to capture
different types of information from the input in parallel. In this way, the
model can focus on different positions and create a more comprehensive
representation of the input data (Vaswani et al., 2017), which could be
beneficial in dealing with the multiscale and multivariate nature of
hydrological processes. Although the applications of novel architectures
(i.e., attention model and transformers) are very limited in hydrology,
their demonstrated success in other disciplines (Brasoveanu and Ando-
nie, 2020; Camps-Valls et al., 2020; Feng et al., 2021; He et al., 2022)
suggests potential for exponential growth within the field in future.

3.8. Transfer learning (TL)

Transfer Learning (TL) offers an innovative solution to address the
challenges of training DL models on limited datasets and reducing
overall training time. This method leverages previously trained models
by reusing their feature maps, or model parameters, to facilitate the
learning process for new models (Weiss et al., 2016). TL assumes that
feature maps, once learned, remain applicable across different tasks and
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for seq2seq prediction problems.

datasets (Fig. 12). This ability to transpose learned features enhances the
versatility and reusability of DL models, making them adaptable for
analogous tasks on different datasets or for various tasks on a single
dataset (Yu and Ma, 2021).

A classic application of the TL concept can be found in hydrological
forecasting. For example, trained weights and biases from a model used
for drought forecasting could serve as initial parameters for streamflow
forecasting with a different dataset (Subramanian et al., 2022; Fig. 12).
Furthermore, TL allows us to exploit feature maps extracted from a
single dataset, like temperature data, for distinct tasks such as predicting
and classifying heatwaves. This approach saves substantial training time
by retaining the lower layers of the network while modifying the higher
layers according to the task.

TL can also be especially beneficial in scenarios where training data
is scarce. It leverages the knowledge gained from a DL model trained on
a rich, labelled dataset and applies this knowledge to situations where
training samples are limited. An excellent illustration of this is predict-
ing runoff in ungauged catchments based on models trained in gauged
areas with similar climate patterns, thereby broadening the model’s
practical applicability (Xu et al., 2023b).

4. Deep Learning: Future perspectives
4.1. Physics-Guided Deep learning (PGDL)

Hydrological models are quite complex, representing the physical
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and conceptual relationships between multiple variables (processes) at
different spatiotemporal scales. Traditional approaches to build hydro-
logical models include physics-based concepts that aim to map the
cause-effect relationship among the variables. These models use nu-
merical simulations that encode physical laws as differential equations
and numerical methods (Brunner and Simmons, 2012; Pinder and Gray,
2013; Yeh, 1986). However, these methods require significant compu-
tational resources as the complex dynamical processes require accurate
discretization of the domain attributes and optimization of the con-
straints (Wang and Yu, 2022). Unfortunately, physics-based models
often struggle to capture the complex and nonlinear hydroclimatic
processes and nonstationary patterns that dynamically vary over space
and time. On the other hand, data-driven DL models provide alternative
tools for extracting useful information through complex pattern recog-
nition and emulating nonlinear dynamics, thus limiting computationally
demanding calculations (e.g., numerical approximation). Yet, one of the
criticisms is that DL models may not capture the underlying laws of
physics, which may lead to physically implausible and spurious pre-
dictions (Khandelwal et al., 2020; Shen et al., 2021).

Considering the above differences, it is essential to delve deeper into
the comparison between DL/AI models and traditional physics-based
models. DL models excel in capturing complex, nonlinear relationships
in hydrological data. At the same time, physics-based models, despite
their demand for high computational resources, incorporate the physical
processes involved and are often guided by rigorous laws and principles.
DL and physics-based models have shown considerable success in hy-
drology and water resources applications, albeit in different ways and
under varying circumstances.

Recently, Physics-Guided Deep Learning (PGDL) or Theory-Guided
Data Science (TGDS; (Ganguly et al., 2014; Karpatne et al., 2017) has
gained attention by integrating the physical/processes based principles
with deep neural networks. PGDL (supplementary Fig. S1) aims to
maximize the benefits of physics-based and deep-learning models to
handle scientific problems better. Combining physical mechanisms and
data-driven approaches offers complementary strengths: data-driven
methods extract valuable information from data, while physical
models provide interpretability and generalization beyond the obser-
vation space. PGDL aims to enhance standalone deep learning models’
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physical consistency and generality, making it useful for the dynamical
modeling of nonlinear and nonstationary processes and situations where
system parameters change (Wang and Yu, 2022).

Karpatne et al. (2017) introduced a framework to combine domain
knowledge with data-driven models for better physical consistency. The
scientific principles can be incorporated into the design of data-driven
approaches by selecting a suitable response function or redesigning
the model architecture. This is very useful in hydrologic modeling as
certain hydrological variables follow specific patterns or distributions or
have a particular form of input-output relationship. Further, scientific
knowledge can be used for identifying initial values or physics-guided
regularization/optimization steps. Appropriate initial values can
improve learning and generalization through pre-training networks and
transfer learning. Few studies have modified the objective function to
include scientific constraints like conservation of mass, energy, and
momentum (Beucler et al., 2021; Daw et al., 2022). The DL model
outputs can be post-processed using domain knowledge to improve
physical consistency and interpretability.

Data-driven Deep Learning (DL) methods and physics-based models
complement each other (Karpatne et al., 2017). DL methods excel in
capturing the spatial and temporal dependencies and nonlinear patterns
in data. At the same time, physics-based models provide a deeper un-
derstanding of the physical processes involved and offer interpretable
results. The combination of these two models through hybrid modeling
can lead to the acquisition of their individual strengths. There are two
ways to construct a hybrid model. One approach is to use the outputs of
the physical models as additional training inputs for the DL models,
allowing the physical models to guide the learning process of the DL
models with physically consistent training data. Another approach is to
have the DL models predict specific intermediate steps in the physical
models and feed the DL model outputs back into the physical models.
This is especially useful when equations in the physical models are based
on empirical relationships that can be difficult to interpret, such as
Manning’s formula. Modeling these intermediate relationships with DL
can improve the prediction accuracy and correct the outputs of physics-
based models. The DL model can learn the unknown parameterization of
physics-based models, such as global hydrologic models (GHM), which
will help improve their realizations (Yang et al., 2019b; Zaherpour et al.,
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Fig. 12. An illustration of Transfer Learning in hydrology. (a) This panel demonstrates how transfer learning operates across similar tasks. It displays the process
where weights and biases from a Deep Learning model trained on drought forecasting (Task-1) serve as initial parameters for streamflow forecasting (Task-2). This
exchange of information between models enhances efficiency and saves computational resources. (b) Here, transfer learning across different tasks within the same
dataset is depicted. Specifically, early layer feature maps from a model trained on heatwave prediction (Task-1) are reused by another model to classify heatwaves
(Task-2). This demonstrates the utilization of shared information for cross-task learning, leading to improved model performance.

2019). Additionally, with a large number of physical parameters, it
becomes expensive for the DL model to learn the optimal combination
that maximizes the likelihood (Krizhevsky et al., 2012; Rasp et al.,
2018).

In conclusion, while AI and physics-based models have their
strengths and limitations, the synergy of these approaches, as evidenced
by PGDL, suggests promising directions in advancing the hydrological
modeling science.

4.2. Explainable Artificial Intelligence (XAD

Although DL has gained success in numerous scientific fields, these
models are sometimes criticized as “black boxes” as they don’t provide
insights to understand how they make predictions (Castelvecchi, 2016).
This is primarily due to their hierarchical nonlinear nature and over-
parameterization — involving a large number of parameters and stacked
with several layers. For any parametric statistical modeling, more pa-
rameters can capture the influence of diversely interacting variables.
However, this shadows their interpretability, known as the accuracy-
interpretability trade-off, where the model accuracy increases with
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more parameters but at the cost of model interpretability. Interpret-
ability refers to the degree to which inference results of a DL network are
predictable or understandable to humans. For example, the streamflow
of a basin can be modeled as a linear function of several covariates in a
naive approach. In this case, the parameters of the multiple linear
regression model are easily interpretable, and we can infer the relative
contribution of covariates on the runoff generation. However, in reality,
the runoff generation is influenced by a complex nonlinear relationship
between hydrological variables under various physiographic conditions,
requiring the use of nonlinear models with a large number of parameters
(Konapala and Mishra, 2020; Woods and Sivapalan, 1999). This
nonlinearity accounts for a more significant number of parameters,
which hampers the model interpretability.

The complex network architectures of DL models involve many pa-
rameters set to gain higher accuracy; however, learning representations
are difficult to extract and present in a human-readable form. Re-
searchers have been continuously working to explain the behavior of the
deep models in making decisions/predictions, a field called explainable
Al (XAL Ribeiro et al., 2016). Successful interpretation of deep models
can help us to gain domain insights and extend our knowledge about
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unknown mechanisms, causation, and linkages. This motivates to go
beyond DL as a knowledge discovery tool rather than a data-fitting
model. Three main categories of XAl techniques are used to interpret
the predictions of deep learning models:

1. Model-Agnostic Techniques: These techniques do not require inter-
nal knowledge of the model architecture and can be applied to any
DL model. They aim to provide a global understanding of the model’s
behavior by focusing on the relationships between the inputs and
outputs. Examples of these techniques include partial dependence
plots (Friedman, 2001; Konapala and Mishra, 2020), individual
conditional expectation plots (Goldstein et al., 2015), integrated
gradients (Sundararajan et al., 2017), and saliency maps (Simonyan
et al., 2014).

2. Model-Specific Techniques: These techniques are based on a specific
model architecture and require an understanding of the model’s in-
ternal workings. They offer a deeper understanding of the model’s
behavior and help identify the neurons and layers important for
making the prediction. Examples of these techniques include layer-
wise relevance propagation (Bach et al., 2015) and guided back-
propagation (Springenberg et al., 2015).

3. Post-hoc Techniques: These techniques are applied after the model
has been trained and provide an explanation for a specific prediction.
They aim to highlight the specific input features that contribute the
most to the model’s prediction. Examples of these techniques include
LIME (Local Interpretable Model-agnostic Explanations (Ribeiro
et al.,, 2016) and SHAP (SHapley Additive exPlanations; (Lundberg
and Lee, 2017).

Recent advances in DL research have also developed software tools
for interpreting DL algorithms. TF-Explain is a TensorFlow-based
interpretation algorithm focusing on features with gradient-based
model agnostics techniques. Captum (Kokhlikyan et al., 2020) is based
on PyTorch and works similar to TF-Explain.

5. Applications of DL in hydrology and water resources
disciplines

During past decades, first-generation neural networks were widely
used to solve a multitude of hydrological problems, such as water quality
modeling (Singh et al., 2009), hydrological prediction/forecasting
(Magsood et al., 2004; Mishra et al., 2007; Mishra and Desai, 2006;
Taylor and Buizza, 2002), remote sensing image object recognition/
classification (Mas and Flores, 2008; Tatem et al., 2001), water re-
sources management (Iliadis and Maris, 2007; Jain et al., 2001; Kingston
et al., 2005), and subsurface flow systems (Kerem Cigizoglu and Kisi,
2006; Lallahem et al., 2005; Shigidi and Garcia, 2003). Over recent
years, the applications of DL in the hydrology discipline have emerged.
The following sections provide an overview of recent applications of DL
models, and a summary is provided in Table 2.

5.1. Time series modeling and forecasting

Hydrological time series forecasting involves extracting meaningful
statistical information from sequential data for developing forecasting
models. The forecasting models are widely used for various applications,
such as predicting extreme hydroclimatic events, streamflow/runoff,
and other hydrological variables (Coulibaly and Baldwin, 2005;
Mujumdar and Kumar, 2012). The DL methods performed well
compared to the statistical and stochastic models (e.g., Auto-Regressive
Integrated Moving Average (ARIMA)) and processes-based hydrologic
models. The commonly used traditional models have limitations, such as
the choice of model formulation, parameter estimation, and assimilation
scheme (Camps-Valls et al., 2021; Chawla et al., 2018). At present, the
DL methods rapidly emerge as a legitimate alternative to classical time
series modeling frameworks. An overview of DL applications for time
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series forecasting of floods, droughts, streamflow, soil-moisture, and
weather forecasting are discussed.

5.1.1. Flood forecasting

Natural disasters like floods result in substantial loss of life, agri-
cultural production, socioeconomic systems, and environmental sus-
tainability (Bulti and Abebe, 2020; Mishra et al., 2022). Accurate flood
modeling and forecasting are challenging in hydrology. Recent studies
successfully applied DL methods and outperformed the process-based
flood forecasting models in many cases. Wu et al. (2018) developed an
LSTM model with an attention mechanism for hourly flood prediction,
providing accurate and timely forecasts. Likewise, Fang et al. (2021)
developed a hybrid model incorporating feature engineering with LSTM
for flood susceptibility mapping. They implemented batch normaliza-
tion and data augmentation, improving the model accuracy to approx-
imately 94 %. In terms of streamflow prediction, Kratzert et al. (2019)
made robust runoff predictions across 531 catchments throughout the
continental United States using LSTM. Further, Feng et al. (2020) used a
combination of Data Integration (DI) and LSTM, enhancing performance
in basins with high autocorrelation. Ding et al. (2020) proposed an
interpretable flood forecasting model that integrates a spatiotemporal
attention mechanism with an LSTM network. The model outperformed
all other benchmark models and the spatiotemporal attention layer,
providing the importance of previous lagged values on flood prediction.

5.1.2. Drought forecasting

Drought prediction is paramount for water resources planning and
management and for improving water security (Mishra and Singh,
2010). Dikshit et al. (2021) introduced a stacked LSTM model for
drought predictions based on the Standardized Precipitation Evapo-
transpiration Index (SPEI) in New South Wales, Australia. In a subse-
quent study, Dikshit et al. (2022) improved the model by integrating an
attention mechanism, yielding impressive accuracy for short- and long-
term meteorological droughts. Xu et al. (2022) combined an autore-
gressive integrated moving average (ARIMA) model with LSTM for
drought prediction based on SPEI over China. The hybrid model ach-
ieved better prediction ability than the selected ML and DL benchmark
models. Mokhtar et al. (2021) applied two machine learning (Random
Forest (RF), Extreme Gradient Boosting (XGBoost)) and two deep
learning (CNN and LSTM) models for SPEI based meteorological drought
prediction in Tibetan Plateau, China. The XGBoost and LSTM models
showed the best performances in most of the scenarios.

5.1.3. Weather forecasting

The weather system is quite complex, and there is a high degree of
uncertainty in predicting the state and conditions of the atmosphere in
space and time. A hybrid spatiotemporal-LSTM model with self-
attention scheme yielded promising results for weather forecasting,
especially for moderate to heavy rainfall events (Zhang et al., 2022).
Additionally, Wei and You (2022) implemented a combination of
Discrete Wavelet Transform (DWT), LSTM, and Deep Convolutional
Complementary Neural Network (DCCNN), improving forecasting ac-
curacy for up to 4 months lead times. Chen et al. (2019) combined 3-D
CNN and LSTM to develop a CNN-LSTM hybrid model that can capture
the spatial correlation and temporal sequence of relations in typhoon
progression. The proposed model showed superiority in predicting
typhoon formation and intensity compared to the existing typhoon
models. (Giffard-Roisin et al., 2020) proposed a DL model based on CNN
integrating the past tropical cyclone trajectory information and atmo-
spheric variable 3-D image fields such as wind and geopotential heights.

5.1.4. Soil moisture prediction

Statistical and ML models are commonly used for soil moisture
prediction (Karthikeyan and Mishra, 2021; Martinez-Fernandez and
Ceballos, 2005; Yan et al., 2015). pr-based nowcasting of soil moisture
has also produced remarkable results (Fang and Shen, 2020). Li et al.
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Table 2

Application of DL models for various hydrological and water resources applications.
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Applications

References

DL Model used

Significant Findings

Flood Forecasting

Weather
Forecasting

Streamflow
prediction

Soil moisture
prediction

Remote-sensing
applications

Rainfall-runoff
modeling

Inverse Problem
Modeling

Downscaling

Water quality

Water level
prediction

Hourly flood forecasting (Wu et al.,
2018)

Runoff prediction from short term
extreme rainfall data (Li et al., 2021)
Flood forecasting (Ding et al., 2020)

(Zhang et al., 2022)

(Zhang et al., 2022)

(Chen et al., 2019)

(Giffard-Roisin et al., 2020)

(Ham et al., 2019)

(Saha et al., 2022)

(Feng et al., 2020)

Short-term soil moisture forecasting (
Li et al., 2022)

Soil moisture modeling (Fang et al.,
2017)

Multilayer soil moisture estimation (
Karthikeyan and Mishra, 2021)

Object Detection and Classification (
Yang et al., 2022)

Landslide Detection (Tang et al.,
2022)

Land cover classification (Paul and
Nagesh Kumar, 2018)

LULC Classification (Zhang et al.,
2019)

Hurricane detection (Kaur et al.,
2022)

Anomalous precipitation detection (
Murakami et al., 2022)

Runoff estimation (Xiang et al.,
2020)

Runoff estimation (Jiang et al., 2020)
Geostatistical inversion of geological
media

(Laloy et al., 2017)

Geostatistical inversion of geological
media

(Laloy et al., 2018)
Macro-dispersivity and hydraulic
conductivity field mapping (Zhou

et al., 2020)

Downscale surface soil moisture (Liu
et al., 2022b)

Generating high-resolution daily
precipitation data (Tu et al., 2021)
Downscaling extreme temperature
and precipitation (Wang et al.,
2020b)

Dissolved Oxygen level prediction (
Zhi et al., 2021)

Short-term water quality prediction (
Wan et al., 2022)

Predicting spatiotemporal variations
of Dissolved Oxygen levels (Yu et al.,
2020)

Water quality variables prediction (
Bi et al., 2021)

Water quality prediction (Bi et al.,
2023)

River water quality (DO) prediction (
Zhi et al., 2021)

Surrogate Water level prediction in
Yangtze River (Pan et al., 2020)
Daily water level variation prediction
(Xu et al., 2023a)

Context-aware LSTM with an attention
mechanism

LSTM

LSTM with spatiotemporal attention
mechanism

Spatiotemporal-LSTM with self-
attention

CNN

3-D CNN + LSTM

CNN

CNN

CNN

DI + LSTM

LSTM with an attention mechanism
LSTM

XGBoost trained region-wise and layer
wise

CNN

Transformer-based DL model
Mutual-information-based stacked
autoencoder model

3-D CNN and 3-D DenseNet

CNN

Autoencoder model
Encoder-decoder LSTM

Hybrid Physics-RNN and 1D-CNN
Variational Autoencoder (VAE)
Spatial GAN

CNN

LSTM
Hybrid WRF-CNN model

RNN-RandExtreme hybrid model

LSTM
SOD-VGG-LSTM hybrid model

DL model

LSTM-based encoder-decoder

Hybrid Encoder-decoder based BiLSTM

with an attention mechanism

LSTM

CNN-GRU model

Transformer model
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Better forecasting accuracy than MLP and LSTM models.

Accurate prediction of runoff with low computational time.
Outperformed selected process-based and ML models.

Superior accuracy, especially for moderate to heavy rainfall events.

Improved spatial predictions, though accuracy was unchanged.

Superior in predicting typhoon formation and intensity.

Fast and accurate tracking of cyclone paths.

Skillfully predicted the Nino 3.4 index for up to 18 months.

Highest prediction accuracy for flood susceptibility maps.

Improved prediction, especially in basins with high autocorrelation.
Outperforms traditional ML and DL models; attention weights of the
predictors and temporal dependencies provide valuable insights into the
model’s interpretation.

pL-based dynamic modeling approaches can approximate soil moisture
accurately with only two years of data, outperforming statistical methods.
The XGBoost algorithm effectively estimated soil moisture across various
depths, capturing temporal dynamics and spatial variability. It revealed
the relative importance of different factors in prediction and exhibited
superior performance in deeper soil layers.

Classified urban wetlands from high-resolution multispectral images with
an accuracy of 90 %

Detected coseismic landslides from high-resolution remote sensing images
and outperformed other models

Used to extract spatial-spectral features from hyperspectral images for
land cover classification

Achieved over 99 % accuracy in LULC classification from hyperspectral
images

Used for hurricane damage assessment, achieving an accuracy of over 95
%

Used to identify and classify anomalous precipitation events

Improved rainfall-runoff modeling accuracy.

Hybrid model outperformed individual LSTM and EXP-HYDRO.
VAE outperformed traditional methods in a 2D steady flow case study.

Spatial GAN required fewer training images and was faster than the VAE.

Promising for mapping between complex subsurface structures and solute
transport behavior.

Efficiently addressed multi-scale and multi-source data challenges.

Downscaled 80 km resolution to 6 km in less time, with satisfactory
results.

Outperformed ANN models in predicting extreme temperature and
precipitation.

Successfully captured DO level peaks and troughs during periods of low
streamflow and DO data fluctuations.

The hybrid model achieved high accuracy compared to other statistical
and DL models in capturing extreme values.

Data-driven DL model provided accurate predictions of DO level
variations and hypoxic conditions.

Predicted water quality variables with satisfactory accuracy after
denoising the data.

The proposed model outperforms current state-of-the-art algorithms in
prediction accuracy by efficiently handling noise, capturing long-term
correlations, performing dimensionality reduction, and optimizing
hyperparameters.

The LSTM model successfully predicts dissolved oxygen dynamics across
minimally disturbed basins on a continental scale, leveraging sparse DO
and daily hydrometeorology data.

Outperformed ARIMA, WANN, and LSTM models in predicting water
levels.

Outperformed LSTM based on 7-day lead time predictions.

(continued on next page)
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Table 2 (continued)

Journal of Hydrology 628 (2024) 130458

Applications References DL Model used Significant Findings
Surrogate groundwater level model (  Hybrid PGDL model The model was more generalizable and robust than pure deep learning
Cai et al., 2022) models.
Groundwater patterns investigation ( ~ SOM-LSTM model The two-step modeling improved the predictive performance
Clark, 2022) significantly.
Addressing Multiscale Groundwater Level (GWL)  XG Boost, RF, and Support Vector The coupling of ML approaches with WT improved the performance of
multiscale Forecasting (Rahman et al., 2020) Regression, coupled with Wavelet GWL forecasting. XG Boost variants and RF provide an internal measure of
problems Transforms (WT). variables’ importance, making the models more interpretive over other

Multiscale Soil Moisture Prediction (
Liu et al., 2022a)

Multiscale LSTM model

black-box approaches such as SVR.
The novel multiscale model achieved a record-breaking accuracy with a
median correlation of 0.901 and RMSE of 0.034 m®/m”.

(2022) successfully combined the LSTM model with an attention
mechanism to forecast soil moisture and temperature up to 7 days lead
time. This innovative approach not only captures the attention of the
predictors, but also incorporates self-attention to account for temporal
dependencies. The results demonstrated that this model outperforms a
majority of traditional machine learning and deep learning models.
Furthermore, the attention weights of the predictors and temporal de-
pendencies provide valuable insights into the model’s interpretation,
aligning with existing physical knowledge of soil moisture and tem-
perature forecasts. Ahmed et al. (2021) implemented a hybrid DL ar-
chitecture (CEEMDAN + CNN + GRU) to predict the remotely sensed
surface soil moisture (SSM) for up to 30 days lead time. The results
demonstrate that the proposed model can successfully forecast surface
soil moisture compared to benchmark models.

5.2. Remote sensing image-based applications

Remote sensing allows for monitoring hydrological variables and
processes across time and space. The current remote sensing-based ap-
plications in hydrology can be broadly classified into three categories:
(1) object detection and classification, (2) land use land cover classifi-
cation, and (3) change and anomaly detection, which are discussed in
the following section.

Object detection and classification in remote sensing images have
undergone significant advancements with the advent of DL techniques.
This process, which entails differentiating and categorizing objects
within these images, was previously fraught with challenges. A crucial
issue was the difficulty of identifying rotation-invariant features in raw
image data before the application of data augmentation. However,
introducing a rotation-invariant layer to the CNN can address this lim-
itation, which improves multiclass object detection (Cheng et al., 2016).
Similarly, an object-based CNN model integrated with an autoencoder
mechanism can enhance high-level feature extraction (Jiang, 2018). The
CNN model achieved an impressive accuracy rate over 95 % using data
augmentation and fractal net evolution.

DL architectures, notably autoencoders and CNN are proficient in
extracting high-level spatial features from remote-sensing images,
enhancing the LULC classification process (Maggiori et al., 2017). For
example, Xing et al. (2018) utilized a deep CNN (DCNN) with a pre-
trained VGG-16 network for LULC classification using geo-tagged
photos, marking a notable improvement in classification accuracy
compared to traditional methods. Similarly, DL models have been uti-
lized in change and anomaly detection to identify variations and ab-
normalities from remote sensing data, such as cloud detection or
hurricane damage assessment. Jeppesen et al. (2019) developed a
Remote Sensing Network (RS-Net), a DL model, especially for detecting
clouds from remote sensing images. RS-Net uses spatial and spectral
signatures and is trained/validated with Landsat-8 Biome and Spatial
Procedures for Automated Removal of Cloud (SPARCS) data. The RS-net
model delivers the highest accuracy even over snowy and icy regions.
Additionally, the model performs well for smaller satellite images with
limited multispectral capabilities.
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5.3. Rainfall-Runoff modeling

Rainfall-runoff modeling is among the most important steps in hy-
drologic modeling and flood prediction. Traditional rainfall-runoff
modeling approaches commonly involve statistical methods and
physics-based hydrological models (Bloschl, 2006; Coles et al., 2003).
However, the challenges remain while dealing with non-linearity and
complex temporal dependencies inherent in hydrological processes. DL
models can capture complex nonlinear relationships and temporal de-
pendencies; thus, they have emerged as a promising approach to
enhance rainfall-runoff modeling accuracy.

Kratzert et al. (2018) employed an LSTM model to generate
streamflow from 241 catchments in the CAMELS database. They used
various meteorological forcings data and observed discharge data as the
input to the LSTM model. The models trained with a collective group of
basins demonstrated superior performance, especially in snow and
precipitation-dominated regions. Han and Morrison (2022) proposed
using DL models as a post-processor to correct the outputs of traditional
hydrologic models. They developed an encoder-decoder LSTM model to
enhance the National Water Model’s predictive performance for hourly
runoff forecasts. The results showcased a dramatic reduction in root
mean squared error, highlighting the potential of DL in enhancing runoff
estimates.

5.4. Modeling Inverse problems

Inverse problem modeling is a significant area within groundwater
studies, often approached as a high-dimensional inversion problem.
Traditional approaches like Markov Chain Monte Carlo and Ensemble
Kalman Filtering can be resource-intensive and suffer from the curse of
dimensionality (Evensen, 1994; Vrugt, 2016). DL can efficiently handle
high-dimensional problems and capture the critical spatiotemporal
features inherent in inverse problem modeling.

Mo et al. (2019) applied a deep autoregressive neural network using
a CNN-based encoder-decoder framework to create surrogate models for
contaminant transport problems. The model was capable of handling
high dimensionality with improved fidelity. Despite this, the study
suggested that the accuracy and generalizability of the network could be
enhanced by using more training samples. In another interesting
application, Wu et al. (2019) used an image-based framework employ-
ing CNN to model the effective diffusivity of 2D porous media. The re-
sults demonstrated improved accuracy with less computational cost
than traditional Lattice Boltzmann simulations.

5.5. Uncertainty quantification

DL has emerged as a compelling tool in quantifying uncertainty and
can significantly enhance the accuracy and reliability of predictions. For
instance, Klotz et al. (2022) explored using DL to estimate uncertainties
in hydrological predictions, specifically rainfall-runoff modeling. The
results highlighted improved mixture density networks (MDN) perfor-
mance in terms of reliability and accuracy in uncertainty estimates than
the Monte Carlo dropout method, especially for low- and high-flow
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scenarios. The study also underscores the potential for further ad-
vancements in model development, metrics, and benchmarking for un-
certainty estimation, urging community-wide collaboration to overcome
these challenges. Abbaszadeh Shahri et al. (2022) introduced a new
approach, Automated Random Deactivating Connective Weights
(ARDCW), for estimating uncertainty in deep learning models for
groundwater table (GWT) predictions. This technique employs
randomly turned-off weights, enhancing model predictability without
altering optimization processes. Notably, ARDCW outperformed the
traditional models in performance, demonstrating its efficacy in a real-
world project in Stockholm, Sweden.

5.6. Downscaling

Downscaling large-scale hydro-meteorological variables to a local
scale is crucial for regional impact assessment (Tripathi et al., 2006). DL,
especially CNN, has become an advantageous tool due to their ability to
capture the spatial features of spatiotemporal datasets. Pan et al. (2019)
enhanced precipitation downscaling by applying a stacked CNN to
extract critical circulation features. They used predictors like geo-
potential height and precipitable water at a 3-hour frequency, out-
performing other weather models and enhancing precipitation-related
information retrieval. On a different approach, Wang et al. (2021)
leveraged a deep CNN-based Super Resolution Deep Residual Network
(SRDRN) for downscaling daily precipitation and temperature. This
network excelled in capturing spatiotemporal patterns and statistical
characteristics, thereby accurately reconstructing temperature and
precipitation extremes across different locations. In a recent study,
Gavabhi et al. (2023) applied pr-based convolutional neural network ar-
chitecture to merge and downscale multiple user-defined precipitation
products using targeted rain gauge observations.

5.7. Water quality modeling and monitoring

Reliable water quality prediction can minimize water-borne diseases
(Mishra et al., 2021) and improve environmental flow monitoring, water
security, and the sustainability of the stream ecosystem ((Alnahit et al.,
2022)). Different methods are employed to predict depth-wise lake and
river water temperatures, dissolved oxygen (DO) levels, and other non-
point pollutant sources. In a lake water temperature modeling study,
Daw et al. (2022) utilized a physics-based neural network model for lake
water temperature prediction, providing improved results over process-
based models for two major U.S. lakes. Similarly, Willard et al. (2021)
applied meta-transfer learning approaches to predict depth-specific lake
water temperatures for unmonitored lakes, leveraging models from well-
monitored lakes. Their findings suggest that the PGDL model out-
performs the standard model, particularly in regions with sparse
monitoring.

Moreover, accurate prediction of DO levels is vital for aquatic or-
ganisms, which is often challenging due to the sparse availability of DO
data. Zhi et al. (2021) developed an LSTM model to forecast DO levels
across numerous undisturbed catchments, showing promising results,
particularly during periods of low streamflow. On the other hand, Bar-
zegar et al. (2020) designed a hybrid CNN-LSTM model for predicting
DO and chlorophyll-a levels, surpassing standalone models and tradi-
tional ML approaches. This hybrid model was particularly effective in
capturing DO level fluctuations. Willard et al. (2021) adopted meta-
transfer learning approaches for correctly predicting the depth-specific
lake water temperature in unmonitored lakes by reusing the models
from well-monitored lakes across the Western United States. They
applied meta-transfer learning to the process-based general lake model
(MTL-PB) and physics-guided deep-learning model (MTL-PGDL). The
results suggested that the MTL-PGDL model performed better than the
MTL-PB model. Even for regions with sparsely monitored lakes, the
MTL-PGDL model outperformed the standard PGDL model.
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5.8. Surface and ground water level prediction

Accurate forecasting of surface and groundwater levels is crucial for
effective resource management, environmental monitoring, agricultural
planning, and drought management (Liu et al., 2021). Recently, hybrid
DL models blended between different DL architectures and physics-
based models have been found to perform well compared to tradi-
tional methods. For example, Xu et al. (2023) demonstrated the effec-
tiveness of a transformer model in simulating daily water level
variations in Poyang Lake, surpassing the LSTM model’s up-to-7-day
lead time predictions. Similarly, Barzegar et al. (2021) found that a
CNN-LSTM hybrid model outperformed traditional machine learning
models in predicting water levels in North American lakes. In ground-
water level prediction, Cai et al. (2022) proposed a hybrid PGDL model
that outperformed pure DL models in accuracy and generalizability for
measuring groundwater level fluctuations. Clark (2022) employed a
combination of Self-Organizing Maps and LSTM models to classify
groundwater level time series into unique temporal patterns, leading to
significantly improved predictive performance.

5.9. Applications of Physics-Guided Deep learning (PGDL)

In the past few years, there has been increasing usage of PGDL in
hydrology and similar fields such as geoscience and climate science,
addressing several key challenges related to image classification (Huang
etal., 2021), hydrological system modeling (Jia et al., 2021; Wang et al.,
2020a; Xie et al., 2021), time series forecasting (Deman et al., 2022; Liu
et al., 2022b), and anomaly/change detection (Zhong et al., 2019).
Applications of DL in subsurface flow through porous media are limited
due to large-scale heterogeneity, and obtaining adequate amounts of
data is often challenging due to the difficulty in installing and main-
taining the sensors. In this scenario, domain knowledge can complement
the data-driven models to develop hybrid DL models. For example,
Tartakovsky et al. (2020) developed a PGDL model for estimating hy-
draulic conductivity and learning its constitutive relationships with
capillary pressure in subsurface flow. They tested the model for esti-
mating the unknown space-dependent diffusion coefficients from a
linear diffusion equation for saturated flow in a heterogeneous medium.
They also evaluated the constitutive relationship in a nonlinear diffusion
equation for unsaturated flow in a homogeneous medium. They trained
a DNN model that used physical knowledge from the partial differential
equations and data from ground-based observations. The proposed
hybrid model showed superior performance over the physics-based and
the standalone DNN models in evaluating the hydraulic conductivity by
as much as 50 %. He et al. (2021) employed a theory-guided CNN ar-
chitecture to model the contaminant transport in subsurface flow. The
addition of physical constraints to DL complemented the predictive
power and generalization of the CNN model alone. The results demon-
strate that the PGDL approach can capture the localized features, is
robust, and is less time-consuming.

Read et al. (2019) used the PGDL modeling framework to improve
the predictions of lake water temperature based on LSTM. They modi-
fied the LSTM model by adding a penalty term to the LSTM loss function
for violating the conservation of energy. The PGDL predictions showed a
0.5 °C lower root mean square error (RMSE) relative to a physics-based
model alone. The proposed model showed higher generalization capa-
bility and scalability (the model can be used for predictions in many
other lakes without compromising accuracy). Flood risk assessment
using runoff data from global hydrologic models (GHM) is a popular
concept in hydrology but is often inaccurate and needs further im-
provements. Yang et al. (2019) evaluated flood simulations from the
CaMa-flood model based on the inputs from GHMs and compared their
performance with the LSTM. They designed the LSTM network to
receive meteorological forcing inputs from the CaMa-flood model to
output daily streamflow. The proposed PGDL model demonstrated
excellent performance over the CaMa-flood model, especially capturing
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the amplitudes of peak flood discharge. The authors urged that inte-
grating physics-based models with DL can be a powerful tool for more
robust and confident flood risk assessments. Xie et al. (2021) adopted
PGDL to investigate the effects of extreme events and monotonic re-
lationships in the simulation of rainfall-runoff processes across CONUS.
They accommodate the effects of losses from the hydrological processes
in the optimization of the objective function of the LSTM DL model. In
addition, the synthetic outputs of the physical mechanisms were further
passed to LSTM, which improved the simulation of the flood peaks
during heavy storm events. The proposed approach achieved greater
physically consistent estimates (avoiding negative values and capturing
the flood peaks).

5.10. Applications related to explainable Artificial Intelligence (XAI)

In recent years, hydrologists have started using various interpreta-
tion algorithms to interpret the black-box nature of the DL models. Jiang
et al. (2022) investigated different flooding mechanisms from an LSTM
model trained on meteorological forcings, such as temperature, pre-
cipitation, and daily streamflow across CONUS. They used a model
agnostic interpretation method (expected gradient; Erion et al., 2021) to
reveal three dominant flooding patterns: snowmelt induced, recent
rainfall induced flooding, and historical rainfall induced flooding. They
used another model-specific interpretation method (additive decompo-
sition; Du et al., 2019) to understand the internal hidden layers’ output
from various gates of the LSTM model. Althoff et al. (2021) combined
ML and conceptual hydrologic models to create hybrid models to
improve the streamflow predictions across three gauging stations within
the Brazilian Cerrado biome. They used XAI techniques to reveal how
the data-driven component of the hybrid model handles the runoff
routing. They demonstrated the superior performance of the hybrid
model over the conceptual hydrologic model and XAI untangled soil-
moisture as the dominant factor for predicting streamflow, which
agrees with the previous studies. Dikshit and Pradhan (2021) investi-
gated the relative contribution of various climate indices and meteoro-
logical variables in drought prediction across different drought
conditions and drought events using various Shapely additive explana-
tions (SHAP; Lundberg and Lee, 2017) models. They reported that their
LSTM model achieved good accuracy, and the SHAP models could
correctly interpret the various drought mechanisms. Wang et al. (2022)
used several ML and DL models to predict the NH4 + -N concentration in
the Xiaoqing estuary, China. They used shapely additive explanation
methods to interpret the DL model outputs and to understand the role of
upstream of the river in the estuary. The XAl methods revealed that two
stations monitoring water quality in the upper reaches of the river are
mainly responsible for the water quality in the estuary. The authors
asserted that the SHAP methods are conducive to understanding the
direction and magnitude of the influence of input covariates on the es-
tuary water quality.

6. Challenges and opportunities of DL applications in hydrology
and water resources

DL has led to unprecedented success in computer vision in natural
language processing (NLP), image classification, speech recognition,
and language translation. However, implementing DL methods in water
resources disciplines has been an emerging topic over the past few years.
This section highlights challenges and opportunities for DL applications
in water resources disciplines.

e Multi-source, Multiscale, and High-dimensional Data

Data sets used in hydrology and water resources are collected from
various sources (e.g., observed, reanalysis, climate models, sensors),
often inconsistent in spatiotemporal resolutions. Hydrologic modeling
and robust quantification of spatiotemporal extreme events (e.g.,
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droughts and floods) require a high-dimensional learning environment
to capture the nonlinear interaction between multiple climate and
catchment processes that evolve at different spatial and temporal scales
(Konapala and Mishra, 2020). Multi-source and multiscale high-
dimensional input data can make the learning task (e.g., computa-
tional and statistical learning) more difficult in a complex learning
environment. DL models have the potential to advance water resources-
related research by capturing the interaction between different hydro-
climatic processes within high-dimensional learning and complex
environments.

e Poor Data Quality and Lack of Labeled Dataset

Data mining and acquisition is a foremost challenge in applying DL/
ML models to perform a hydrological modeling task. In computer vision
exercises such as Natural Language Processing, the availability of a large
volume of the labeled dataset makes the supervised learning task easier.
However, hydrology-related research often suffers from a lack of labeled
data sets. With little labeled data, a supervised learning task may lead to
erroneous results as it may not decode enough feature maps (patterns)
from the data. Besides the quantity of labeled data, the quality is much
more crucial (Kusiak, 2017), as the poor quality of labeled data incurs
noisy datasets and missing values, which can substantially affect the
accuracy of the model. Therefore, an important practice is to maintain
both quality and quantity of labeled dataset before performing a hy-
drological task. Additionally, in situations with limited labeled data or
poor data quality, it is recommended to use unsupervised models (e.g.,
autoencoders).

e Model Interpretability

The black-box perception of the DL models is one of the major crit-
icisms. Which means generating the final outputs (target) without a
proper understanding of processes, interactions, and feedback between
variables associated with the outputs. The black-box models are chal-
lenging to interpret, and the degree of interpretability depends on the
level of model complexities. Therefore, the way forward is to design
inherently interpretable DL models by appropriately explaining the
features involved in model development (Rudin, 2019). For example,
interpreting the DL model outputs with respect to the weights associated
with neurons, identifying the set of important weights, and quantifying
the role of inputs based on their corresponding weights. The DL models
also do not explain the cause-effect relationships among hydrological
variables in hydrological processes. One of the key limitations of
decoding the connection between inputs and weights is primarily asso-
ciated with the compressed information carried by the neurons after
applying nonlinear activation functions. DL model interpretability is
likely to be an important area of research in the future, and appropriate
metrics should be developed to optimize the models based on high ac-
curacy versus high interpretability or to optimize both of them.

o Integrating Data-driven DL models with Physics-based models

Although DL models have demonstrated significantly high accuracy
in recent years, they often lack interpretability and produce physically
inconsistent estimates. DL models are known for deriving data-definitive
solutions for a task without truly understanding the underlying physical
mechanisms, cause-effect relationships, and interconnected systems/
processes. Reichstein et al. (2019) proposed using PGDL approaches that
integrate domain knowledge from physics-based models with DL models
to produce physically consistent predictions to address this issue. PGDL
approaches have gained considerable attention in hydrology and water
resources applications due to their ability to improve accuracy, better
generalization, and work well with limited training data.

e Addressing Nonstationarity and Uncertainties
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Hydrological processes evolve with space and time; in other words,
they are often not stationary. Nonstationarity refers to changes in sta-
tistical measures (e.g., mean and variance) of hydrological variables/
phenomena over time (Chandra et al., 2015; Cheng et al., 2014; Rubin
et al., 1995). The state-of-the-art DL models may not capture the effects
of nonstationarity since they presume the training and testing data
distributions are identical. Modeling nonstationary phenomena requires
novel DL architectures dealing with statistically time-varying parame-
ters. One approach to model them can be the PGDL approach, where the
time-varying trend components can constrain neural network training.

Modeling uncertainty is an inherent challenge in hydrologic phe-
nomena or processes. These uncertainties arise either due to the
parametrization of the hydrological model or related to the data (e.g.,
due to the use of land surface models or general circulation models).
While advanced DL architectures such as Bayesian Deep Learning have
been applied to model uncertainties in other disciplines (Abdar et al.,
2021; Kendall and Gal, 2017; Wang and Kadioglu, 2021), there is a
scope to implement such concepts for hydrology and water resources
disciplines.

o Internet of Things (IoT) and Web-based Data Analytics Framework for
Real-time Applications

One of the significant challenges in hydrology and water resources
management is the need for real-time monitoring and decision-making.
Traditional data analysis and modeling methods may not be able to keep
up with the high volume and velocity of data generated in real-time,
making it difficult to extract insights and make informed decisions
quickly. With the advancement in graphical processing units (GPU),
there is ample scope for using web systems for large-scale data pro-
cessing, analysis, and visualization for real-time hydrological applica-
tions. The pre-trained benchmark networks can be created using massive
datasets and tested based on various stakeholder applications in a
transfer learning framework.

The Internet of Things (IoT) is an emerging technology that can be
leveraged in hydrological and water resources applications. With IoT, it
is possible to deploy a large number of sensors to capture real-time data
and transmit it to a central location for analysis and decision-making
(Abdul Ghapar et al., 2018). By combining the power of IoT with web-
based data analytics frameworks, it is possible to build systems that
can handle the large volume of data generated by hydrological and
water resources systems. The IOT-enabled web-based framework also
enables collaboration and sharing of data and models, improving the
decision-making process’s accuracy and efficiency.

e High Computational Demand

DL models typically require a lot of computational resources,
including high-performance computing (HPC) systems and graphics
processing units (GPUs) for training and decision-making. As hydro-
logical datasets become huge and more complex, the computational
demands of DL models also increase. For example, analyzing the global
scale data at a fine resolution of 10 km can be a significant challenge in
terms of computational (time) demand as the number of grids will be
approximately 3600x1800 pixels. Supercomputing and advanced hard-
ware such as GPUs and TPUs can handle a massive number of operations
per cycle. Still, they may not provide the level of computational power
required for fine-resolution water resource applications (Reichstein
et al.,, 2019). However, recent advancements in cloud computing and
parallel processing techniques have made it easier to train and deploy
DL models on a larger scale.

Additionally, researchers have been developing more efficient DL
architectures and optimization algorithms to reduce the computational
demand while maintaining high accuracy (Thompson et al., 2022). The
use of transfer learning techniques can significantly reduce the training
time and computational cost without sacrificing performance. As DL
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models continue to improve and evolve, the computational demand will
likely become less of a barrier to their adoption in hydrology and water
resources research.

e Model Generalization and Transferability

DL models often face the challenge of transferability and general-
ization across different regions and climatic conditions. DL models
trained on data from one region may not perform well in another region
due to differences in hydrological processes, data characteristics, soil
properties, vegetation, and human influence. Consequently, developing
robust transfer learning and domain adaptation methods could signifi-
cantly enhance the ability of models to generalize across regions (Pan
and Yang, 2010). Transfer learning could allow models to discern pat-
terns from various climatic areas, potentially improving performance in
unseen or underrepresented regions. However, implementing these
techniques requires careful consideration of differences in feature space,
distribution, and even structural differences in hydrological processes
across regions. Therefore, significant research opportunities exist in
developing effective transfer learning methods for hydrological
modeling, universally applicable across diverse regions and conditions.

e Data Augmentation and Synthetic Data Generation

Methods such as data augmentation and synthetic data generation,
which have proven useful in other disciplines, are notably challenging to
implement in hydrology. For instance, creating new climate scenarios
based on existing simulations is a common practice, but its validity for
training DL models remains unclear. The use of DL models to generate
realistic synthetic data for augmenting training datasets could poten-
tially enhance model performance (Shorten and Khoshgoftaar, 2019).
However, creating synthetic data that accurately represents complex
hydrological processes raises many questions about the synthetic data’s
quality, physical validity, and potential impact on model training.
Additionally, it poses questions about the computational resources and
expertise needed for such data generation, potentially limiting its
implementation. Therefore, the development of effective and valid
techniques for data augmentation and synthetic data generation in hy-
drology presents both a significant challenge and an opportunity for
improving DL model performance.

7. Conclusions

DL models have the potential to handle and discover hidden patterns
in complex and high-dimensional data sets, which are valuable for hy-
drology and water resources disciplines. In this review, we highlighted
the recent developments in DL concepts, methodologies, and applica-
tions. The following conclusions can be drawn from this study:

(a) DL methods have gained momentum for predicting various hy-
drologic fluxes in the water cycle, hydroclimatic extreme events,
and extracting meaningful information for various water resource
applications. The state-of-the-art RNN architectures like LSTM,
variants of CNNs, and hybrid models based on the combination of
these models can provide superior configurations that can
outperform the traditional conceptual and statistical models.

DL methods can complement traditional physical (processes)
based models; for example, the Physics-Guided Deep Learning
(PGDL) modeling framework combines domain and processed-
based knowledge and DL concepts, a valuable tool for various
applications. Incorporating domain (expert) knowledge related to
the physical understanding of hydrological processes can reduce
the search space of model parameters, leading to more accurate
simulations, physically consistent predictions, and improved
generalization (Karpatne et al., 2017; Wang and Yu, 2022). By
incorporating physical constraints, PGDL offers physically

(b)
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consistent and robust solutions that outperform state-of-the-art
DL models in many applications.
It is essential to comprehend and retrace how the DL algorithm
came to a result or a decision. Therefore, it is crucial to under-
stand the DL models’ architecture better instead of trusting them
unquestioningly (i.e., referred to as a “black box*). The concept of
XAl allows the users to comprehend and gain confidence in the
results and output created by DL algorithms. XAl can be used as a
scientific knowledge discovery tool rather than just a data-fitting
tool. Using techniques like saliency maps, activation visualiza-
tion, and attribution methods, XAI aims to make DL models more
transparent and interpretable in dealing with complex hydro-
logical processes evolving over different landscapes.

(d) The applications of the Attention Model and the Transformer
Network models in hydrology are currently limited. These con-
cepts demonstrate significant advantages over traditional RNN/
LSTM and CNN models regarding computational efficiency and
accuracy. With the rapid growth in related fields and the avail-
ability of advanced computing tools like GPU/TPU, we expect
that hydrologists will increasingly adopt these innovative models
to tackle time-series related problems.

(e) DL methods can help deal with hydro-climatic non-stationary
time series that often witness ‘data bursts,” seasonality, structural
break, and heteroscedasticity, a key challenge in traditional sta-
tistical predictions. Therefore, new concepts and models must be
developed to adapt to the abrupt (unforeseen) changes in
hydroclimatic time series for decision-making. DL models offer
promising opportunities by integrating domain knowledge and
hidden patterns in underlying data sets.

(f) Real-time decision-making is critical in the context of climate
extremes for minimizing their risk in water resources related
sectors. Integrating DL with emerging technologies such as the
Internet of Things (IoT) can provide real-time data analytics and
decision-making capabilities for various applications by water
resources communities. DL models can be trained and deployed
in real-time web-based frameworks for applications such as flood
forecasting and water resource management using IoT devices to
collect and transmit data from various sources such as sensors
and satellites.

(c

—
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Glossary

AE: Autoencoder

AL Artificial Intelligence

ANN: Artificial Neural Network

CNN: Convolutional Neural Network
DAE: Denoising Autoencoder

DL: Deep Learning

FCNN: Fully Connected Neural Network
GAN: Generative Adversarial Network
GPU: Graphical Processing Unit

GRU: Gated Recurrent Unit

IOT: Internet of Things

LSTM: Long Short-Term Memory

ML: Machine Learning

MLP: Multi-Layer Perceptron

PCA: Principal Component Analysis
PGDL: Physics Guided Deep Learning
ResNet: Residual Neural Network

RF: Random Forest

RNN: Recurrent Neural Network
SOM: Self Organizing Maps

SVM: Support Vector Machines

TL: Transfer Learning

VAE: Variational Autoencoders

WRF: Weather Research Forecast
XAI: eXplanable Artificial Intelligence
XGBoost: Extreme Gradient Boosting
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