

1 **A Novel Digital Twin Framework of Electric Power Infrastructure Systems**

2 **Subjected to Hurricanes**

3 Abdullah M. Braik^a and Maria Koliou^{b*}

4 ^a Ph.D. Student and Graduate Research Assistant, Zachry Department of Civil and
5 Environmental Engineering, Texas A&M University, College Station, TX, 77843, U.S.A., E-mail:
6 abraik3@tamu.edu

7 ^b Associate Professor, Zachry Department of Civil and Environmental Engineering, Texas
8 A&M University, College Station, TX, 77843, U.S.A., E-mail: maria.koliou@tamu.edu
9 (*Corresponding author)

10

11 **Abstract**

12 The electric power network (EPN) is one of the most critical infrastructure systems as most
13 lifeline, economic, and social systems depend heavily on it, and any disruption in the network may
14 affect the well-being of modern societies. Being the most vulnerable to natural hazards, the
15 resilience of the EPN has received plenty of attention in recent years, particularly considering the
16 increasing frequency and severity of natural hazards associated with climate instabilities. The data
17 revolution and the recent advances in the fields of artificial intelligence (AI), machine learning
18 (ML), and the Internet of Things (IoT) have prompted researchers to take the next step and expand
19 the available predictive models toward digital twins (DT). However, there is still a lack of an
20 applicable framework for a DT of infrastructure systems in the face of disasters. In this paper, a
21 novel DT framework of the EPN when subjected to hurricanes is proposed that combines physics-
22 based and data-driven models while also employing a dynamic Bayesian network (DBN). The
23 DBN can be updated in near real-time via data sensing to provide a DT that is simple,
24 computationally feasible, scalable, and capable of modeling and estimating the failure and
25 performance states of the various elements of the EPN. The proposed DT framework is applied to
26 Galveston Island's EPN, and the results are validated using historical data, demonstrating that the
27 DT can produce detailed and highly accurate estimations to be used in decision-making for
28 community resilience planning.

29 **Keywords:** Bayesian network, community resilience, digital twin, electric power network,
30 hurricanes.

31 **Abbreviations:** AI: artificial intelligence; BN: Bayesian network; CPD: conditional probability
32 distribution; CPS: cyber-physical systems; DBN: dynamic Bayesian network; DT: digital twin;

33 EPN: electric power network; IoT: internet of things; ML: machine learning; VE: variable
34 elimination.

35 **1. Introduction**

36 **1.1. Motivation and problem statement**

37 The electric power network (EPN) is one the most important infrastructure systems, supporting
38 many other critical lifelines such as water, transportation, and telecommunication networks,
39 therefore, any disruption in the EPN can have a significant impact on the safety, health, and
40 economic well-being of modern societies. Yet, it is by far the most vulnerable to natural hazards,
41 especially hurricanes. Over the past two decades, hurricanes have resulted in more than \$1 trillion
42 of economic losses in the United States (NOAA, 2023), and a significant share of these are direct
43 costs from damage to EPN components as well as indirect costs associated with power outages
44 (Casey et al., 2020). As a result, the EPN's resilience has received a lot of attention in recent years,
45 especially in consideration of the increasing frequency and severity of natural hazards and other
46 disruptive events associated with climate instabilities (Koliou et al., 2020). Therefore, the EPN's
47 reliability and risk mitigation have been extensively studied over the last decade at both the
48 component level (e.g., Shafieezadeh et al., 2013; Salman & Li, 2016; Yuan et al., 2018; Braik et
49 al., 2019; Ma et al., 2020; Darestani, Jeddi, et al., 2021; Ma et al., 2021; Du & Hajjar, 2022) and
50 the system level (e.g., Salman et al., 2015; H. Zhang et al., 2019; Braik et al., 2020; Lee & Ham,
51 2021; Li et al., 2021; Ma et al., 2022), in addition to its interdependency with other infrastructure
52 systems (e.g., Zimmerman et al., 2017; He & Cha, 2018; Johansen & Tien, 2018; Applegate &
53 Tien, 2019; Zou & Chen, 2019; Lee et al., 2020; He & Cha, 2021). Moreover, many studies have
54 investigated enhancing the resilience of the EPN in the face of extreme weather events by
55 proposing various methods of hardening to the overhead lines, poles, and substations, vegetation

56 management methods, and network redundancy strategies (e.g., Berkeley et al., 2010; Boggess et
57 al., 2014; Hossain et al., 2021; Daeli & Mohagheghi, 2022; Amini et al., 2023).

58 However, there is still a need to leverage the recent advances in data science and smart
59 technologies and combine them with the available probabilistic modeling methods. This will
60 provide high-fidelity models that can be updated in real-time via intelligent data-sensing to be used
61 in prediction and decision-making. Such a model can be achieved through a digital twin (DT),
62 which integrates the real system with its virtual replica through real-time data transfer. On that
63 account, researchers have been motivated to expand the predictive models toward DT models (Fan
64 et al., 2021), but the proposed methods are still conceptual or focus on a single aspect of the DT,
65 such as data-sensing (e.g., Fan et al., 2020; Ford & Wolf, 2020; Fan et al., 2021; Ham & Kim,
66 2020; Alibrandi, 2022). Hence, there is still a lack of a practical and applicable framework for a
67 DT of infrastructure systems in the face of natural hazards.

68 ***1.2. Background on digital twins and their applications in community resilience studies***

69 The concept of DT is relatively new and was first introduced in 2002 through a product lifecycle
70 management model (Grieves & Vickers, 2017). While different definitions of the DT exist (e.g.,
71 Glaessgen & Stargel, 2012; Grieves & Vickers, 2017; Tao et al., 2018; Jiang et al., 2021; Alibrandi,
72 2022; Dhar et al., 2022), most agree that it integrates the real (physical) system with its virtual
73 replica (high-fidelity model) via real-time data transfer. The concept of DT was immediately
74 adopted in the field of industrial engineering due to its applications in smart manufacturing (Tao
75 et al., 2018). Then, it also gained traction in civil and infrastructure systems engineering, with
76 researchers investigating how to utilize the DT as a step toward smart cities (Cañavera-Herrera et
77 al., 2022).

78 Recent studies have been proposing frameworks to integrate technologies like smart grids, cyber-
79 physical systems (CPS), the Internet of Things (IoT), big data analytics, and machine learning
80 (ML) to develop EPN DTs (e.g., Zhou et al., 2019; Saad et al., 2020 Darbali-Zamora et al., 2021;
81 Mourtzis et al., 2022). These frameworks have shown promise in enhancing the management and
82 efficiency of EPNs, but their applicability in disaster management faces significant challenges.
83 They heavily rely on continuous real-time data from smart meters and other physical sensors,
84 which can be vulnerable to damage in the aftermath of natural hazards. Moreover, these approaches
85 are built upon an initial state estimation of the EPN's condition, which is continuously updated in
86 real-time using data (Sifat et al., 2022). However, this may not work when there is a widespread
87 destruction of elements within the EPN. In such cases, physics-based methods that consider hazard
88 and structural analysis can offer more reliable estimates (Alibrandi, 2022). Consequently, DT
89 frameworks designed for post-hazard scenarios shift their focus toward obtaining data through
90 alternative means like social sensing and image recognition, which do not rely on physical sensors
91 (Ford & Wolf, 2020; Fan et al., 2021). Since these methods require a large amount of data that is
92 usually not readily available after the disaster, the DT must also incorporate physics-based
93 methods (Alibrandi, 2022).

94 ***1.3. Background on Bayesian Networks and their applications in digital twins for
95 community resilience planning***

96 One of the powerful statistical tools that can combine physics-based models, interdependency
97 rules, and updating using evidence data is the Bayesian network (BN). Hence, incorporating the
98 BN within the risk assessment framework allows to account for various epistemic uncertainties in
99 the model, while also providing a systematic method to combine evidence data with the prior
100 physics-based beliefs. This enhances the offline (pre-disaster) predictions and extends the model's

101 capabilities toward online (post-disaster) applications. Therefore, the BN can be extended to a
102 dynamic Bayesian network (DBN) to deal with the change of the states of elements in a dynamic
103 system (Murphy, 2002). Methods incorporating the DBN have recently been proposed as DT
104 models, primarily because the DBN is a simple, intuitive, graphical, scalable, and efficient method
105 that can capture interdependencies between systems, identify critical components, allow for real-
106 time information updates, and most importantly provide probabilistic estimations that can be used
107 in decision-making. For example, Li et al. (2017) proposed a DBN model for the prediction of
108 fatigue crack growth in aircraft wings, and Yu et al. (2021) proposed a DBN model for complex
109 system health monitoring.

110 The advantages of the BN have attracted researchers to utilize it in community resilience in the
111 face of natural hazards, but still, none of the proposed frameworks have extended the BN toward
112 a DT at the community level. For example, Kameshwar et al. (2019) proposed a general framework
113 using a BN for community resilience considering infrastructure interdependencies and
114 incorporating multi-hazards, and Dong et al. (2020) used a BN to model the interdependence
115 between the road network and the stormwater drainage system during floods.

116 Methods based on BNs and DBNs have been proposed for power outage prediction or to model
117 the EPN and its interdependencies with other systems, but there are no studies available related to
118 extending such models toward a DT. Mensah and Dueñas-Osorio (2014) proposed a general
119 framework for electric power outage prediction during hurricanes using a BN and applied it to a
120 case study that only considered the substations as nodes. The potential of extending the BN toward
121 a hybrid physics-based and data-driven method through Bayesian updating of the network was not
122 explored in that study. More recently, Johansen and Tien (2018), Applegate and Tien (2019), and
123 Lee et al. (2020) used BNs and DBNs to model the interdependency between the power network

124 and other infrastructure systems (mainly the water network). These frameworks were targeted
125 toward the seismic hazard and considered the substations to be the vulnerable components within
126 the power system. Therefore, the proposed frameworks cannot be directly applied to EPNs
127 subjected to wind loads where the distribution and transmission lines are the most vulnerable
128 components. Moreover, the DBN in these studies was used to model the interdependencies
129 between systems and not to update the BN. Applegate and Tien (2019) mentioned that the BN can
130 be updated using evidence data, however, no application study was presented on how this evidence
131 can be obtained in real-time or how to extend the method toward a full hybrid physics-based and
132 data-driven DT.

133 ***1.4. Data sensing***

134 The BN framework proposed in this paper allows for the use of data evidence obtained through
135 any data-sensing method to dynamically update the physical (failure or survival) or performance
136 (power outage or restoration) states of any element within the EPN. Traditional methods to obtain
137 outage, restoration, and damage data include calls from customers, utility sensors, and feedback
138 from repair crews. Calls from customers are still by far the main source of power outage data
139 (Meier et al., 2019). However, handling all customer calls after disasters and widespread outages
140 is both expensive and inefficient. Thus, faster methods are needed to help speed up the restoration.
141 While utility companies use methods to detect power outages such as smart meters connected to
142 customers and supervisory control and data acquisition (SCADA) systems connected to
143 substations, the signals of the smart meters will not reach if the network suffers widespread
144 destruction after hurricanes, and the SCADA by itself doesn't provide sufficient detailed
145 information since the distribution lines are not covered (Meier et al., 2019; Román et al., 2019).
146 Hence, these are still secondary sources and aren't sufficient to provide real-time outage data

147 necessary to direct restoration efforts following disasters. Feedback from investigations and repair
148 crews is a reliable source for damage and restoration data following site inspections and repairs,
149 but it may also be slow and inefficient and should be accompanied and guided by other data-
150 sensing methods.

151 Recently, smart sensing methods such as social sensing and image processing have been getting
152 traction and showing potential. Many researchers have investigated the scrapping and analyzing
153 of social media comments (such as tweets) during disasters (e.g., Huang & Xiao, 2015; C. Zhang
154 et al., 2019; Fan et al., 2020; Heglund et al., 2021). Moreover, with the development of artificial
155 intelligence (AI) image recognition and processing models, researchers have proposed methods to
156 identify post-disaster damage via satellite images and aerial photos. For example, Hosseini et al.
157 (2020) proposed a convolutional neural network damage classification model to detect failed poles
158 after hurricanes using unmanned aerial vehicles, and Montoya-Rincon et al. (2022) proposed a
159 ML model to predict outages using satellite night images based on the difference between
160 nightlight radiances before and after the hurricane. In addition to the above, many proposed smart
161 methods can contribute to receiving real-time outage and restoration data. For example, Meier et
162 al. (2019) proposed the use of data from connected thermostats to detect power outages.

163 **1.5. Scope**

164 In this paper, a novel DT framework of the EPN when subjected to hurricane hazards is proposed.
165 The key objective is to develop a DT that can be used in decision-making to turn the predictive
166 models from being passive to active and impacting the real system. Due to the lack of a unified
167 and clear definition of the DT when dealing with cities and infrastructure systems, this paper also
168 proposes a definition of the DT at the community level to be a high-fidelity model of single or
169 multiple infrastructure systems that considers both the physical characteristics and the

170 interdependency rules and can be updated in near real-time to assist with decision-making. The
171 proposed framework combines physics-based and data-driven models while it also employs a DBN
172 that can be updated in near real-time via data-sensing. Therefore, from a Bayesian modeling
173 perspective, the initial estimates based on hazard and fragility analysis represent the prior physics-
174 based belief. After that, the BN is updated using evidence data to follow the real system. With
175 continuous real-time updating, the DBN turns into a high-fidelity hybrid (physics-based and data-
176 driven) model of the real system, and hence the term DT is used in the proposed framework.

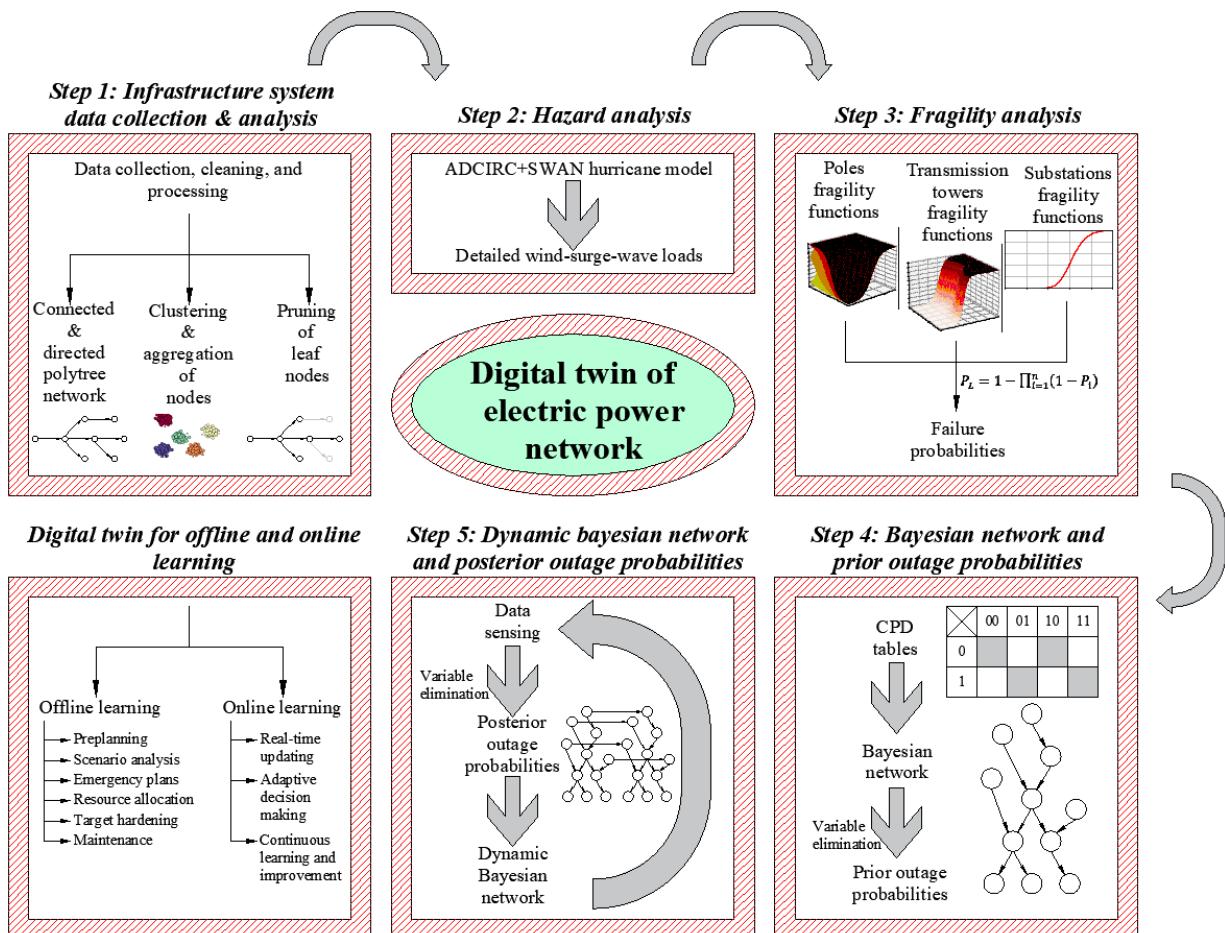
177 This framework provides a DT that is simple, computationally feasible, scalable, and capable of
178 modeling and estimating the damage and performance states of the various elements of the EPN,
179 beginning with the substations and progressing through the transmission lines and distribution
180 lines to finally reach the customers, while also capturing detailed spatial variations and taking into
181 account the different land uses. Hence, it can offer two major capabilities: offline learning and
182 online learning. In preplanning and preparedness for natural hazards, the DT model can be used
183 for offline learning to simulate various hazard scenarios and estimate the system's performance.
184 This can test the efficacy of restoration plans and guide maintenance as well as hardening
185 strategies. Additionally, the DT model can be used in online learning for adaptive decision-making
186 and to direct post-disaster restoration efforts and repair crews by identifying the most critical nodes
187 within the system. By using evidence and feedback from repair crews and other investigation
188 reports, as well as the data from various real-time sensing methods, the DT model has the capability
189 to be updated, and thus strategies and plans can be redirected based on the actual current situation.

190 The proposed framework is described in detail in this paper starting from data analysis and then
191 proceeding to show how to integrate physics-based hazard and fragility analysis and data-driven
192 DBN in a hybrid DT model that considers all subsystems and components of the EPN and can be

193 updated in near real-time to be used in decision-making. Then, the proposed DT framework is
 194 applied using the Galveston testbed subjected to Hurricane Ike hazard and the results are validated
 195 using historical records.

196 **2. Description of the proposed DT framework**

197 A flowchart of the proposed DT framework is presented in Figure 1, while details are discussed
 198 in the following sections.



199
 200 Figure 1: Flowchart showing key steps of the proposed digital twin framework of electric power networks.

201 **2.1. Infrastructure system data collection & analysis**

202 A typical EPN consists of power generating plants, substations, power transmission systems,
 203 power distribution systems, and customers (Short, 2014; Hossain et al., 2019). Power plants are
 204 rarely affected by hurricanes and therefore are excluded from the proposed DT model. To achieve

205 a high-fidelity model of the EPN, the proposed DT incorporates data on the location and properties
206 of all major elements and their connectivity. This data is typically controlled by utility companies,
207 and access may be restricted due to confidentiality concerns. To overcome data restrictions and
208 facilitate research on community resilience, testbeds provide an environment where researchers
209 can access relevant data, and develop and test their methodologies (Amin Enderami et al., 2022).

210 This data is cleaned and processed into a usable form, i.e., a directed graph of the network starting
211 from the substations and ending with the customers (receiving service), that can be directly used
212 in the BN. Moreover, a polytree, which is a network where there is only one path between any two
213 nodes (Darwiche, 2009), is incorporated into the model since it allows for the use of the exact BN
214 inference methods with computational time linearly proportional to the size of the data (Murphy,
215 2001). As the vast majority of the power networks in the U.S. are radial or at least operated radially,
216 a network with no loops can be usually achieved (Short, 2014). However, in the case of the
217 existence of a few loops in the system, it is recommended to break them using the shortest path
218 (Magzhan & Jani, 2013) between the first and last nodes in the cycle. Hence, the proposed EPN
219 model consists of a connected and directed network with no loops.

220 Based on what is recommended in the literature, the elements are aggregated and clustered into
221 super-nodes that preserve the connectivity and interdependence within the network while reducing
222 its size hence resulting in a computationally cheaper and more scalable method (Applegate & Tien,
223 2019). The transmission towers and distribution poles are aggregated into transmission lines and
224 distribution lines, respectively in this model. Moreover, buildings can be clustered spatially and
225 categorically into clusters. The Density-based spatial clustering of applications with noise
226 (DBSCAN), which is a popular ML algorithm for spatial clustering based on the maximum
227 distance between any two elements in the cluster (Khan et al., 2014), is used in the proposed DT

228 resulting in clusters of similarly typed buildings that are spatially close and presumed to share a
229 common feeder for electricity. The clustering of buildings may result in some distribution line
230 nodes at the end of the network that are not connected to any cluster. These nodes can be pruned
231 to reduce the size of the network without having a mathematical impact (Darwiche, 2009). In
232 summary, the BN of the proposed model (described in the following sections) consists of
233 substation nodes, transmission line nodes, distribution line nodes, and building cluster nodes.

234 **2.2. *Hazard analysis***

235 When studying a community prone to hurricane hazards, a detailed hazard model that captures
236 the spatial variation in wind speed and direction as well as the accompanying wave and surge is
237 needed. The coupling of the Advanced Circulation (ADCIRC) and Simulating Waves Nearshore
238 (SWAN) models (Dietrich et al., 2011) allows for such highly detailed simulation. In the
239 ADCIRC+SWAN model, the shallow-water equations are solved via the ADCIRC model that
240 passes wind velocities and water levels to the SWAN model to simulate short-crested wind-
241 generated waves. Eventually, the simulation will provide spatial variations of wind speed and
242 direction, wave speed, direction, and height, surge height, and highest flood depth over the coastal
243 area (Dietrich et al., 2012; Masoomi et al., 2019). Such a hazard model is incorporated into the
244 proposed DT to perform the hazard analysis and generate the hazard loads on the infrastructure
245 systems and components considered.

246 A comprehensive risk assessment requires the generation of stochastic hurricane scenarios and
247 subsequent load simulations to quantify hazard load uncertainties (e.g., Wang et al., 2018). This
248 can be performed for different return periods, enabling the assessment of varying levels of hazards
249 and the associated risks (Darestani, Webb, et al., 2021). However, for the application study in this
250 paper (as detailed in Section 3), we relied on the results of a single hindcast simulation of Hurricane

251 Ike (Darestani, Webb, et al., 2021). While this simulation provides highly detailed estimations of
252 the maximum wind, wave, and surge loads for every location on Galveston Island, it is important
253 to acknowledge that this study does not account for the uncertainties inherent in the hazard
254 analysis, nor does it consider a range of hurricane return period scenarios.

255 **2.3. Fragility analysis**

256 In this step of the proposed framework, fragility analysis for every element of the model is
257 performed. A fragility function gives the conditional probability of failure given a hazard's
258 intensity measure. Therefore, the probability of physical failure of each element of the model is
259 computed using fragility functions and the loads obtained from the hazard analysis. Hence, the
260 binary physical state (failure or survival) of the EPN elements is computed. The fragility functions
261 used in this study are adopted from the existing literature and described below.

262 Darestani et al. (2022) have recently proposed a surrogate parametrized fragility function for
263 wood utility poles fitted into a logistic regression model that considers various intensity measures
264 and pole properties as its parameters, including wind speed V_W (m/s) (3-s gust), wind direction θ_W
265 (radians), water velocity V_F (m/s), surge height H_S (m), significant wave height H_W (m), pole
266 height H_P (m), pole age t_P (years), and conductor's effective area A_C (m^2). The fragility functions
267 for wood utility poles proposed by Darestani et al. (2022) are incorporated into the DT model. The
268 probability of failure for the utility poles is then computed using Eq. (1), where $\sigma(y)$ is the standard
269 logistic function defined in Eq. (2), and the coefficients α_0 to α_7 (for pole's rapture limit state and
270 assuming stiff soil) obtained from Darestani et al. (2022) are summarized in Table 1 for classes 3,
271 4, and 5. Figure 2 (a) shows a multidimensional plot of the fragility function with varying intensity
272 measures for V_W , V_F , H_S , and H_W , while fixing the remaining parameters.

273 $P(\text{Pole failure}|V_W, \theta_W, V_F, H_S, H_W, H_P, t_P, A_C) = \sigma(\alpha_0 + \alpha_1 V_W + \alpha_2(H_p - H_S - H_W) +$
 274 $\alpha_3 V_F H_S + \alpha_4 V_W \sin(\theta_W) + \alpha_5 V_W A_C + \alpha_6 \max(t_P, 25) + \alpha_7 H_W)$ (1)
 275 $\sigma(y) = (1 + \exp(-y))^{-1}$ (2)

276 Table 1: Coefficients for wood pole's fragility function (data from Darestani et al. 2022)

Class	α_0	α_1	α_2	α_3	α_4	α_5	α_6	α_7
3	-7.2476	0.02157	0.051976	0.29907	0.027067	0.002424	0.027865	0.51853
4	-6.9997	0.020323	0.042443	0.30771	0.030009	0.00284	0.02892	0.53529
5	-6.798	0.021067	0.040692	0.33019	0.033158	0.002863	0.026811	0.56842

277
 278 The fragility function of *transmission towers* used in this study is obtained from Darestani, Jeddi,
 279 et al. (2021). More specifically, the extensive damage limit state is adopted to represent the
 280 physical failure of the tower. Therefore, the probability of failure for transmission towers subjected
 281 to wind speed V_W (m/s) and direction θ_W relative to conductors is computed using Eq. (3), where
 282 the wind load is projected into perpendicular and parallel components. Parameters $\beta_0, \beta_1, \beta_2$, and
 283 β_3 obtained from Darestani, Jeddi, et al. (2021) are equal to -12.1438, 0.2056, -9.5395, and 0.1235
 284 respectively (where β_1 and β_3 are scaled to modify the units from (mph) in Darestani, Jeddi, et al.
 285 (2021) to (m/s) in this study). Figure 2 (b) shows the fragility surface of transmission towers
 286 subjected to wind load.

287 $P(\text{Tower failure}|V_W, \theta_W) = 1 - [1 - \sigma(\beta_0 + \beta_1 V_W \sin(\theta_W))][1 - \sigma(\beta_2 + \beta_3 V_W \cos(\theta_W))]$ (3)

288 The electrical substations are rarely damaged by wind but are vulnerable to flooding caused by
 289 the flood accompanying hurricanes. The fragility curve for *electrical substations* adopted from
 290 FEMA (FEMA, 2009) and obtained from Sánchez-Muñoz et al. (2020) is incorporated into the
 291 model, where the intensity measure is the flood height F (m). The curve was fitted to a lognormal
 292 distribution with parameters $\lambda = 0.443$ and $\zeta = 0.168$. Therefore, the probability of failure of
 293 substations can be computed using Eq. (4), where $\Phi(y)$ is the cumulative distribution function of

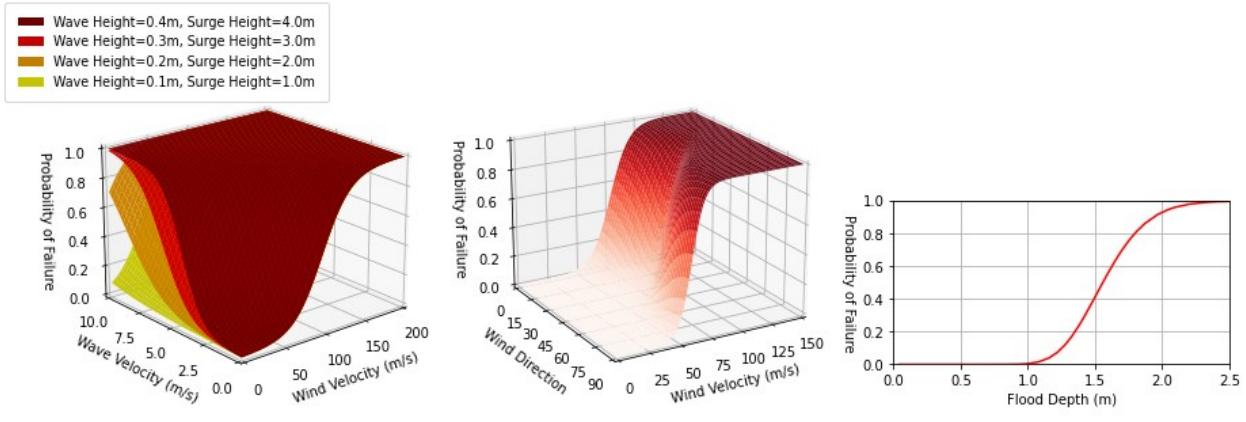
294 the standard normal distribution. Figure 2 (c) shows the fragility curve for substations subjected to
 295 flood.

296
$$P(\text{substation failure}|F) = \Phi((\ln(F) - \lambda)/\zeta) \quad (4)$$

297 Once the fragility functions for all elements of the DT model are acquired, the probability of
 298 damage for a line P_L containing n elements (poles or towers) can be calculated using Eq. (5), where
 299 P_i is the probability of failure of the i^{th} element within the line.

300
$$P_L = 1 - \prod_{i=1}^n (1 - P_i) \quad (5)$$

301 It should be noted that ignoring the effect of adjacent elements might under-estimate the failure
 302 probabilities of connected poles and towers, while not considering the statistical correlations might
 303 over-estimate the probabilities of failure of lines (Salman et al., 2015; Darestani et al., 2017).
 304 However, due to the lack of data on the spatial correlation between adjacent poles and towers and
 305 to simplify the model, an assumption of statistical independence between elements within a line
 306 P_L is adopted. Furthermore, it's worth noting that in this paper, the parameters of the fragility
 307 functions are modeled as point estimates. While previous studies have suggested modeling these
 308 parameters as random variables, which would allow for the incorporation of uncertainties and
 309 subsequent updating based on data evidence (e.g., Lu & Zhang, 2022), this approach would
 310 significantly impact the computational efficiency of the framework required for online learning.



311

312 Figure 2: Fragility functions for (a) Wood poles under various combinations of wind-wave-surge loads; (b)
313 Transmission towers subjected to wind load of various velocities and directions; (c) Substations subjected to various
314 flood depths.

315 **2.4. Bayesian network and prior outage probabilities**

316 A BN is a probabilistic directed acyclic graph representing the causal structure between
317 variables. The random variables are represented by nodes, while the edges between the nodes
318 represent conditional dependencies. The BN can be viewed as a compact representation of the joint
319 probability distribution between the random variables. In general, the full joint probability
320 distribution of a BN with n number of nodes can be written as shown in Eq. (6).

321
$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i)) \quad (6)$$

322 For this model, two types of nodes are assigned to each substation, transmission line, and
323 distribution line in the BN. The first node (physical node) represents the physical state of the
324 element (failed or survived) and is equal to the probability of failure discussed in Section 2.3, while
325 the second node (performance node) represents the performance state of the element (outage or
326 functioning) and is governed by both the state of the physical node of the same element and the
327 state of the performance node of the upstream element. This is further explained using Figure 3
328 which presents a version of a small sample BN. In Figure 3, “F” stands for physical node, while
329 “P” stands for performance node. Therefore, FS_1 , FT_1 , FD_1 , and FD_2 are the physical nodes of
330 substation-1, transmission line-1, distribution line-1, and distribution line-2, respectively, while
331 PS_1 , PT_1 , PD_1 , and PD_2 are the performance nodes of the above. Moreover, building clusters C_1 ,
332 C_2 , and C_3 are assigned performance nodes representing the state of power outage/restoration.

333 The edges between nodes represent the conditional dependencies. Hence, conditional probability
334 distribution (CPD) tables are constructed to show the conditional probabilities for each child node
335 given its parent nodes. In this paper, 0 is used to represent failure or outage, while 1 is used for
336 survival or restoration. For a node without parents (such as the physical nodes in the EPN), the

337 CPD simply includes the physical probability of failure P_f discussed in the previous section and
 338 shown in Figure 4 (a). On the other hand, the CPD of the performance node for the most upstream
 339 element (such as PS_1 in Figure 3) depends only on the physical node of the same element, as shown
 340 in Figure 4 (b). Moreover, the CPD of the performance node for the intermediate elements depends
 341 on both the physical node of the same element and its parent performance node, as shown in Figure
 342 4 (c), while the CPD of the customer's performance node depends only on its parent performance
 343 node, as shown in Figure 4 (d).

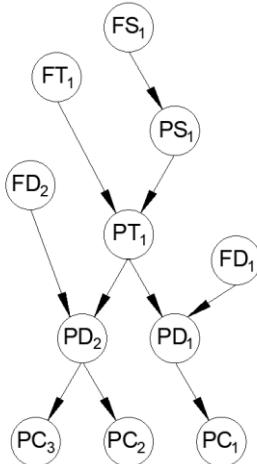


Figure 3: Sample BN.

344
 345

$F=0$	P_f		$F=0$	$F=1$		$P_{parent=0} \& F=0$	$P_{parent=1} \& F=0$	$P_{parent=0} \& F=1$	$P_{parent=1} \& F=1$		$P_{parent=0}$	$P_{parent=1}$
$F=0$	P_f		$P=0$	1	0	1	1	1	0		1	0
$F=1$	$1-P_f$		$P=1$	0	1	0	0	0	1		0	1
		(a)		(b)								
						$P=0$	1	1	1	0		
						$P=1$	0	0	0	1		

Figure 4: CPD tables for (a) physical node; (b) upstream performance node; (c) intermediate performance node; (d) customer performance node. $F=0$ or 1 represent the failure or survival states of the node respectively, $P=0$ or 1 represents the outage or restoration states of the node respectively, and P_f is the probability of failure of the node

346
 347 After building the BN, the probability of failure for every node within the network is calculated
 348 using forward propagation exact inference algorithms such as the variable elimination (VE)
 349 (Darwiche, 2009) algorithm. The VE algorithm is used to efficiently calculate marginal
 350 probabilities in the BN by iteratively eliminating variables until the desired variable is the only
 351 one left.

355 A simple example of a BN ($X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$) can be used to demonstrate the VE algorithm,
 356 where X_1, X_2, X_3 , and X_4 are binary random variables having $P(X_1), P(X_2|X_1), P(X_3|X_2)$, and
 357 $P(X_4|X_3)$ as factors representing the conditional probabilities associated with their nodes. These
 358 conditional probabilities can be directly obtained from the BN's CPD tables. Hence, the joint
 359 probability distribution can be factorized as shown in Eq. (7). If the desired query is to compute
 360 $P(X_4)$, then X_1, X_2 , and X_3 need to be eliminated via VE as shown in Eq. (8).

$$361 P(X_1, X_2, X_3, X_4) = P(X_4|X_3) P(X_3|X_2) P(X_2|X_1) P(X_1) \quad (7)$$

$$362 P(X_4) = \sum_{X_3} [\sum_{X_2} (\sum_{X_1} [P(X_4|X_3) P(X_3|X_2) P(X_2|X_1) P(X_1)])] = \\ 363 \sum_{X_3} [P(X_4|X_3) \sum_{X_2} (P(X_3|X_2) \sum_{X_1} [P(X_2|X_1) P(X_1)])] = \sum_{X_3} [P(X_4|X_3) \sum_{X_2} [P(X_3|X_2) P(X_2)]] = \\ 364 \sum_{X_3} [P(X_4|X_3) P(X_3)] \quad (8)$$

365 The process described above is generalizable to larger networks consisting of any number of
 366 nodes that are not necessarily in a chain. Therefore, the VE algorithm can evaluate the prior outage
 367 probabilities for every functional node by systematically computing their marginal probabilities
 368 by eliminating their parent nodes through forward propagation (Darwiche, 2009). While, in
 369 general, the computational complexity of the VE algorithm is exponentially related to the size of
 370 the data, it drops down to being linearly related if the BN is a polytree, as discussed in Section 2.1.

371 ***2.5. Dynamic Bayesian network and posterior outage probabilities***

372 The prior probabilities of the BN can be updated when new data (evidence) becomes available.
 373 The proposed DT is designed to be updatable using various sources of evidence, whether it is
 374 observed physical failure of substations, transmission towers, or utility poles, or being a detected
 375 outage/restoration of any substation, line, or building within the network.

376 The VE algorithm discussed earlier is again used to perform forward and/or backward
 377 propagation to compute the posterior marginals, where the joint probability distribution is
 378 conditioned over the evidence (Darwiche, 2009). The BN must be updated in real-time since the

379 evidence data comes in separate batches, and because the outage and restoration states change over
 380 time, and therefore should only be used at the time it had been received.

381 The iterative updating of the BN is performed in the proposed model using a DBN, where the
 382 updated failure probabilities of physical nodes become the initial probabilities of failures of the
 383 next BN. As shown in Figure 5, if evidence is received that customer C_3 is out of power, then the
 384 probabilities of the entire BN at time t_0 (BN_0) are updated using the VE algorithm. Hence, knowing
 385 the real-time state of a few nodes within the system can enhance our estimations for all nodes that
 386 share common parent (upstream) nodes with them. Then, the updated physical node probabilities
 387 are passed to the BN at the time step t_1 (BN_1). Again, if evidence is received that the distribution
 388 line D_2 is out of power while customer C_1 got its power restored, then the failure probabilities of
 389 physical nodes of BN_1 are updated and then passed to the next BN at the time step t_2 (BN_2).
 390 Likewise, the DBN is updated for every time step t_m .

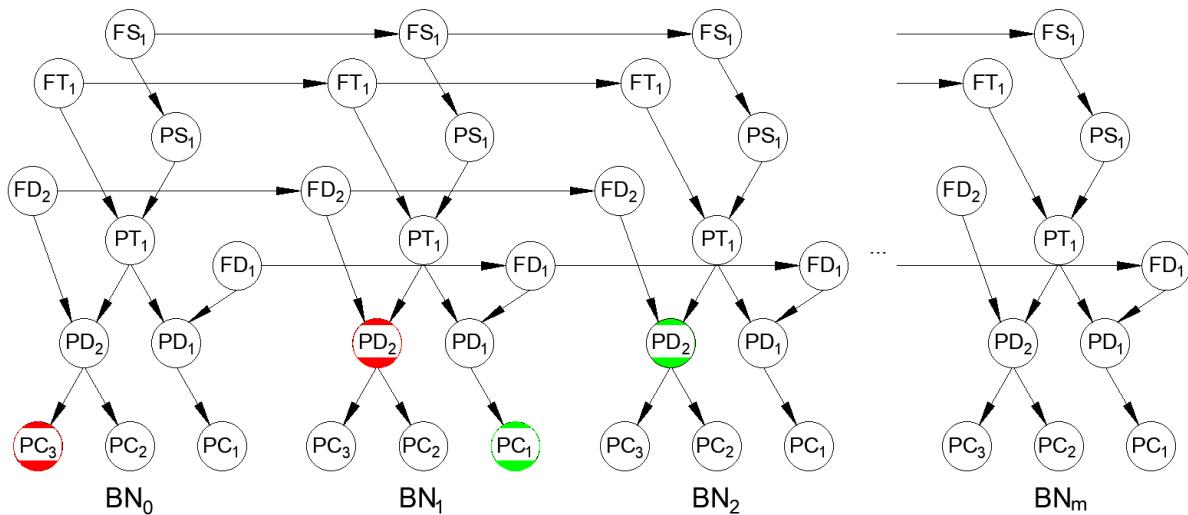


Figure 5: Sample DBN.

393 **3. Application case study**

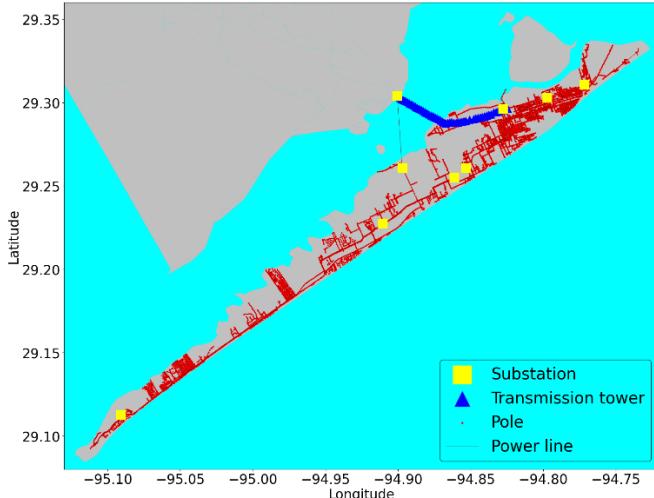
394 **3.1. Application of DT model on Galveston Island testbed**

395 The application of the proposed DT framework is demonstrated via an application case study for
396 the Galveston Island testbed subjected to Hurricane Ike hazard loads. An extensive literature
397 review on the Galveston testbed and other testbeds used in community resilience research is
398 summarized in Amin Enderami et al. (2022). Detailed data of Galveston's EPN (locations,
399 properties, and connectivity of substations, transmission towers, and utility poles) and building
400 inventories (locations and properties) in addition to Ike's simulation data were obtained from
401 Darestani and Padgett (2022) and Incore (2023).

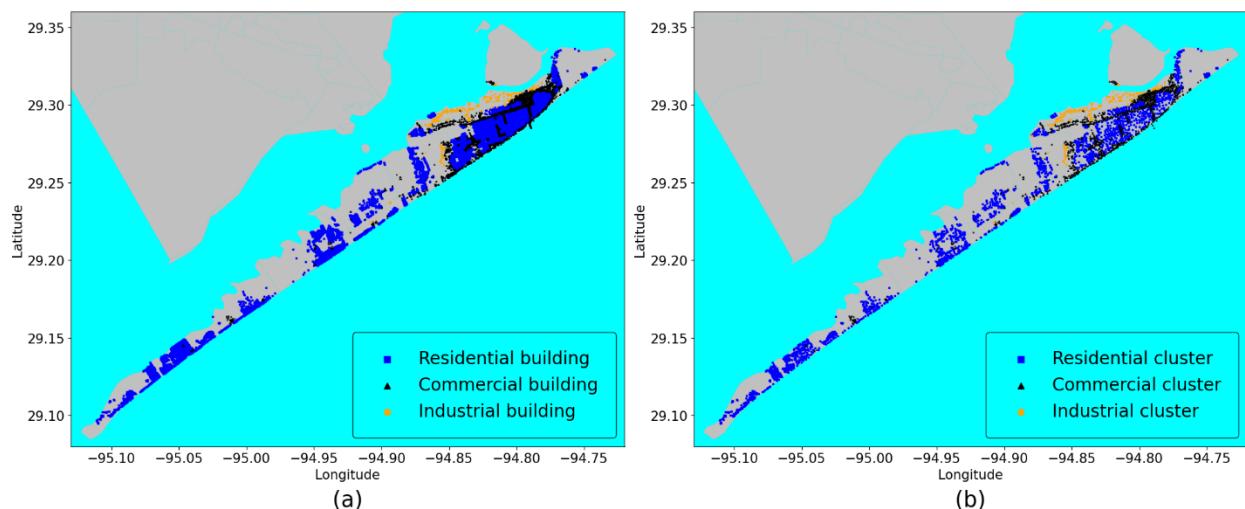
402 The data was cleaned and processed as discussed in section 2.1 to ensure a connected, directed,
403 and polytree network starting from the substation located on the mainland before Galveston's
404 bridge and continuing through transmission towers, intermediate substations, and distribution
405 poles. Except for a submarine power cable that connects the mainland to Galveston Island, all lines
406 are assumed to be overhead. Moreover, the distribution lines consist of 3 wires of a 0.0183m
407 diameter (Salman et al., 2015), and the substations are assumed to lay on an elevated foundation
408 pad 0.7m tall, above which they will be vulnerable to flooding.

409 The cleaned EPN dataset consists of 13,207 utility poles, 52 transmission towers, and 9
410 substations, in addition to 24,756, 2,681, and 357 residential, commercial, and industrial building
411 inventories, respectively. These buildings were clustered using the DBSCAN algorithm into 2,102,
412 1,108, and 248 residential, commercial, and industrial clusters, respectively. In order to balance
413 between computational efficiency (larger clusters) and model accuracy (smaller clusters), a 40m
414 maximum distance for clustering was selected. Moreover, the EPN poles and towers were
415 aggregated into lines, and the end lines (leaf nodes) not connected to building clusters were pruned.
416 In summary at the DT model, the EPN consists of 2,718 distribution lines, 1 transmission line, and

417 9 substations. The EPN of Galveston Island is shown in Figure 6, and the building inventory map
418 before and after clustering is shown in Figure 7 (a) and Figure 7 (b), respectively.



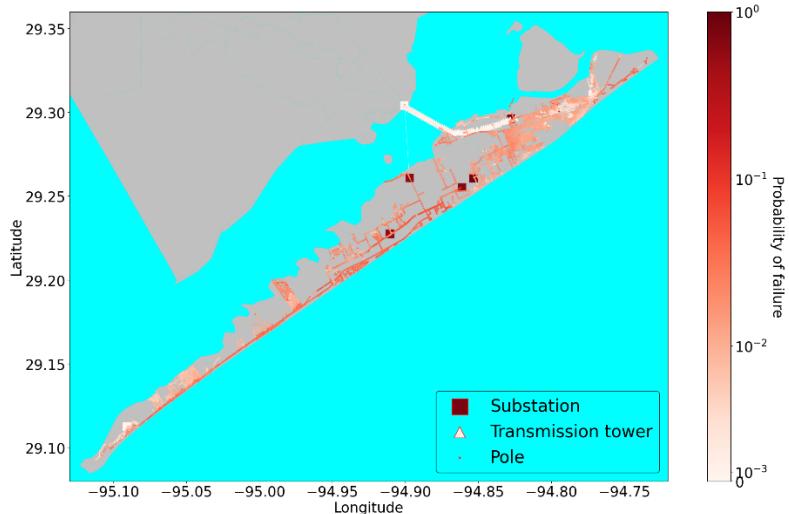
419
420 Figure 6: Graphic view of Galveston Island's EPN incorporated in the DT model.



421
422 Figure 7: Building inventory map: (a) before clustering; (b) after clustering.

423 Fragility functions were used to estimate the failure probabilities shown in Figure 8. To get more
424 insight on the estimations, the expected number of failures for each category (substations, tower,
425 or poles) was calculated by summing the probabilities of failures for elements within the category
426 by assuming that they follow independent Bernoulli distributions (Wang, 1993). The transmission
427 towers are the least affected, with 0 expected failed towers, while the utility poles suffered
428

429 considerable damage with 211 expected failed poles. Moreover, the substations are highly
430 vulnerable to large flood depths with 4 substations experiencing flooding.



431
432 Figure 8: Estimated probability of failure to EPN's elements.

433 In the next step of the proposed framework, the BN was built using the 8,914 EPN and customer
434 nodes, and the VE forward propagation was used to estimate the outage probabilities for
435 customers, as shown in Figure 9 (a). The model estimated an almost complete power outage for
436 the entire island, with 96.3% of the customer's electricity estimated to be wiped out. Building-type
437 specific estimations can be made to allow decision-makers to give different weights to different
438 land uses, with estimated outages of 96.4%, 96.0%, and 94.2% for residential, commercial, and
439 industrial buildings, respectively. Moreover, since the priority of repair is usually given to the
440 substations, decision-makers might be interested in the outage conditions immediately after the
441 substations are repaired. This can be estimated by updating the BN using the repair evidence. We
442 performed this scenario (all substations are repaired) and the results are shown in Figure 9 (b).
443 After updating the physical state of all substations to "repaired", the model's estimations show that
444 electricity was restored to customers in some areas on the island. However, the model still
445 estimates a large blackout due to failed poles.

446

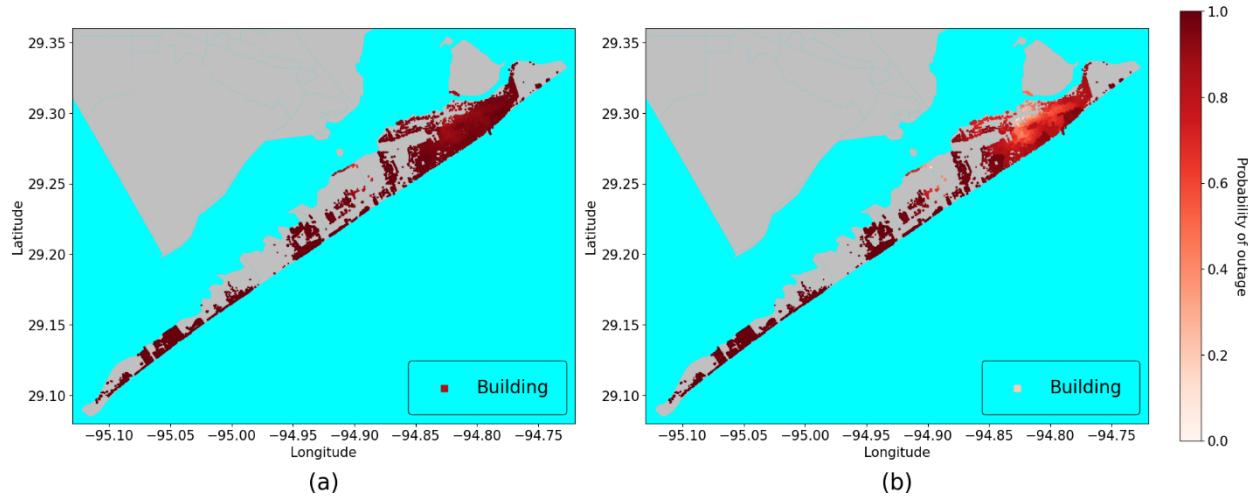
447
448

Figure 9: DT outage map for: (a) prior estimations (b) posterior estimations after repair of substations.

449 *3.1.1. Validation of the case study results using historical data*

450 As per the historical records, Hurricane Ike destroyed 10,300 utility poles, 238 transmission
 451 towers, and 383 substations, causing 3.9 million customers in nine states in the United States to
 452 lose power (Hoffman et al., 2009). However, the majority of the damaged transmission towers
 453 were reported to be in Louisiana and east Texas, while transmission towers in the Greater Houston
 454 area performed well with no major damage (Prochazka, 2009). Outages were primarily caused by
 455 damage to distribution lines and substations, with 8,500 utility poles in the Greater Houston area
 456 requiring replacement following the hurricane (McKinley, 2008; Prochazka, 2009). Furthermore,
 457 four substations on Galveston Island were flooded, with three being restored within three days and
 458 the fourth requiring complete replacement (Prochazka, 2009). The day after the hurricane, two of
 459 the major power supplying companies in the Greater Houston area reported that 99% of their
 460 customers were without power and that the electricity in the Galveston Island and Bolivar
 461 Peninsula had been completely wiped out (Reuters, 2008; Hoffman et al., 2009).

462 The DT model's results, as presented in Figure 9 (a) and discussed in the previous section, are
 463 consistent with the historical data, as the model estimated a nearly complete power outage for most

464 of the island. Furthermore, the model estimated considerable failure to utility poles and
465 substations, while transmission towers had low failure probabilities. The validation of the model's
466 results against the historical records is summarized in Table 2.

467 Table 2: Validation of the DT model estimations with historical data

	Historical records (McKinley, 2008; Reuters, 2008; Hoffman et al., 2009; Prochazka, 2009)	DT model estimations
Power outage	99% of customers lost electricity in the Greater Houston Region	96.3% of customers lost electricity in Galveston
Flooded substations	4 in Galveston	4 in Galveston
Damaged towers	0 in Galveston	0 in Galveston
Damaged poles	Considerable damage to utility poles (~8500) in the Greater Houston Region	211 in Galveston

468

469 **3.2. Case study using Twitter data and dynamic Bayesian network**

470 The DBN method discussed in section 2.5 can be used to update the BN using evidence data.

471 Scrapping tweets as old as Hurricane Ike is difficult because of Twitter's policies that make it

472 harder to scrape tweets the older they get. This and the fact that Twitter was still a new social

473 media platform at that time and geotagging was not as common as it is today makes it almost

474 impossible to scrape tweets from the time of Ike's occurrence to be applied in this study. In order

475 to evaluate the capability of the proposed framework to be updated with real-time data, tweets

476 were instead scraped for winter storm Uri which resulted in a power outage in Texas and

477 particularly Galveston Island in 2021 (King et al., 2021). Tweet scrapping was performed using

478 the SNSCRAPE Python library (JustAnotherArchivist, 2021). The tweets were filtered to only

479 include geotagged tweets between February 13th and 20th (2021) that include the keywords

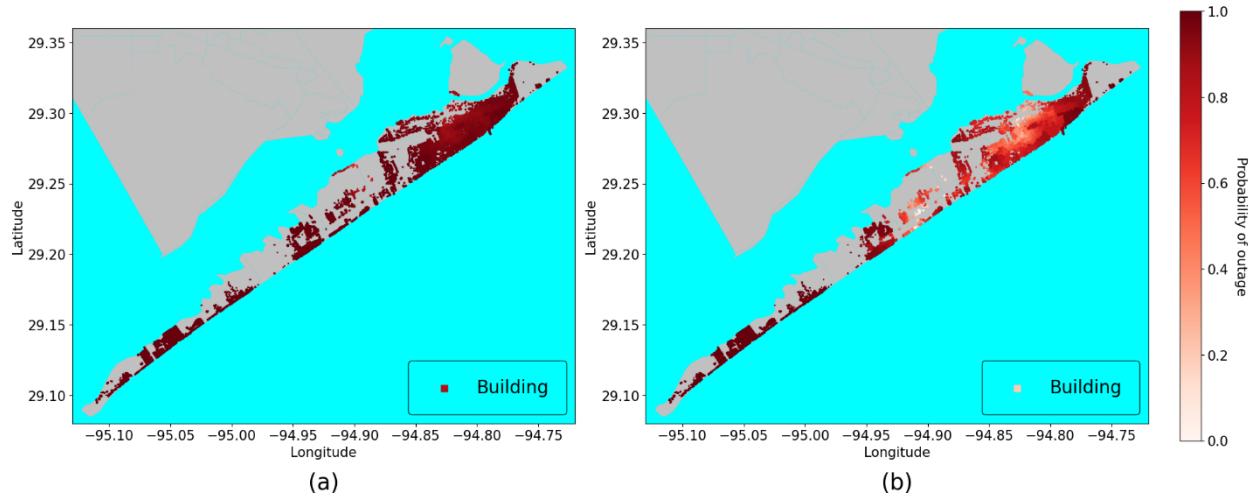
480 "power", "outage", and "electricity" with the geotagged locations being on Galveston Island. We

481 obtained 65 tweets and manually classified them into "outage", "restoration", and "neutral" tweets.

482 After the classification, the data includes 36 outage tweets and 19 restoration tweets, each of which

483 was assigned to the nearest residential building, and then used as evidence to update the DBN.
 484 While the use of Uri's data doesn't have historical accuracy as it comes from a different storm, it
 485 still can demonstrate how the BN can be updated and follow the data obtained from the actual
 486 system in real-time. Therefore, when evidence data is obtained for the outage/restoration state of
 487 any customer, this information can be used to update the prior outage probabilities for the entire
 488 island, affecting the estimations for customers who share a common upstream line with those for
 489 whom evidence have been received, even if we haven't directly obtained data for them. This is
 490 shown in Figure 10 (b), where the posterior outage probabilities show the restoration of power to
 491 large areas of the island driven by only 19 restoration tweets.

492



493
 494 Figure 10: DT outage map for (a) prior estimations (b) posterior estimations using Twitter data (related to winter
 495 storm Uri).

496 **3.3. Discussion on the computational efficiency of the proposed DT framework**

497 The Python programming language is used to code all the analysis in this study on a desktop
 498 computer with 64 GB RAM, (3.7) GHz CPU, and Intel Xeon E3 processor. The BN was highly
 499 efficient in modeling thousands of nodes, with approximately 75 seconds of run time for the
 500 forward propagation algorithm. Moreover, the total run time for the iterative updating of the DBN
 501 using Twitter's data was around 16 minutes.

502 **4. Conclusions and future work**

503 This paper introduces a simple and practical DT framework of the EPN when subjected to
504 hurricanes. First, the foundations of the concept of the DT at the community level are clearly
505 established, and the DT is presented as a tool for prediction and decision-making, thus making it
506 applicable and giving it a clear and well-defined purpose. Then, the proposed framework is
507 discussed in detail starting from data analysis and ending with the use of the DT for offline and
508 online learning. After that, the DT is applied to the Galveston testbed using Ike's simulated
509 hurricane as an application case study, and it is demonstrated that the proposed method is capable
510 of efficiently modeling a large network with tens of thousands of EPN elements and buildings.
511 Finally, the results are validated using historical outage and failure data and are shown to provide
512 detailed and highly accurate estimations.

513 The proposed DT is designed to be scalable and able to extend to model other infrastructure
514 systems and ultimately model the community as a system of systems. Moreover, it can pave the
515 way for future DT frameworks. Therefore, future research can expand the current work to model
516 the interdependencies between the EPN and other critical infrastructure systems such as water,
517 transportation, and telecommunication networks. The proposed framework can also be extended
518 to a life cycle and periodic maintenance DT of the EPN and other infrastructure systems. Future
519 research can target post-disaster management and how the proposed DT can be used to guide and
520 redirect restoration plans. Thus, this paper lays the groundwork for future research on community
521 and infrastructure digital twins, which is a crucial step toward achieving smart and resilient city
522 planning.

523 **Declaration of competing interests**

524 The authors declare that they have no known competing financial interests or personal
525 relationships that could have appeared to influence the work reported in this paper.

526 **Acknowledgments**

527 Financial support for this work was provided by the US National Science Foundation (NSF)
528 under Award Number 2052930. This financial support is gratefully acknowledged. Any opinions,
529 findings, conclusions, and recommendations presented in this paper are those of the authors and
530 do not necessarily reflect the views of NSF.

531 **References**

532 Alibrandi, U. (2022). Risk-informed digital twin of buildings and infrastructures for sustainable
533 and resilient urban communities. *ASCE-ASME Journal of Risk and Uncertainty in Engineering
534 Systems, Part A: Civil Engineering*, 8(3), 04022032.

535 Amin Enderami, S., Mazumder, R. K., Dumler, M., & Sutley, E. J. (2022). Virtual Testbeds for
536 Community Resilience Analysis: State-of-the-Art Review, Consensus Study, and
537 Recommendations. *Natural Hazards Review*, 23(4), 03122001.

538 Amini, F., Ghassemzadeh, S., Rostami, N., & Tabar, V. S. (2023). Electrical energy systems
539 resilience: A comprehensive review on definitions, challenges, enhancements and future
540 proceedings. *IET Renewable Power Generation*, 17(7), 1835-1858.

541 Applegate, C. J., & Tien, I. (2019). Framework for probabilistic vulnerability analysis of
542 interdependent infrastructure systems. *Journal of Computing in Civil Engineering*, 33(1),
543 04018058.

544 Berkeley, A. R., Wallace, M., & Coo, C. (2010). A framework for establishing critical
545 infrastructure resilience goals. *Final report and recommendations by the council, national
546 infrastructure advisory council*, 18-21.

547 Boggess, J., Becker, G., & Mitchell, M. (2014). Storm & flood hardening of electrical
548 substations. 2014 IEEE PES T&D Conference and Exposition,

549 Braik, A. M., Salman, A. M., & Li, Y. (2019). Risk-based reliability and cost analysis of utility
550 poles subjected to tornado hazard. *Journal of Aerospace Engineering*, 32(4), 04019040.

551 Braik, A. M., Salman, A. M., & Li, Y. (2020). Reliability-based assessment and cost analysis of
552 power distribution systems at risk of Tornado hazard. *ASCE-ASME Journal of Risk and
553 Uncertainty in Engineering Systems, Part A: Civil Engineering*, 6(2), 04020014.

554 Cañavera-Herrera, J. S., Tang, J., Nochta, T., & Schooling, J. M. (2022). On the relation between
555 'resilience' and 'smartness': A critical review. *International Journal of Disaster Risk Reduction*,
556 102970.

557 Casey, J. A., Fukurai, M., Hernández, D., Balsari, S., & Kiang, M. V. (2020). Power outages and
558 community health: a narrative review. *Current environmental health reports*, 7, 371-383.

559 Daeli, A., & Mohagheghi, S. (2022). Power Grid Infrastructural Resilience against Extreme
560 Events. *Energies*, 16(1), 64.

561 Darbali-Zamora, R., Johnson, J., Summers, A., Jones, C. B., Hansen, C., & Showalter, C. (2021).
562 State estimation-based distributed energy resource optimization for distribution voltage regulation
563 in telemetry-sparse environments using a real-time digital twin. *Energies*, 14(3), 774.

564 Darestani, Y., & Padgett, J. (2022). *Galveston Island (TX) Electric Power Network Data*.
565 <https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-3550>

566 Darestani, Y., Padgett, J., & Shafieezadeh, A. (2022). Parametrized Wind–Surge–Wave Fragility
567 Functions for Wood Utility Poles. *Journal of Structural Engineering*, 148(6), 04022057.

568 Darestani, Y. M., Jeddi, A. B., & Shafieezadeh, A. (2021). Hurricane Fragility Assessment of
569 Power Transmission Towers for a New Set of Performance-Based Limit States. In *Engineering for
570 Extremes: Decision-Making in an Uncertain World* (pp. 167-188). Springer.

571 Darestani, Y. M., Shafieezadeh, A., & DesRoches, R. (2017). Effects of adjacent spans and
572 correlated failure events on system-level hurricane reliability of power distribution lines. *IEEE
573 Transactions on Power Delivery*, 33(5), 2305-2314.

574 Darestani, Y. M., Webb, B., Padgett, J. E., Pennison, G., & Fereshtehnejad, E. (2021). Fragility
575 analysis of coastal roadways and performance assessment of coastal transportation systems
576 subjected to storm hazards. *Journal of Performance of Constructed Facilities*, 35(6), 04021088.

577 Darwiche, A. (2009). *Modeling and reasoning with Bayesian networks*. Cambridge university
578 press.

579 Dhar, S., Tarafdar, P., & Bose, I. (2022). Understanding the evolution of an emerging
580 technological paradigm and its impact: The case of Digital Twin. *Technological Forecasting and
581 Social Change*, 185, 122098.

582 Dietrich, J., Zijlema, M., Westerink, J., Holthuijsen, L., Dawson, C., Luettich Jr, R., Jensen, R.,
583 Smith, J., Stelling, G., & Stone, G. (2011). Modeling hurricane waves and storm surge using
584 integrally-coupled, scalable computations. *Coastal Engineering*, 58(1), 45-65.

585 Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R., Zijlema, M.,
586 Holthuijsen, L. H., Smith, J., Westerink, L., & Westerink, H. (2012). Performance of the
587 unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge. *Journal of
588 Scientific Computing*, 52, 468-497.

589 Dong, S., Yu, T., Farahmand, H., & Mostafavi, A. (2020). Probabilistic modeling of cascading
590 failure risk in interdependent channel and road networks in urban flooding. *Sustainable Cities and
591 Society*, 62, 102398.

592 Du, X., & Hajjar, J. (2022). Hurricane fragility analysis of electrical transmission towers. In
593 *Electrical Transmission and Substation Structures 2022: Innovating for Critical Global
594 Infrastructure* (pp. 348-357). American Society of Civil Engineers Reston, VA.

595 Fan, C., Jiang, Y., & Mostafavi, A. (2020). Social sensing in disaster city digital twin: Integrated
596 textual-visual-geo framework for situational awareness during built environment disruptions.
597 *Journal of management in engineering*, 36(3), 04020002.

598 Fan, C., Zhang, C., Yahja, A., & Mostafavi, A. (2021). Disaster City Digital Twin: A vision for
599 integrating artificial and human intelligence for disaster management. *International Journal of
600 Information Management*, 56, 102049.

601 FEMA. (2009). Multi-Hazard Loss Estimation, Flood Model: Hazus-MH MR4 Technical
602 Manual. *Federal Emergency Management Agency: Washington, DC, USA*.

603 Ford, D. N., & Wolf, C. M. (2020). Smart cities with digital twin systems for disaster
604 management. *Journal of management in engineering*, 36(4), 04020027.

605 Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air
606 Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials
607 conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA,

608 Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent
609 behavior in complex systems. *Transdisciplinary perspectives on complex systems: New findings
610 and approaches*, 85-113.

611 Ham, Y., & Kim, J. (2020). Participatory sensing and digital twin city: Updating virtual city
612 models for enhanced risk-informed decision-making. *Journal of management in engineering*,
613 36(3), 04020005.

614 He, X., & Cha, E. J. (2018). Modeling the damage and recovery of interdependent critical
615 infrastructure systems from natural hazards. *Reliability Engineering & System Safety*, 177, 162-
616 175.

617 He, X., & Cha, E. J. (2021). DIN II: incorporation of multi-level interdependencies and
618 uncertainties for infrastructure system recovery modeling. *Structure and Infrastructure
619 Engineering*, 17(11), 1566-1581.

620 Heglund, J., Hopkinson, K. M., & Tran, H. T. (2021). Social sensing: towards social media as a
621 sensor for resilience in power systems and other critical infrastructures. *Sustainable and Resilient
622 Infrastructure*, 6(1-2), 94-106.

623 Hoffman, P., Bryan, W., & Lippert, A. (2009). Comparing the Impacts of the 2005 and 2008
624 Hurricanes on US Energy Infrastructure. *US Department of Energy*.

625 Hossain, E., Roy, S., Mohammad, N., Nawar, N., & Dipta, D. R. (2021). Metrics and
626 enhancement strategies for grid resilience and reliability during natural disasters. *Applied Energy*,
627 290, 116709.

628 Hossain, N. U. I., Jaradat, R., Hosseini, S., Marufuzzaman, M., & Buchanan, R. K. (2019). A
629 framework for modeling and assessing system resilience using a Bayesian network: A case study
630 of an interdependent electrical infrastructure system. *International Journal of Critical
631 Infrastructure Protection*, 25, 62-83.

632 Hosseini, M. M., Umunnakwe, A., Parvania, M., & Tasdizen, T. (2020). Intelligent damage
633 classification and estimation in power distribution poles using unmanned aerial vehicles and
634 convolutional neural networks. *IEEE Transactions on Smart Grid*, 11(4), 3325-3333.

635 Huang, Q., & Xiao, Y. (2015). Geographic situational awareness: mining tweets for disaster
636 preparedness, emergency response, impact, and recovery. *ISPRS international journal of geo-
637 information*, 4(3), 1549-1568.

638 Incore. (2023). *Galveston Testbed*. <https://incore.ncsa.illinois.edu/>

639 Jiang, F., Ma, L., Broyd, T., & Chen, K. (2021). Digital twin and its implementations in the civil
640 engineering sector. *Automation in Construction*, 130, 103838.

641 Johansen, C., & Tien, I. (2018). Probabilistic multi-scale modeling of interdependencies between
642 critical infrastructure systems for resilience. *Sustainable and Resilient Infrastructure*, 3(1), 1-15.

643 JustAnotherArchivist. (2021). *SNSCRAPE*. <https://github.com/JustAnotherArchivist/snsrape>

644 Kameshwar, S., Cox, D. T., Barbosa, A. R., Farokhnia, K., Park, H., Alam, M. S., & van de
645 Lindt, J. W. (2019). Probabilistic decision-support framework for community resilience:
646 Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian
647 network. *Reliability Engineering & System Safety*, 191, 106568.

648 Khan, K., Rehman, S. U., Aziz, K., Fong, S., & Sarasvady, S. (2014). DBSCAN: Past, present
649 and future. The fifth international conference on the applications of digital information and web
650 technologies (ICADIWT 2014),

651 King, C. W., Rhodes, J. D., Zarnikau, J., Lin, N., Kutanoglu, E., Leibowicz, B., Niyogi, D., Rai,
652 V., Santoso, S., & Spence, D. (2021). The timeline and events of the February 2021 Texas electric
653 grid blackouts. *The University of Texas Energy Institute*, 2.

654 Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler, H.
655 (2020). State of the research in community resilience: Progress and challenges. *Sustainable and
656 Resilient Infrastructure*, 5(3), 131-151.

657 Lee, S., Choi, M., Lee, H.-S., & Park, M. (2020). Bayesian network-based seismic damage
658 estimation for power and potable water supply systems. *Reliability Engineering & System Safety*,
659 197, 106796.

660 Lee, S., & Ham, Y. (2021). Probabilistic framework for assessing the vulnerability of power
661 distribution infrastructures under extreme wind conditions. *Sustainable Cities and Society*, 65,
662 102587.

663 Li, C., Mahadevan, S., Ling, Y., Choze, S., & Wang, L. (2017). Dynamic Bayesian network for
664 aircraft wing health monitoring digital twin. *Aiaa Journal*, 55(3), 930-941.

665 Li, Y., Salman, A. M., Braik, A., Bjarnadóttir, S., & Salarieh, B. (2021). Risk-Based
666 Management of Electric Power Distribution Systems Subjected to Hurricane and Tornado
667 Hazards. In *Engineering for Extremes: Decision-Making in an Uncertain World* (pp. 143-166).
668 Springer.

669 Lu, Q., & Zhang, W. (2022). Integrating dynamic Bayesian network and physics-based modeling
670 for risk analysis of a time-dependent power distribution system during hurricanes. *Reliability
671 Engineering & System Safety*, 220, 108290.

672 Ma, L., Christou, V., & Bocchini, P. (2022). Framework for probabilistic simulation of power
673 transmission network performance under hurricanes. *Reliability Engineering & System Safety*,
674 217, 108072.

675 Ma, L., Khazaali, M., & Bocchini, P. (2021). Component-based fragility analysis of transmission
676 towers subjected to hurricane wind load. *Engineering Structures*, 242, 112586.

677 Ma, Y., Dai, Q., & Pang, W. (2020). Reliability assessment of electrical grids subjected to wind
678 hazards and ice accretion with concurrent wind. *Journal of Structural Engineering*, 146(7),
679 04020134.

680 Magzhan, K., & Jani, H. M. (2013). A review and evaluations of shortest path algorithms.
681 *International journal of scientific & technology research*, 2(6), 99-104.

682 Masoomi, H., van de Lindt, J. W., Ameri, M. R., Do, T. Q., & Webb, B. M. (2019). Combined
683 wind-wave-surge hurricane-induced damage prediction for buildings. *Journal of Structural
684 Engineering*, 145(1), 04018227.

685 Mckinley, J. (2008, Sept. 16). *Crews From 31 States in Texas to Restore Power*. The New York
686 Times. <https://www.nytimes.com/2008/09/17/us/17ike.html>

687 Meier, A., Ueno, T., & Pritoni, M. (2019). Using data from connected thermostats to track large
688 power outages in the United States. *Applied Energy*, 256, 113940.

689 Mensah, A. F., & Dueñas-Osorio, L. (2014). Outage predictions of electric power systems under
690 Hurricane winds by Bayesian networks. 2014 International Conference on Probabilistic Methods
691 Applied to Power Systems (PMAPS),

692 Montoya-Rincon, J. P., Azad, S., Pokhrel, R., Ghandehari, M., Jensen, M. P., & Gonzalez, J. E.
693 (2022). On the use of satellite nightlights for power outages prediction. *IEEE access*, 10, 16729-
694 16739.

695 Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2022). Development of a PSS for smart grid
696 energy distribution optimization based on digital twin. *Procedia CIRP*, 107, 1138-1143.

697 Murphy, K. (2001). The bayes net toolbox for matlab. *Computing science and statistics*, 33(2),
698 1024-1034.

699 Murphy, K. P. (2002). *Dynamic bayesian networks: representation, inference and learning*.
700 University of California, Berkeley.

701 NOAA. (2023). NOAA National Centers for Environmental Information (NCEI) U.S. Billion-
702 Dollar Weather and Climate Disasters (2023). <https://www.ncei.noaa.gov/access/billions/>, DOI:
703 10.25921/stkw-7w73.

704 Prochazka, S. (2009). *Remembering Hurricane Ike Workshop*.
705 http://www.ci.clute.tx.us/doc_center/E-Forms-Documents/CenterPoint%20-%20Hurricane%20Utility%20Info.pdf

707 Reuters. (2008, SEPTEMBER 20). *Two million still without power after Hurricane Ike*.
708 <https://www.reuters.com/article/us-utilities-ike-power/two-million-still-without-power-after-hurricane-ike-idUSN1945952520080920>

710 Román, M. O., Stokes, E. C., Shrestha, R., Wang, Z., Schultz, L., Carlo, E. A. S., Sun, Q., Bell,
711 J., Molthan, A., & Kalb, V. (2019). Satellite-based assessment of electricity restoration efforts in
712 Puerto Rico after Hurricane Maria. *PLoS one*, 14(6), e0218883.

713 Saad, A., Faddel, S., & Mohammed, O. (2020). IoT-based digital twin for energy cyber-physical
714 systems: design and implementation. *Energies*, 13(18), 4762.

715 Salman, A. M., & Li, Y. (2016). Age-dependent fragility and life-cycle cost analysis of wood
716 and steel power distribution poles subjected to hurricanes. *Structure and Infrastructure
717 Engineering*, 12(8), 890-903.

718 Salman, A. M., Li, Y., & Stewart, M. G. (2015). Evaluating system reliability and targeted
719 hardening strategies of power distribution systems subjected to hurricanes. *Reliability Engineering
720 & System Safety*, 144, 319-333.

721 Sánchez-Muñoz, D., Domínguez-García, J. L., Martínez-Gomariz, E., Russo, B., Stevens, J., &
722 Pardo, M. (2020). Electrical grid risk assessment against flooding in Barcelona and Bristol cities.
723 *Sustainability*, 12(4), 1527.

724 Shafieezadeh, A., Onyewuchi, U. P., Begovic, M. M., & DesRoches, R. (2013). Age-dependent
725 fragility models of utility wood poles in power distribution networks against extreme wind
726 hazards. *IEEE Transactions on Power Delivery*, 29(1), 131-139.

727 Short, T. A. (2014). *Electric power distribution handbook*. CRC press.

728 Sifat, M. M. H., Choudhury, S. M., Das, S. K., Ahamed, M. H., Muyeen, S., Hasan, M. M., Ali,
729 M. F., Tasneem, Z., Islam, M. M., & Islam, M. R. (2022). Towards electric digital twin grid:
730 Technology and framework review. *Energy and AI*, 100213.

731 Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: State-of-the-art. *IEEE
732 Transactions on industrial informatics*, 15(4), 2405-2415.

733 Wang, Y., Mao, X., & Jiang, W. (2018). Long-term hazard analysis of destructive storm surges
734 using the ADCIRC-SWAN model: A case study of Bohai Sea, China. *International journal of
735 applied earth observation and geoinformation*, 73, 52-62.

736 Wang, Y. H. (1993). On the number of successes in independent trials. *Statistica Sinica*, 295-
737 312.

738 Yu, J., Song, Y., Tang, D., & Dai, J. (2021). A Digital Twin approach based on nonparametric
739 Bayesian network for complex system health monitoring. *Journal of Manufacturing Systems*, 58,
740 293-304.

741 Yuan, H., Zhang, W., Zhu, J., & Bagtzoglou, A. C. (2018). Resilience assessment of overhead
742 power distribution systems under strong winds for hardening prioritization. *ASCE-ASME Journal
743 of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering*, 4(4), 04018037.

744 Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social media for intelligent public
745 information and warning in disasters: An interdisciplinary review. *International Journal of
746 Information Management*, 49, 190-207.

747 Zhang, H., Cheng, L., Yao, S., Zhao, T., & Wang, P. (2019). Spatial-temporal reliability and
748 damage assessment of transmission networks under hurricanes. *IEEE Transactions on Smart Grid*,
749 11(2), 1044-1054.

750 Zhou, M., Yan, J., & Feng, D. (2019). Digital twin framework and its application to power grid
751 online analysis. *CSEE Journal of Power and Energy Systems*, 5(3), 391-398.

752 Zimmerman, R., Zhu, Q., de Leon, F., & Guo, Z. (2017). Conceptual modeling framework to
753 integrate resilient and interdependent infrastructure in extreme weather. *Journal of Infrastructure
754 Systems*, 23(4), 04017034.

755 Zou, Q., & Chen, S. (2019). Enhancing resilience of interdependent traffic-electric power
756 system. *Reliability Engineering & System Safety*, 191, 106557.

757