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Abstract
Let � be a finite group acting on a simple Lie algebra g and acting on a s-pointed projective
curve (�, �p = {p1, . . . , ps}) faithfully (for s ≥ 1). Also, let an integrable highest weight
module Hc(λi ) of an appropriate twisted affine Lie algebra determined by the ramification
at pi with a fixed central charge c is attached to each pi . We prove that the space of twisted
conformal blocks attached to this data is isomorphic to the space associated to a quotient
group of� acting on g by diagram automorphisms and acting on a quotient of�. Under some
mild conditions on ramification types, we prove that calculating the dimension of twisted
conformal blocks can be reduced to the situationwhen� acts on g by diagram automorphisms
and covers of P

1 with 3 marked points. Assuming a twisted analogue of Teleman’s vanishing
theorem of Lie algebra homology, we derive an analogue of the Kac–Walton formula and
the Verlinde formula for general �-curves (with mild restrictions on ramification types). In
particular, if the Lie algebra g is not of type D4, there are no restrictions on ramification
types.
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1 Introduction

Wess–Zumino–Witten model is a type of two dimensional conformal field theory, which
associates to an algebraic curve with marked points and integrable highest weight modules
of an affine Kac–Moody Lie algebra attached to the points, a finite dimensional vector
space consisting of conformal blocks. The space of conformal blocks has many important
properties including Propagation of Vacua and Factorization. It is also known that the sheaf of
conformal blocks on the Deligne–Mumford stack of stable pointed curves is locally free. The
mathematical theory of WZW model was first established by Tsuchiya–Ueno–Yamada [27]
where all these properties were obtained. All the above properties are important ingredients
in the proof of the celebrated Verlinde formula for the dimension of the space of conformal
blocks (cf. [1, 9, 22, 23, 28]).

One can replace algebraic curves by �-covers of curves for some finite group �, and let �
act on a simple Lie algebra g. Then, the theory of twisted conformal blocks can be similarly
developed. It is related to the two dimensional orbifold conformal field theory in the literature
[2],whereBirke–Fuchs–Schweigert initiated this theory from theperspective ofmathematical
physics and conjectured an analogous Verlinde formula for twisted conformal blocks in
certain cases. In [13], the authors obtained similar results as in [27] for �-curves, including
the properties of Propagation of Vacua and Factorization (under a technical assumption that
� stabilizes a Borel subalgebra of g; which is automatically satisfied if � is cyclic), and we
constructed a flat projective connection on the sheaf of twisted covacua on the Hurwitz stack
of pointed smooth �-curves and we also proved the local freeness of the sheaf of twisted
covacua on theHurwitz stack of stable pointed�-curves. Earlier, similar resultswere obtained
by Damiolini [6] under more restrictive conditions; in particular, where the marking points
are unramified.

This paper is a continuation of our previous work [13]. As our first main result of this
work, in Theorem 3.3, we prove that for any �-action on g, the dimension of the space of
twisted conformal blocks is the same as the dimension of twisted conformal blocks attached
to �̃ acting on g by diagram automorphisms and acting on a quotient curve �̃ of �, where �̃

is the quotient group of � by the subgroup of elements acting on g by inner automorphisms.
In particular, when � acts on g by inner automorphisms, the dimension of twisted conformal
blocks is, in fact, the same as the dimension of standard (nontwisted) conformal blocks on
the quotient curve, which can be computed by the usual Verlinde dimension formula, cf.
Corollary 3.4. Another application is given in Theorem 3.7, which asserts that if the quotient
group �̃ is cyclic, then the sheaf of twisted conformal blocks on the Hurwitz stack of stable
pointed �-curves is actually locally free of constant rank. Note that the sheaf of twisted
conformal blocks on the Hurwitz stack of stable pointed �-curves is proved to be locally
free in [13, Theorem 8.9]. However, this stack may not be connected in general, and hence
a priori it is unclear that the sheaf is of constant rank.

In Sect. 4, we assume the group � is cyclic. Under some restriction on ramification
type at marked points, in Theorem 4.7 we give a formula for the dimension of the twisted
conformal blocks in terms of the dimension of the twisted conformal blocks for covers of
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P
1 with 3 marked points together with the usual Verlinde numbers of higher genus. This is

achieved mainly by using the degeneration technique to create a node in � and then using
the Factorization Theorem, thereby reducing the problem to a lower genus base curve �̄

(cf. Lemma 4.2). Further, by using a similar degeneration technique and the Factorization
Theorem, we reduce the problem to a �-cover of P

1 with only two ramified points (cf.
Lemma 4.3).

In Sect. 5, we formulate a conjecture which is a twisted analogue of Teleman’s vanishing
theorem for the Lie algebra homology (cf. Conjecture 5.6). Some partial results on this con-
jecture appear in [14] by the authors. In Theorem 5.7, assuming the vanishing conjecture, we
prove an analogue of the Kac–Walton formula for the dimension of twisted conformal blocks
on covers of P

1 by a cyclic group � and � acting on g by ‘standard’ automorphisms (defined
in Sect. 5.1). The main ingredient in the proof of Theorem 5.7 is the generalized Bernstein–
Gelfand–Gelfand resolution for twisted affine Kac–Moody Lie algebras, cf. Proposition 5.4.

The first coauthor derived aVerlinde type formula for the trace of a diagram automorphism
and defined twisted fusion rings in [15, 16]. These results (more specifically Theorem 6.2)
and Kac–Walton formula Theorem 5.7 are two main ingredients in the proof of Theorem 6.5,
which asserts that assuming the homology vanishing Conjecture 5.6, there is a Verlinde type
formula for the dimension of twisted conformal blocks associated to covers of P

1 with 3
marked points and standard automorphisms of g. Earlier, we expected a relation between
the trace on conformal blocks of diagram automorphism of a simple Lie algebra and the
dimension of twisted conformal blocks for another related Lie algebra. Even though this
explicit relationship is not exactly achieved, however the way we deduce the dimension of
twisted conformal blocks associated to covers of P

1 with 3 marked points gives an indirect
explanation of their relation. In particular, the formula in Theorems 6.2 and 6.5 look fairly
similar.

We finally combine all the above results and Conjecture 5.6 to prove our second main
result of the paper: Theorem 6.9 determining the dimension of twisted conformal blocks in
a fairly general setting (under some mild restriction on the ramification type only in the case
of g = D4). Specifically, Reduction Theorem 3.3; degeneration results Lemmas 4.2 and 4.3
(resulting in Theorem 4.7); and Theorem 6.5 for covers of P

1 are the important ingredients
in the proof of Theorem 6.9.

Using themachinery of crossedmodular categories, under the assumption that� stabilizes
a Borel subalgebra of g as in [13], Deshpande–Mukhopadhyay [8] deduced a Verlinde type
formula for the dimension of twisted conformal blocks, which is expressed in terms of S-
matrices. The basic difference in their approach and ours is that we first of all reduce the
problem to the standard automorphisms of g and then we use the degeneration technique and
the analogue of Kac–Walton formula to arrive at our dimension formula. In our approach, in
contrast to [8] we do not need to assume that � stabilizes a Borel subalgebra, but we do need
to assume that the quotient group �̃ is cyclic.

2 Preliminaries

2.1 Kac–Moody theory

let g be a simple Lie algebra over C. Let σ be an automorphism of order m of g. Let K be

the field of Laurent series in the parameter t , such that σ(t) = ε−1t where ε = e
2π i
m and σ

acts on C trivially. Let O be the ring of formal power series in t . We now define a central
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extension L̂(g, σ ) := g(K)σ ⊕ CC of g(K)σ under the bracket

[x[P] + zC, x ′[P ′] + z′C] = [x, x ′][PP ′] + m−1 Rest=0
(
(dP)P ′)〈x, x ′〉C, (1)

for x[P], x ′[P ′] ∈ g(K)σ , z, z′ ∈ C; where Rest=0 denotes the coefficient of t−1dt and 〈, 〉
denotes the normalized invariant form on g so that the induced form on g∗ satisfies 〈θ, θ〉 = 2
for the highest root θ of g.

Throughout the paper, we fix a positive integer (called the level) c > 0. We also fix an
integer s > 0 denoting the number of marked points.

We use Dc,σ to denote the set of highest weights of gσ which parametrizes the integrable
highest weight modules of L̂(g, σ ) of level c, where the level denotes the action ofC , see [13,
Sect. 2]. When σ is trivial, we also use Dc to denote this set for brevity. For each λ ∈ Dc,σ ,
we will denote by (Hc(λ), ρλ) (or for simplicity Hc(λ)) the associated integrable highest
weight module of L̂(g, σ ) of level c.

There exists a ‘compatible’ Cartan subalgebra h and a ‘compatible’ Borel subalgebra
b ⊃ h of g both stable under the action of σ such that

σ = τεadh, (2)

where τ is a (possibly trivial) diagram automorphism of g of order r preserving h and b,
α(h) ∈ Z for any root α of g and εadh is the inner automorphism of g such that for any root
α of g, εadh acts on the root space gα by the multiplication εα(h), and εadh acts on h by the
identity. Here h is an element in hτ . In particular, τ and εadh commute. Moreover, r divides
m, α(h) ∈ Z

≥0 for any positive root α of gτ and θ0(h) ≤ m
r where θ0 ∈ (hτ )∗ denotes the

following weight of gτ :

θ0 =

⎧
⎪⎨

⎪⎩

highest root of g, if r = 1

highest short root of gτ , if r > 1 and (g, r) �= (A2n, 2)

2 · highest short root of gτ , if (g, r) = (A2n, 2).

Let L̂(g, τ ) denote the Lie algebra with the construction similar to L̂(g, σ ) where σ is
replaced by τ , m is replaced by r and ε is replaced by ε

m
r . There exists an isomorphism of

Lie algebras (cf. [19, Theorem 8.5]):

�σ : L̂(g, τ ) 
 L̂(g, σ ) (3)

given by C �→ C and x[t j ] �→ x[t mr j+k], for any x an ε
m
r j -eigenvector of τ , and x also a

k-eigenvector of ad h. Then, the isomorphism �σ induces a bijection

Dc,σ 
 Dc,τ , λ �→ λ̄. (4)

Remark 2.1 The explicit description of Dc,σ is given in [13, Lemma 2.1] in terms of {nλ,i | i ∈
Î (g, σ )} defined there. Also, λ̄ can be expressed in terms of numbers ai , a∨

i which can be
read from [19, pp. 54–55] via [19, Theorem 8.7]. For the convenience of readers, we would
like to point out that there is a typo in the formula for α∨

i in [19, Theorem 8.7]. The correct
expression is: α∨

i = 1 ⊗ Hi + ai si r
a∨
i m

K .

2.2 Twisted conformal blocks

Let φ : � → Aut(g) be a group homomorphism, where � is a finite group and Aut(g) is
the group of Lie algebra automorphisms of g. Let � be a reduced projective �-curve over
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C with only (simple) nodal singularity, such that no nontrivial element of � fixes point-wise
any irreducible component of �.Unless otherwise stated, by a �-curve we will always mean
such a �-curve. For any p ∈ �, let �p be the stabilizer subgroup of � at p. Then, �p is
cyclic if p is a smooth point of �. Let γp be the ramification type at p, i.e., γp is a generator

of �p such that it acts on the tangent space Tp� by the scalar multiplication e
2π i
|�p | .

Fix a tuple �p = (p1, p2, . . . , ps) of distinct smooth points in � such that any two distinct
points are not in the same �-orbit. Assume further that each irreducible component of �̄ :=
�/� contains at least one � · pi . Then, such a (�, �p) is called a s-pointed �-curve. For each
i , let γi be the ramification type at pi . Let ti be a γi -equivariant formal parameter at pi , i.e.,

γi ti = e
− 2π i

|�pi | ti . Let Kpi denote the field C((ti )) of Laurent series and let L̂(g, γi ) be the
associated twisted affine Lie algebra. In fact, it does not depend on the choice of equivariant
ti . We are also given a tuple �λ = (λ1, λ2, . . . , λs) of elements, where λi ∈ Dc,γi for each i .
Following [13, Sect. 3], we define the following space of covacua,

V�,�,φ( �p, �λ) := Hc(λ1) ⊗ · · · ⊗ Hc(λs)

g[�\� · �p]� · (Hc(λ1) ⊗ · · · ⊗ Hc(λs))
, (5)

where g[�\� · �p]� is the Lie algebra of �-equivariant regular maps from �\� · �p to g, and
the action of �\� · �p on Hc(λ1) ⊗ · · · ⊗ Hc(λk) is given by [13, Definition 3.5]. It was
proved in [13] that twisted conformal blocks share similar properties with usual conformal
blocks, including Propagation, Factorization, WZW connection, etc. Some of these results
are also proved in [6] under more restrictive assumptions.

3 Reduction from general actions to diagram automorphisms

3.1 A key lemma

Let G be a connected, simply-connected simple algebraic group over C, and let � be a finite
group acting on G. Let Gad denote the quotient of G by its center. Then, � acts on Gad

naturally. Let � be a smooth projective connected curve over C with a faithful action of �.
We regard Gad as the group of inner automorphisms of g, which is a normal subgroup of the
full automorphism group Aut(g). Hence, Aut(g) acts on Gad via conjugation. Let Out(g) be
the quotient group Aut(g)/Gad.

Lemma 3.1 Suppose that we are given two group homomorphisms φ,ψ : � → Aut(g) such
that φ · ψ−1 : � → Gad, γ �→ φ(γ )ψ(γ )−1. For any �-stable affine open subset �∗ in �,
if the action of � on �∗ is free, then there exists a regular map F : �∗ → Gad such that

F(γ · p) = φ(γ )F(p)ψ(γ )−1, ∀p ∈ �∗, γ ∈ �.

Note that φ(γ )F(p)ψ(γ )−1 is well-defined as an element of Gad, since φ(γ )ψ(γ )−1 ∈ Gad

for any γ ∈ �.

Proof Let Gφ be the following (parahoric) Bruhat–Tits group scheme over �̄∗, Gφ :=
π∗(�∗ × Gad)

� , where �̄∗ = �∗/�, π∗ denote the Weil restriction from �∗ to �̄∗, and the
upper subscript � denotes taking�-fixed point scheme under the actionφ of� via conjugation
on Gad (γ · g := φ(γ )gφ(γ )−1 for γ ∈ � and g ∈ Gad).

Recall that a (�,Gad, φ)-bundle on �∗ is a right principal Gad-bundle P on �∗ with a
left Gamma-action on P compatible with �-action on �∗ such that

γ (x · g) = γ (x) · Adφ(γ )(g), for any γ ∈ �, g ∈ Gad, x ∈ P.
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We now construct a (�,Gad, φ)-bundle structure Pψ on �∗ × Gad as follows:

• Gad-bundle: (p, x) · g = (p, x · g), for any p ∈ �∗ and g, x ∈ Gad;
• �-action: γ · (p, x) = (γ · p, ψ(γ )xφ(γ )−1), for any γ ∈ �.

The above bundle Pψ by taking φ instead of ψ is called the trivial (�,Gad, φ)-bundle
Po.

Since all the points in�∗ are unramified,π∗(Pψ)� is aGφ-bundle, cf. [7, Proposition 2.9].
Now, we are in position to apply Heinloth uniformization theorem (cf. [12, Theorem 1]),
which asserts that as Gφ-bundles,π∗(Pψ)� is isomorphic to Gφ . Applying the inverse functor
π∗(·) ×π∗(Gφ) (Gad)�∗ , we get an isomorphism of (�,Gad, φ)-bundles � : Pψ 
 P◦ (cf.
[7, Theorem 3.2]). From the construction of Pψ , we see that there exists a regular map
F : �∗ → Gad such that

�(p, x) = (p, F(p)x), for any p ∈ �∗ and x ∈ Gad.

By consideration of �-equivariance, one can easily deduce that F satisfies the desired
property:

F(γ · p) = φ(γ )F(p)ψ(γ )−1, for any γ ∈ � and p ∈ �∗.

��

3.2 Reduction theorem

We consider the following setup:
We are given a group homomorphismφ : � → Aut(g) and a projective irreducible smooth

s-pointed �-curve (�, �p). Let �∗ be the complement �\(∪� · pi ). Let �0 be the kernel of
the map P ◦φ : � → Out(g), where P : Aut(g) → Out(g) is the projection map and Out(g)
is the quotient group Aut(g)/Int(g) (Int(g) being the group of inner automorphisms of g).
Let �̃ be the quotient group �/�0 and let �̃ be the quotient curve �/�0. Let p̃i denote the
image of pi in �̃, and let �̃∗ denote the complement �̃\(�̃ · �̃p), where �̃p = { p̃1, . . . , p̃s}.
Then, (�̃, �̃p) is a s-pointed �̃-curve. Let φ̃ι be the composition of the following maps:

�̃ ↪→ Out(g)
ι−→ Aut(g),

where ι is a group homomorphism such that the elements in Out(g) act on g by diagram
automorphisms, which preserve a pair (b, h) and a pinning with respect to the pair (b, h),
where b is a fixed Borel subalgebra and h is a Cartan subalgebra contained in b. Let φι be
the composition

� → �̃
φ̃ι−→ Aut(g).

For each pi , choose a Borel subalgebra bi and a Cartan subalgebra hi contained in bi and
both preserved by φ(γi ) and satisfying the Eq. (2), where γi is the ramification type at pi .
Let τi be the diagram automorphism part of φ(γi ) with respect to this choice, i.e., the image
of γi under the analogue of φι with respect to the choice (bi , hi ) and a pinning with respect
to (bi , hi ).

Lemma 3.2 For any 1 ≤ i ≤ s, there exists an inner automorphism κi of g such that
κi (b) = bi , κi (h) = hi , and

τi = κi · φι(γi ) · κ−1
i . (6)
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Proof By an isomorphism theorem of semisimple Lie algebras (cf. [17, Sect. 14.2]), there
exists a unique automorphism κ ′

i ∈ Aut(g) sending the chosen pinning with respect to (b, h)

to the chosen pinning respect to (bi , hi ). Since the diagram automporphisms φι(γi ) and τi
induce the same action on the Dynkin diagram of g, we must have τi = κ ′

i · φι(γi ) · (κ ′
i )

−1.
Let D be the group of diagram automorphisms of g preserving (bi , hi ) and the given pinning
with respect to (bi , hi ). It is well-known that D 
 Out(g). Thus, there exists an element
u ∈ D such that κi := uκ ′

i is inner, κi (b) = bi and κi (h) = hi . Then, τi and κi · φι(γi ) · κ−1
i

are two elements in D. It follows that τi = κi ·φι(γi ) ·κ−1
i , since τi and φι(γi ) have the same

image in Out(g). ��
Given a tuple �λ = (λ1, . . . , λs) of dominant weights with λi ∈ Dc,γi , we get another

tuple �̄λ = (λ̄1, . . . , λ̄k) of dominant weights with λ̄i ∈ Dc,τi as described in (4). Via κi ,
we can identify Dc,τi with Dc,γ̃i , where γ̃i = φι(γi ). We denote by λ̃i the element in Dc,γ̃i
corresponding to λ̄i ∈ Dc.τi under the identification Dc,τi 
 Dc,γ̃i .

We attach the space of twisted covacua V�,�,φ( �p, �λ) to (�, �p) and φ : � → Aut(g).

Similarly, we can also attach the space V�̃,�̃,φ̃ι
( �̃p, �̃

λ) of twisted covacua to the s-pointed

�̃-curve (�̃, �̃p) and the group homomorphism φ̃ι : �̃ → Aut(g).

Theorem 3.3 Assume that�∗ := �\(� · �p) does not contain any ramified points in�. Then,
we have a natural isomorphism of vector spaces

V�,�,φ( �p, �λ) 
 V�̃,�̃,φ̃ι
( �̃p, �̃

λ).

Proof Let φι be the composition of the following maps:

�
φ−→ Aut(g)

P−→ Out(g)
ι−→ Aut(g),

where ι is as above.
By Lemma 3.1, there exists F : �∗ → Gad such that

F(γ · p) = φ(γ )F(p)φι(γ )−1, ∀p ∈ �∗, γ ∈ �. (7)

This gives rise to a Lie algebra homormophism �F : g[�̃∗]�̃ → g[�∗]� , given by

X �→ AdF (π∗X), for any X ∈ g[�̃∗]�̃,

where π∗X is the pull-back of the g-valued function X on �̃∗, and AdF is the point-wise
conjugation by F . One can check that�F is an isomorphism. In fact, we construct its inverse
map �F as follows. For any Y ∈ g[�∗]� , it is easy to verify that AdF−1(Y ) ∈ g[�∗]�,φι ,
where (·)�,φι denotes the �-invariants via the usual action of � on �∗ and the action on g

via φι. Then, AdF−1(Y ) descends to the desired element �F (Y ) ∈ g[�̃∗]�̃ .
Let Fi be the image of F in Gad(Kpi ). Define ÂdFi : L̂(g, γ̃i ) → L̂(g, γi ) as follows:

x[ f ] �→ AdFi (x[ f ]) + 1

|�pi |
Respi 〈F−1

i d Fi , x[ f ]〉Ci , and Ci �→ Ci ,

where AdFi is the point-wise adjoint action, 〈, 〉 is the normalized invariant form on g, and
Ci is the canonical central element. Moreover, F−1

i d Fi is the g-valued 1-form, which can
be defined via an embedding ρ : Gad → GL(V ). We regard K p̃i = C((t̃i )) the subfield of
Kpi = C((ti )), where t̃i = (ti )ei and ei is the ramification index of π : � → �̃ at pi . It
ÂdFi (x[ f ]) ∈ g(K p̃i ). It is routine to check that ÂdFi is a Lie algebra isomorphism.
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Let ⊕L̂(g, γ̃i ) denote the direct sum of twisted affine Lie algebras L̂(g, γ̃i ), and let
⊕L̂(g, γ̃i ) denote the quotient of ⊕L̂(g, γ̃i ) by the central elements Ci −C j with i �= j . Let
C denote the image of anyCi . Then,⊕L̂(g, γ̃i ) has the 1-dimensional centerC ·C . Similarly,
we define the Lie algebra ⊕L̂(g, γi ) with the canonical center C . Let ⊕ÂdFi : ⊕L̂(g, γ̃i ) →
⊕L̂(g, γi ) be the Lie algebra isomorphism induced from ⊕ÂdFi .

We now consider the following diagram:

g[�̃∗]�̃
Loc �̃p

�F

⊕L̂(g, γ̃i )

⊕ÂdFi

g[�∗]� Loc �p ⊕L̂(g, γi ),

(8)

where Loc �̃p(Y ) = ∑
i Y p̃i for anyY ∈ g[�̃∗]�̃ , and Loc �p is defined similarly. By (7), F−1dF

is (�, φι)-equivariant. It follows that the pairing 〈F−1dF, π∗Y 〉 is�-invariant 1-form on�∗.
Hence, for any q ∈ � · pi , the residue of 〈F−1dF, π∗Y 〉 at q is equal to the residue at pi .
Finally, the commutativity of the diagram (8) follows from the following identity for any
Y ∈ g[�̃∗]�̃ :

∑

i

1

|�pi |
Respi 〈F−1dF, π∗Y 〉 = 1

|�|
∑

q∈�· �p
Resq〈F−1dF, π∗Y 〉 = 0,

where the last equality follows from the Residue Theorem for 〈F−1dF, π∗Y 〉 on � (cf. [11,
Chap. III, Theorem 7.14.2]).

From the commutative diagram (8), we have the following natural isomorphism:

V�,�,φ( �p, �λ) 
 Hc(λ1) ⊗ · · · ⊗ Hc(λs)

g[�̃∗]�̃ · (Hc(λ1) ⊗ · · · ⊗ Hc(λs))
, (9)

where Hc(λi ) is regarded as a representation of L̂(g, γ̃i ) via the isomorphism ÂdFi .
Recall the isomorphism �γi : L̂(g, τi ) 
 L̂(g, γi ) from (3). It is an easy observation that

�γi = ÂdF ′
i
, where F ′

i = tadhii ∈ Gad(Kpi ), hi ∈ h
τi
i is determined by γi as in Sect. 2.1,

and ti is the uniformizer in Kpi . Moreover, by the Eq. (2), φ(γi ) = ε
adhi
i τi , where εi is an

ei -th primitive root of unity. Set gi = F ′
i · κi · F−1

i ∈ Gad(Kpi ), where κi ∈ Gad is as in
Lemma 3.2 thought of as an element of Gad(Kpi ). Then, gi ∈ Gad(Kpi )

�pi since

gi (γi ·) = F ′
i (γi ·) · κi · Fi (γi ·)−1

= tadhii (·)εadhii κiφι(γi )Fi (·)−1φ(γi )
−1

= tadhii (·)εadhii τiκi Fi (·)−1φ(γi )
−1

= tadhii (·)φ(γi )κi Fi (·)−1φ(γi )
−1

= φ(γi )t
adhi
i (·)κi Fi (·)−1φ(γi )

−1

= φ(γi )gi (·)φ(γi )
−1,

where the second equality follows from (7), the third equality follows from (6), and the fifth
equality holds since hi ∈ h

γi
i .
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By a twisted anologue of Faltings’ lemma (cf. [13, Proposition 10.2]), there exists an
intertwining operator

Igi : (Hc(λi ), ρλi ) 
 (Hc(λi ), ρλi ◦ Âdgi )

as isomorphisms of L̂(g, γi )-modules. This induces the following isomorphism of L̂(g, τi )-
modules

Ĩgi : (Hc(λi ), ρλi ◦ ÂdFi ) 
 (Hc(λi ), ρλi ◦ Âdgi ◦ ÂdFi )


 (Hc(λi ), ρλi ◦ ÂdF ′
i
◦ κi )


 (Hc(λ̄i ), ρλ̄i
◦ κi ), by equation(4)


 (Hc(λ̃i ), ρλ̃i
).

Therefore, the operator (obtained from the above isomorphism Ĩgi identifying L̂(g, γ̃i ) with
L̂(g, γi ) under ÂdFi as above):

⊗ Īgi : Hc(λ1) ⊗ · · · ⊗ Hc(λs) 
 Hc(λ̃1) ⊗ · · · ⊗ Hc(λ̃s)

descends to the following isomorphism

Hc(λ1) ⊗ · · · ⊗ Hc(λk)

g[�̃∗]�̃ · (Hc(λ1) ⊗ · · · ⊗ Hc(λs))

 V�̃,�̃,φ̃ι

( �̃p, �̃
λ). (10)

Combining the isomorphisms (9) and (10), we conclude the proof of this theorem. ��
As a corollary of Theorem 3.3, we get the following result.

Corollary 3.4 Let �, φ, g, �̃, (�, �p) be as in the beginning of this Sect. 3.2. Assume that
�̃ = (1). We further assume that � · �p contains all the ramified points. Then, for any
�λ = (λ1, . . . , λs) attached to �p = (p1, . . . , ps) with λi ∈ Dc,γi ,

dim V�,�,φ( �p, �λ) = Nḡ(λ̄1, . . . , λ̄s),

where ḡ is the genus of �̄ := �/�, λ̄i ∈ Dc is attached to λi as in Sect. 3.2 and
Nḡ(λ̄1, . . . , λ̄s) is the dimension of the untwisted conformal blocks attached to a genus
ḡ smooth irreducible curve and weights (λ̄1, . . . , λ̄s) attached to any distinct points.

For an explicit expression of Nḡ(λ̄1, . . . , λ̄s) see [22, Theorem 4.2.19] or Theorem 6.9.
In particular, the corollary applies for any non-simply laced g (i.e., if g is of type B�(� ≥

2),C�(� ≥ 2), F4 or G2).

3.3 An application

We first recall the definition of stable s-pointed �-curves from [13, Definition 8.1] (a variant
of [4, Definition 6.2.1]).

Definition 3.5 A s-pointed�-curve (�, �p) (cf. Section 2.2) is called stable s-pointed�-curve
if � is connected, �̄ := �/� is a stable curve, i.e., it has at most nodal singularity and the
automorphism group of (�̄, �̄p) is finite (cf. [22, Definition 2.1.1]), where π : � → �̄ is the
projection. Moreover, we require that for any node q ∈ � and σ ∈ �q ,

det(σ̇ ) = 1, if σ fixes the two branches at q

= −1, if σ exchanges the two branches at q,

where σ̇ is the derivative of σ acting on the Zariski tangent space Tq(�).
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We consider a stable s-pointed �-curve (�, �p = (p1, . . . , ps)) of genus g with marking
data η = ((�1, χ1), (�2, χ2), . . . , (�s, χs)) (cf. [13, Definition 8.7]). By definition, �i is the
isotropy subgroup of � at pi . We abbreviate (�i , χi ) by γi , where γi is the generator of �i

such that its action on the tangent space Tpi (�) is via e
2π

√−1
mi I d , where mi is the order of �i .

Thus, the marking data η can be identified with the ramification types �γ = (γ1, γ2, . . . , γs)

at �p.We assume that � · �p contains all the ramified points in �.

Remark 3.6 Under the assumption that� · �p contains all the ramified points in�, at any nodal
point q ∈ �, q being unramified and stable, det(σ̇ ) = 1, σ fixes the two branches for any
γ ∈ �q and �q is cyclic (cf. [4, Corollaire 4.3.3 and the comment after Definition 6.2.3]). In
this case, any stable s-pointed �-curve (�, �p) is exactly an admissible s-pointed �-cover in
the sense of Jarvis–Kaufmann–Kimura [18, Definition 2.1,2.2]. The only difference is that,
in our definition, stable s-pointed�-curves are connected, and admissible s-pointed�-covers
defined in [18] can be disconnected.

LetH Mg,�, �γ be the Hurwitz stack of stable s-pointed �-curves of genus g with marking
data �γ , cf. [13, Sect. 8]. Then,H Mg,�, �γ is a proper and smooth Deligne–Mumford stack of
finite type, cf. [13, Theorem 8.8]. We can attach the sheaf Vg,�,φ( �γ , �λ) of twisted covacua on
H Mg,�, �γ , where �λ = (λ1, . . . , λs) with λi ∈ Dc,γi . When � stabilizes a Borel subalgebra
of g, the sheaf Vg,�,φ( �γ , �λ) is locally free overH Mg,�, �γ , cf. [13, Theorem 8.9]. When � is
cyclic, H Mg,�, �γ is irreducible [13, Remark 8.11 (1)]. Thus, Vg,�,φ( �γ , �λ) is locally free of
constant rank for cyclic �. For general �, H Mg,�, �γ could be disconnected. Nevertheless,
we have the following theorem, which is an application of Theorem 3.3.

Theorem 3.7 With the notation as in Sect. 3.2 and with same assumption as in Theorem 3.3,
suppose that the quotient group �̃ of � is cyclic and � stabilizes a Borel subalgebra in g.
Then, the sheaf Vg,�,φ( �γ , �λ) onH Mg,�, �γ is locally free of constant rank. Observe that �̃ is
cyclic for any g of type other than D4.

Proof We freely follow the notation from Sect. 3.2. Given any s-pointed smooth �-curve
(�, �p) with ramification data �γ = (γ1, . . . , γs) at �p, taking the quotient of � by �0 we get a
smooth s-pointed �̃-curve with ramification data �̃γ = (γ̃1, . . . , γ̃s) at �̃p. Let g̃ be the genus
of �̃. The Hurwitz stack of stable s-pointed �̃-curves with marking data �̃γ is irreducible,

since by assumption �̃ is cyclic. By [13, Theorem 8.9], the sheaf Vg̃,�̃,φ̃ι
( �̃γ ,

�̃
λ) of twisted

covacua onH Mg̃,�̃, �̃γ is locally free of constant rank, where φ̃ι is the group action of �̃ on g

and �̃
λ is the s-tuple of dominant weights attached to �̃p as in Theorem 3.3. By Theorem 3.3,

when (�, �p) is a smooth s-pointed �-curve, we have

dim V�,�,φ( �p, �λ) = dim V�̃,�̃,φ̃ι
( �̃p, �̃

λ).

This in particular implies that dim V�,�,φ( �p, �λ) is constant along the smooth s-pointed �-
curves (�, �p) inH Mg,�, �γ . By [13, Theorem8.9] again, the sheafVg,�,φ( �γ , �λ) is locally free.
To conclude the theorem, it suffices to show that every component ofH Mg,�, �γ must contain
a smooth s-pointed �-curve. Indeed this is true, as any stable s-pointed �-curve with nodal
points admits a smoothing deformation (cf. [13, Lemma 8.3 and Proof of Theorem 8.9]). ��
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4 Reduction via degenerations

In this section, we are in the same setup as in Sect. 3.3 and we further assume that � is cyclic
of order m.

Let ḡ be the genus of �̄ = �/�. By the Riemann–Hurwitz formula when � is a
smooth irreducible �-curve, the genus ḡ satisfies the following equation (cf. [11, Corol-
lary 2.4, Chap. IV]):

2g − 2 = |�|(2ḡ − 2) +
s∑

i=1

|�|
|�i | (|�i | − 1). (11)

Lemma 4.1 Let (�, �p) be a stable s-pointed smooth �-curve. Then, the dimension of
V�,�,φ( �p, �λ) only depends on φ, ḡ, �, �γ = {γ1, . . . , γs}, �λ and the level c.

Proof By Riemann–Hurwitz formula (11), g is determined by ḡ,m and �γ . Observe that �

being cyclic,� stabilizes a Borel subalgebra in g. Thus, the lemma follows fromTheorem 3.7.
��

Set (for fixed φ and c > 0)

Nḡ,�( �γ ; �λ) = dim V�,�,φ( �p, �λ). (12)

Lemma 4.2 Let (�, �p) be an irreducible s-pointed smooth �-curve with ramification data �γ
such that � · �p contains all the ramified points in �. Assume that the quotient �̄ has genus
ḡ ≥ 1 (in particular, (�, �p) is stable �-curve). Then, (�, �p) admits a degeneration to a
stable s-pointed �-curve (�′, �p′) (in particular, �′ is connected) such that the nodal points
of�′ form a single �-orbit � · y and the action of � on � · y is free. Moreover, � · �p′ contains
all the ramified points of �′.

If ḡ ≥ 2 or if ḡ = 1 and {γ1, . . . , γs} generate �, then �′ can be taken to be irreducible.
In any case,�′/� is irreducible and hence we can take �p′ to lie in an irreducible component
of �′.

Proof Let �̄p be the image of �p in �̄. Then, the fundamental group of �̄\�̄p has the following
presentation:

{
α1, β1, . . . , αḡ, βḡ, η1, . . . , ηs | [α1, β1] · · · [αḡ, βḡ]η1 · · · ηs = 1

}
,

where ηi represents the loop around the marked point p̄i , and α j , β j represent loops around
each handle of �̄. The �-curve � being irreducible gives rise to a surjective group homo-
morphism f : π1(�̄\�̄p) → �, where ηi is mapped to γi for each 1 ≤ i ≤ s. In particular,
we get γ1γ2 · · · γs = 1 (since � is cyclic by assumption; in particular, abelian).

Let (C ′, �̄p′) be a stable degeneration of (�̄, �̄p) with C ′ irreducible and with one single
node x̄ (which is possible since ḡ ≥ 1). Let C̃ ′ be the normalization of C ′ with x̄+, x̄− over
x̄ . Then, C̃ ′ is smooth and irreducible with genus ḡ − 1. Let U be the complement

C ′\{x̄, p̄′
1, . . . , p̄

′
s} = C̃ ′\{x̄+, x̄−, p̄′

1, . . . , p̄
′
s}.

Then, the fundamental group of U has the following presentation:
{
α1, β1, . . . , αḡ−1, βḡ−1, α

+, α−, η1, . . . , ηs | [α1, β1]
· · · [αḡ−1, βḡ−1] · α+α−η1 · · · ηs = 1

}
,
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where ηi represents the loop around p̄′
i , α± represent the loops around x̄±, and α j , β j

represent loops around each handle of C̃ ′. We now construct a group homomorphism
f ′ : π1(U ) → � such that f ′(ηi ) = γi for any 1 ≤ i ≤ s, f ′(α+) = f ′(α−) = 1,
and f ′(α j ) = γ, f ′(β j ) = γ −1 for each 1 ≤ j ≤ ḡ − 1, where γ is a generator of
the cyclic group �. Since γ1 · · · γs = 1, f ′ is indeed a group homomorphism. The group
homomorphism f ′ gives rise to a �-bundle Ũ → U with Ũ a smooth (but not necessarily
connected) curve. By taking the unique smooth projective closure� f ′ ⊃ Ũ , we get a smooth
s-pointed �-cover π : � f ′ → C̃ ′ with marked points �p′, such that the ramification data
at �p′ is �γ = (γ1, . . . , γs) and the ramification data above x̄± is trivial. Let y± be a point
above x̄±, chosen so that y+ and y− are in the same component of the curve � f ′ . Thus,
π−1(x̄+) = {γ i · y+ | 0 ≤ i ≤ m − 1} and π−1(x̄−) = {γ i · y− | 0 ≤ i ≤ m − 1 } are free
�-orbits. By identifying γ i · y+ and γ i+1 · y−, for each 0 ≤ i ≤ m − 1, we get a stable
(in particular, connected) s-pointed �-curve �′ from � f ′ whose quotient by � is exactly C ′.
Then, (�′, �p′) is the desired stable s-pointed �-curve with nodal points π−1(x̄+). ��
Lemma 4.3 Let (�, �p) be a stable s-pointed (irreducible) smooth �-cover of (P1, �̄p) (in
particular, s ≥ 3) such that � · �p contains all the ramified points in � and has ramification
data �γ = (γ1, . . . , γs). Suppose that γ1γ2 · · · γt = 1 for some t with both t, s − t ≥ 2. Then,
the�-cover� → �̄ = P

1 degenerates to a stable s-pointed�-curve (�′, �p′)whose quotient
is a union of two projective lines intersecting at a point x, such that above one projective
line the ramification data is (γ1, . . . , γt ), and above another projective line the ramification
data is (γt+1, . . . , γs). Moreover, the fiber over x is a free �-orbit consisting of all the nodal
points of �′. Further, � · �p′ contains all the ramified points of �′.

If {γ1, . . . , γt } generate �, then the curve over the first projective line can be taken to be
irreducible.

Proof The fundamental group of P
1\{ p̄1, p̄2, . . . , p̄s} has a presentation:

{η1, η2, . . . , ηs | η1η2 · · · ηs = 1},
where ηi are loops around p̄i .

The irreducible �-cover � → P
1 gives rise to a surjective group homomorphism

f : π1(P
1\�̄p) → � such that f (ηi ) = γi . Let U1 be P

1\{ p̄1, . . . , p̄t } and let U2 be
P
1\{ p̄t+1, . . . , p̄s}. For each k = 1, 2, we construct a group homomorphism fk : π1(Uk) →

� such that

f1(ηi ) = γi , for any 1 ≤ i ≤ t, f2(η j ) = γ j , for any t + 1 ≤ j ≤ s.

Observe that f1 and f2 are group homomorphisms, since by assumption γ1γ2 · · · γt = 1. For
each k = 1, 2, let (� fk , �pk) be the unique smooth �-cover of P

1 associated to fk (� fk could
be disconnected), such that �pk has the ramification data (γ1, . . . , γt ) and (γt+1, . . . , γs) for
k = 1, 2 respectively. Fix any (unramified) �-orbits � · x1 ⊂ � f1 and � · x2 ∈ � f2 over
points inU1 andU2 respectively.We glue� f1 and� f2 along any�-equivariant map between
� · x1 and � · x2. Since f is surjective, we get a connected s-pointed �-curve (�′, �p1, �p2)
whose quotient is a union of two projective lines intersecting at a point x , with marked points
( p̄1, . . . , p̄t , p̄t+1, . . . , p̄s). This s-pointed �-curve has the desired properties. ��

Let �, φ,�, �p = (p1, . . . , ps), �γ = (γ1, . . . , γs) and �λ = (λ1, . . . , λs) be as in Sect. 2.2.
Assume further that � is smooth and it has an irreducible component �o such that each pi
belongs to �o. Moreover, �̄ = �/� is irreducible. Let �o be the subgroup of � stabilizing
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�o. Then, �o, φo := φ|�o , �o, �p, �γ and �λ also satisfy the assumptions of Sect. 2.2 (observe
that �pi = �o

pi ).
We have the following reduction lemma.

Lemma 4.4 With the assumption as above, we have:

1. There exists an isomorphism β : � ×�o �o 
 � of �-curves given by [γ, x] �→ γ · x.
2. There exists an isomorphism of vector spaces V�,�,φ( �p, �λ) 
 V�o,�o,φo( �p, �λ). In par-

ticular,

dim V�,�,φ( �p, �λ) = dim V�o,�o,φo( �p, �λ).

Proof For part (1), clearly the map β is surjective (since �̄ is irreducible) and �-equivariant.
The injectivity follows from the definition of �o since, for any γ ∈ �, γ�o ∩ �o �= ∅ if and
only if γ ∈ �o (this uses the smoothness of �).

For part (2), it suffices to check that the restriction map

Res : g[�\� · �p]� → g[�o\�o · �p]�o

is an isomorphism: For any �-equivariant map X : �\� · �p → g, if X vanishes on the
component�o\�o · �p, then, by �-equivariance, X vanishes everywhere. Thus, the restriction
map Res is injective.

For any �o-equivariant map Y : �o\�o · �p → g, construct an extension Ỹ : �\� · �p → g

given by Ỹ (q) = φγ −1(Y (γ · q)) for any γ such that γ · q ∈ �o\�o · �p, where φγ −1 is

the automorphism of g associated to γ −1. One can check easily that Ỹ is a well-defined
�-equivariant regular map. Thus, the restriction map Res is an isomorphism. ��
Notation 4.5 1. Let Ng(�λ) denote the dimension of the space of (untwisted) confor-

mal blocks attached to an irreducible smooth projective curve C of genus g and
�λ = (λ1, . . . , λs) at s-points in C with λi ∈ Dc.

2. For an integer m ≥ 1, let �m = 〈γ 〉 (cyclic group of order m) act on P
1 by γ · z = e

2π i
m z

for z ∈ P
1 and φ : �m → Aut g. Let (λ, μ, ν) be a set of dominant weights, such that

λ ∈ Dc,γ , μ ∈ Dc,γ −1 and ν ∈ Dc attached to the points (0,∞, 1) respectively. We
denote by Nφ(γ ; λ,μ, ν) the dimension of the twisted conformal blocks attached to this
data.

It is well-known that Ng(�λ) can be computed by the usual Verlinde formula (cf. [22, The-
orem 4.2.19]). By the reduction theorem in Theorem 3.3, the computation of Nφ(γ ; λ,μ, ν)

can be reduced to the case when γ acts via a diagram automorphism of g. In fact, by the
same reason it suffices to assume that γ acts on g via a standard automorphism in the sense
of Sect. 5.1. In Sect. 6, we will prove a Verlinde type formula for Nφ(γ ; λ,μ, ν) when γ

acts on g via a standard automorphism.

Lemma 4.6 Let � be a cyclic group of order m ≥ 2. Then, any irreducible smooth �-cover
� of P

1 with two branched points in P
1 is isomorphic to π : P

1 → P
1 given by z �→ zm and

the action of � on P
1 is generated by z �→ e

2π i
m z .

Proof Let g be the genus of �. Let p̄1, p̄2 be the branched points in P
1 with ramification

indices e1 and e2. By Riemann–Hurwitz formula (cf. the identity (11)),

2g − 2 = −2m + m

e1
(e1 − 1) + m

e2
(e2 − 1) = −m

e1
− m

e2
≤ −2.

Thus, g = 0, and e1 = e2 = m. It is easy to see that such a �-cover � over P
1 is isomorphic

to π : P
1 → P

1 given by z �→ zm . ��
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The following theorem reduces the problem of calculating the dimension of twisted con-
formal blocks to that of the classical Verlinde numbers together with Nφ as in Notation 4.5

Theorem 4.7 Let (�, �p) be an irreducible smooth s-pointed �-curve, where s ≥ 1 if ḡ ≥ 1
and s ≥ 3 if ḡ = 0 (so that (�, �p) is a stable s-pointed �-curve) and � is any finite
cyclic group. Assume that � · �p contains all the ramified points, and that we can write
�p = (p1, . . . , ps) so that p1, . . . p2a are ramified (for some a ≥ 0) and p2a+1, . . . , ps are
unramified. Assume thatγ2k−1γ2k = 1 for each1 ≤ k ≤ a. Let �λ = (λ1, . . . , λ2a)be attached
to (p1, . . . , p2a) with each λi ∈ Dc,γi , and �μ = (μ1, . . . , μb) attached to (p2a+1, . . . , ps)
with each μ j ∈ Dc, where s = 2a + b. Then, we have the following formula:

Nḡ,�( �γ ; �λ, �μ) = dim V�,�,φ( �p, �λ, �μ) =
∑

�ν

(
a∏

k=1

Nφ(γ2k−1; λ2k−1, λ2k, νk)

)

· Nḡ( �μ, �ν∗),

where the summation is over �ν = (ν1, . . . , νa)with νi ∈ Dc.Here, Nφ(γ2k−1; λ2k−1, λ2k, νk)

and Nḡ( �μ, �ν∗) are defined in Notation 4.5.

Proof We prove the theorem by reducing the problem for ḡ to that of ḡ − 1. So, assume that
ḡ ≥ 1.

By Lemma 4.2, there exists a stable s-pointed�-curve (�′, �p′) inH Mg,�, �γ (in particular,

�′ is connected) and�′ has a �-free single �-orbit of nodal points. Moreover, � · �p′ contains
all the ramified points of �′. Further, by part (1) of Lemma 4.4, the normalization of �′
at nodal points is isomorphic to � ×�1 �1, where �1 is an irreducible smooth projective
�1-curve for some subgroup�1 of�. Applying the Factorization Theorem [13, Theorem 5.4]
and part (2) of Lemma 4.4, we get:

Nḡ,�( �γ ; �λ, �μ) =
∑

η1∈Dc

Nḡ−1,�1( �γ , 1, 1; �λ, �μ, η1, η
∗
1). (13)

Thus, inducting on ḡ and keep using the Factorization Theorem, Lemmas 4.2 and 4.4, we
get

Nḡ,�( �γ ; �λ, �μ) =
∑

�η∈(Dc)ḡ

N0,�′( �γ , �12ḡ; �λ, �μ, �η, �η∗), (14)

for some subgroup �′ of �, where �η = (η1, . . . , ηḡ) ∈ (Dc)
ḡ and �η∗ := (η∗

1, . . . , η
∗̄
g) ∈

(Dc)
ḡ . We emphasize here that N0,�′(·) denotes the dimension of the space of twisted con-

formal blocks attached to an irreducible smooth projective �′-cover of P
1.

Similarly, keep using the Factorization Theorem, Lemmas 4.3 and 4.4 for the pair
(p2k−1, p2k) of points with 1 ≤ k ≤ a, we get [using the Eq. (14)]:

Nḡ,�( �γ ; �λ, �μ)

=
∑

�ν,�η

(
a∏

k=1

N0,�k (γ2k−1, γ2k, 1; λ2k−1, λ2k, νk)

)

· N0,�′′(�12ḡ+b+a; �μ, �η, �η∗, �ν∗),

(15)

for some subgroups �′′ and �k of � for each 1 ≤ k ≤ a, where the summation is over
�ν = (ν1, . . . , νa) and �η = (η1, . . . , ηḡ) with νi , η j ∈ Dc.

Note that any étale�′′-cover�′′ overP
1 is isomorphic to P

1×�′′. Since�′′ is irreducible,
it follows that �′′ = 1. Then, by Notation 4.5, we have

N0,�′′(�1; �μ, �η, �η∗, �ν∗) = N0( �μ, �η, �η∗, �ν∗).
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By Lemma 4.6, any irreducible smooth �k-cover over P
1 with ramification data

(γ2k−1, γ2k) is isomorphic to a standard �k-action on P
1 as in Lemma 4.6.

Then, by Notation 4.5, for each k we have

N0,�k (γ2k−1, γ2k, 1; λ2k−1, λ2k, νk) = Nφ(γ2k−1; λ2k−1, λ2k, νk).

Thus, from (15) we get

Nḡ,�( �γ ; �λ, �μ) =
∑

�ν,�η

(
a∏

k=1

Nφ(γ2k−1; λ2k−1, λ2k, νk)

)

· N0( �μ, �η, �η∗, �ν∗) (16)

=
∑

�ν

(
a∏

k=1

Nφ(γ2k−1; λ2k−1, λ2k, νk)

)

·
∑

�η
N0( �μ, �η, �η∗, �ν∗) (17)

=
∑

�ν

(
a∏

k=1

Nφ(γ2k−1; λ2k−1, λ2k, νk)

)

· Nḡ( �μ, �ν∗), (18)

where the last equality follows from factorization of fusion rules for conformal blocks in
untwisted setting, cf. [22, Corollary 3.5.10 (a)]. This concludes the proof of the theorem. ��
Remark 4.8 Assume that � 
 Z/2Z. Let (�, �p) be a stable smooth s-pointed �-curve such
that � · �p contains all the ramified points in �. By Riemann–Hurwitz formula (11), there are
even number of ramified points in �. Thus, up to ordering we can always write

�p = (p1, . . . , p2a, p2a+1, . . . , ps),

so that p1, . . . , p2a are ramified and (p2a+1, . . . , ps) are unramified. Then, by Theorem 4.7,
the dimension of the space of twisted conformal blocks attached to any ramification data can
be reduced to compute Nφ(γ ; λ,μ, ν) and Nḡ(�λ).

Remark 4.9 Assume that � 
 Z/3Z. We have an elliptic curve E over P
1 as a �-cover. The

ramification type of E is (γ, γ, γ ), where γ is a generator of �. In this case, Theorem 4.7 is
not applicable since γ 2 �= 1.

5 Kac–Walton formula for twisted conformal blocks

5.1 Standard automorphisms

An automorphism σ of g is called special if σ is a diagram automorphism (which includes
the identity automorphism), or an order 4 automorphism of g when g is of type A2n , which
is defined as follows. Let ei , fi , hi , i = 1, . . . , 2n, be the set of Chevalley generators. The
automorphism σ of g is defined such that

⎧
⎪⎨

⎪⎩

σ(ei ) = eτ(i), if i �= n, n + 1;
σ(ei ) = √−1eτ(i), if i ∈ {n, n + 1};
σ( fθ ) = fθ ,

, (19)

where θ is the highest root of g and τ is the nontrivial diagram automorphism. In fact, we
can write

σ = τ
√−1

adh
, (20)
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where h ∈ h is such that αi (h) = 0 if i �= n, n + 1 and αi (h) = 1 if i = n, n + 1.
We call σ to be a standard special automorphism (or simply a standard automorphism)

if σ is the identity automorphism or a nontrivial diagram automorphism when g is not of
type A2n or σ is the order 4 special automorphism as above. (Observe that for a standard
automorphism, gσ is the same as g̊ as defined in [19].) So, the only difference between special
and standard automorphism is that we exclude the nontrivial diagram automorphism of A2n .

The following table describes the fixed point Lie algebra for all the nontrivial special
automorphisms, cf. [3, Sect. 2.1]:

(g,m) (A2n−1, 2) (A2n, 4) (A2n, 2) (Dn+1, 2) (D4, 3) (E6, 2)
gσ Cn Cn Bn Bn G2 F4

, (21)

where by convention C1 and B1 are A1 and n ≥ 3 for Dn+1.

Lemma 5.1 Let g be of type A2n and let σ be the standard nontrivial automorphism of g.
Then, the bijection Dc,σ 
 Dc,τ in (4) is given by

∑n
i=1 aiλ

C
i �→ ∑n−1

i=1 aiλB
i +(2an +c)λB

n ,
where {λCi | i = 1, . . . , n} is the set of fundamental weights of gσ , and {λB

i | i = 1, . . . , n} is
the set of fundamental weights of gτ . (We follow the labelings in [19, Table Fin, p. 53].)

Proof Let α1, . . . , α2n be the set of simple roots of g, and let α̌1, . . . , α̌2n be the set of
simple coroots of g. Then, α1|hσ , . . . , αn−1|hσ , 2αn |hσ form a set of simple roots for gσ ,
cf. [3, Sect. 2.1], and {α̌i + α̌2n+1−i | i = 1, . . . , n} is the set of simple coroots of gσ . On
the other hand, {α1|hσ , . . . , αn−1|hσ , αn |hσ } form a set of simple roots for gτ , and {α̌1 +
α̌2n, . . . , α̌n−1 + α̌n+2, 2(α̌n + α̌n+1)} form the set of simple coroots of gτ . The lemma now
easily follows from [13, Formula (6)]. ��

5.2 AffineWeyl group of twisted affine Lie algebras

Let σ be a standard nontrivial automorphism of g and let L̃(g, σ ) be the Lie algebra L̂(g, σ )⊕
Cd , where

[d, x[tk]] = kx[tk], [d,C] = 0, for any x[tk] ∈ L̂(g, σ ).

Then, L̃(g, σ ) is a Kac–Moody Lie algebra of twisted type with canonical center C and the
scaling element d , and the fixed subalgebra gσ is the “standard” finite part of L̃(g, σ ) in the
sense of [19, Sect. 6.3]. This is obvious when g is not of type A2n . When g is of type A2n ,
using the formula (20) this can be seen from [19, Theorem 8.7] or [13, Sect. 2].

Set h̃ := hσ ⊕ CC ⊕ Cd . Then, the dual h̃∗ = (hσ )∗ ⊕ Cδ ⊕ C�0, where δ and �0 are
defined as follows

δ|hσ = 0, (δ,C) = 0, (δ, d) = a0, �0|hσ = 0, (�0,C) = 1, (�0, d) = 0,

where

a0 =
{
1 if (g,m) �= (A2n, 4)

2 if (g,m) = (A2n, 4).

Note that �0 is a fundamental dominant weight of L̃(g, σ ) of level one.
LetWL̃(g,σ )

denote theWeyl group of L̃(g, σ ). Let Qσ (resp. Pσ ) be the root (resp. weight)
lattice of gσ . Set

M =
{
Qσ if (g,m) �= (A2n, 4)
1
2Qσ,l if (g,m) = (A2n, 4),

(22)
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where Qσ,l is the lattice spanned by the long roots. Let W be the Weyl group of g. Then, the
fixed subgroup W σ can be identified with the Weyl group of gσ . Let Wσ,c denote the affine
Weyl group W σ

� cM .
Set

h∗
σ,R := Pσ ⊗Z R, h̃∗

R
:= Pσ ⊗Z R + R�0 + Rδ.

Note thatWL̃(g,σ )
keeps δ invariant (cf. [19, Sect. 6.5]). Hence,WL̃(g,σ )

acts on ĥ∗
R,c for any

c ∈ R, where

ĥ∗
R,c := {x ∈ h̃∗

R
| (x,C) = c}/Rδ.

With respect to the isomorphism h∗
σ,R


 ĥ∗
R,c given by λ �→ c�0 + λ, we have the

following lemma (cf. [19, Proposition 6.5, Sect. 6.5] or [15, Lemma 3.1]).

Lemma 5.2 There exists an isomorphism af : WL̃(g,σ )

 Wσ,c of groups such that for any

� = c�0 + λ ∈ ĥ∗
R,c with λ ∈ h∗

σ,R
and w ∈ WL̃(g,σ )

, the following formula holds,

w · � = c�0 + af(w) · λ in ĥ∗
R,c.

Let ρ̂ be the sum of all the fundamental weights of L̃(g, σ ). By [19, Identity 6.2.8],

ρ̂ = ρσ + ȟ�0, (23)

where ρσ is the sum of all the fundamental weights of gσ , and ȟ is the dual Coxeter number
of L̃(g, σ ), cf. [19, Sect. 6.1]. Observe that ȟ is the same as the dual Coxeter number of g
(cf. [19, Remark 6.1]).

We define � action of WL̃(g,σ )
on ĥ∗

R,c as follows:

w�� = w · (� + ρ̂) − ρ̂, w ∈ WL̃(g,σ )
,� ∈ ĥ∗

R,c.

Similarly, we still denote by � the following action of Wσ,c on h∗
σ,R

:

w�λ = w · (λ + ρσ ) − ρσ , w ∈ Wσ,c, λ ∈ h∗
σ,R. (24)

Lemma 5.3 Given � = c�0 + λ ∈ ĥ∗
R,c and w ∈ WL̃(g,σ )

, we have

w�� = λ + af ȟ(w)�λ, where af ȟ(w) is taken in W
σ,c+ȟ .

Proof It follows from Lemma 5.2 and the formula ρ̂ = ρσ + ȟ�0 as in (23). ��
Set

θσ =
{
highest short root of gσ , (g,m) �= (A2n, 4)
1
2 highest root of gσ , (g,m) = (A2n, 4)

(25)

and

θ̌σ =
{
highest coroot of gσ , (g,m) �= (A2n, 4)

2 · highest short coroot of gσ , (g,m) = (A2n, 4).
(26)

Let 〈·|·〉 denote the normalized bilinear form on hσ (which is the restriction of the normalized
invariant form on h). Let ν : hσ 
 (hσ )∗ be the induced isomorphism. Then, ν(θ̌σ ) = 1

a0
θσ ,

cf. [19, Sect. 6.4].
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When σ is standard and nontrivial, using formula (20) (for the case (g,m) = (A2n, 4))
combined with [13, Sect. 2] for the diagram automorphisms, we get:

Dc,σ = {λ ∈ P+
σ | (λ, θ̌σ ) ≤ c〉}, (27)

where P+
σ is the set of dominant integral weights of gσ .

LetW †
σ,c+ȟ

denote the set of minimal representatives of the right cosets ofW σ inW
σ,c+ȟ .

Then, for any w1 ∈ W σ and w2 ∈ W †
σ,c+ȟ

, we have �(w1w2) = �(w1) + �(w2). For any

w ∈ W †
σ,c+ȟ

and λ ∈ Dc,σ , one has w�λ ∈ P+
σ , and w�λ �= w′�λ for any two distinct

w,w′ ∈ W †
σ,c+ȟ

(cf. [20, Remark 1.3]). Since (ρσ , θ̌σ ) = ȟ − 1, Dc,σ can be identified with

the interior integral points in the fundamental alcove of W
σ,c+ȟ with respect to the � action.

5.3 Analogue of Kac–Walton formula

Let� = 〈σ 〉 of orderm act on P
1 by σ(z) = e

2π i
m z (for z ∈ P

1), and σ acts on g via a standard
automorphism of order m. For any z ∈ P

1\{0} and any finite dimensional representation V
of g�z , where �z is the stabilizer subgroup of � at z, we denote by Vz the representation of
g[t−1]σ via the evaluation map evz : g[t−1]σ → g�z by letting t = z. Recall that for any
λ ∈ Dc,σ , we have an integrable highest weight representation Hc(λ) of L̂(g, σ ) of level c
and highest weight λ. Let Hi ((t−1g[t−1])σ ,Hc(λ) ⊗ V (μ)1) denote the i-th homology of
(t−1g[t−1])σ with coefficients in Hc(λ) ⊗ V (μ)1.

Proposition 5.4 For any λ ∈ Dc,σ and μ ∈ P+ (where P+ is the set of dominant integral
weights of g), the homology groups H∗((t−1g[t−1])σ ,Hc(λ) ⊗ V (μ)1) can be computed as
the homology groups of a complex of gσ -representations,

· · · → Fp
δ̄p−→ · · · F1 δ̄1−→ F0

δ̄0−→ 0,

where as representations of gσ ,

Fp 

⊕

w∈W †
σ,c+ȟ

,�(w)=p

V (w�λ) ⊗ (V (μ)|gσ ), (28)

V (w�λ) is the irreducible representation of gσ with highest weightw�λ and V (μ)|gσ denotes
the irreducible representation V (μ) of g considered as a representation of gσ via restriction.

Proof Recall the generalized BGG resolution for Kac–Moody algebras from [21, Defini-
tion 9.2.17]. By Lemmas 5.2 and 5.3, we can express the generalized BGG resolution of
Hc(λ) as follows:

· · · → Mp
δp−→ · · · δ1−→ M0

δ0−→ Hc(λ),

where

Mp :=
⊕

w∈W †
σ,c+ȟ

,�(w)=p

M̂(w�λ), (29)

and M̂(w�λ) is the generalized Verma module U (L̂(g, σ )) ⊗U (g[t]σ ⊕CC) V (w�λ), with C
acting on V (w�λ) by the scalar c and g[t]σ acting via the evaluation at t = 0.
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By tensoring with V (μ)1, we get a resolution of Hc(λ) ⊗ V (μ)1. As gσ -modules, we
have the coinvariant

(M̂(w�λ) ⊗ V (μ)1)(t−1g[t−1])σ 
 (
(U ((t−1g[t−1])σ ) ⊗C V (w�λ)) ⊗ V (μ)1

)
(t−1g[t−1])σ


 (
(V (w�λ) ⊗ V (μ)1) ⊗C U ((t−1g[t−1])σ )

)
(t−1g[t−1])σ ,

by the Hopf Principle [21, Proposition 3.1.10]


 V (w�λ) ⊗ V (μ).

Hence, the complex (M• ⊗ V (μ)1)(t−1g[t−1])σ is isomorphic to

· · · → Fp
δ̄p−→ · · · F1 δ̄1−→ F0

δ̄0−→ 0,

where Fp is given in (28). Thus, the proposition follows. ��
Consider the automorphism σ of P

1 given by σ(z) = ξ z for z ∈ P
1, where ξ = e

2π i
m . With

respect to the Galois cover π : P
1 → P

1 given by z �→ zm , the ramification type at 0 ∈ P
1

is σ and the ramification type at ∞ ∈ P
1 is σ−1. For twisted conformal blocks associated to

the Galois cover π and an automorphism σ of g of order m, we attach a dominant weight in
Dc,σ at 0 ∈ P

1, and a dominant weight in Dc,σ−1 at ∞ ∈ P
1. We have the following lemma.

Lemma 5.5 For any standard nontrivial automorphism σ of g, we have Dc,σ = Dc,σ−1 .
Moreover, for any μ ∈ Dc,σ , μ = μ∗ where μ∗ is the dominant weight corresponding to the
dual representation V (μ)∗ of gσ .

Proof By [13, Lemma 5.3 (2)],μ ∈ Dc,σ if and only ifμ∗ ∈ Dc,σ−1 . Since gσ is non simply-
laced or A1, λ∗ = −wσ

0 (λ) = λ for any weight λ of gσ , where wσ
0 is the longest element of

the Weyl group of gσ . ��
Thus, we can use Dc,σ for the common set of dominant weights of gσ to attach to 0 as

well as ∞ ∈ P
1.

Similar to Teleman’s vanishing theorem [26, Theorem 0], we make the following conjec-
ture.

Conjecture 5.6 Let σ be a standard automorphism of g. Then, for any λ,μ ∈ Dc,σ , ν ∈ Dc,
and for any i ≥ 1, the representation V (μ)∗ does not occur in Hi ((t−1g[t−1])σ ,Hc(λ) ⊗
V (ν)1) as a gσ -representation.

This conjecture has been confirmed in [14, Corollary 3.20] under strong constraints. In
particular, when the level c is sufficiently large comparing to λ,μ and ν, this conjecture
always holds.

We are now ready to deduce the following analogue of Kac–Walton formula for twisted
conformal blocks.

Theorem 5.7 Take any standard automorphism σ of g of order m and the Galois cover
π : P

1 → P
1, z �→ zm. Let �p = (0,∞, 1) in P

1, and �λ = (λ, μ, ν) with λ,μ ∈ Dc,σ and
ν ∈ Dc. Suppose that Conjecture 5.6 holds, then

dim VP1,�,φ( �p, �λ) =
∑

w∈W †
σ,c+ȟ

(−1)�(w) dim
(
(V (w�λ) ⊗ V (μ) ⊗ V (ν))g

σ
)

, (30)

where � is the cyclic group of order m generated by σ and φ : � → Aut g is the one
generated by σ .
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Proof By the Propagation Theorem for twisted conformal blocks (cf. [13, Theorem 4.3]),
we have the following isomorphism:

VP1,�,φ( �p, �λ) 
 (Hc(λ) ⊗ V (μ)∞ ⊗ V (ν)1)g[t−1]σ

 (

(Hc(λ) ⊗ V (ν)1)(t−1g[t−1])σ ⊗ V (μ)
)
gσ ,

since (t−1g[t−1])σ acts trivially on V (μ)∞

 Homgσ

(
V (μ∗), H0((t

−1g[t−1])σ ,Hc(λ) ⊗ V (ν)1)
)
. (31)

We have the following equalities:

dim
(
Homgσ (V (μ∗), H0((t

−1g[t−1])σ ,Hc(λ) ⊗ V (ν)1))
)

=
∑

i≥0

(−1)i dim
(
Homgσ (V (μ∗), Hi ((t

−1g[t−1])σ ,Hc(λ) ⊗ V (ν)1))
)

=
∑

w∈W †
σ,c+ȟ

(−1)�(w) dim
(
Homgσ (V (μ∗), V (w�λ) ⊗ V (ν))

)

=
∑

w∈W †
σ,c+ȟ

(−1)�(w) dim
(
(V (μ) ⊗ V (w�λ) ⊗ V (ν))g

σ
)

, (32)

where the first equality follows from Conjecture 5.6, and the second equality follows from
Proposition 5.4. Combining the isomorphism (31) and the identity (32), we get the theorem.

��

6 Verlinde formula for twisted conformal blocks

6.1 Verlinde formula for basic cases

In this section, we assume that σ is a standard nontrivial automorphism of g. Recall the
lattice M introduced in (22). Then, M is the root lattice of gσ , if g is not A2n , and by [15,
Lemma 2.3], M is the weight lattice of gσ when g is of type A2n . Let G be the connected and
simply-connected (simple) algebraic group with Lie algebra g. Let T be the maximal torus
with Cartan subalgebra h as its Lie algebra.

Lemma 6.1 The fixed group Gσ is connected and simply-connected.

Proof When G is not of type A2n , σ is a diagram automorphism. In this case, the lemma
is well-known. For the connectedness see [25, Theorem 8.1], and the simply-connectedness
follows from [24, Sect. 10.3]. We now assume that G is of type A2n . Let τ be the diagram
automorphism part of σ . Then, T σ = T τ . It is known that T τ is connected. Thus, Gσ is
connected of typeCn , see Table (21). Let {α1, . . . , α2n} be the set of simple roots of A2n with
the standard labelling and let {α̌1, . . . , α̌2n} be the set of corresponding simple coroots of G.
Then, α1|hσ , . . . , αn−1|hσ , 2αn |hσ form a set of simple roots for Gσ (cf. [3, Sect. 2.1]) and
{α̌i + α̌2n+1−i : 1 ≤ i ≤ n} form the set of simple coroots. Using simple coroots, we can
introduce a coordinate system of T , (Gm)2n 
 T . Then, it is easy to verify that Gm → T σ

given by a �→ α̌i (a)α̌2n+1−i (a) is a simple coroot of Gσ , for every i = 1, . . . , n. Thus,
Hom(Gm, T σ ) is the lattice of coroots. It follows that Gσ is simply-connected. ��
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With this lemma, wemay regard the latticeM as a sub-lattice in theweight lattice X∗(T σ ).
We now define

T σ
c := {t ∈ T σ | eλ(t) = 1, ∀λ ∈ (c + ȟ)M}. (33)

Let T σ,reg
c denote the set of regular elements in T σ

c , i.e., those elements with trivial
W σ -stabilizer. Let Rσ

c (g) denote the fusion ring associated to the twisted affine Lie alge-
bra L̂(g, σ ), which is defined in [16]. For any regular function f on T σ or T , we will
denote by f̄ the restriction of f to T σ,reg

c . In [16], the ring Rσ
c (g) is realized as the function

space C[T σ,reg
c /W σ ] = C[T σ,reg

c ]W σ
(with the ring structure coming from the product of

functions), with a basis {χ̄λ | λ ∈ Dc,σ }. (We describe χ̄λ explicitly after Remark 6.3.) The
following theorem is proved in [15, 16].

Theorem 6.2 For any λ,μ ∈ Dc,σ , we have

χ̄λ · χ̄μ =
∑

η∈Dc,σ

cη
λ,μχ̄η,

where cη
λ,μ is given by

cη
λ,μ = 1

|T σ
c |

∑

t∈T σ,reg
c /W σ

χ̄λ(t)χ̄μ(t)χ̄η∗(t)�σ (t). (34)

Here �σ is given by

�σ :=
∏

α∈�σ

(eα − 1),

where �σ is the set of all the roots of gσ .

Remark 6.3 Given a simply-laced simple Lie algebra ġ with a diagram automorphism τ̇ of
order ṙ > 1, a fusion ring Rc(ġ, τ̇ ) is defined in [15] for the purpose of deducing a formula
for the trace of τ̇ on the space of untwisted conformal blocks associated to ġ. In fact, there
is an isomorphism of rings Rσ

c (g) 
 Rc(ġ, τ̇ ), with a correspondence between (g,m) and
(ġ, ṙ) as follows (cf. [16, Sect. 3.1]):

(g,m) (A2n−1, 2) (A2n, 4) (Dn+1, 2) (D4, 3) (E6, 2)
(ġ, ṙ) (Dn+1, 2) (A2n, 2) (A2n−1, 2) (D4, 3) (E6, 2)

. (35)

Moreover, Theorem6.2 is equivalent to the formula for the trace of τ̇ on the space of conformal
blocks associated to ġ.

As mentioned above, Rσ
c (g) can be identified with the ring C[T σ,reg

c /W σ ]. Thus, there
is a natural ring homomorphism π : R(gσ ) → Rσ

c (g) given by [Vλ] �→ χ̄λ, where R(gσ ) is
the representation ring of gσ , χλ is the character of V (λ) as a function on T σ and χ̄λ is the
restriction of χλ to T σ,reg

c (which descends to a function on T σ,reg
c /W σ ). This allows us to

define χ̄λ for any λ ∈ P+
σ .

Lemma 6.4 For any λ ∈ Dc,σ and w ∈ W †
σ,c+ȟ

, we have

χ̄w�λ = (−1)�(w)χ̄λ.

Moreover, by [15, Corollary 5.17], for any η ∈ P+
σ \(W †

σ,c+ȟ
�Dc,σ ), π(Vη) = 0.
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Proof Write w = zτη, where z ∈ W σ and τη is the translation by η ∈ (c + ȟ)M . By Weyl
character formula,

δσ · χw�λ =
∑

y∈W σ

(−1)�(y)ey(w�λ+ρσ ) =
∑

y∈W σ

(−1)�(y)ey(z(λ+ρσ +η)), (36)

where δσ is the Weyl denominator of gσ given by:

δσ := eρσ
∏

α∈�+
σ

(1 − e−α)

(�+
σ being the set of the positive roots of gσ ).
For any t ∈ T σ,reg

c , we have

δσ (t) · χw�λ(t) =
∑

y∈W σ

(−1)�(y)ey(z(λ+ρσ ))(t) = (−1)�(z)
∑

y∈W σ

(−1)�(y)ey(λ+ρσ )(t)

= (−1)�(w)
∑

y∈W σ

(−1)�(y)ey(λ+ρσ )(t) = (−1)�(w)δσ (t) · χλ(t),

where the first equality holds since η ∈ (c+ ȟ)M , and second to the last equality holds since
�(τη) is even, cf. [15, Lemma 2.8]. Thus, the lemma follows. ��

Let �p = (0,∞, 1) in P
1, and �λ = (λ, μ, ν) with λ,μ ∈ Dc,σ and ν ∈ Dc. Recall the

following notation from Notation 4.5 (we have dropped φ from Nφ(σ ; λ,μ, ν) since in this
section we are only dealing with φ generated by the nontrivial standard automorphisms of
g):

N (σ ; λ,μ, ν) := dim VP1,�,φ( �p, �λ), (37)

where � and φ are the same as in Theorem 5.7.
We now prove the following Verlinde formula for N (σ ; λ,μ, ν), which uses Theorem 5.7.

Theorem 6.5 With the notation as above, suppose that Conjecture 5.6 holds. Then, we have

N (σ ; λ,μ, ν) = 1

|T σ
c |

∑

t∈T σ,reg
c /W σ

χλ(t)χμ(t)χν(t)�σ (t), (38)

where χλ, χμ, χν represent the characters of V (λ), V (μ), V (ν) as representations of gσ , gσ

and g respectively.

Proof For anyμ ∈ Dc,σ andν ∈ Dc, consider the followingdecomposition as representations
of gσ ,

V (μ) ⊗ (V (ν)|gσ ) =
⊕

η∈P+
σ

V (η)⊕mη
μ,ν ,

where mη
μ,ν := dim

(
Homgσ (V (η), V (μ) ⊗ V (ν))

)
. Then,

V (μ) ⊗ (V (ν)|gσ )

=

⎛

⎜⎜
⎝

⊕

λ∈Dc,σ

⊕

w∈W †
σ,c+ȟ

V (w�λ)⊕mw�λ
μ,ν

⎞

⎟⎟
⎠

⊕

⎛

⎜⎜
⎝

⊕

η∈P+
σ \(W †

σ,c+ȟ
�Dc,σ )

V (η)⊕mη
μ,ν

⎞

⎟⎟
⎠ .
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Thus, by Lemma 6.4, we have

π(V (μ) ⊗ (V (ν)|gσ )) =
∑

λ∈Dc,σ

∑

w∈W †
σ,c+ȟ

mw�λ
μ,ν χ̄w�λ =

∑

λ∈Dc,σ

∑

w∈W †
σ,c+ȟ

(−1)�(w)mw�λ
μ,ν χ̄λ.

(39)

By the analogue of the Kac–Walton formula as in Theorem 5.7, we get using the equation
(39):

π(V (μ) ⊗ (V (ν)|gσ )) =
∑

λ∈Dc,σ

N (σ ; λ∗, μ, ν)χ̄λ. (40)

(Observe that, by Lemma 5.5 λ∗ = λ.)
On the other hand, consider the following decomposition as gσ -representations:

V (ν)|gσ =
⊕

η∈P+
σ

V (η)⊕bη
ν

=

⎛

⎜⎜
⎝

⊕

λ′∈Dc,σ

⊕

w∈W †
σ,c+ȟ

V (w�λ′)⊕bw�λ′
ν

⎞

⎟⎟
⎠

⊕

⎛

⎜⎜
⎝

⊕

η∈P+
σ \(W †

σ,c+ȟ
�Dc,σ )

V (η)⊕bη
ν

⎞

⎟⎟
⎠ .

(41)

Then, π being a ring homomorphism,

π(V (μ) ⊗ (V (ν)|gσ )) =
∑

λ′∈Dc,σ

∑

w∈W †
σ,c+ȟ

bw�λ′
ν (−1)�(w)χ̄μ · χ̄λ′ . (42)

By Theorem 6.2 and equation (42), π(V (μ) ⊗ (V (ν)|gσ )) is equal to

∑

λ′∈Dc,σ

∑

w∈W †
σ,c+ȟ

bw�λ′
ν (−1)�(w)

∑

λ∈Dc,σ

( 1

|T σ
c |

∑

t∈T σ,reg
c /W σ

χλ∗(t)χμ(t)χλ′(t)�σ (t)
)
χ̄λ

=
∑

λ∈Dc,σ

1

|T σ
c |

∑

t∈T σ,reg
c /W σ

χλ∗(t)χμ(t)χν(t)�σ (t)χ̄λ, (43)

where the above equality follows from (41) and Lemma 6.4. Comparing formulae (40) and
(43), we conclude that

N (σ ; λ∗, μ, ν) = 1

|T σ
c |

∑

t∈T σ,reg
c /W σ

χλ∗(t)χμ(t)χν(t)�σ (t).

Thus, the theorem follows. ��
Following [16], we now describe the set T σ,reg

c /W σ explicitly. Let θl be the highest root
of gσ . Let P̌+

σ denote the set of dominant coweights of gσ , where the fundamental coweights
in hσ are defined as the dual of simple roots. When (g,m) �= (A2n, 4), set

Ďc,σ = {λ̌ ∈ P̌+
σ | (λ̌, θl) ≤ c},

and

�c := {e 2π i
c+ȟ

(ρ̌σ +λ̌, · ) ∈ T σ | λ̌ ∈ Ďc,σ } ⊂ T σ,reg
c .
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Here we identify T σ = Hom(Pσ , C
∗), where Pσ is the weight lattice of gσ and ρ̌σ is the

sum of the fundamental coweights.
When (g,m) = (A2n, 4), set

�c := {e 2π i
c+ȟ

〈ρσ +λ| · 〉 ∈ T σ | λ ∈ Dc,σ } ⊂ T σ,reg
c ,

where 〈·|·〉 is the invariant form on (hσ )∗ such that 〈θl |θl〉 = 4, equivalently 〈·|·〉 is induced
from the normalized invariant form on the twisted affine algebra L̂(g, σ ) (cf. [19, Iden-
tity 8.3.8]). The following lemma follows from [15, Sect. 5.4] and [16, Sect. 2].

Lemma 6.6 Any element t ∈ T σ,reg
c can be translated to a unique element in �c by a unique

element of W σ .

6.2 Verlinde formula for general 0-curves

Let σ be a standard nontrivial automorphism of a simple and simply-connected algebraic
group G preserving a maximal torus T . Set

Tc = {t ∈ T | λ(t) = 1, for any λ ∈ (c + ȟ)Qlg },
where Qlg is the sublattice of the root lattice of G generated by the long roots (if all the root
lengths are equal, we call them long roots). Let T reg

c be the set of regular elements in Tc,
i.e., those elements t ∈ Tc whose stabilizers in the Weyl groupW is trivial. Recall that T σ

c is
defined in (33).

Lemma 6.7 1. T σ
c is the set of σ -invariants in Tc.

2. The set T σ,reg
c /W σ can be identified with the set of σ -invariants in T reg

c /W.

Proof For part (1), it suffices to check that the lattice M defined in (22) is exactly the set of
coinvariants of σ in Q. When g is not of type A2n , this is obvious. When (g,m) = (A2n, 4),
this follows from thedescriptionof the simple roots ofgσ in [3, Sect. 2.1] and [15,Lemma2.2].

We now prove part (2). Since G and Gσ are simply-connected (cf. Lemma 6.1), there
exist σ -equivariant bijections

P̌/(c + ȟ)Q̌ 
 Tc, M∨/(c + ȟ)Q̌σ 
 T σ
c , (44)

given by λ �→ e
2π i
c+ȟ

λ
, where P̌, Q̌ are respectively the coweight and coroot lattices of G, Q̌σ

is the coroot lattice of Gσ (it can also be identified with the set of σ -invariants in Q̌), and
M∨ ⊂ hσ is the dual lattice of M ⊂ (hσ )∗. In particular, M∨ is the coweight lattice of Gσ

when G is not of type A2n ; M∨ is the coroot lattice of G∨ when G is of type A2n , as in this
case M is the weight lattice of Gσ . From the descriptions of coroots and coweights of Gσ in
[3, Sect. 2.1], we observe that in any case M∨ = (P̌)σ .

Then, T reg
c /W can be identifiedwith the set of interior P̌-integral points in the fundamental

alcove of the affine Weyl group W � (c + ȟ)Q̌ (cf. [22, Lemma 4.2.6 (b)]). Similarly,
T σ,reg
c /W σ can be identified with the set of interior M∨-integral points in the fundamental

alcove of the affineWeyl groupW σ
�(c+ȟ)Q̌σ . By the same proof as in [15, Proposition 2.7],

the natural map T σ,reg
c /W σ → (T reg

c /W )σ is a bijection. ��
Given any two finite order automorphisms γ, γ ′ of g such that they have the same images

in Out(g), we can naturally identify Dc,γ and Dc,γ ′ . More precisely, we first decompose
γ = τεadh with respect to a γ -stable pair (b, h), and decompose γ ′ = τ ′εadh′

with respect
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to a γ ′-stable pair (b′, h′), as in (2). By (4), there exists identifications Dc,γ 
 Dc,τ and
Dc,γ ′ 
 Dc,τ ′ . Furthermore, by Lemma 3.2, there exists a canonical identification Dc,τ 

Dc,τ ′ (note that this identification does not depend on the choice of the inner automorphisms
in Lemma 3.2). Thus, we get an identification

Dc,γ 
 Dc,γ ′ . (45)

Consider a group homomorphism φ : � → Aut(g), a stable smooth (and hence irre-
ducible) s-pointed �-curve (�, �p) with ramification type �γ attached to �p, and a s-tuple of
dominant weights �λ attached to �p. We assume that

Assumption 6.8 1. � · �p contains all the ramified points;
2. �̃ := �/�0 is cyclic of order r , where�0 is the kernel of the map P ◦φ : � → Out(g); P

being the projection Aut(g) → Out(g);
3. By reordering �p, we can write �p = (p1, . . . , p2a, p2a+1, . . . , ps) such that γ̃k �= 1,

γ̃2k−1γ̃2k = 1 for any 1 ≤ k ≤ a (a ≥ 0), and γ̃i = 1 for any 2a + 1 ≤ i ≤ s, where γ̃

is the image of γ ∈ � in �̃.

When �̃ = (1) or Z/2Z, the condition (3) in the above assumption holds automatically.
Let φ̃ι : �̃ → Aut(g) be the group homomorphism defined in Sect. 3.2, which preserves

a fixed pair (b, h). For any 1 ≤ i ≤ s, γ̃i acts on G by a diagram automorphism (possibly
trivial) via φ̃ι, denoted by τi . Let σi be the standard automorphism associated to τi (note
that σi = τi if g �= A2n). Let �λ† be the s-tuple of dominant weights with λ

†
i ∈ Dc,σi

associated to λi ∈ Dc,γi via the bijection (45). (The bijection Dc,τi 
 Dc,σi between the
diagram automorphism τi and the standard automorphism σi for g = A2n is explicitly given
by Lemma 5.1.)

For convenience, we fix a standard automorphism σ corresponding to a generator of �̃.

Theorem 6.9 With the same notation and Assumption 6.8 as above for any finite group �, we
further assume that the vanishing Conjecture 5.6 holds. Then, the dimension of the twisted
conformal blocks

Nḡ,�( �γ ; �λ) = |Tc|ḡ−1+a

|T σ
c |a

∑

t∈T σ,reg
c /W σ

χ�λ†(t)�σ (t)a

�(t)ḡ−1+a
,

where T is the maximal torus of G with its Lie algebra the Cartan subalgebra h, ḡ is the
genus of the quotient curve �̄ = �/�, and χ�λ†(t) := χ

λ
†
1
(t) · · · χ

λ
†
s
(t) with χ

λ
†
i
being the

character of the irreducible representation of the group Gσi with highest weight λ†i . (For the
notation �σ , see Theorem 6.2 and � := �identity.)

Proof If �̃ = (1), the theorem follows from the reduction Corollary 3.4 and the classical
Verlinde formula (cf. [22, Theorem 4.2.19 and the identities (3) and (8) in its proof]). So, we
now assume that �̃ �= (1) in what follows.

Set Ac = T reg
c /W and Aσ

c = T σ,reg
c /W σ . By Lemma 6.7, Aσ

c can be regarded as the
subset of σ -invariants in Ac. Clearly, Aσ

c = Aσi
c if 〈σ 〉 = 〈σi 〉, and Aσ

c = Ac if σ is trivial.
By Theorem 3.3, we are reduced to the following situation: � is cyclic of order 2 or 3 (in

particular, every non-trivial element is a generator of �) and the elements of � act on G by
diagram automorphisms (possibly trivial), and the ramification type of � action on � is �γ
with each γi acting onG by a diagram automorphism τi and τi �= 1 exactly when 1 ≤ i ≤ 2a
(a ≥ 0). The s-tuple (λ1, λ2, . . . , λ2a, μ1, . . . , μb) of dominant weights is attached to �p
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with λi ∈ Dc,γi and μ j ∈ Dc, where s = 2a + b. (Observe that μ j := λ2a+ j .) They satisfy
τ2k−1τ2k = 1 for any 1 ≤ k ≤ a as in Assumption 6.8. Then,

Nḡ,�( �γ ; �λ, �μ) =
∑

�ν∈Da
c

(
a∏

k=1

N (τ2k−1; λ2k−1, λ2k, νk)

)

· Nḡ( �μ, �ν∗)

=
∑

�ν

(
a∏

k=1

N (σ2k−1; λ
†
2k−1, λ

†
2k, νk)

)

· Nḡ( �μ, �ν∗)

= |Tc|ḡ−1

|T σ
c |a

∑

�ν

⎛

⎝
a∏

k=1

⎛

⎝
∑

tk∈Aσ
c

χ
λ
†
2k−1

(tk)χλ
†
2k

(tk)χνk (tk)�σ (tk)

⎞

⎠

⎞

⎠

·
⎛

⎝
∑

t∈Ac

χ �μ(t)χ�ν∗(t)�(t)1−ḡ

⎞

⎠

= |Tc|ḡ−1

|T σ
c |a

∑

�ν

∑

t1,...,ta∈Aσ
c

t∈Ac

�(t)1−ḡχ �μ(t)
a∏

k=1

(
χ

λ
†
2k−1

(tk)χλ
†
2k

(tk)χνk (tk)χν∗
k
(t)�σ (tk)

)
, (46)

where the first equality follows from Theorem 4.7, the second equality follows from The-
orem 3.3, the third equality follows from Theorem 6.5 and the usual Verlinde formula (cf.
[22, Theorem 4.2.19 and the identities (3) and (8) in its proof]).

Recall the following orthogonality relation (cf. [16, Theorem 2.1(2)]):

1

|Tc|
∑

t∈Ac

χν(t)χν′∗(t)�(t) = δν,ν′ ,

where δ denotes the Kronecker symbol. Similarly, for any t ′, t ∈ Ac, the following orthogo-
nality relation holds

1

|Tc|
∑

ν∈Dc

χν(t
′)χν∗(t)�(t) = δt ′,t . (47)

Now,
∑

�ν

∑

t1,...,ta∈Aσ
c

t∈Ac

�(t)1−ḡχ �μ(t)
a∏

k=1

(
χ

λ
†
2k−1

(tk)χλ
†
2k

(tk)χνk (tk)χν∗
k
(t)�σ (tk)

)

=
∑

t1,...,ta∈Aσ
c

t∈Ac

�(t)1−ḡ−aχ �μ(t)

(
a∏

k=1

χ
λ
†
2k−1

(tk)χλ
†
2k

(tk)�σ (tk)

) (
∑

ν1

χν∗
1
(t)χν1 (t1)�(t)

)

. . .

(
∑

νa

χν∗
a
(t)χνa (ta)�(t)

)

= |Tc|a
∑

t1,...,ta∈Aσ
c

t∈Ac

�(t)1−ḡ−aχ �μ(t)
a∏

k=1

(
χ

λ
†
2k−1

(tk)χλ
†
2k

(tk)�σ (tk)δt,tk

)
, by using equation (47)

=
∑

t∈Aσ
c

�(t)1−ḡ−aχ �μ(t)χ�λ† (t)(�σ (t))a |Tc|a . (48)
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Combining the Eqs. (46) and (48), we get

Nḡ,�( �γ ; �λ, �μ) = |Tc|ḡ−1+a

|T σ
c |a

∑

t∈Aσ
c

χ�λ†(t)χ �μ(t)�σ (t)a

�(t)ḡ−1+a
.

This conclude the proof of the theorem. ��
Remark 6.10 By [8, Proposition 9.6], the formulae for S-matrices described in [16, Sect. 5]
and Lemma 6.7, one observes that the dimension formula in Theorem 6.9 agrees with the
dimension formula in [8, Theorem 1.2].

6.3 Examples

We now consider g = sl2n with an action of Z/2Z generated by a diagram automorphism σ ,
and Z/2Z acts on � with 2a ramified points. Then, gσ = sp2n . From (44),

|Tc| = 2n(c + 2n)2n−12n, |T σ
c | = 2(c + 2n)n .

Let α1, α2, . . . , α2n−1 be the simple roots of sl2n with standard labelling. Set ᾱi = αi |hσ , 1 ≤
i ≤ n. Then, ᾱ1, . . . , ᾱn from a set of simple roots of sp2n . Note that ᾱn+i = ᾱi for
1 ≤ i ≤ n − 1. Let ω̌i (resp. ω̌σ,i ) be the fundamental coweight of sl2n associated to αi

(resp. ᾱi ). By Lemma 6.6, T σ,reg
c /W σ can be identified with �c 
 Ďc,σ . The set Ďc can be

described as

Ďc,σ = {k1ω̌σ,1 + · · · + knω̌σ,n | 2k1 + · · · 2kn−1 + kn ≤ c, ki ≥ 0 ∀i}.
Following [3, p. 7], we may embed the coweight lattice P̌gσ into P̌ via the identifications

ω̌σ,i = ω̌i + ω̌2n−i , 1 ≤ i ≤ n − 1; ω̌σ,n = ω̌n .

Thus, ρ̌σ can be identified with ρ̌. Each λ̌ ∈ Ďc,σ associates to an element t
λ̌

∈ T σ
c ⊂ T .

The set of positive roots of sl2n can be described as

�+ = {αi + · · · + α j | 1 ≤ i ≤ j ≤ 2n − 1}
and the set of positive roots of sp2n can be identified as

�+
σ = {ᾱi + · · · + ᾱ j | 1 ≤ i ≤ j ≤ 2n − 1, i + j ≤ 2n}.

Set kn+i := ki , for 1 ≤ i ≤ n − 1. If λ̌ = ∑n
i=1 ki ω̌σ,i , then

�(t
λ̌
) = 4n(2n−1)

∏

1≤i≤ j≤2n−1

sin

(∑ j
a=i ka + j − i + 1

c + 2n
π

)2

�σ (t
λ̌
) = 4n

2 ∏

1≤i≤ j≤2n−1,i+ j≤2n

sin

(∑ j
a=i ka + j − i + 1

c + 2n
π

)2

.

When n = 2, ḡ = 0, c = 1, �λ = �0, �μ = �0, we have Ďc,σ = {0, ω̌σ,2}. Then,

Nḡ,�( �γ ; �0) = 5a−32−3a+11 sin
(π

5

)6−2a
sin

(
2π

5

)6−2a

= 2a−1,

since sin( π
5 )2 sin( 2π5 )2 = 5

16 . In particular, when a = 1, Nḡ,�( �γ ; �0) = 1 (this agrees with
the computation in [3, Lemma 3.12]).
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When n = 2, ḡ = 1, c = 1,

Nḡ,�( �γ ; �0) = 10a sin
(π

5

)−2a
sin

(
2π

5

)−2a

= 32a .
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