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Abstract 

 

Single-cell measurements routinely demonstrate high levels of variation between cells, but fewer 

studies provide insight into the analytical and biological sources of this variation. This is 

particularly true of chemical cytometry, in which individual cells are lysed and their contents 

separated, compared to more established single-cell measurements of the genome and 

transcriptome. To characterize population level variation and its sources, we analyzed oxidative 

stress levels in 1278 individual Dictyostelium discoideum cells as a function of exogenous stress 

level and cell cycle position. Cells were exposed to varying levels of oxidative stress via singlet 

oxygen generation using the photosensitizer Rose Bengal. Single-cell data reproduced the dose-

response observed in ensemble measurements by CE-LIF, superimposed with high levels of 

heterogeneity. Through experiments and data analysis, we explored possible biological sources 

of this heterogeneity. No trend was observed between population variation and oxidative stress 

level, but cell cycle position was a major contributor to heterogeneity in oxidative stress. Cells 

synchronized to the same stage of cell division were less heterogeneous than unsynchronized 

cells (RSD of 37-51% vs 93%), and mitotic cells had higher levels of reactive oxygen species 

than interphase cells. While past research has proposed changes in cell size during the cell cycle 

as a source of biological noise, the measurements presented here use an internal standard to 

normalize for effects of cell volume, suggesting that a more complex contribution of cell cycle in 

heterogeneity of oxidative stress. 
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Introduction 

 

Single-cell measurements are analytical challenging, but necessary to characterize biologically 

relevant cellular heterogeneity and noise [1, 2]. While some cellular heterogeneity is inevitable 

due to the stochastic nature of biochemical reactions, this intrinsic noise, along with extrinsic 

noise due to cell cycle and microenvironment, often plays an important role in the population-

level function of genetically identical cells [3]. For example, interaction between two stochastic 

expression events determines antibody class in individual B cells [4], and stochastic gene 

expression informs multiple points in differentiation during embryonic development [5]. Most of 

these investigations probe cellular heterogeneity at the level of the transcriptome or proteome; 

however, for transient stimuli and acute insults, enzymatic and metabolic responses may occur 

before changes in gene expression. Thus, direct measurements of enzyme activity, metabolism, 

and small molecules at the single-cell level are needed to fully understand the physiological role 

of biological noise, particularly in stress responses.  

 

While cells experience a variety of internal and exogenous stressors, oxidative stress is a 

ubiquitous source of stress for aerobic organisms. Aerobic cellular respiration is driven by 

oxidative phosphorylation, and leakage from the electron transport chain is a major source of 

reactive oxygen species in most cells. Additionally, environmental factors, such as ultraviolet 

light and chemical exposure, can act as additional sources of reactive oxygen species [6]. Despite 

reactive oxygen species being a source of stress, cells have evolved to make use of some species 

in cell signaling and in other functions, including immune response. For example, reactive 

oxygen species are deployed by macrophages to destroy foreign cells and are hypothesized to 

play an important role in microbial development [7]. To control reactive oxygen species levels, 

cells have evolved a variety of antioxidant mechanisms, including enzymes such as catalase and 

superoxide dismutase and small molecule antioxidants such as ascorbic acid, glutathione, 

tetrahydrobiopterin, and phenols [6, 8]. Production of these antioxidants requires metabolic input 

from the cell, and thus, levels may be expected to vary between cells, as has been observed for 

molecules involved in other stress response pathways [9]. Indeed, previous single-cell studies of 

reactive oxygen species have found high levels of heterogeneity, especially in stimulated cells 

exposed to stressors [10–13]. Interestingly, mitochondria have been identified as a major source 

of extrinsic noise in cells [14–16], suggesting that variation in oxidative stress levels may be an 

important contributor to non-genetic cellular heterogeneity. 

 

Evaluating the cell-to-cell heterogeneity of reactive oxygen species requires single-cell 

measurements of oxidative stress in statistically meaningful numbers of cells. Chemical 

cytometry, in which individual cells are lysed and their contents separated prior to detection, has 

been used previously to measure many analytes from single cells, including reactive oxygen 

species indicators [10, 12, 17, 18]. As this technique has matured, it has become possible to 

measure larger sample sizes. In this work, we present data from 1278 individual Dictyostelium 

discoideum cells. D. discoideum is a social amoeba that demonstrates profound non-genetic 

heterogeneity during its social life cycle and is remarkably resistant to reactive oxygen species 

[19], making it an interesting model for studies of cellular heterogeneity in oxidative stress 

response. To eliminate the effects of cell-to-cell variation in size and dye processing and thereby 

isolate variation in oxidative stress levels, we have used an established method of normalizing 

the signal for the reactive oxygen species indicator by taking its ratio with the signal for an 
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internal standard [10, 17, 18]. We then characterized the effects of exogenous reactive oxygen 

species from singlet oxygen and endogenous reactive oxygen species generated during mitosis 

on the population distribution of oxidative stress levels. The results address multiple sources of 

variation in chemical cytometry data, including exogenous stimuli and cell cycle position. 

 

Materials and Methods 

 

Cell culture and synchronization 

 

Dictyostelium discoideum K-AX3 (DBS0236487) was obtained from the Dictyostelium Stock 

Center and grown in a liquid culture of HL-5 media (14 g/L protease peptone No. 2, 7 g/L Yeast 

Extract, 1.5 g/L KH2PO4, 0.954 g/L Na2HPO4•H2O, pH 6.5) supplemented with 1.35% w/v 

glucose, 10 μg/mL antimycin, and 30 μg/mL streptomycin [20]. The cells were grown in an 

incubator shaker at 22 °C and 180 rpm and maintained at a density of 1×104 -5×106 cells/mL. 

Cells were synchronized by chilling as described previously [21, 22]. Briefly, cells were 

resuspended in fresh media at a density of 106 cells/mL and incubated with shaking at 9.5 °C for 

16 h. The flask was then briefly submerged and swirled in a room temperature water bath to 

rapidly warm the culture, then incubated with shaking at 22 °C for 1-8 h.  

 

For experiments, cells were resuspended in iron-free low fluorescence media (5 g/L casein 

peptone, 11 g/L glucose, 0.5 mM NH4Cl, 0.2 mM MgCl2, 10 μM CaCl2, 13 μM EDTA, 13 μM 

ZnSO4•H2O, 18 μM H3BO3, 2.6 μM MnCl2•4H2O, 0.7 μM CoCl2•6 H2O, 0.6 μM CuSO4•5H2O, 

81 nM (NH4)6Mo7O24•4 H2O, and 5 mM dibasic potassium phosphate, pH 6.5) [23], plus 5 mM 

probenecid to inhibit export of the anionic dyes [24]. Cells were loaded with 40 μM Rose Bengal 

as a photosensitizer, 250 μM carboxyfluorescein diacetate (CFDA) as an internal standard, and 

250 μM dihydrodichlorofluorescein diacetate (DCFH2DA) as a reactive oxygen species 

indicator. After a 20-min, room temperature incubation, the cells were washed once in low 

fluorescence media with probenecid, and a 200 μL aliquot of cell suspension was transferred to a 

glass vial, 9.0 cm away from a 4.0 mW/cm2, 470 nm blue LED light source (ThorLabs) for an 

exposure time of 0-10 min. After blue light exposure, cells were washed again and resuspended 

in low fluorescence media with probenecid for analysis. 

 

Ensemble analysis by capillary electrophoresis 

 

For ensemble analysis, 20 million cells were lysed in 80 μL of 90% DMSO, 10% PBS lysis 

buffer to prevent further oxidation of the DCFH2DA indicator [25]. Samples were diluted 1:3 in 

distilled water and stored at 10 °C or lower until analysis. Capillary electrophoresis with 488 nm 

laser-induced fluorescence detection was performed in an uncoated capillary using a run buffer 

of 100 mM borate, 100 mM SDS, pH 7.7 and an electric field strength of 400 V/cm on a 

Beckman Coulter PA-800 Plus.  

 

Microfluidic chemical cytometry 

 

Hybrid PDMS-glass microchannels were prepared using standard soft lithography on SU-8 

masters as described previously [26]. Immediately after plasma bonding, each device was filled 

with small unilamellar vesicles composed of 1 mg/mL egg phosphatidylcholine (Avanti Polar 
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Lipids) in 10 mM Tris, 150 mM NaCl, pH 7.4 for spontaneous generation of a supported lipid 

bilayer coating [27]. Microchips were stored at 4 °C for at least 15 minutes and up to 2 weeks 

and were rinsed for 15 min with low fluorescence media with probenecid prior to use. 

 

For single-cell experiments, cells were resuspended at a density of 5 × 105 cells/mL and added to 

the cell inlet reservoir of the microchip. The microchip was secured on the stage of an inverted 

microscope (Olympus IX-73), and platinum wire electrodes connected to a high voltage power 

supply (LabSmith HVS488LC 3000D) were inserted in the electrophoresis channel inlet and 

outlet. Fluid content in the cell inlet and waste outlets were adjusted to produce hydrostatic flow 

at a linear flow rate of ~100 µm/s. The chip position was adjusted to place the focal point of a 

40× PlanFluor objective (0.55 NA) 5 mm from the intersection and in alignment with a single 

point confocal laser-induced fluorescence detection system. The LIF detector consisted of a 488 

nm laser (Coherent OBIS LS) operated at 2 mW, a FITC filter, a 500 µm pinhole, a 

photomultiplier tube (Hamamatsu NO: 34950002), a current-to-voltage converter (Hamamatsu 

C7319) and a hardware filter (Frequency Devices 900CT/9L8L) set to a corner frequency of 10 

Hz. The high voltage power supply and the LIF detection system were controlled through a 

custom LabVIEW program. A voltage difference of 1000 V was applied across the 

electrophoresis channel, and the PMT output was collected at a rate of 1000 Hz. 

 

Single-cell electropherograms were analyzed in a custom MATLAB program used in previously 

published work [28, 29]. When necessary, Cutter 7 software was used to preprocess data to trim 

electropherograms before peak integration [30]. The datasets generated and analyzed during the 

current study are available from the corresponding author on reasonable request. 

 

Results and Discussion 

 

Ensemble Measurements 

 

For all experiments, cells were loaded with a reactive oxygen species indicator, DCFH2DA; an 

internal standard, CFDA; and a photosensitizer, Rose Bengal. After exposure to blue light to 

produce singlet oxygen, cells were lysed for analysis. While DCFH2DA is often considered a 

general reactive oxygen species indicator, it does not react with all species with equal sensitivity. 

Notably, it has poor sensitivity to superoxide and singlet oxygen [31]. However, singlet oxygen 

is a potent ROS that rapidly produces other ROS in cells, and many of these species react to 

produce fluorescent DCF. Ensemble measurements were conducted to identify the appropriate 

dose of singlet oxygen to induce oxidative stress in the cells without causing cell death. To 

conduct these experiments, it was necessary to identify a cell lysis buffer that would inhibit the 

oxidation of residual DCFH2 in cells by oxygen in the air. Based on previous work [25], we used 

a lysis buffer composed of 90% DMSO, 10% phosphate buffered saline and found stable DCF to 

CF ratios for repeated runs of the same samples (Fig. 1a inset), even after storage of the lysates at 

-80 °C for up to one week. 

 

Varying levels of oxidative stress were achieved by varying the exposure time of the cells to blue 

light. This method is preferred over variation of the concentration of Rose Bengal dye in the 

cells, which may result in different subcellular localization of the dye [32]. As expected, 

increasing blue light exposure increased the size of the DCF signal relative to that of the CF 
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internal standard (Fig. 1). For ensemble lysates of 20 million cells, the peak area of the CF peak 

showed no trend with blue light exposure time, while the peak area for DCF increased with 

exposure time (Fig. 1a). The result is a significant effect of blue light exposure time on DCF:CF 

ratio with R2 = 0.889 for a linear regression. Doses above 10 min of light exposure were not 

explored because data interpretation is complicated outside the linear range of the dose response 

curve due to more complex effects from bleaching or changes in localization of the Rose Bengal 

[32]. Although the R2 value increased with the addition of the 5 min and 10 min data points, 

these data appear to fall below the linear trend for 0-2 min, suggesting that these light doses may 

be approaching or reaching the end of the linear range. 

 

Importantly, cell viability was maintained even at the highest dose of 10 min of light exposure. 

For the exposure times used here, light doses ranged from 240 to 2400 mJ/cm2. The upper end of 

this range has induced ~50% cell death after 6.5 h in cultured neurons [33], and it is below 

exposures used in bactericidal photodynamic therapy (5 J/cm2) [34]. Trypan blue staining 

suggested that D. discoideum cell viability ranged from 98% at 0 min light exposure to 94% at 

10 min exposure immediately following treatment. Control experiments demonstrated that blue 

light alone led to some increase in DCF fluorescence in cells that were not loaded with Rose 

Bengal (Fig. 1b), likely due to the known auto-oxidation of DCFH2 when exposed to light [35, 

36]. However, this auto-oxidation was consistently lower than the DCF signal when cells were 

loaded with Rose Bengal, as generation of singlet oxygen led to additional DCF fluorescence due 

to production of synchygen species [36]. 

 

 
Fig. 1 (a) Representative electropherograms for ensemble lysates of cells loaded with Rose 

Bengal and lysed after 0, 2, or 10 min of blue light exposure. Inset shows DCF:CF ratio for 

replicate samples run up to 110 min after cell lysis. (b) DCF:CF ratio for ensemble lysates of 

cells exposed to varying doses of blue light. Error bars are the standard deviation of six 

biological replicates on different days. 

 

Single-Cell Measurements 

 

Having identified appropriate levels of oxidative stress, we proceeded to microfluidic 

experiments to characterize the cell-to-cell variation in oxidative stress for a given dose. As in 

previous work [17], cells were loaded with the dyes and exposed to stimuli off-chip, moved by 
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pressure-driven flow to an intersection with the electrophoresis channel, and lysed in the electric 

field. Cell contents were separated and detected by laser-induced fluorescence 5 mm downstream 

from the intersection of the cell channel and the electrophoresis channel (Fig. 2a). The migration 

order of the two dyes was reversed in the microchip separations relative to the capillary 

separations. This occurred because the microchips are coated with a zwitterionic supported lipid 

bilayer to reduce cell adhesion [37], resulting in suppressed electroosmotic flow. As a result, the 

microchip separations were run with reverse polarity, and the more negatively charged CF had 

higher mobility than the singly charged DCF (Fig. 2a inset). 

 

Individual cells showed substantial variation in both DCF and CF peak signals even for cells 

exposed to the same duration of blue light exposure (Fig. 2). In some cases, variation in DCF and 

CF peak areas were correlated, producing low or high peak areas for both dyes (see, e.g., traces 

(i) and (iii) in Fig. 2a and Fig. 2b). These data demonstrate that although cells exhibited highly 

variable levels of DCF fluorescence, a large proportion of this variation was due to factors that 

affected both DCF and the internal standard CF and therefore did not reflect variation in 

oxidative stress. Variation in cell size, esterase activity, or dye uptake and retention are expected 

to produce correlated DCF and CF peak areas. In other cases, DCF and CF signals were 

uncorrelated (trace (iii) in Fig. 2a and Fig. 2b), as when DCF signal – representing oxidative 

stress – was higher or lower than was typical for the population.  

 

For some treatment groups, data was collected from multiple devices on up to four different days 

and pooled to obtain data for >100 cells per exposure time. We checked for interday variation 

using ANOVA and found p-values ranging from 0.11 to 0.77 for the five exposure times. While 

these p-values do not indicate a significant effect of day, they are small enough that further 

investigation of day-to-day variation may be warranted. Because the microfluidic devices used 

for single-cell analysis were disposable, they could contribute to interday variation. We checked 

for variation between microfluidic devices by comparing n = 53 cells measured on one device 

and n = 52 cells measured on a second device on the same day using the same batch of cells. We 

found no significant difference between the two groups (p = 0.61) and that variance within each 

group was much larger than the variance between groups, suggesting that chip-to-chip variation 

is a small contributor to interday variation. While the internal standard should correct for many 

other sources of interday variation, other factors remain to be explored, including variation 

between cell batches. For example, differences in cell density, which may affect metabolic 

activity and therefore ROS, or in the level of room light exposure during sample preparation may 

result in different DCF signals from day-to-day. Tighter control of these variables, or high-

throughput data collection on a single day, should be considered to minimize effects of day. 
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Fig. 2 (a) Microfluidic device used for chemical cytometry in these experiments. (inset) 

Representative electropherograms for individual cells loaded with Rose Bengal and exposed to 

blue light for 5 min. (b) Raw peak area data for individual cells loaded with Rose Bengal and 

exposed to blue light for 5 min. Each point represents a single cell (n  = 118). 

 

To extract information about variation in oxidative stress, DCF and CF peak area ratios were 

calculated (Fig. 3). Compared to the ensemble data (Fig. 1b), DCF:CF ratios were much higher 

for the single-cell data. This was due to the difference in pH between the electrophoresis buffers 

used in the capillary and microchip systems. Single-cell separations were conducted in low 

fluorescence growth medium, maintained at D. discoideum’s preferred pH of 6.5, because the 

microchip design does not permit separate cell and separation buffers. The same buffer could not 

be used for capillary separations due to its high conductivity. Capillary separations were 

performed in a lower conductivity buffer at a higher pH of 7.7. While DCF fluorescence was 

relatively invariant across this pH range, CF fluorescence was significantly decreased at the 

lower pH due to increased protonation as pH approaches the pKa of 6.5 (Fig. 3b). This resulted in 

much higher DCF:CF ratios in the single-cell data relative to the ensemble data; however, the 

relative change in ratio with blue light dose agreed well between ensemble and single cell data 

(Fig. S1). DCF:CF ratios were also somewhat higher for cells unexposed to blue light than for 

comparable control cells in our previous work [17], with a median value of 8 instead of 1.6. This 

difference could be due to several factors, including differing batches of indicator dye stocks or 

low-level singlet oxygen production from room light in Rose Bengal loaded cells. 
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Fig. 3 (a) DCF:CF ratio for single cells exposed to 0 min (n  = 162), 1 min (n  = 103), 2 min (n  = 

210), 5 min (n  = 118), or 10 min (n  = 171) of blue light. Box represents 25th to 75th percentile; 

whiskers are 5th to 95th percentiles; and line marks the median. Circles show individual cells 

overlaid with a normal distribution. (b) Fluorescence emission spectra of 100 nM DCF and CF in 

the microchip (pH 6.5) and capillary electrophoresis (pH 7.7) buffers respectively. Excitation 

wavelength was 495 nm. 

 

The DCF:CF ratios of individual cells were also noticeably non-normal in distribution. Rather, 

we found that these data were log-normally distributed and thus present them on a log scale in 

Fig. 3a. The log distribution was not an artifact of the ratiometric nature of the measurement, as 

the individual peak areas of the two dyes were also log-normally distributed (Fig. 2b). This 

population distribution has been observed previously for similar measurements of the nitric oxide 

indicator DAF-FM-T ratioed to CF [18]. Log-normal distributions occur regularly in nature [38], 

and a recent publication proposed that first-order kinetics combined with stochasticity could give 

rise to many naturally occurring log-normal distributions [39]. These experiments use a high 

loading concentration of DCFH2DA indicator to prevent saturation of the system [17], thus the 

reaction may be approximated by first order kinetics with respective to reactive oxygen species. 

Additionally, a level of stochasticity is expected in single-cell measurements due to intrinsic 

biological noise [1]. Interestingly, population distributions in our past work using hydrogen 

peroxide to induce oxidative stress appeared normally distributed [17]. This may have been due 

to the lower stress levels induced in these cells where lower variance was observed, as log-

normal distributions appear less skewed as the variance decreases. However, further exploration 

is needed of the factors affecting whether log-normality applies to single-cell data and may prove 

informative in determining the mechanisms of cellular heterogeneity. 

 

Effect of Exogenous Oxidative Stress 

 

As in the ensemble measurements (Fig. 1b), oxidative stress was induced by varying the 

exposure of Rose Bengal-loaded cells to blue light, and DCF:CF ratio increased with exposure 



10 

 

time. However, this trend in the single-cell data was less obvious due to the log-scale and was 

superimposed with high levels of cell-to-cell heterogeneity (Fig. 3a). On linearly scaled axes, the 

magnitude of change in DCF:CF ratio with blue light exposure is comparable for both ensemble 

and single-cell measurements (Fig. S1). As expected from the ensemble data, blue light exposure 

had a statistically significant effect on DCF:CF ratio (ANOVA, p << 0.001). However, pairwise 

comparisons of doses did not show a significant difference in DCF:CF ratio for cells exposed to 

blue light for 1 min exposure compared to 2 min (p = 0.065) or 10 min (p = 0.098). This 

observation may be due to the surprisingly narrow distribution of cells for the 1 min dose, 

combined with the relatively small increase in light exposure from 1 min to 2 min. 

 

In contrast to our previous work [17], we did not observe a clear trend in population variation 

with oxidative stress level. If cells have underlying heterogeneity in antioxidant levels, one 

would predict that variance would increase with oxidative stress, as the population distribution 

widens as cells with low antioxidant levels shift to high DCF:CF ratios, while ratios for cells 

with high oxidant levels remain relatively unperturbed. While we found that the cells exposed to 

blue light for 1 min had the lowest variance and cell exposed for 10 min had the highest 

variance, the unexposed (0 min) population had high variance as well, and no strong trend was 

observed between light exposure dose and variance. However, while the high end of the DCF:CF 

ratio distributions moved to higher values as light exposure increased, the low ends of the 

distributions were less regular, and even at very high blue light exposures, some outlying cells 

maintained DCF:CF ratios well below the median for unexposed cells. This effect was 

particularly pronounced for the population of cells exposed to blue light for 10 min (Fig. 3a) and 

suggests the presence of small numbers of cells within the population with high levels of 

antioxidants that are more prepared than typical cells to absorb oxidative insults. Even as log-

scaled data, the 10 min distribution is poorly fit by a normal distribution due to the long tail to 

low DCF:CF ratios. Interestingly, past research has shown that moderate variation between cells 

in the response threshold of a dose response curve can produce broad and tailing distributions at 

intermediate doses [40]. This effect may explain the more complex relationship between blue 

light exposure and population variance observed here. However, further study is needed, 

particularly because the ensemble data for the 10 min light exposure appeared to reach or exceed 

the end of the linear range (Fig. 1b).  

 

Effect of Cell Cycle 

 

As noted above, we did not observe the specific statistical characteristics of intrinsic biological 

noise, such as increasing variance with increasing mean values, in these data. However, the data 

showed a high degree of variability between cells, and past research has shown that extrinsic 

noise must sometimes be reduced to reveal intrinsic variation [9]. Thus, we turned our attention 

to sources of extrinsic biological noise, which is linked to identifiable factors, such as cell cycle 

and microenvironment [1]. To better understand the extrinsic factors that contribute to variance 

in oxidative stress, we undertook a study of the role of cell cycle, which has been previously 

identified as a major contributor to biological noise [41, 42]. To do this, we performed single-cell 

measurements on samples from synchronized cultures. 

 

D. discoideum cell division ceases when cells are chilled to 9.5 °C, and warming the cells to their 

normal growth temperature of 22 °C induces partially synchronous cell division [21, 43], such 
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that cell density doubles between 2-5 h after warming (Fig. 4a). We removed cell samples 2 h 

and 5.5 h after warming the cultures. Cell preparation for the experiment requires ~1 h, so these 

time points roughly correspond to mitosis and interphase, respectively, although past work has 

shown that this method does not fully synchronized the culture [43]. Compared to 

unsynchronized cells, synchronized cells showed similar levels of internal standard CF, but 

differing levels of DCF (Fig. 4b). Mitotic (2 h) cells showed higher peak areas than average 

unsynchronized cells, while cells in interphase (5.5 h) showed lower DCF peak areas. As a 

result, DCF:CF ratios were higher for mitotic cells than for cells in interphase (Fig. 4c). This 

observation matches with past research showing that cells experience higher levels of oxidative 

stress, as measured by DCF fluorescence, during cell division [44, 45]. Additionally, cell 

division machinery has been shown to regulate both oxidative phosphorylation and 

mitochondrial biogenesis [46]. 

 

 
Fig. 4 (a) Normalized cell densities as a function of time after warming chilled cells up to growth 

temperature. Error bars are the standard deviations of three biological replicates. (b) Raw peak 

area data for individual cells loaded with Rose Bengal and exposed to blue light for 0 min for 

both unsynchronized cells and synchronized cells 2 h (red) and 5.5 h (blue) after warming. Each 

point represents a single cell (n  = 162 for unsynchronized cells, 123 cells for 2 h and 130 for 5.5 

h). (c) DCF: CF ratio for unsynchronized cells and synchronized cells 2 h or 5.5 h after warming 

exposed to 0 min or 5 min of blue light. Box represents 25th to 75th percentile; whiskers are 5th to 

95th percentiles; and line marks the median. Circles show individual cells overlaid with a normal 

distribution. Data for unsynchronized cells are repeated from Fig. 3 for comparison (n = 162 for 

0 min and 118 for 5 min). Data for synchronized cells includes n  = 123, 130, and 131, 

respectively for 2 h, 0 min; 5.5 h, 0 min; and 5.5h, 5 min. 

 

The distributions of DCF:CF ratios for the synchronized cells overlapped with distribution for 

unsynchronized cells but were significantly narrower (F-test p-values < 10-3). The relative 
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standard deviations of the log (DCF/CF) values were 37% and 51% for the 2 h and 5.5 h 

synchronized samples, respectively, compared to 91% for the unsynchronized cells. The 

narrowing of these distributions suggests that cell cycle is a significant contributor to extrinsic 

biological noise in oxidative stress. Some past research on the role of cell cycle in biological 

noise has attributed variation to the effects of cell volume [47, 48]; however, the data presented 

here should minimize the effect of cell volume since larger cells will uptake proportionately 

more CF internal standard. Interestingly, like cell cycle position, mitochondria have also been 

identified as a major contributor to non-genetic heterogeneity in the form of extrinsic biological 

noise [14–16]. Preliminary experiments in our lab using Rhodamine 123 to stain cells for 

mitochondrial membrane potential suggest that mitochondrial activity is higher in the 2 h cell 

samples than in the 5.5 h cell samples (data not shown). Thus, while the data in Fig. 4c 

demonstrate that cell cycle position is a key contributor to biological noise in oxidative stress 

response, its effect may be mediated by mitochondrial activity.  

 

We also investigated whether the population distributions for the cells sampled at 2 h and 5.5 h 

were unimodal. D. discoideum lacks a G1 stage, so its cell cycle consists of mitosis (M), 

synthesis (S), and the G2 stage of cell growth. The G2 phase comprises 6.5-7 h of the 8 h cell 

cycle when cells are grown in axenic media [49]. Consequently, we expected that synchronized 

cells sampled at 5.5 h would be exclusively G2 cells. In contrast, mitosis occurs in under 30 min 

in D. discoideum, and cell staining and data collection in these experiments lasted more than 1 h. 

Additionally, a previous study using the same synchronization method found that gene 

expression for S phase and DNA synthesis began immediately after warming, but DNA synthesis 

peaked 3 h later and genes expressed exclusively at the M/G2 transition were enriched less than 

three-fold, suggesting incomplete synchronization [43]. Despite this limitation, we chose to use 

this method to avoid metabolic artifacts of chemical methods of cell cycle synchronization, 

which may affect reactive oxygen species levels in cells [50]. Thus, while the 2 h synchronized 

cell samples were enriched in mitotic cells, they are expected to also contain cells at other stages 

of the cell cycle. Replotting the data from Fig. 4c as histograms suggested that the distribution 

for the 2 h cells, in contrast to the unsynchronized or 5.5 h cells, may be multimodal (Fig. S2). 

We performed Hartigan’s dip test for unimodality [51] for all three samples. The unsynchronized 

and 5.5 h data were clearly unimodal (p = 0.990 for each), but the result was inconclusive for the 

2 h sample (p = 0.233). We also estimated the number of mitotic cells in the unsynchronized 

population using the data for the 2 h and 5.5 h cells (Supplemental Information), but these results 

suggested that >40% of cells were mitotic, showing poor agreement with past work on the 

relative duration of these stages. This discrepancy suggests that sampling at 2 h and 5.5 h after 

warming the cells did not fully capture the range of oxidative stress levels present in the 

unsynchronized samples. Past research has shown that ROS levels increase steadily during the 

cell cycle, rather than changing sharply with stage [44]. Our 5.5 h sample sampled cells early in 

G2 (Fig. 4a) and therefore likely underestimates the ROS level in all interphase cells and thus 

their contribution to the unsynchronized population. 

 

Characterization and control of oxidative stress in cells at various cell cycle points is important 

to elucidate the role of reactive oxygen species in cell division. Past research has shown that 

oxidation of biomolecules increases during mitosis, and antioxidant treatment can arrest the cell 

cycle, leading to the hypothesis that biomolecule oxidation acts as an internal cellular marker of 

progress through mitosis [44, 45]. The ability to control the redox state of the cell independent of 
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cell cycle may be of interest in further exploring this hypothesis. In addition to studying 

unstressed, synchronized cells, we also exposed a population of synchronized interphase cells to 

blue light to induce higher levels of oxidative stress. As in the unstressed populations, the 

interphase cells exposed to blue light showed lower oxidative stress and less heterogeneity than 

unsynchronized cells treated with the same blue light exposure (Fig. 4c). In the interphase cells, a 

5 min exposure to blue light induced oxidative stress comparable to that of untreated 2 h samples 

(p = 0.083), providing a preliminary estimate of the relative scale of exogenous stimulus needed 

to mimic endogenous oxidative stress during mitosis.  

 

Conclusions 

 

Chemical cytometry experiments have helped to establish that the contents of cells are highly 

heterogeneous, but this technique has been applied less frequently to investigate the sources of 

that heterogeneity. This work demonstrates how targeted single-cell analysis of oxidative stress 

can generate information about population distributions that inform biological hypotheses about 

non-genetic heterogeneity. Future work should focus on deeper mathematical characterization of 

these population distributions and on mapping them onto molecular mechanisms of 

heterogeneity. Additionally, further investigation into the magnitude and sources of non-

biological variation is needed, including characterizing levels of instrumental noise using 

standards that account for variation in lysis and further evaluation of interday variation. Even as 

throughput improves, interday variation will remain important for longitudinal studies of how 

population distributions change over the course of long-term stimuli rather than acute stress. 
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