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Abstract

Let I be a finite group acting on a simple Lie algebra g and acting on a s-pointed projective
curve (2, p = {p1, ..., ps}) faithfully (for s > 1). Also, let an integrable highest weight
module 77 (%;) of an appropriate twisted affine Lie algebra determined by the ramification
at p; with a fixed central charge c is attached to each p;. We prove that the space of twisted
conformal blocks attached to this data is isomorphic to the space associated to a quotient
group of I acting on g by diagram automorphisms and acting on a quotient of X. Under some
mild conditions on ramification types, we prove that calculating the dimension of twisted
conformal blocks can be reduced to the situation when I acts on g by diagram automorphisms
and covers of P! with 3 marked points. Assuming a twisted analogue of Teleman’s vanishing
theorem of Lie algebra homology, we derive an analogue of the Kac—Walton formula and
the Verlinde formula for general I'-curves (with mild restrictions on ramification types). In
particular, if the Lie algebra g is not of type D4, there are no restrictions on ramification

types.
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1 Introduction

Wess—Zumino—Witten model is a type of two dimensional conformal field theory, which
associates to an algebraic curve with marked points and integrable highest weight modules
of an affine Kac—-Moody Lie algebra attached to the points, a finite dimensional vector
space consisting of conformal blocks. The space of conformal blocks has many important
properties including Propagation of Vacua and Factorization. It is also known that the sheaf of
conformal blocks on the Deligne-Mumford stack of stable pointed curves is locally free. The
mathematical theory of WZW model was first established by Tsuchiya—Ueno—Yamada [27]
where all these properties were obtained. All the above properties are important ingredients
in the proof of the celebrated Verlinde formula for the dimension of the space of conformal
blocks (cf. [1, 9, 22, 23, 28]).

One can replace algebraic curves by I'-covers of curves for some finite group I', and let I'
act on a simple Lie algebra g. Then, the theory of twisted conformal blocks can be similarly
developed. Itis related to the two dimensional orbifold conformal field theory in the literature
[2], where Birke—Fuchs—Schweigert initiated this theory from the perspective of mathematical
physics and conjectured an analogous Verlinde formula for twisted conformal blocks in
certain cases. In [13], the authors obtained similar results as in [27] for I"-curves, including
the properties of Propagation of Vacua and Factorization (under a technical assumption that
I" stabilizes a Borel subalgebra of g; which is automatically satisfied if I" is cyclic), and we
constructed a flat projective connection on the sheaf of twisted covacua on the Hurwitz stack
of pointed smooth I'-curves and we also proved the local freeness of the sheaf of twisted
covacua on the Hurwitz stack of stable pointed I'-curves. Earlier, similar results were obtained
by Damiolini [6] under more restrictive conditions; in particular, where the marking points
are unramified.

This paper is a continuation of our previous work [13]. As our first main result of this
work, in Theorem 3.3, we prove that for any I"-action on g, the dimension of the space of
twisted conformal blocks is the same as the dimension of twisted conformal blocks attached
to I" acting on g by diagram automorphisms and acting on a quotient curve ¥ of X, where I’
is the quotient group of I by the subgroup of elements acting on g by inner automorphisms.
In particular, when I acts on g by inner automorphisms, the dimension of twisted conformal
blocks is, in fact, the same as the dimension of standard (nontwisted) conformal blocks on
the quotient curve, which can be computed by the usual Verlinde dimension formula, cf.
Corollary 3.4. Another application is given in Theorem 3.7, which asserts that if the quotient
group Iis cyclic, then the sheaf of twisted conformal blocks on the Hurwitz stack of stable
pointed I'-curves is actually locally free of constant rank. Note that the sheaf of twisted
conformal blocks on the Hurwitz stack of stable pointed I'-curves is proved to be locally
free in [13, Theorem 8.9]. However, this stack may not be connected in general, and hence
a priori it is unclear that the sheaf is of constant rank.

In Sect. 4, we assume the group I' is cyclic. Under some restriction on ramification
type at marked points, in Theorem 4.7 we give a formula for the dimension of the twisted
conformal blocks in terms of the dimension of the twisted conformal blocks for covers of

@ Springer



Twisted conformal blocks and their dimension Page3of29 76

P! with 3 marked points together with the usual Verlinde numbers of higher genus. This is
achieved mainly by using the degeneration technique to create a node in X and then using
the Factorization Theorem, thereby reducing the problem to a lower genus base curve %
(cf. Lemma 4.2). Further, by using a similar degeneration technique and the Factorization
Theorem, we reduce the problem to a I'-cover of P! with only two ramified points (cf.
Lemma 4.3).

In Sect. 5, we formulate a conjecture which is a twisted analogue of Teleman’s vanishing
theorem for the Lie algebra homology (cf. Conjecture 5.6). Some partial results on this con-
jecture appear in [14] by the authors. In Theorem 5.7, assuming the vanishing conjecture, we
prove an analogue of the Kac—Walton formula for the dimension of twisted conformal blocks
on covers of P! by a cyclic group I" and I" acting on g by ‘standard’ automorphisms (defined
in Sect. 5.1). The main ingredient in the proof of Theorem 5.7 is the generalized Bernstein—
Gelfand—Gelfand resolution for twisted affine Kac—Moody Lie algebras, cf. Proposition 5.4.

The first coauthor derived a Verlinde type formula for the trace of a diagram automorphism
and defined twisted fusion rings in [15, 16]. These results (more specifically Theorem 6.2)
and Kac—Walton formula Theorem 5.7 are two main ingredients in the proof of Theorem 6.5,
which asserts that assuming the homology vanishing Conjecture 5.6, there is a Verlinde type
formula for the dimension of twisted conformal blocks associated to covers of P! with 3
marked points and standard automorphisms of g. Earlier, we expected a relation between
the trace on conformal blocks of diagram automorphism of a simple Lie algebra and the
dimension of twisted conformal blocks for another related Lie algebra. Even though this
explicit relationship is not exactly achieved, however the way we deduce the dimension of
twisted conformal blocks associated to covers of P! with 3 marked points gives an indirect
explanation of their relation. In particular, the formula in Theorems 6.2 and 6.5 look fairly
similar.

We finally combine all the above results and Conjecture 5.6 to prove our second main
result of the paper: Theorem 6.9 determining the dimension of twisted conformal blocks in
a fairly general setting (under some mild restriction on the ramification type only in the case
of g = D). Specifically, Reduction Theorem 3.3; degeneration results Lemmas 4.2 and 4.3
(resulting in Theorem 4.7); and Theorem 6.5 for covers of P! are the important ingredients
in the proof of Theorem 6.9.

Using the machinery of crossed modular categories, under the assumption that I" stabilizes
a Borel subalgebra of g as in [13], Deshpande—-Mukhopadhyay [8] deduced a Verlinde type
formula for the dimension of twisted conformal blocks, which is expressed in terms of S-
matrices. The basic difference in their approach and ours is that we first of all reduce the
problem to the standard automorphisms of g and then we use the degeneration technique and
the analogue of Kac—Walton formula to arrive at our dimension formula. In our approach, in
contrast to [8] we do not need to assume that I" stabilizes a Borel subalgebra, but we do need
to assume that the quotient group I is cyclic.

2 Preliminaries

2.1 Kac-Moody theory

let g be a simple Lie algebra over C. Let o be an automorphism of order m of g. Let K be

b
the field of Laurent series in the parameter ¢, such that o (t) = e !t where € = en and &
acts on C trivially. Let O be the ring of formal power series in . We now define a central
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extension i(g, o) := g(K)° & CC of g(K)? under the bracket
[x[P]+zC,x'[P'1+7/Cl = [x,x'I[PP'] + m™ ' Res;— ((dP)P')(x,x')C, (1)

for x[P], x'[P'] € g(K)°, z, 7 € C; where Res,—q denotes the coefficient of ¢ ~'dr and (, )
denotes the normalized invariant form on g so that the induced form on g* satisfies (6, 6) = 2
for the highest root 6 of g.

Throughout the paper, we fix a positive integer (called the level) ¢ > 0. We also fix an
integer s > O denoting the number of marked points.

We use D, to denote the set of highest weights of g” which parametrizes the integrable
highest weight modules of i( g, o) of level ¢, where the level denotes the action of C, see [13,
Sect. 2]. When o is trivial, we also use D, to denote this set for brevity. For each A € D, s,
we will denote by (77 (1), p,) (or for simplicity #.(1)) the associated integrable highest
weight module of I:(g, o) of level c.

There exists a ‘compatible’ Cartan subalgebra ) and a ‘compatible’ Borel subalgebra
b D b of g both stable under the action of o such that

o =1, )

where T is a (possibly trivial) diagram automorphism of g of order r preserving b and b,
a(h) € Z for any root o of g and €24 is the inner automorphism of g such that for any root
o of g, €4 acts on the root space g, by the multiplication €™, and €24 acts on h by the
identity. Here A is an element in h7. In particular, T and €24 commute. Moreover, r divides
m, a(h) € ZZ° for any positive root o of g* and 6y(h) < 7+ where 6y € (h7)* denotes the
following weight of g*:

highest root of g, ifr=1
0o = 1 highest short root of g°, if r > Land (g,r) # (A2, 2)
2 - highest short root of g*, if (g, r) = (A2, 2).

Let I:(g, 7) denote the Lie algebra with the construction similar to I:(g, o) where o is
replaced by 7, m is replaced by r and € is replaced by € r . There exists an isomorphism of
Lie algebras (cf. [19, Theorem 8.5]):

W, L(g,7) =~ L(g, 0) 3)

given by C > C and x[t/] > x[t797F], for any x an e%j—eigenvector of 7, and x also a
k-eigenvector of ad /. Then, the isomorphism W, induces a bijection

Deo =~ Dery hb> A )
Remark 2.1 The explicit description of D 4 is givenin [13, Lemma2.1]intermsof {n; ; | i €
1(g, 0)} defined there. Also, X can be expressed in terms of numbers a;, aiv which can be
read from [19, pp. 54-55] via [19, Theorem 8.7]. For the convenience of readers, we would

like to point out that there is a typo in the formula for al.v in [19, Theorem 8.7]. The correct
expression is: o) = 1 ® H; + %50 K.

2.2 Twisted conformal blocks

Let ¢: I' — Aut(g) be a group homomorphism, where I" is a finite group and Aut(g) is
the group of Lie algebra automorphisms of g. Let ¥ be a reduced projective I'-curve over
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C with only (simple) nodal singularity, such that no nontrivial element of I" fixes point-wise
any irreducible component of X. Unless otherwise stated, by a I'-curve we will always mean
such a T'-curve. For any p € X, let I', be the stabilizer subgroup of I' at p. Then, I}, is
cyclic if p is a smooth point of X. Let y,, be the ramification type at p, i.e., y,, is a generator

2mi
I

of ', such that it acts on the tangent space T, X by the scalar multiplication e '»

Fix a tuple p = (p1, p2, ..., ps) of distinct smooth points in ¥ such that any two distinct
points are not in the same I"-orbit. Assume further that each irreducible component of ¥ :=
%/ T contains at least one I" - p;. Then, such a (X, p) is called a s-pointed I'-curve. For each
i, let y; be the ramification type at p;. Let t; be a y;-equivariant formal parameter at p;, i.e.,

27i
yiti = e ™ily. Let K, denote the field C((#;)) of Laurent series and let i,(g, ;) be the
associated twisted affine Lie algebra. In fact, it does not depend on the choice of equivariant
t;. We are also given a tuple A= (A1, A2, ..., Ay) of elements, where A; € D, ,, foreach i.
Following [13, Sect. 3], we define the following space of covacua,

He(M1) ® - @ Hi(hs)
[Z\L - pIT - () ® - ® Hi(hg))
where g[=\I" - p] is the Lie algebra of I'-equivariant regular maps from £\I" - p to g, and
the action of L\I" - p on JZ4 (L) ® --- ® J# (M) is given by [13, Definition 3.5]. It was
proved in [13] that twisted conformal blocks share similar properties with usual conformal

blocks, including Propagation, Factorization, WZW connection, etc. Some of these results
are also proved in [6] under more restrictive assumptions.

Y516 (D, X = . Q)

3 Reduction from general actions to diagram automorphisms
3.1 Akeylemma

Let G be a connected, simply-connected simple algebraic group over C, and let I" be a finite
group acting on G. Let G,q denote the quotient of G by its center. Then, I" acts on Gyg
naturally. Let X be a smooth projective connected curve over C with a faithful action of T'.
We regard G,q as the group of inner automorphisms of g, which is a normal subgroup of the
full automorphism group Aut(g). Hence, Aut(g) acts on G4q via conjugation. Let Out(g) be
the quotient group Aut(g)/Gaq.-

Lemma 3.1 Suppose that we are given two group homomorphisms ¢, ¥ : I' — Aut(g) such
that ¢ - ' : T = Gaa, ¥ — ¢ (Y)W (y)~ L. For any I'-stable affine open subset £* in %,
if the action of T on £* is free, then there exists a regular map F: ¥* — Ggq such that

Fy-p) =W Fpy(~. VYpeTiyel
Note that ¢ (y)F (p) ¥ (y) ™" is well-defined as an element of Gg, since p ()W (y) ™! € Gag
foranyy eT.
Proof Let %, be the following (parahoric) Bruhat-Tits group scheme over f_)*, Gy =
T (% x Gag)'', where £* = £*/ T, 7, denote the Weil restriction from ¥* to £*, and the
upper subscript T denotes taking I'-fixed point scheme under the action ¢ of I" via conjugation

on Gaa (y - g :=¢(y)gp(y) ™' fory € T'and g € Gaq).
Recall that a (I, G,q, ¢)-bundle on £* is a right principal G,q-bundle # on X* with a
left Gamma-action on &2 compatible with I"-action on X* such that

y(x-g)=vy(x)- AdyyH(g), foranyy €I, g € Gyg,x € P.
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We now construct a (I, Gaq, ¢)-bundle structure &2y, on X* x Gyq as follows:

e Gyg-bundle: (p,x)-g=(p,x-g),forany p € £* and g, x € Guq;
e I-action: y - (p,x) = (y - p. ¥ (y)x¢(y)~"), forany y €T.

The above bundle &, by taking ¢ instead of v is called the trivial (T, G4, ¢)-bundle
P

Since all the points in X* are unramified, n*(ﬂw)r is a%,-bundle, cf. [7, Proposition 2.9].
Now, we are in position to apply Heinloth uniformization theorem (cf. [12, Theorem 1]),
which asserts that as ¢ -bundles, 7, (ﬁw)r isisomorphic to ¢. Applying the inverse functor
a*() X7*(%) (Gad)z+, we get an isomorphism of (I, Gu4, ¢)-bundles ®: Py, >~ F° (cf.
[7, Theorem 3.2]). From the construction of &7y, we see that there exists a regular map
F: X* — Gyq such that

®(p,x) = (p, F(p)x), forany p e ¥* andx € Guq.

By consideration of I'-equivariance, one can easily deduce that F' satisfies the desired
property:

Fy -p)=¢(F(p)y(y)~', foranyy e [and p € T*.

3.2 Reduction theorem

We consider the following setup:

We are given a group homomorphism ¢ : ' — Aut(g) and a projective irreducible smooth
s-pointed I'-curve (X, p). Let ©* be the complement X\ (UL - p;). Let I'y be the kernel of
themap Po¢ : I' — Out(g), where P : Aut(g) — Out(g) is the projection map and Out(g)
is the quotient group Aut(g)/Int(g) (Int(g) being the group of inner automorphisms of g).
Let I" be the quotient group I/ I'g and let ¥ be the quotient curve X/ I'g. Let pi denote the
image of p; in ¥, and let £* denote the complement E\(F p) where p = {p1, ..., Ps}-
Then, (£, p) is a s-pointed ['-curve. Let ¢, be the composition of the following maps:

[ Out(g) N Aut(g),

where ¢ is a group homomorphism such that the elements in Out(g) act on g by diagram
automorphisms, which preserve a pair (b, h) and a pinning with respect to the pair (b, b),
where b is a fixed Borel subalgebra and b is a Cartan subalgebra contained in b. Let ¢, be
the composition

r-pr Aut(g).

For each p;, choose a Borel subalgebra b; and a Cartan subalgebra h; contained in b; and
both preserved by ¢ (y;) and satisfying the Eq. (2), where y; is the ramification type at p;.
Let 7; be the diagram automorphism part of ¢ (y;) with respect to this choice, i.e., the image
of y; under the analogue of ¢, with respect to the choice (b;, ;) and a pinning with respect

to (b;, b;).

Lemma3.2 For any 1 < i < s, there exists an inner automorphism k; of g such that

ki (b) = b;, ki(h) = b;, and
=K '¢t(Vi)'Ki_1~ (6)
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Proof By an isomorphism theorem of semisimple Lie algebras (cf. [17, Sect. 14.2]), there
exists a unique automorphism «; € Aut(g) sending the chosen pinning with respect to (b, h)
to the chosen pinning respect to (b;, b;). Since the diagram automporphisms ¢,(y;) and t;
induce the same action on the Dynkin diagram of g, we must have t; = Ki/ AR (Kl-, )L
Let D be the group of diagram automorphisms of g preserving (b;, ;) and the given pinning
with respect to (b;, h;). It is well-known that D =~ Out(g). Thus, there exists an element
u € D such that k; := u/ci’ is inner, «; (b) = b; and «; (§) = h;. Then, 7; and «; - ¢, (y;) ~Ki_l
are two elements in D. It follows that t; = «; - ¢, () - /cfl , since 7; and ¢, (y;) have the same

image in Out(g). O
Given a tuple A= (A1, ..., As) of dominant weights with A; € D ,,, we get another
tuple A A = (A1, ..., A) of dominant weights with A € D, ;; as described in (4). Via «;,

we can identify Dc u with D, 5., where y; = ¢,(y;). We denote by ;i the element in D¢ 7,
corresponding to A; € D, under the identification D, o = >~ D,
We attach the space of twisted covacua VE,I‘,¢(P, A) to (Z,p) and ¢: ' — Aut(g).

Similarly, we can also attach the space 75 7 & (;3, 1) of twisted covacua to the s-pointed

I-curve (2, ;3) and the group homomorphism T — Aut(g).

Theorem 3.3 Assume that ©* := X\ (T - p) does not contain any ramified points in . Then,
we have a natural isomorphism of vector spaces

7/Er¢(l’ )‘) qu)(p )‘)

Proof Let ¢, be the composition of the following maps:

r % Aut(g) > Out(g) % Aut(g),

where ¢ is as above.
By Lemma 3.1, there exists F': X* — G,q such that

Fly-p)=¢WF(p¢(y)~', VpeZ* yel. (N
*]1:

This gives rise to a Lie algebra homormophism ® 5 : g[£*]" — g[=*]", given by

X — Adp(7*X), forany X € g[f?*]f,

where 7*X is the pull-back of the g-valued function X on *, and AdF is the point-wise
conjugation by F. One can check that ® r is an isomorphism. In fact, we construct its inverse
map Wy as follows. For any ¥ € g[E*]F, it is easy to verify that Adp-1(Y) € g[Z*]F"f",
where (-)7"% denotes the '-invariants via the usual action of I" on X* and the action on g
via ¢,. Then, Ad-1(Y) descends to the desired element Vg (Y) € g[i*]r.

Let F; be the image of F in G,q(K),). Define KHF,. : I:(g, Vi) —> I:(g, y;) as follows:

x[f]1+— Adp (x[f]) + —=—Resp, (F; dF,,x[f] i, and C; — C;,

ITp; 1
where Adp, is the point-wise adjoint action, (, ) is the normalized invariant form on g, and
C; is the canonical central element. Moreover, Fi_ld F; is the g-valued 1-form, which can
be defined via an embedding p: Gag — GL(V). We regard K5, = = C((f;)) the subfield of
‘Kp, = C((#)), where f; = (t;)¢ and ¢; is the ramlﬁcatlon 1ndex ofr: ¥ — ¥ at pi. It
Ad F (x[f]) € g(Kp,). Itis routine to check that Ad F; is a Lie algebra isomorphism.
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Let @L(g ;) denote the dlrect sum of twisted affine Lie algebras L(g i), and let
@L(g ;) denote the quotient of @L(g ¥i) by the central elements C; — C; withi # j. Let

C denote the image of any C;. Then, @L(g, ;) has the 1-dimensional center C- C. Similarly,
we define the Lie algebra &L (g, y;) with the canonical center C. Let $Ad Fit BL(g, 7)) —
oL (g, i) be the Lie algebra isomorphism induced from ®Ad Fi-

We now consider the following diagram:

- Locz

= — 2 Big ) (8)

iq)F \L@XHF[

1T Loc; N
g[x*] ——= L9, vi),

where Loc;3 ¥ =3, Yj, forany Y € g[Z ] and Locj is defined similarly. By (7), F'~ laF
is (I', ¢,)-equivariant. It follows that the pairing (F 14 F, 7w*Y) is [-invariant 1-form on =*.
Hence, for any ¢ € I - p;, the residue of (F~'dF,*Y) at q is equal to the residue at p;.
Finally, the commutativity of the diagram (8) follows from the following identity for any
Y € g[i*]rz

1
E ——Res,, (F'dF, 7*Y) = § Res, (F~'dF,7*Y) =0,
ITp | IFI
! gel-p

where the last equality follows from the Residue Theorem for (F —-14F, 7*Y)on X (cf. [11,
Chap. III, Theorem 7.14.2]).
From the commutative diagram (8), we have the following natural isomorphism:

- H) ® - ® Aol
Yoro( i)~ — MO B HC) ©)
AET (O ® - ® Hly)

where .7, ();) is regarded as a representation of i(g, ;) via the isomorphism Ad Fi-
Recall the isomorphism W, : I:(g, Tj) i(g, y;) from (3). It is an easy observation that
Wy, = Adp/, where F/ = t.adhi € Gaa(Kp,), hi € b;' is determined by y; as in Sect. 2.1,

adh;

and ¢; is the uniformizer in %, . Moreover, by the Eq (2), ¢(yi) = € 'ti, where ¢; is an

e;-th primitive root of unity. Set g = Fl. Ki - Fl._ € Gaa(Kp,), where ki € Gaq 1S as in

Lemma 3.2 thought of as an element of G,4(%),). Then, g; € Gaq (Wp[)rl’i since

gi(vi) = Fl(vi) -« - Fi (i)™
=" O g ) F () o)
=" M i F (T g™
1" ek () o)

=¢<yi>z;‘dh'(->xfﬂ<~) ¢!

S AL OLI/
where the second equality follows from (7), the third equality follows from (6), and the fifth
equality holds since h; € ).
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By a twisted anologue of Faltings’ lemma (cf. [13, Proposition 10.2]), there exists an
intertwining operator

Iy, s (M), pr) = (He(h). pa; 0 Ady,)

as isomorphisms of I:(g, yi)-modules. This induces the following isomorphism of i(g, Ti)-
modules

Iy s (A (i), pa; 0 AdR) = (H(i), p2; 0 Adg; 0 Adp)
= (%(Al)a Pxr; © @F’/ o Ki)
~ (A(hi), p3, o ki), by equation(4)
= (e (i), p3,)-
Therefore, the operator (obtained from the above isomorphism igf identifying f,(g, 7)) with
L(g. y;) under A\dpi as above):
®I_gi (M) Q- Q@ He(hg) j{”c():l) R ® %(Xs)

descends to the following isomorphism

A (A1) ® - @ Hi (i) 2 2
S — =5 54, (P: 4. (10)
glE*] - () ® - Q@ Hi(hs)) '
Combining the isomorphisms (9) and (10), we conclude the proof of this theorem. O

As a corollary of Theorem 3.3, we get the following result.

Corollary3.4 Let T, ¢, g, [, (T, p) be as in the beginning of this Sect. 3.2. Assume that
= (1). We further assume that T - p contains all the ramified points. Then, for any
L= (A1, ..., A) attached to p = (pi, ..., ps) with Aj € Dc y,,

dim 5 1 ¢(5, 2) = Ng(hi, ..., As),

where g is the genus of ¥ = %/I', A; € D, is attached to ); as in Sect. 3.2 and
N; (A1, ..., Ay) is the dimension of the untwisted conformal blocks attached to a genus
g smooth lrreduable curve and weights (A, ..., Ay) attached to any distinct points.
For an explicit expression of Nz (A1 ..., ks) see [22, Theorem 4.2.19] or Theorem 6.9.
In particular, the corollary applies for any non-simply laced g (i.e., if g is of type By (£ >
2), Ce(€ > 2), Fyor Ga).

3.3 An application
We first recall the definition of stable s-pointed I'-curves from [13, Definition 8.1] (a variant
of [4, Definition 6.2.1]).

Definition 3.5 As—pointed I-curve (2, p) (cf. Section 2.2) is called stable s-pointed I -curve
if ¥ is connected, ¥ := X /T" is a stable curve, i.e., it has at most nodal singularity and the
automorphism group of (z, p) is finite (cf. [22, Definition 2.1.1]), where v : ¥ — ¥ is the
projection. Moreover, we require that for any node g € £ and o € X,

det(6) = 1, if o fixes the two branches at ¢

= —1, if o exchanges the two branches at g,

where & is the derivative of o acting on the Zariski tangent space T, (X).
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We consider a stable s-pointed ['-curve (X, p = (p1, ..., ps)) of genus g with marking
datan = ((I'1, x1), (T2, x2), - . ., (I's, xs)) (cf. [13, Definition 8.7]). By definition, I'; is the
isotropy subgroup of I' at p;. We abbreviate (I';, x;) by ¥i, where y; is the generator of I';

2ny/=1
such that its action on the tangent space T, (X) is viae ™ Id, where m; is the order of T';.
Thus, the marking data n can be identified with the ramification types y = (¥1, ¥2, ..., ¥s)

at p. We assume that T - p contains all the ramified points in X.

Remark 3.6 Under the assumption that I" - 5 contains all the ramified points in X, at any nodal
point ¢ € X, g being unramified and stable, det(6) = 1, o fixes the two branches for any
y € I'y and 'y is cyclic (cf. [4, Corollaire 4.3.3 and the comment after Definition 6.2.3]). In
this case, any stable s-pointed I'-curve (X, p) is exactly an admissible s-pointed I'-cover in
the sense of Jarvis—Kaufmann—Kimura [18, Definition 2.1,2.2]. The only difference is that,
in our definition, stable s-pointed I"-curves are connected, and admissible s-pointed I'-covers
defined in [18] can be disconnected.

Let Wgyr’)} be the Hurwitz stack of stable s-pointed I'-curves of genus g with marking
data y, cf. [13, Sect. 8]. Then, Wg’n)‘) is a proper and smooth Deligne-Mumford stack of
finite type, cf. [13, Theorem 8.8]. We can attach the sheaf ¥ r (¥, %) of twisted covacua on
HMg 1, where A= (A1, ..., Ay) with A; € D ;. When I stabilizes a Borel subalgebra
of g, the sheaf 7 g,r,q;()_/', X) is locally free over M, 1 5, cf. [13, Theorem 8.9]. When I' is
cyclic, Mg r 7 is irreducible [13, Remark 8.11 (1)]. Thus, Vg,lw)(?, X) is locally free of
constant rank for cyclic I". For general I, Wgyp,}; could be disconnected. Nevertheless,
we have the following theorem, which is an application of Theorem 3.3.

Theorem 3.7 With the notation as in Sect. 3.2 and with same assumption as in Theorem 3.3,
suppose that the quotient group r of T is cyclic and " stabilizes a Borel subalgebra in g.
Then, the sheaf ¥4 r,¢(V, X) on M, vy is locally free of constant rank. Observe that [is
cyclic for any g of type other than Dg.

Proof We freely follow the notation from Sect. 3.2. Given any s-pointed smooth I'-curve
(2, p) with ramification data y = (y1, ..., ys) at p, taking the quotient of % by I'g we geta
smooth s-pointed ["-curve with ramification data 7 Y = (J1,...,¥s) at p. Let g be the genus
of 3. The Hurwitz stack of stable s- pointed I-curves with marking data y 1s irreducible,
since by assumption [ is cyclic. By [13, Theorem 8.9], the sheaf 7/g,r,¢L(V’ A) of twisted

covacua on M af; is locally free of constant rank, where ¢, is the group action of I on g

and A is the s-tuple of dominant weights attached to ;3 as in Theorem 3.3. By Theorem 3.3,
when (X, p) is a smooth s-pointed I'-curve, we have

dim 75 ¢ (p, ) = dim ¥ ¢ 5 (B, A).

This in particular implies that dim ¥ r 4 (p, X) is constant along the smooth s-pointed I'-
curves (¥, p)in Wg’[‘,}; .By [13, Theorem 8.9] again, the sheaf ¥, 1 4 (7, )i) is locally free.
To conclude the theorem, it suffices to show that every component of %M , 1 ; must contain
a smooth s-pointed I"-curve. Indeed this is true, as any stable s-pointed I"-curve with nodal
points admits a smoothing deformation (cf. [13, Lemma 8.3 and Proof of Theorem 8.9]). O
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4 Reduction via degenerations

In this section, we are in the same setup as in Sect. 3.3 and we further assume that I" is cyclic
of order m.

Let g be the genus of ¥ = X/T. By the Riemann—Hurwitz formula when ¥ is a
smooth irreducible I'-curve, the genus g satisfies the following equation (cf. [11, Corol-
lary 2.4, Chap. IV]):

T
[T

s
20-2=1T12§ -2+
i=1

(Tl = D). (11)

Lemma4.1 Let (X, p) be a stable s-pointed smooth T-curve. Then, the dimension of
Y5.1,6(D, 1) only depends on ¢, g, U, ¥ = {y1. ..., ¥s}. A and the level c.

Proof By Riemann-Hurwitz formula (11), g is determined by g, m and 3. Observe that I'
being cyclic, I stabilizes a Borel subalgebra in g. Thus, the lemma follows from Theorem 3.7.
]

Set (for fixed ¢ and ¢ > 0)
Nzr(¥; 2) = dim %5 1.4 (5, 1). (12)

Lemma 4.2 Let (2, p) be an irreducible s-pointed smooth T -curve with ramification data y
such that T - p contains all the ramified points in X. Assume that the quotient 3 has genus
g > 1 (in particular, (Z, p) is stable T-curve). Then, (X, p) admits a degeneration to a
stable s-pointed T-curve (X', p') (in particular, X' is connected) such that the nodal points
of X' form a single T-orbit T - y and the action of T on T -y is free. Moreover, T - p’ contains
all the ramified points of ¥'.

Ifg>2orifg=1and{y1,...,vs} generate T', then X' can be taken to be irreducible.
Inany case, X'/ T is irreducible and hence we can take p’ to lie in an irreducible component
of ¥

Proof Let ;3 be the image of p in %. Then, the fundamental group of 2_]\;3 has the following
presentation:

lan Br, oz Bt | [an, Bil- - log, Bglm -+ - ns = 11,

where 7; represents the loop around the marked point p;, and &, 8; represent loops around
each handle of . The '-curve ¥ being irreducible gives rise to a surjective group homo-
morphism f: (E\ZB) — I, where n; is mapped to y; for each 1 < i < s. In particular,
we get y1y2 - - ¥s = 1 (since I is cyclic by assumption; in particular, abelian).

Let (C/, 1;’ ) be a stable degeneration of (~Z_], ;3) with C’ irreducible and with one single
node x (w~hi<3h is possible since g > 1). Let C’ be the normalization of C’ with X, X~ over
X. Then, C” is smooth and irreducible with genus g — 1. Let U be the complement

C\F. ppo e B} = CNEE X7 B B
Then, the fundamental group of U has the following presentation:
{an, B, g1, Be—1 o o . | [, B

e [Olg—lv ,Bg—l] . (1+Ol_1’]1 ey = 1},
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where 7; represents the loop around p/, a* represent the loops around ¥*, and «;, B;
represent loops around each handle of C’. We now construct a group homomorphism
f': m(U) — T such that f'(n;) = y; forany 1 < i < s, f'(@™) = fl(a™) = 1,
and f'(aj) = y, f'(Bj) = y ! foreach 1 < j < g — 1, where y is a generator of
the cyclic group I'. Since y; ---ys; = 1, f’ is indeed a group homomorphism. The group
homomorphism f” gives rise to a I'-bundle U — U with U a smooth (but not necessarily
connected) curve. By taking the unique smooth projective closure X p D U, we get a smooth
s-pointed I'-cover m: Xy — C’ with marked points [;’ , such that the ramification data
at ];’ isy = (y1,...,vs) and the ramification data above ¥* is trivial. Let y* be a point
above T, chosen so that y* and y~ are in the same component of the curve X . Thus,
a'GH =l oyt 0<i<m—1andn "G ) ={y' -y |0<i <m—1}are free
I"-orbits. By identifying yi -y* and yi+1 -y ,foreach0 <i < m — 1, we get a stable
(in particular, connected) s-pointed I'-curve X’ from X ;» whose quotient by I' is exactly C’.
Then, (X', 1;’) is the desired stable s-pointed I"-curve with nodal points 7 laEh. m]

Lemma4.3 Let (Z, p) be a stable s-pointed (irreducible) smooth T-cover of (P!, 5) (in
particular, s > 3) such that T - p contains all the ramified points in ¥ and has ramification
datay = (Y1, ..., ys). Suppose that y1y; - - - v; = 1 for some t with both t,s —t > 2. Then,
the T-cover . — % = P! degenerates to a stable s-pointed T'-curve (X', p') whose quotient
is a union of two projective lines intersecting at a point x, such that above one projective
line the ramification data is (y1, . . ., y;), and above another projective line the ramification
datais (Yi+1, - . -, ¥s). Moreover, the fiber over x is a free I'-orbit consisting of all the nodal
points of X', Further, T - p’ contains all the ramified points of &'.

If {y1, ..., v} generate T, then the curve over the first projective line can be taken to be
irreducible.

Proof The fundamental group of P'\{p1, p», ..., ps} has a presentation:

i, n2, oo | omm2---my =14,

where 7; are loops around p; .
The irreducible T'-cover & — P! gives rise to a surjective group homomorphism

f: m(PN\p) — T such that f(n;) = y;. Let Uj be P'\{p, ..., p;} and let U, be
]P)l\{[;[+1, ..., Ps}. Foreach k = 1, 2, we construct a group homomorphism f;: 71 (U) —
I" such that

fim) =y, forany 1 <i <t, fo(n;) =vy;, foranytr+1=<j <s.

Observe that f1 and f; are group homomorphisms, since by assumption y1y5 - - - yy = 1. For
eachk = 1,2, let (X, px) be the unique smooth I'-cover of P! associated to fi (X £ could
be disconnected), such that p; has the ramification data (yy, ..., y;) and (y,41, ..., ;) for
k =1, 2 respectively. Fix any (unramified) I'-orbits I - x; C Xy, and I" - xp € X, over
points in U; and U, respectively. We glue X ¢, and X 7, along any I"-equivariant map between
I'-x; and " - xp. Since f is surjective, we get a connected s-pointed I'-curve (X', py, p2)
whose quotient is a union of two projective lines intersecting at a point x, with marked points
(P1s .-+ Dts Dt+1s - - -» Ps)- This s-pointed I"-curve has the desired properties. O

LetT, ¢, 2, p=(p1,..., ps), ¥ = (yl,...,ys)andX = (A1, ..., As) beasinSect. 2.2.

Assume further that ¥ is smooth and it has an irreducible component £ such that each p;
belongs to X¢?. Moreover, ¥ = %/ I is irreducible. Let I'? be the subgroup of T" stabilizing
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X% Then, I'°, ¢° := ¢jro, £, p, 7 and 2 also satisfy the assumptions of Sect. 2.2 (observe
that "), = F;’,i).
We have the following reduction lemma.

Lemma 4.4 With the assumption as above, we have:

1. There exists an isomorphism § : ' xpo X° >~ % ofl"-curl/es given by [y, x] =YX
2. There exists an isomorphism of vector spaces Vs r.¢(P, A) = V5o ro go (P, A). In par-
ticular,

dim %5 1. (P, %) = dim Fso o g0 (5, 1).

Proof For part (1), clearly the map f is surjective (since ¥ is irreducible) and I'-equivariant.
The injectivity follows from the definition of I'? since, forany y € I', y £° N £¢ # @ if and
only if y € I'? (this uses the smoothness of X).

For part (2), it suffices to check that the restriction map

Res: g[E\[ - 51" — g[=\I - 1™

is an isomorphism: For any I'-equivariant map X: ¥\I' - p — g, if X vanishes on the
component °\I'? - p, then, by I"-equivariance, X vanishes everywhere. Thus, the restriction
map Res is injective.

For any I'’-equivariant map Y : £°\I'° - j — g, construct an extension ¥ : S\I'- j — g
given by f(q) = ¢,-1(Y(y - q)) for any y such that y - ¢ € Z°\I'” - p, where ¢,-1 s
the automorphism of g associated to y ~!. One can check easily that Y is a well-defined
I'-equivariant regular map. Thus, the restriction map Res is an isomorphism. O

Notation4.5 1. Let N, (X) denote the dimension of the space of (untwisted) confor-
mal blocks attached to an irreducible smooth projective curve C of genus g and
%= (A, ..., ) ats-points in C with A; € D,. _

2. For anintegerm > 1,letI';,, = (y) (cyclic group of order m) act on P! byy-z= e%z
forzePland ¢ : '), — Autg. Let (A, i, v) be a set of dominant weights, such that
A€ Dey, b € DC’Vfl and v € D, attached to the points (0, co, 1) respectively. We
denote by Ny (y; A, u, v) the dimension of the twisted conformal blocks attached to this
data.

It is well-known that N, (X) can be computed by the usual Verlinde formula (cf. [22, The-
orem 4.2.19]). By the reduction theorem in Theorem 3.3, the computation of Ny(y; A, u, v)
can be reduced to the case when y acts via a diagram automorphism of g. In fact, by the
same reason it suffices to assume that y acts on g via a standard automorphism in the sense
of Sect. 5.1. In Sect. 6, we will prove a Verlinde type formula for Ny (y; A, i, v) when y
acts on g via a standard automorphism.

Lemma 4.6 Let I" be a cyclic group of order m > 2. Then, any irreducible smooth T"-cover
% of P! with two branched points in P! is isomorphic to 7 : P! — P! given by z — 2" and
the action of T on P is generated by z ezmﬂz.

Proof Let g be the genus of . Let p;, po be the branched points in P! with ramification
indices e and e>. By Riemann—-Hurwitz formula (cf. the identity (11)),
m m

m m
26—2=-2m+—(1— )+ —(2—1)=—— — — < 2.
el e el e

Thus, g = 0, and ¢; = ey = m. It is easy to see that such a I'-cover X over P! is isomorphic
to : P! — P! given by z > ™. O
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The following theorem reduces the problem of calculating the dimension of twisted con-
formal blocks to that of the classical Verlinde numbers together with Ny as in Notation 4.5

Theorem 4.7 Let (X, p) be an irreducible smooth s-pointed T-curve, where s > 1 if g > 1
and s > 3 if § = 0 (so that (¥, p) is a stable s-pointed T'-curve) and T is any finite
cyclic group. Assume that T - p contains all the ramified points, and that we can write
p = (p1,..., ps) so that py, ... pa are ramified (for some a > 0) and pra+1, ..., ps are
unramified. Assume that yri—1y2 = lforeachl < k < a. Leth = (A1, ..., A2g) beattached
to (p1, ..., p2q) with each A; € D, y,, and i = (Wi, ..., Mup) attached to (prg+1, ..., Ps)
with each juj € D, where s = 2a + b. Then, we have the following formula:

a
Ngr (s 4, i) = dim 75 p (5, A, i) = ) (1_[ N (Yak—15 Aok—1, Aok, Vk)) “ Ng (i, v),

voo\k=1

where the summation is over v = (vy, ..., vq) withv; € D.. Here, Ng(Vak—1; AMk—1, A2k, Vi)
and Nz (fi, v*) are defined in Notation 4.5.

Proof We prove the theorem by reducing the problem for g to that of g — 1. So, assume that
g=>1

By Lemma 4.2, there exists a stable s-pointed '-curve (¥’, 1;’ )in Wg,r,; (in particular,
¥’ is connected) and ¥ has a I'-free single I'-orbit of nodal points. Moreover, I - [;’ contains
all the ramified points of ¥’. Further, by part (1) of Lemma 4.4, the normalization of X’
at nodal points is isomorphic to I' X1 %!, where £! is an irreducible smooth projective
I'!-curve for some subgroup I'! of . Applying the Factorization Theorem [13, Theorem 5.4]
and part (2) of Lemma 4.4, we get:

Ner@iho )= ) Ny, 1154, i ms ). (13)
N1 €D,

Thus, inducting on g and keep using the Factorization Theorem, Lemmas 4.2 and 4.4, we
get

Ngr@: A )= D Nor(@, logs &, i, i, ), (14)
iie(De)8

for some subgroup I'” of I', where 77 = (n1,...,13) € (D)8 and 7* = My, ..., ng) €
(D.)8. We emphasize here that Ny /(-) denotes the dimension of the space of twisted con-
formal blocks attached to an irreducible smooth projective I''-cover of L.

Similarly, keep using the Factorization Theorem, Lemmas 4.3 and 4.4 for the pair
(pak—1, pax) of points with 1 < k < a, we get [using the Eq. (14)]:

Nz r(7; X, ji)

a
=y (1_[ No,ry (2k—1, Y2k 13 Aak—1, Aok, Vk)) “ No,rv(Lagbrai A 1, 177, V),
5 \k=l

(15)

for some subgroups I'”” and T’y of I for each 1 < k < a, where the summation is over
V=1,...,v)and ij = (n1, ..., nz) with v;, n; € D.

Note that any étale I'"-cover % over P! is isomorphic to P! x I'”. Since ©” is irreducible,
it follows that T’ = 1. Then, by Notation 4.5, we have

No.r (15 i, 1, 7%, v*) = No(it, 7, "%, V™).
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By Lemma 4.6, any irreducible smooth T'x-cover over P! with ramification data
(v2k—1, y2k) 1s isomorphic to a standard I'x-action on P! as in Lemma 4.6.
Then, by Notation 4.5, for each k we have

No,r (V2k—1, Y2k s Aok—1, A2k, Vi) = N (Vok—15 A2k—1, A2ks Vi)-
Thus, from (15) we get

a

Ner(Fih i) =) (H N (vak—1; hak—1, haks wa) - No(ik, i, 71", 3%) (16)
55 \k=I
a

= Z (1_[ Ng(Vak—1; Aak—1, A2k, Vk)) : ZNo(ﬁ, 7, 7%, v%) (17)

v k=1 i

a

= Z (1_[ Ny (Vak—1; 2ak—1, Aok, Vk)) - Ng(m, v"), (18)
v \k=1

where the last equality follows from factorization of fusion rules for conformal blocks in
untwisted setting, cf. [22, Corollary 3.5.10 (a)]. This concludes the proof of the theorem. O

Remark 4.8 Assume that " >~ Z/27. Let (X, p) be a stable smooth s-pointed I'-curve such
that I" - p contains all the ramified points in X. By Riemann—Hurwitz formula (11), there are
even number of ramified points in X. Thus, up to ordering we can always write

P =(Pi,---\P2as P2atls---s Ds)s

sothat py, ..., pa, are ramified and (p24+1, - - ., ps) are unramified. Then, by Theorem 4.7,
the dimension of the space of twisted conformal blocks attached to any ramification data can
be reduced to compute Ng(y; A, u, v) and Nz(}).

Remark 4.9 Assume that I' ~ Z/3Z. We have an elliptic curve E over P! as a '-cover. The
ramification type of E is (y, y, ), where y is a generator of I". In this case, Theorem 4.7 is
not applicable since y2 # 1.

5 Kac-Walton formula for twisted conformal blocks

5.1 Standard automorphisms

An automorphism o of g is called special if o is a diagram automorphism (which includes
the identity automorphism), or an order 4 automorphism of g when g is of type A, which

is defined as follows. Let ¢;, fi, hi, i = 1, ..., 2n, be the set of Chevalley generators. The
automorphism o of g is defined such that

o(ei) = er(i)s ifi #n,n+1;
ole) =~/—lerqy, ifie{n,n+1};, (19)
a(fo) = Jo,

where 6 is the highest root of g and 7 is the nontrivial diagram automorphism. In fact, we
can write

o = Tﬁadh, (20)
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where h € hissuchthatw;(h) =0ifi Zn,n+lando;(h) =1ifi =n,n+ 1.

We call o to be a standard special automorphism (or simply a standard automorphism)
if o is the identity automorphism or a nontrivial diagram automorphism when g is not of
type Ap, or o is the order 4 special automorphism as above. (Observe that for a standard
automorphism, g° is the same as J as defined in [19].) So, the only difference between special
and standard automorphism is that we exclude the nontrivial diagram automorphism of Ay,,.

The following table describes the fixed point Lie algebra for all the nontrivial special
automorphisms, cf. [3, Sect. 2.1]:

(g9, m)|(A2,—1,2)| (A2, 4) [(A2, 2) | (Diy1, 2) |(D4, 3) |(Es, 2)
g° Cy (o B, B, G> Fi [

2D

where by convention Cy and B are A and n > 3 for D, .

Lemma 5.1 Let g be of type As, and let o be the standard nontrivial automorphism of g.
Then, the bijection D¢ >~ D in(4) is givenby Y '_, aikic — Z;’:_ll aikf +Qa,+c)rB,

where {)\.IC i =1,...,n} is the set of fundamental weights of g°, and {)\IB li=1,...,n}is
the set of fundamental weights of g*. (We follow the labelings in [19, Table Fin, p. 53].)

Proof Let «j, ..., az, be the set of simple roots of g, and let &y, ..., @y, be the set of
simple coroots of g. Then, aq|yo, ..., @y—1lpo, 20| form a set of simple roots for g°,
cf. [3, Sect. 2.1], and {&; + dop+1—i |i = 1, ..., n} is the set of simple coroots of g”. On
the other hand, {rlgo, ..., @u—1lpo, anlpe} form a set of simple roots for g*, and {a; +
G2y v vy Opy1 + Qpa2, 2(d, + &po1)} form the set of simple coroots of g®. The lemma now
easily follows from [13, Formula (6)]. O

5.2 Affine Weyl group of twisted affine Lie algebras

Let o be a standard nontrivial automorphism of g and let i( g, o) be the Lie algebra L (g,0)®
Cd, where

[d, x[t*1] = kx[t*], [d,C]1=0, foranyx[t]e L(g,0).

Then, L(g, o) is a Kac-Moody Lie algebra of twisted type with canonical center C and the
scaling element d, and the fixed subalgebra g° is the “standard” finite part of L(g, o) in the
sense of [19, Sect. 6.3]. This is obvious when g is not of type Aj,. When g is of type Ay,
using the formula (20) this can be seen from [19, Theorem 8.7] or [13, Sect. 2].

Set h := h” @ CC @ Cd. Then, the dual b* = (§7)* & C§ & CAg, where § and Ag are
defined as follows

3lpe =0, (5,C) =0, (3,d) =ap, Aolyge =0, (Ao, C) =1, (Ap,d) =0,
where

an = 1 lf (g»m) 7& (A2n74)
T2 if(g,m) = (Amm, 4.

Note that Ag is a fundamental dominant weight of i(g, o) of level one.
Let WZ( 0.0) denote the Weyl group of L(g, o). Let O, (resp. P, ) be the root (resp. weight)
lattice of g°. Set

o {Qa if (g.m) # (A2, 4) o)

1061 if(g.m) = (A2, 4),
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where Q  is the lattice spanned by the long roots. Let W be the Weyl group of g. Then, the
fixed subgroup W€ can be identified with the Weyl group of g?. Let W, . denote the affine
Weyl group W9 x cM.

Set
big =P ®zR, b =P, ®2R+RAg+RS.
Note that Wi(g,g) keeps 4 invariant (cf. [19, Sect. 6.5]). Hence, Wi(g,a) acts on 6]’1‘&6 for any
¢ € R, where

0. = (x €3] (x, C) = c}/R.

With respect to the isomorphism b¥

= Eﬁ%c given by A +— cAg + A, we have the
following lemma (cf. [19, Proposition 6.5, Sect

.6.5] or [15, Lemma 3.1]).

Lemma 5.2 There exists an isomorphism af © Wy
A =cAo+rebl, withieb’,andw € W;

@o) = Wo.c of groups such that for any

(g.0) the following formula holds,

w-A=cAg+af(w) Ain 6]’1"{,6.

Let p be the sum of all the fundamental weights of i(g, o). By [19, Identity 6.2.8],
p = po + o, (23)

where pg is the sum of all the fundamental wevights of g%, and i is the dual Coxeter number
of L(g,0), cf. [19, Sect. 6.1]. Observe that 4 is the same as the dual Coxeter number of g
(cf. [19, Remark 6.1]).

We define x action of Wy (9,0)

on I‘A)ﬁ‘{ . as follows:
wxA=w-(A+p)—p, wEe Wigo) A€ [A)ic.
Similarly, we still denote by « the following action of W, . on h:R:

Wik =w - (A + p5) — pPo, wE Wy, A€ b:yR- (24)

Lemma5.3 Given A =cAg+ X € FA)]E candw e Wi we have

(g,0)
wxA = A +af;(w)xA, where af; (w) is taken in W,

0,c+ﬁ'
Proof 1t follows from Lemma 5.2 and the formula p = p, + ivao as in (23). ]
Set
| highest short root of g7, (g, m) # (A2, 4) (25)
| 3 highestroot of g%, (g, m) = (Azy, 4)
and
P highest coroot of g7, (g, m) # (A2, 4) (26)
77 2. highest short coroot of g°, (g, m) = (A, 4).

Let (-|-) denote the normalized bilinear form on h° (which is the restriction of the normalized
invariant form on h). Let v: h” =~ (h?)* be the induced isomorphism. Then, v(6,) = %0(,,
cf. [19, Sect. 6.4].
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When o is standard and nontrivial, using formula (20) (for the case (g, m) = (Az,,4))
combined with [13, Sect. 2] for the diagram automorphisms, we get:

Deo = {1 € P (0 05) <0)) 27)

where P is the set of dominant integral weights of g°.
Let W' . denote the set of minimal representatives of the right cosets of W2 in W_  ».
o,c+h o,c+h

Then, for any w; € W? and wy € WJ i We have £(wjw;) = £(wy) + £(ws). For any
w e W;L e+ and & € D, one has wxk € P, and wxi # w'«A for any two distinct

w,w € W; " (cf. [20, Remark 1.3]). Since (pg, ég) =h— 1, D, » can be identified with
the interior integral points in the fundamental alcove of W, - with respect to the  action.

5.3 Analogue of Kac-Walton formula

LetT = (o) of order m act on P! byo(z) = e% z (forz € P'), and o acts on g via a standard
automorphism of order m. For any z € P'\{0} and any finite dimensional representation V
of g'=, where I', is the stabilizer subgroup of I at z, we denote by V, the representation of
g[~11° via the evaluation map ev,: g[t~']° — g'= by letting r = z. Recall that for any
A € D, 4, we have an integrable highest weight representation .77 (1) of i,(g, o) of level ¢
and highest weight A. Let H; ((+~'g[t~')?, #.(1) ® V(u)1) denote the i-th homology of
(t~ g+~ with coefficients in (1) @ V (1)1.

Proposition 5.4 For any A € D, and u € PT (where P is the set of dominant integral
weights of g), the homology groups H,((t 'glt~'1)?, 24.(A) ® V ()1) can be computed as
the homology groups of a complex of g° -representations,

p 8 8o
= F,— - F| — Fy— 0,
where as representations of g°,

P V) @ (Vg (28)
we W:chrﬁ,e(w):p

V (wxL) is the irreducible representation of g° with highest weight wxA and V ()| go denotes
the irreducible representation V (i) of g considered as a representation of g° via restriction.

Proof Recall the generalized BGG resolution for Kac—Moody algebras from [21, Defini-
tion 9.2.17]. By Lemmas 5.2 and 5.3, we can express the generalized BGG resolution of
. (A) as follows:

B P
= M, DD My S A,
where

M, = &P M (wxh), (29)
we W; HE,Z(w):p

and M(w*k) is the generalized Verma module U(i (9,0)) ®u(glrirace) V (wxi), with C
acting on V (w=\) by the scalar ¢ and g[7]° acting via the evaluation at t = 0.
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By tensoring with V (i), we get a resolution of #2(1) ® V()1. As g°-modules, we
have the coinvariant

(MWs1) ® V(1)1 -1g-17yr = (U gl D7) @ V(weh) @ V) (-1 gg,- 170
= ((V(wsh) @ V(1) ®c U alt ™' D)) 1 gp1pe -

by the Hopf Principle [21, Proposition 3.1.10]
~ V(wxd) @ V().

Hence, the complex (M, ® V(M)])(tflg[t—l])(r is isomorphic to

5 - -
o> Fpy > - Fy LN Foio,
where F), is given in (28). Thus, the proposition follows. O

Consider the automorphism o of P! given by o (z) = £z forz € P!, where £ = ¢ o With
respect to the Galois cover 7w : P! — P! given by z > 2, the ramification type at 0 € P!
is o and the ramification type at oo € P! is ¢ ~!. For twisted conformal blocks associated to
the Galois cover 7 and an automorphism o of g of order m, we attach a dominant weight in
D, at0 € P!, and a dominant weight in D, ,-1atoo € P!. We have the following lemma.

Lemma 5.5 For any standard nontrivial automorphism o of g, we have D¢ = D, ;-1.
Moreover, for any ju € D o, 0 = ™ where * is the dominant weight corresponding to the
dual representation V (i)* of g°.

Proof By [13,Lemma5.3 (2)], u € D, ifand only if u* € D, ,-1.Since g° is non simply-
laced or Ay, A* = —w{ (1) = A for any weight A of g, where w{ is the longest element of
the Weyl group of g°. m}

Thus, we can use D, , for the common set of dominant weights of g° to attach to 0 as
well as oo € P!

Similar to Teleman’s vanishing theorem [26, Theorem 0], we make the following conjec-
ture.

Conjecture 5.6 Let o be a standard automorphism of g. Then, for any A, it € D¢, v € Dy,
and for any i > 1, the representation V (n)* does not occur in Hy (¢t~ 'g[t~'1)?, #.(0) ®
V(v)1) as a g°-representation.

This conjecture has been confirmed in [14, Corollary 3.20] under strong constraints. In
particular, when the level c is sufficiently large comparing to A, i and v, this conjecture
always holds.

We are now ready to deduce the following analogue of Kac—Walton formula for twisted
conformal blocks.

Theorem 5.7 Take any standard automorphism o of g of order m and the Galois cover
7P = Pz 2" Let p = (0,00, 1) in P, and A = (A, ju, v) with A, u € De, and
v € D.. Suppose that Conjecture 5.6 holds, then

dim ¥ (.00 = 3 (=D dim ((V(w*x)qcv(u)@wu))g”), (30)

wew!
o,c+h

where T is the cyclic group of order m generated by o and ¢ : I' — Autg is the one
generated by o.
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Proof By the Propagation Theorem for twisted conformal blocks (cf. [13, Theorem 4.3]),
we have the following isomorphism:

Pt 1o (B2 2) = (D) ® V(oo ® V(W) gp-1p0
= () ® V) 1gptpe @ V(W) o
since (' g[t ') acts trivially on V (1) eo
~ Homgo (V(u*), Ho(¢'glt ' D7 0@ V()D). (3D

We have the following equalities:

dim (Homgo (V (11*), Ho((t™'alt~"1)7., (1) @ V(v)1)))

=Y (=1 dim (Homge (V (u*), H; (¢ glt ™' )7, #e0) @ V(1)1)))
i>0

> (=DM dim (Homge (V(1*), V(wh) ® V(1))
wEWJr

a',L‘Jr/;

> DM dim (VW @ V(wan) @ V), (32)
WEW:,(J+E
where the first equality follows from Conjecture 5.6, and the second equality follows from
Proposition 5.4. Combining the isomorphism (31) and the identity (32), we get the theorem.
O

6 Verlinde formula for twisted conformal blocks

6.1 Verlinde formula for basic cases

In this section, we assume that o is a standard nontrivial automorphism of g. Recall the
lattice M introduced in (22). Then, M is the root lattice of g°, if g is not A,,, and by [15,
Lemma 2.3], M is the weight lattice of g” when g is of type Ay,. Let G be the connected and
simply-connected (simple) algebraic group with Lie algebra g. Let 7 be the maximal torus
with Cartan subalgebra b as its Lie algebra.

Lemma 6.1 The fixed group G° is connected and simply-connected.

Proof When G is not of type A»,, o is a diagram automorphism. In this case, the lemma
is well-known. For the connectedness see [25, Theorem 8.1], and the simply-connectedness
follows from [24, Sect. 10.3]. We now assume that G is of type Aj,. Let T be the diagram
automorphism part of o. Then, 7° = T7. It is known that 7" is connected. Thus, G is
connected of type C,, see Table (21). Let {«y, . .., a2, } be the set of simple roots of Ay, with
the standard labelling and let {&1, . . ., &2, } be the set of corresponding simple coroots of G.
Then, ailpo, ..., an—1lpo, 20,y form a set of simple roots for G (cf. [3, Sect. 2.1]) and
{&; + dopt1—i : 1 < i < n} form the set of simple coroots. Using simple coroots, we can
introduce a coordinate system of T, (G)* ~ T. Then, it is easy to verify that G,, — T
given by a — &;(a)d2,+1—i(a) is a simple coroot of G, for every i = 1,...,n. Thus,
Hom(G,,, T?) is the lattice of coroots. It follows that G is simply-connected. O
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With this lemma, we may regard the lattice M as a sub-lattice in the weight lattice X*(7°?).
We now define

To :={teT°|e"1t) =1, Vi e (c+h)M). (33)

Let Tca’reg denote the set of regular elements in 7,7, i.e., those elements with trivial
W€ -stabilizer. Let RY (g) denote the fusion ring associated to the twisted affine Lie alge-
bra i,(g, o), which is defined in [16]. For any regular function f on 7° or T, we will
denote by f the restriction of f to 7,”"“. In [16], the ring R? (g) is realized as the function
space C[T) /W] = C[T"**1"° (with the ring structure coming from the product of
functions), with a basis {x, | A € D, }. (We describe x, explicitly after Remark 6.3.) The
following theorem is proved in [15, 16].

Theorem 6.2 Forany A, it € D, s, we have

_ N -
Xa - Xp = Z o, Xn>
n€Dc.o

n

where Con

is given by

1 _ _ _
= To] > OO T (DA (). (34)
c leTca.reg/Wa

Here Ay is given by
Ao = ] (=D,
aed,

where @, is the set of all the roots of g°.

Remark 6.3 Given a simply-laced simple Lie algebra g with a diagram automorphism 7 of
order 7/ > 1, a fusion ring R.(g, 7) is defined in [15] for the purpose of deducing a formula
for the trace of 7 on the space of untwisted conformal blocks associated to g. In fact, there
is an isomorphism of rings R? (g) >~ R.(g, T), with a correspondence between (g, m) and
(g, 7) as follows (cf. [16, Sect. 3.1]):

(g, m)|(A2n—1,2)|(A20, 4| (Dpy1,2) | (D4, 3)|(Es, 2)
(@, 7) | (Dn+1,2) [(A2n, 2)[(A2n—1,2) (D4, 3)|(E6, 2) |

Moreover, Theorem 6.2 is equivalent to the formula for the trace of 7 on the space of conformal
blocks associated to g.

(35)

As mentioned above, RY (g) can be identified with the ring C[T."°¢ JW?]. Thus, there
is a natural ring homomorphism 7 : R(g°) — R? (g) given by [V, ] — x,, where R(g“) is
the representation ring of g, x, is the character of V(1) as a function on 77 and y is the
restriction of x; to T (which descends to a function on 72" /W?). This allows us to
define ¥, forany A € P;.

Lemma 6.4 Forany A € D; s and w € W; e e have

Hwsr = (=D @ %,

Moreover, by [15, Corollary 5.17], for any n € P;‘\(W; C_H;*Dc,g), 7 (Vy) =0.
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Proof Write w = zt,, where z € W and t,, is the translation by n € (c + WM. By Weyl
character formula,

8o+ Xweh = Z (_])N)‘)ey(w*)»era) — Z (_l)f(y)ey(Z(K+pa+n))7 (36)
yewe yewe

where 3, is the Weyl denominator of g° given by:
o i=e [ (1—e)
ae@;

(7 being the set of the positive roots of g7).
Forany r € T”"°®, we have

85 (1) - Xwar (1) = Z (= 1)t Y04 (1) = (—1)¢@ Z (= 1)ty Ctpo) ()
yeWwe yeWwe

= (=D 3" (=) WX (1) = (=) 55 (1) - xa (1),
yeWwe

where the first equality holds since n € (¢ + l;)M , and second to the last equality holds since

£(ty) is even, cf. [15, Lemma 2.8]. Thus, the lemma follows. ]

Let p = (0,00, 1) in P!, and & = (A, w,v) with A, u € D¢ and v € D,. Recall the
following notation from Notation 4.5 (we have dropped ¢ from Ny (o; A, i, v) since in this
section we are only dealing with ¢ generated by the nontrivial standard automorphisms of

9):
N(o; h, pt, v) = dim Vi 1 4 (B, 2, (37)

where " and ¢ are the same as in Theorem 5.7.
We now prove the following Verlinde formula for N (o; A, i, v), which uses Theorem 5.7.

Theorem 6.5 With the notation as above, suppose that Conjecture 5.6 holds. Then, we have

1
NG b V) = o Y 0 Oxu®Ox A ), (38)
€ rer et ywo

where x5, Xy, Xv represent the characters of V(A), V (), V (v) as representations of ¢°, g°
and g respectively.

Proof Foranyu € D, andv € D.,consider the following decomposition as representations
of g°,

V() @ (V()lge) = @ V(n)GBmZ,U’
neps

where mZ,U = dim (Homga Vi,V ® V(v))). Then,
Vn) @ (V(v)lge)

= @ @ V (wad) Py @ @ V(n)éBmﬁ,u

2€Deo wew! nePSNW! +Dco)

O',L‘+/; +
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Thus, by Lemma 6.4, we have
AV @VWlg) = D> > miwa= >, Y. D miy,.

AeDeo yew'® . AeDco yew'™ .
o,c+h o,c+h

(39

By the analogue of the Kac—Walton formula as in Theorem 5.7, we get using the equation
(39):

T(V(w) ® (V(v)lge)) = Z N(o; A", 1, v) X (40)
AeD¢ o

(Observe that, by Lemma 5.5 A* = .)

On the other hand, consider the following decomposition as g° -representations:

Vlg = @ vip®

neprSt

(41)
- P V (wwd) )@ o D V ()@
VeDeo wew! nEP\W Do)
Then, 7 being a ring homomorphism,
TV VWIg) = > > D x, g (42)

By Theorem 6.2 and equation (42), 7 (V (u) ® (V(v)|g0)) is equal to

! 1
Yo A ED ™ Y (Y e 0x x5 0) %
V€D, w€VVT i MeD¢ o | ¢ |1‘€Tf’re‘g/Wa
g,c+
1
=2 79| Yo e Ox OO (43)

)LED(',U c teTCmreg/W”

where the above equality follows from (41) and Lemma 6.4. Comparing formulae (40) and
(43), we conclude that

N(o5 2%, pu, v) = Do e Ox®x A (1)

|TLU| a,re,
teT "8 ywo

Thus, the theorem follows. O

Following [16], we now describe the set T, “ /W explicitly. Let 6; be the highest root
of g°. Let P;\ denote the set of dominant coweights of g, where the fundamental coweights
in h? are defined as the dual of simple roots. When (g, m) # (A2,, 4), set

Deo ={ke P (. 0) <c),
and

2L (5t

S = {ecth Ve T 5 € Doyl C TS,

@ Springer



76  Page 24 of 29 J.Hong, S. Kumar

Here we identify 7° = Hom(P,, C*), where P, is the weight lattice of g° and g, is the
sum of the fundamental coweights.
When (g, m) = (A2, 4), set

21 (o +A] )

o= {ecth €T |L€Dey) C TS,

where (-|-) is the invariant form on (§)* such that (6;]6;) = 4, equivAalently (+]) is induced
from the normalized invariant form on the twisted affine algebra L(g, o) (cf. [19, Iden-
tity 8.3.8]). The following lemma follows from [15, Sect. 5.4] and [16, Sect. 2].

Lemma 6.6 Any elementt € T, "°® can be translated to a unique element in . by a unique
element of W°.

6.2 Verlinde formula for general I'-curves

Let o be a standard nontrivial automorphism of a simple and simply-connected algebraic
group G preserving a maximal torus T . Set

T.={teT|rt) =1, forany A € (c+fl)Q1g},

where Oy, is the sublattice of the root lattice of G generated by the long roots (if all the root
lengths are equal, we call them long roots). Let 7, °® be the set of regular elements in 7,
i.e., those elements ¢ € T, whose stabilizers in the Weyl group W is trivial. Recall that 77 is
defined in (33).

Lemmaé6.7 1. T7 is the set of o-invariants in T,.
2. The set T.""*® JW® can be identified with the set of o-invariants in T, JW.

Proof For part (1), it suffices to check that the lattice M defined in (22) is exactly the set of
coinvariants of o in Q. When g is not of type A»,, this is obvious. When (g, m) = (A2, 4),
this follows from the description of the simple roots of g in[3, Sect. 2.1]and [15, Lemma2.2].

We now prove part (2). Since G and G? are simply-connected (cf. Lemma 6.1), there
exist o-equivariant bijections

Plc+h)Q=~T., MY/(c+h)Q° ~T°, (44)
givenby A > e (231 /\, where 13, Q are respectively the coweight and coroot lattices of G, Q"
is the coroot lattice of G (it can also be identified with the set of o-invariants in Q), and
MY C b is the dual lattice of M C (h°)*. In particular, MV is the coweight lattice of G”
when G is not of type Ap,; MY is the coroot lattice of G¥ when G is of type Ay, as in this
case M is the weight lattice of G?. From the descriptions of coroots and coweights of G in
[3, Sect. 2.1], we observe that in any case M = (15)”.

Then, T ® /W can be identified with the set of interior P-integral points in the fundamental
alcove of the affine Weyl group W x (¢ + lvz)Q (cf. [22, Lemma 4.2.6 (b)]). Similarly,
T7"% /W can be identified with the set of interior M Y-integral points in the fundamental
alcove of the affine Weyl group W€ x (c+ﬁ) Q” . By the same proofasin [15, Proposition 2.7],
the natural map 7,>"“* /W — (T/“® /W) is a bijection. u]

Given any two finite order automorphisms y, ¥’ of g such that they have the same images

in Out(g), we can naturally identify D, , and D, ,r. More precisely, we first decompose

adh adh’

y = 1€ with respect to a y-stable pair (b, ), and decompose y’' = t’e with respect
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to a y’-stable pair (b, '), as in (2). By (4), there exists identifications D, >~ D, . and
D¢, =~ D, . Furthermore, by Lemma 3.2, there exists a canonical identification D, ; >
D,/ (note that this identification does not depend on the choice of the inner automorphisms
in Lemma 3.2). Thus, we get an identification

Dey = De,yr. (45)

Consider a group homomorphism ¢ : I' — Aut(g), a stable smooth (and hence irre-
ducible) s-pointed I'-curve (%, p) with ramification type ¥ attached to p, and a s-tuple of
dominant weights A attached to p. We assume that

Assumption 6.8 1. T" - p contains all the ramified points;

2. T := I'/ g is cyclic of order r, where I'g is the kernel of the map Po¢ : ' — Out(g); P
being the projection Aut(g) — Out(g);

3. By reordering p, we can write p = (p1,..., P2a> P2a+l,---» Ps) such that 7 # 1,
Vok—17V2 = 1 forany 1 <k <a(a >0),and y; = 1 forany 2a + 1 <i < s, where y
is the image of y € I in r.

When I = (1) or Z /27, the condition (3) in the above assumption holds automatically.

Let ¢, : I' — Aut(g) be the group homomorphism defined in Sect. 3.2, which preserves
a fixed pair (b, h). Forany 1 <i < s, y; acts on G by a diagram automorphism (possibly
trivial) via qZL, denoted by 7;. Let o; be the standard automorphism associated to t; (note
that o; = 1; if g # A2,). Let AT be the s-tuple of dominant weights with }»j € D¢,
associated to A; € D, ,, via the bijection (45). (The bijection D, >~ D, , between the
diagram automorphism 7; and the standard automorphism o; for g = A», is explicitly given
by Lemma 5.1.)

For convenience, we fix a standard automorphism o corresponding to a generator of T".

Theorem 6.9 With the same notation and Assumption 6.8 as above for any finite group T', we
Sfurther assume that the vanishing Conjecture 5.6 holds. Then, the dimension of the twisted
conformal blocks

|TC|§—1+a

X5 (Ao (1)
|TC(T |a Z

Nzr(y:d) = A)F—TTa

’

teT " ywe

where T is the maximal torus of G with its Lie algebra the Cartan subalgebra V), g is the
genus of the quotient curve ¥ = X/ T, and x51(t) = x,:(t) - x,:(t) with x,+ being the
1 s i

character of the irreducible representation of the group G° with highest weight A: (For the
notation Ay, see Theorem 6.2 and A = Ajgensiry.)

Proof If I' = (1), the theorem follows from the reduction Corollary 3.4 and the classical
Verlinde formula (cf. [22, Theorem 4.2.19 and the identities (3) and (8) in its proof]). So, we
now assume that I’ # (1) in what follows.

Set A, = T,“®/W and A = T,"“/W?. By Lemma 6.7, AZ can be regarded as the
subset of o-invariants in A.. Clearly, A7 = A% if (o) = (07), and A7 = A, if o is trivial.

By Theorem 3.3, we are reduced to the following situation: I" is cyclic of order 2 or 3 (in
particular, every non-trivial element is a generator of I") and the elements of I" act on G by
diagram automorphisms (possibly trivial), and the ramification type of I" action on ¥ is y
with each y; acting on G by a diagram automorphism 7; and 7; # 1 exactly when 1 <i < 2a
(a > 0). The s-tuple (A1, A2, ..., A2qs M1, ..., Mp) Of dominant weights is attached to p
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with A; € D¢, and u; € D, where s = 2a + b. (Observe that 1t := A2y j.) They satisfy
Tok—1T2k = 1 forany 1 < k < a as in Assumption 6.8. Then,

a
Ner(7h i) =y (H N (k13 Aak—1, Mok, Uk)) - Ng (2, v")

veD? \k=1

a
= Z (l_[ N (o213 )“;kfl’ )‘;k’ Vk)) - Nz (i, v*)
5 \k=1

v

|T|8! =
T AT 22 %y @0x 0x 0 A0 (10)

7 \k=1 \yeAs

A DD xa@xa@!E

teA,

LY Y a0 0]]
¢ k=1

Vol €AY

(. @55 @0 B (DA ). (46)

where the first equality follows from Theorem 4.7, the second equality follows from The-
orem 3.3, the third equality follows from Theorem 6.5 and the usual Verlinde formula (cf.
[22, Theorem 4.2.19 and the identities (3) and (8) in its proof]).
Recall the following orthogonality relation (cf. [16, Theorem 2.1(2)]):
1
ITel

D @) (OAE) =8y,

teA.
where § denotes the Kronecker symbol. Similarly, for any ¢/, t € A, the following orthogo-

nality relation holds

1
7|

D @) (AW =8y (47)

veD,

Now,

YY" a0 [T (g 0, @ @0 084 0)
i 7 k=1 N

DT ta €AY
teA.
= ) A0 w0 (]‘[ 11, 0,3 @) A (n») (Z o () X (t.)A(r)) -
1, lg €AY k=1 Vi
teA,

(Z Xz ()Xo, (za)Am)

Va

a
— I-g—a,,_ . ; ;
=177 Y A0 a0 T (@05, 1A @08, ) by using equation (47)

t,enla €AY k=1
teA.
= Y AOTE GO (O )T 48)
reA?
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Combining the Eqs. (46) and (48), we get

|T,|8~1+a 3 X5+ (O X () Ag (1)

Nor ik, i) = _
g,l"(y 1) |Tcg|a A(l)g_H'“

teA?
This conclude the proof of the theorem. O

Remark 6.10 By [8, Proposition 9.6], the formulae for S-matrices described in [16, Sect. 5]
and Lemma 6.7, one observes that the dimension formula in Theorem 6.9 agrees with the
dimension formula in [8, Theorem 1.2].

6.3 Examples
We now consider g = sl, with an action of Z/2Z generated by a diagram automorphism o,
and Z /27 acts on ¥ with 2a ramified points. Then, g° = sp,,. From (44),

|T.| = 2n(c 4 2n)>"~'2n, |T?| = 2(c + 2n)".

Letay, as, ..., az,—1 be the simple roots of slp, with standard labelling. Set@; = a;[po, 1 <
i < n. Then, &y, ...,a, from a set of simple roots of sp,,. Note that &,+; = «; for
1 <i <n—1.Let w (resp. &g, ;) be the fundamental coweight of sl,, associated to «;
(resp.a;). By Lemma 6.6, T:'reg/W" can be identified with X, >~ éc,g. The set bc can be
described as

De.o = (k1@ + -+ knoon | 2kt + -+ 2kn1 +kn < ¢, ki = OVi).
Following [3, p. 7], we may embed the coweight lattice }V’ga into P via the identifications
C\l’)a,i = (Z)i +C\‘/)2n—iv I<i<n-—1; d)a,n = d)n-

Thus, j, can be identified with /. Each A € DC,U associates to an element t; € 77 C T.
The set of positive roots of sly, can be described as

O ={o;+ - +aj|l<i<j<2n—1}
and the set of positive roots of sp,, can be identified as
Of ={a;+ -+aj|1<i<j<2n—1,i+j<2n}.
Setkyii =k, forl <i<n—1.1fA =", kido.;, then

- S kati—i+1
At) =40 T sin | == T

c+2n

I<i<j<2n—1

i 2
S ikatj—i+1
Aglt) = 4" I1 sin<2“=' « I A

c+2n
1<i<j<2n—1,i+j<2n +

-

Whenn =2,g=0,c=1,1= 6, = 6, we have bc,g = {0, @s.2}. Then,

. 6—2a 27\ 024
Ng.r(7;0) = 5473273 L gjn (%) sin <?”> — a1,

since sin(%)2 sin(%”)2 = 1% In particular, when a = 1, Nz r(¥; 6) = 1 (this agrees with
the computation in [3, Lemma 3.12]).
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Whenn=2,3=1,¢c=1,

- -2 2 —2a
Ng.r(7; 0) = 10 sin (%) “sin (%) oy

Acknowledgements We thank Constantin Teleman for some helpful correspondences and conversations. The
first author was partially supported by the NSF grant DMS-2001365 and the second author was partially
supported by the NSF Grant DMS-1802328.

References

1.

® N oW

19.
20.

21.

22.

23.
24.

25.

26.

Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. In: Proceedings of the Hirzebruch
65 Conference on Algebraic Geometry (Ramat Gan, 1993), pp. 75-96, Israel Math. Conf. Proc., 9, Bar-Ilan
Univ., Ramat Gan (1996)

Birke, L., Fuchs, J., Schweigert, C.: Symmetry breaking boundary conditions and WZW orbifolds. Adv.
Theor. Math. Phys. 3(3), 671-726 (1999)

Besson, M., Hong, J.: Smooth locus of twisted affine Schubert varieties and twisted affine Demazure
modules. arXiv:2010.11357

Bertin, J., Romagny, M.: Champs de Hurwitz, Mémoires de la Société Mathématique de France. Numéro
125-126, Société Mathématique de France (2011)

Bourbaki, N.: Groupes et Algebres de Lie, Ch. 4-6. Masson, Paris (1981)

Damiolini, C.: Conformal blocks attached to twisted groups. Math. Z. 295(3-4), 1643-1681 (2020)
Damiolini, C.: On equivariant bundles and their moduli spaces. AC. R. Math. Acad. Sci. Paris 362 (2024)
Deshpande, T., Mukhopadhyay, S.: Crossed modular categories and the Verlinde formula for twisted
conformal blocks. Camb. J. Math. 11, 159-297 (2023)

Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347-374 (1994)

Frenkel, E., Szczesny, M.: Twisted modules over vertex algebras on algebraic curves. Adv. Math. 187,
195-227 (2004)

. Hartshorne, R.: Algebraic Geometry. GTM 52. Springer, Berlin (1977)

Heinloth, J.: Uniformization of G-bundles. Math. Ann. 347(3), 499-528 (2010)

Hong, J., Kumar, S.: Conformal blocks for Galois covers of algebraic curves. Compos. Math. 159, 2191—
2259 (2023)

Hong, J., Kumar, S.: Lie algebra Cohomology of the positive part of twisted affine Lie algebras.
arXiv:2302.11105

Hong, J.: Conformal blocks, Verlinde formula and diagram automorphisms. Adv. Math. 354(1), 1-50
(2019). https://doi.org/10.1016/j.aim.2019.106731

Hong, J.: Fusion ring revisited. Representations of Lie algebras, quantum groups and related topics,
Contemp. Math., vol. 713, pp. 135-147. Amer. Math. Soc., RI (2018)

Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York
(1975)

Jarvis, T., Kaufmann, R., Kimura, T.: Pointed admissible G-covers and G-equivariant cohomological field
theories. Compos. Math. 141(4), 926-978 (2005)

Kac, V.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
Kostant, B.: Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra.
Invent. Math. 158, 181-226 (2004)

Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics,
vol. 204. Birkhéuser, Boston (2002)

Kumar, S.: Conformal Blocks, Generalized Theta Functions and the Verlinde Formula. New Mathematical
Monographs, vol. 42. Cambridge University Press, Cambridge (2022)

Sorger, C.: La formule de Verlinde, Séminaire Bourbaki, 47¢me année, n° 794 (1994)

Springer, T.A.: Linear Algebraic Groups. Modern Birkhduser Classics, 2nd edn. Birkhéuser, Boston
(2009)

Steinberg, R.: Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical
Society, vol. 80. American Mathematical Society, Providence (1968)

Teleman, C.: Lie algebra Cohomology and the fusion rules. Commun. Math. Phys. 173(2), 265-311
(1995)

@ Springer


http://arxiv.org/abs/2010.11357
http://arxiv.org/abs/2302.11105
https://doi.org/10.1016/j.aim.2019.106731

Twisted conformal blocks and their dimension Page290f29 76

27. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with
gauge symmetries. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, Volume
19 of Adv. Stud. Pure Math., pp. 459-566 (1989)

28. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300,
360-376 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Twisted conformal blocks and their dimension
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Kac–Moody theory
	2.2 Twisted conformal blocks

	3 Reduction from general actions to diagram automorphisms
	3.1 A key lemma
	3.2 Reduction theorem
	3.3 An application

	4 Reduction via degenerations
	5 Kac–Walton formula for twisted conformal blocks
	5.1 Standard automorphisms
	5.2 Affine Weyl group of twisted affine Lie algebras
	5.3 Analogue of Kac–Walton formula

	6 Verlinde formula for twisted conformal blocks
	6.1 Verlinde formula for basic cases
	6.2 Verlinde formula for general Γ-curves
	6.3 Examples

	Acknowledgements
	References


