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Abstract  11 

The electric power network (EPN) is one of the most critical infrastructure systems as most 12 

lifeline, economic, and social systems depend heavily on it, and any disruption in the network may 13 

affect the well-being of modern societies. Being the most vulnerable to natural hazards, the 14 

resilience of the EPN has received plenty of attention in recent years, particularly considering the 15 

increasing frequency and severity of natural hazards associated with climate instabilities. The data 16 

revolution and the recent advances in the fields of artificial intelligence (AI), machine learning 17 

(ML), and the Internet of Things (IoT) have prompted researchers to take the next step and expand 18 

the available predictive models toward digital twins (DT). However, there is still a lack of an 19 

applicable framework for a DT of infrastructure systems in the face of disasters. In this paper, a 20 

novel DT framework of the EPN when subjected to hurricanes is proposed that combines physics-21 

based and data-driven models while also employing a dynamic Bayesian network (DBN). The 22 

DBN can be updated in near real-time via data sensing to provide a DT that is simple, 23 

computationally feasible, scalable, and capable of modeling and estimating the failure and 24 

performance states of the various elements of the EPN. The proposed DT framework is applied to 25 

Galveston Island’s EPN, and the results are validated using historical data, demonstrating that the 26 

DT can produce detailed and highly accurate estimations to be used in decision-making for 27 

community resilience planning. 28 

Keywords: Bayesian network, community resilience, digital twin, electric power network, 29 

hurricanes.  30 

Abbreviations: AI: artificial intelligence; BN: Bayesian network; CPD: conditional probability 31 

distribution; CPS: cyber-physical systems; DBN: dynamic Bayesian network; DT: digital twin; 32 
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EPN: electric power network; IoT: internet of things; ML: machine learning; VE: variable 33 

elimination. 34 

1. Introduction 35 

1.1. Motivation and problem statement 36 

The electric power network (EPN) is one the most important infrastructure systems, supporting 37 

many other critical lifelines such as water, transportation, and telecommunication networks, 38 

therefore, any disruption in the EPN can have a significant impact on the safety, health, and 39 

economic well-being of modern societies. Yet, it is by far the most vulnerable to natural hazards, 40 

especially hurricanes. Over the past two decades, hurricanes have resulted in more than $1 trillion 41 

of economic losses in the United States (NOAA, 2023), and a significant share of these are direct 42 

costs from damage to EPN components as well as indirect costs associated with power outages 43 

(Casey et al., 2020). As a result, the EPN’s resilience has received a lot of attention in recent years, 44 

especially in consideration of the increasing frequency and severity of natural hazards and other 45 

disruptive events associated with climate instabilities (Koliou et al., 2020). Therefore, the EPN's 46 

reliability and risk mitigation have been extensively studied over the last decade at both the 47 

component level (e.g., Shafieezadeh et al., 2013; Salman & Li, 2016; Yuan et al., 2018; Braik et 48 

al., 2019; Ma et al., 2020; Darestani, Jeddi, et al., 2021; Ma et al., 2021; Du & Hajjar, 2022) and 49 

the system level (e.g., Salman et al., 2015; H. Zhang et al., 2019; Braik et al., 2020; Lee & Ham, 50 

2021; Li et al., 2021; Ma et al., 2022), in addition to its interdependency with other infrastructure 51 

systems (e.g., Zimmerman et al., 2017; He & Cha, 2018; Johansen & Tien, 2018; Applegate & 52 

Tien, 2019; Zou & Chen, 2019; Lee et al., 2020; He & Cha, 2021). Moreover, many studies have 53 

investigated enhancing the resilience of the EPN in the face of extreme weather events by 54 

proposing various methods of hardening to the overhead lines, poles, and substations, vegetation 55 
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management methods, and network redundancy strategies (e.g., Berkeley et al., 2010; Boggess et 56 

al., 2014; Hossain et al., 2021; Daeli & Mohagheghi, 2022; Amini et al., 2023).   57 

However, there is still a need to leverage the recent advances in data science and smart 58 

technologies and combine them with the available probabilistic modeling methods. This will 59 

provide high-fidelity models that can be updated in real-time via intelligent data-sensing to be used 60 

in prediction and decision-making. Such a model can be achieved through a digital twin (DT), 61 

which integrates the real system with its virtual replica through real-time data transfer. On that 62 

account, researchers have been motivated to expand the predictive models toward DT models (Fan 63 

et al., 2021), but the proposed methods are still conceptual or focus on a single aspect of the DT, 64 

such as data-sensing (e.g., Fan et al., 2020; Ford & Wolf, 2020; Fan et al., 2021; Ham & Kim, 65 

2020; Alibrandi, 2022). Hence, there is still a lack of a practical and applicable framework for a 66 

DT of infrastructure systems in the face of natural hazards.  67 

1.2. Background on digital twins and their applications in community resilience studies 68 

The concept of DT is relatively new and was first introduced in 2002 through a product lifecycle 69 

management model (Grieves & Vickers, 2017). While different definitions of the DT exist (e.g., 70 

Glaessgen & Stargel, 2012; Grieves & Vickers, 2017; Tao et al., 2018; Jiang et al., 2021; Alibrandi, 71 

2022; Dhar et al., 2022), most agree that it integrates the real (physical) system with its virtual 72 

replica (high-fidelity model) via real-time data transfer. The concept of DT was immediately 73 

adopted in the field of industrial engineering due to its applications in smart manufacturing (Tao 74 

et al., 2018). Then, it also gained traction in civil and infrastructure systems engineering, with 75 

researchers investigating how to utilize the DT as a step toward smart cities (Cañavera-Herrera et 76 

al., 2022). 77 
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Recent studies have been proposing frameworks to integrate technologies like smart grids, cyber-78 

physical systems (CPS), the Internet of Things (IoT), big data analytics, and machine learning 79 

(ML) to develop EPN DTs (e.g., Zhou et al., 2019; Saad et al., 2020 Darbali-Zamora et al., 2021; 80 

Mourtzis et al., 2022). These frameworks have shown promise in enhancing the management and 81 

efficiency of EPNs, but their applicability in disaster management faces significant challenges. 82 

They heavily rely on continuous real-time data from smart meters and other physical sensors, 83 

which can be vulnerable to damage in the aftermath of natural hazards. Moreover, these approaches 84 

are built upon an initial state estimation of the EPN’s condition, which is continuously updated in 85 

real-time using data (Sifat et al., 2022). However, this may not work when there is a widespread 86 

destruction of elements within the EPN. In such cases, physics-based methods that consider hazard 87 

and structural analysis can offer more reliable estimates (Alibrandi, 2022). Consequently, DT 88 

frameworks designed for post-hazard scenarios shift their focus toward obtaining data through 89 

alternative means like social sensing and image recognition, which do not rely on physical sensors 90 

(Ford & Wolf, 2020; Fan et al., 2021). Since these methods require a large amount of data that is 91 

usually not readily available after the disaster, the DT must also incorporate physics-based 92 

methods (Alibrandi, 2022). 93 

1.3. Background on Bayesian Networks and their applications in digital twins for 94 

community resilience planning 95 

One of the powerful statistical tools that can combine physics-based models, interdependency 96 

rules, and updating using evidence data is the Bayesian network (BN). Hence, incorporating the 97 

BN within the risk assessment framework allows to account for various epistemic uncertainties in 98 

the model, while also providing a systematic method to combine evidence data with the prior 99 

physics-based beliefs. This enhances the offline (pre-disaster) predictions and extends the model’s 100 
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capabilities toward online (post-disaster) applications. Therefore, the BN can be extended to a 101 

dynamic Bayesian network (DBN) to deal with the change of the states of elements in a dynamic 102 

system (Murphy, 2002). Methods incorporating the DBN have recently been proposed as DT 103 

models, primarily because the DBN is a simple, intuitive, graphical, scalable, and efficient method 104 

that can capture interdependencies between systems, identify critical components, allow for real-105 

time information updates, and most importantly provide probabilistic estimations that can be used 106 

in decision-making. For example, Li et al. (2017) proposed a DBN model for the prediction of 107 

fatigue crack growth in aircraft wings, and Yu et al. (2021) proposed a DBN model for complex 108 

system health monitoring.  109 

The advantages of the BN have attracted researchers to utilize it in community resilience in the 110 

face of natural hazards, but still, none of the proposed frameworks have extended the BN toward 111 

a DT at the community level. For example, Kameshwar et al. (2019) proposed a general framework 112 

using a BN for community resilience considering infrastructure interdependencies and 113 

incorporating multi-hazards, and Dong et al. (2020) used a BN to model the interdependence 114 

between the road network and the stormwater drainage system during floods.   115 

Methods based on BNs and DBNs have been proposed for power outage prediction or to model 116 

the EPN and its interdependencies with other systems, but there are no studies available related to 117 

extending such models toward a DT. Mensah and Dueñas-Osorio (2014) proposed a general 118 

framework for electric power outage prediction during hurricanes using a BN and applied it to a 119 

case study that only considered the substations as nodes. The potential of extending the BN toward 120 

a hybrid physics-based and data-driven method through Bayesian updating of the network was not 121 

explored in that study. More recently, Johansen and Tien (2018), Applegate and Tien (2019), and 122 

Lee et al. (2020) used BNs and DBNs to model the interdependency between the power network 123 
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and other infrastructure systems (mainly the water network). These frameworks were targeted 124 

toward the seismic hazard and considered the substations to be the vulnerable components within 125 

the power system. Therefore, the proposed frameworks cannot be directly applied to EPNs 126 

subjected to wind loads where the distribution and transmission lines are the most vulnerable 127 

components. Moreover, the DBN in these studies was used to model the interdependencies 128 

between systems and not to update the BN. Applegate and Tien (2019) mentioned that the BN can 129 

be updated using evidence data, however, no application study was presented on how this evidence 130 

can be obtained in real-time or how to extend the method toward a full hybrid physics-based and 131 

data-driven DT. 132 

1.4. Data sensing 133 

The BN framework proposed in this paper allows for the use of data evidence obtained through 134 

any data-sensing method to dynamically update the physical (failure or survival) or performance 135 

(power outage or restoration) states of any element within the EPN. Traditional methods to obtain 136 

outage, restoration, and damage data include calls from customers, utility sensors, and feedback 137 

from repair crews. Calls from customers are still by far the main source of power outage data 138 

(Meier et al., 2019). However, handling all customer calls after disasters and widespread outages 139 

is both expensive and inefficient. Thus, faster methods are needed to help speed up the restoration. 140 

While utility companies use methods to detect power outages such as smart meters connected to 141 

customers and supervisory control and data acquisition (SCADA) systems connected to 142 

substations, the signals of the smart meters will not reach if the network suffers widespread 143 

destruction after hurricanes, and the SCADA by itself doesn’t provide sufficient detailed 144 

information since the distribution lines are not covered (Meier et al., 2019; Román et al., 2019). 145 

Hence, these are still secondary sources and aren’t sufficient to provide real-time outage data 146 
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necessary to direct restoration efforts following disasters. Feedback from investigations and repair 147 

crews is a reliable source for damage and restoration data following site inspections and repairs, 148 

but it may also be slow and inefficient and should be accompanied and guided by other data-149 

sensing methods.  150 

Recently, smart sensing methods such as social sensing and image processing have been getting 151 

traction and showing potential. Many researchers have investigated the scrapping and analyzing 152 

of social media comments (such as tweets) during disasters (e.g., Huang & Xiao, 2015; C. Zhang 153 

et al., 2019; Fan et al., 2020; Heglund et al., 2021). Moreover, with the development of artificial 154 

intelligence (AI) image recognition and processing models, researchers have proposed methods to 155 

identify post-disaster damage via satellite images and aerial photos. For example, Hosseini et al. 156 

(2020) proposed a convolutional neural network damage classification model to detect failed poles 157 

after hurricanes using unmanned aerial vehicles, and Montoya-Rincon et al. (2022) proposed a  158 

ML model to predict outages using satellite night images based on the difference between 159 

nightlight radiances before and after the hurricane. In addition to the above, many proposed smart 160 

methods can contribute to receiving real-time outage and restoration data. For example, Meier et 161 

al. (2019) proposed the use of data from connected thermostats to detect power outages.   162 

1.5. Scope 163 

In this paper, a novel DT framework of the EPN when subjected to hurricane hazards is proposed. 164 

The key objective is to develop a DT that can be used in decision-making to turn the predictive 165 

models from being passive to active and impacting the real system. Due to the lack of a unified 166 

and clear definition of the DT when dealing with cities and infrastructure systems, this paper also 167 

proposes a definition of the DT at the community level to be a high-fidelity model of single or 168 

multiple infrastructure systems that considers both the physical characteristics and the 169 
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interdependency rules and can be updated in near real-time to assist with decision-making. The 170 

proposed framework combines physics-based and data-driven models while it also employs a DBN 171 

that can be updated in near real-time via data-sensing. Therefore, from a Bayesian modeling 172 

perspective, the initial estimates based on hazard and fragility analysis represent the prior physics-173 

based belief. After that, the BN is updated using evidence data to follow the real system. With 174 

continuous real-time updating, the DBN turns into a high-fidelity hybrid (physics-based and data-175 

driven) model of the real system, and hence the term DT is used in the proposed framework.   176 

This framework provides a DT that is simple, computationally feasible, scalable, and capable of 177 

modeling and estimating the damage and performance states of the various elements of the EPN, 178 

beginning with the substations and progressing through the transmission lines and distribution 179 

lines to finally reach the customers, while also capturing detailed spatial variations and taking into 180 

account the different land uses. Hence, it can offer two major capabilities: offline learning and 181 

online learning. In preplanning and preparedness for natural hazards, the DT model can be used 182 

for offline learning to simulate various hazard scenarios and estimate the system’s performance. 183 

This can test the efficacy of restoration plans and guide maintenance as well as hardening 184 

strategies. Additionally, the DT model can be used in online learning for adaptive decision-making 185 

and to direct post-disaster restoration efforts and repair crews by identifying the most critical nodes 186 

within the system. By using evidence and feedback from repair crews and other investigation 187 

reports, as well as the data from various real-time sensing methods, the DT model has the capability 188 

to be updated, and thus strategies and plans can be redirected based on the actual current situation. 189 

The proposed framework is described in detail in this paper starting from data analysis and then 190 

proceeding to show how to integrate physics-based hazard and fragility analysis and data-driven 191 

DBN in a hybrid DT model that considers all subsystems and components of the EPN and can be 192 
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updated in near real-time to be used in decision-making. Then, the proposed DT framework is 193 

applied using the Galveston testbed subjected to Hurricane Ike hazard and the results are validated 194 

using historical records.  195 

2. Description of the proposed DT framework 196 

A flowchart of the proposed DT framework is presented in Figure 1, while details are discussed 197 

in the following sections.  198 

 199 
Figure 1: Flowchart showing key steps of the proposed digital twin framework of electric power networks. 200 

2.1. Infrastructure system data collection & analysis 201 

A typical EPN consists of power generating plants, substations, power transmission systems, 202 

power distribution systems, and customers (Short, 2014; Hossain et al., 2019). Power plants are 203 

rarely affected by hurricanes and therefore are excluded from the proposed DT model. To achieve 204 
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a high-fidelity model of the EPN, the proposed DT incorporates data on the location and properties 205 

of all major elements and their connectivity. This data is typically controlled by utility companies, 206 

and access may be restricted due to confidentiality concerns. To overcome data restrictions and 207 

facilitate research on community resilience, testbeds provide an environment where researchers 208 

can access relevant data, and develop and test their methodologies (Amin Enderami et al., 2022).  209 

This data is cleaned and processed into a usable form, i.e., a directed graph of the network starting 210 

from the substations and ending with the customers (receiving service), that can be directly used 211 

in the BN. Moreover, a polytree, which is a network where there is only one path between any two 212 

nodes (Darwiche, 2009), is incorporated into the model since it allows for the use of the exact BN 213 

inference methods with computational time linearly proportional to the size of the data (Murphy, 214 

2001). As the vast majority of the power networks in the U.S. are radial or at least operated radially, 215 

a network with no loops can be usually achieved (Short, 2014). However, in the case of the 216 

existence of a few loops in the system, it is recommended to break them using the shortest path 217 

(Magzhan & Jani, 2013) between the first and last nodes in the cycle. Hence, the proposed EPN 218 

model consists of a connected and directed network with no loops.  219 

Based on what is recommended in the literature, the elements are aggregated and clustered into 220 

super-nodes that preserve the connectivity and interdependence within the network while reducing 221 

its size hence resulting in a computationally cheaper and more scalable method (Applegate & Tien, 222 

2019). The transmission towers and distribution poles are aggregated into transmission lines and 223 

distribution lines, respectively in this model. Moreover, buildings can be clustered spatially and 224 

categorically into clusters. The Density-based spatial clustering of applications with noise 225 

(DBSCAN), which is a popular ML algorithm for spatial clustering based on the maximum 226 

distance between any two elements in the cluster (Khan et al., 2014), is used in the proposed DT 227 
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resulting in clusters of similarly typed buildings that are spatially close and presumed to share a 228 

common feeder for electricity. The clustering of buildings may result in some distribution line 229 

nodes at the end of the network that are not connected to any cluster. These nodes can be pruned 230 

to reduce the size of the network without having a mathematical impact (Darwiche, 2009). In 231 

summary, the BN of the proposed model (described in the following sections) consists of 232 

substation nodes, transmission line nodes, distribution line nodes, and building cluster nodes.  233 

2.2. Hazard analysis  234 

When studying a community prone to hurricane hazards, a detailed hazard model that captures 235 

the spatial variation in wind speed and direction as well as the accompanying wave and surge is 236 

needed. The coupling of the Advanced Circulation (ADCIRC) and Simulating Waves Nearshore 237 

(SWAN) models (Dietrich et al., 2011) allows for such highly detailed simulation. In the 238 

ADCIRC+SWAN model, the shallow-water equations are solved via the ADCIRC model that 239 

passes wind velocities and water levels to the SWAN model to simulate short-crested wind-240 

generated waves. Eventually, the simulation will provide spatial variations of wind speed and 241 

direction, wave speed, direction, and height, surge height, and highest flood depth over the coastal 242 

area (Dietrich et al., 2012; Masoomi et al., 2019). Such a hazard model is incorporated into the 243 

proposed DT to perform the hazard analysis and generate the hazard loads on the infrastructure 244 

systems and components considered.  245 

A comprehensive risk assessment requires the generation of stochastic hurricane scenarios and 246 

subsequent load simulations to quantify hazard load uncertainties (e.g., Wang et al., 2018). This 247 

can be performed for different return periods, enabling the assessment of varying levels of hazards 248 

and the associated risks (Darestani, Webb, et al., 2021). However, for the application study in this 249 

paper (as detailed in Section 3), we relied on the results of a single hindcast simulation of Hurricane 250 
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Ike (Darestani, Webb, et al., 2021). While this simulation provides highly detailed estimations of 251 

the maximum wind, wave, and surge loads for every location on Galveston Island, it is important 252 

to acknowledge that this study does not account for the uncertainties inherent in the hazard 253 

analysis, nor does it consider a range of hurricane return period scenarios. 254 

2.3. Fragility analysis 255 

In this step of the proposed framework, fragility analysis for every element of the model is 256 

performed. A fragility function gives the conditional probability of failure given a hazard’s 257 

intensity measure. Therefore, the probability of physical failure of each element of the model is 258 

computed using fragility functions and the loads obtained from the hazard analysis. Hence, the 259 

binary physical state (failure or survival) of the EPN elements is computed. The fragility functions 260 

used in this study are adopted from the existing literature and described below.  261 

Darestani et al. (2022) have recently proposed a surrogate parametrized fragility function for 262 

wood utility poles fitted into a logistic regression model that considers various intensity measures 263 

and pole properties as its parameters, including wind speed 𝑉𝑊 (m/s) (3-s gust), wind direction 𝜃𝑊 264 

(radians), water velocity 𝑉𝐹 (m/s), surge height 𝐻𝑆 (m), significant wave height 𝐻𝑊 (m), pole 265 

height 𝐻𝑃 (m), pole age 𝑡𝑃 (years), and conductor’s effective area 𝐴𝐶 (m2). The fragility functions 266 

for wood utility poles proposed by Darestani et al. (2022) are incorporated into the DT model. The 267 

probability of failure for the utility poles is then computed using Eq. (1), where 𝜎(𝑦) is the standard 268 

logistic function defined in Eq. (2), and the coefficients 𝛼0 to 𝛼7 (for pole’s rapture limit state and 269 

assuming stiff soil) obtained from Darestani et al. (2022) are summarized in Table 1 for classes 3, 270 

4, and 5. Figure 2 (a) shows a multidimensional plot of the fragility function with varying intensity 271 

measures for 𝑉𝑊, 𝑉𝐹 , 𝐻𝑆, and 𝐻𝑊, while fixing the remaining parameters. 272 
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𝑃(𝑃𝑜𝑙𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑉𝑊, 𝜃𝑤, 𝑉𝐹 , 𝐻𝑆, 𝐻𝑊, 𝐻𝑃, 𝑡𝑃, 𝐴𝐶) = 𝜎(𝛼0 + 𝛼1𝑉𝑊 + 𝛼2(𝐻𝑝 − 𝐻𝑆 − 𝐻𝑊) +273 

𝛼3𝑉𝐹𝐻𝑆 + 𝛼4𝑉𝑊 sin(𝜃𝑊) + 𝛼5𝑉𝑊𝐴𝐶 + 𝛼6𝑚𝑎𝑥(𝑡𝑃, 25) + 𝛼7𝐻𝑊)                                                   (1)  274 

𝜎(𝑦) = (1 + exp(−𝑦))−1                                                                                                                       (2)  275 

Table 1: Coefficients for wood pole’s fragility function (data from Darestani et al. 2022) 276 

Class α0 α1 α2 α3 α4 α5 α6 α7 

3 -7.2476 0.02157 0.051976 0.29907 0.027067 0.002424 0.027865 0.51853 

4 -6.9997 0.020323 0.042443 0.30771 0.030009 0.00284 0.02892 0.53529 

5 -6.798 0.021067 0.040692 0.33019 0.033158 0.002863 0.026811 0.56842 

 277 

The fragility function of transmission towers used in this study is obtained from Darestani, Jeddi, 278 

et al. (2021). More specifically, the extensive damage limit state is adopted to represent the 279 

physical failure of the tower. Therefore, the probability of failure for transmission towers subjected 280 

to wind speed 𝑉𝑊 (m/s) and direction 𝜃𝑊 relative to conductors is computed using Eq. (3), where 281 

the wind load is projected into perpendicular and parallel components. Parameters 𝛽0, 𝛽1, 𝛽2, and 282 

𝛽3 obtained from Darestani, Jeddi, et al. (2021) are equal to -12.1438, 0.2056, -9.5395, and 0.1235 283 

respectively (where 𝛽1 and 𝛽3 are scaled to modify the units from (mph) in Darestani, Jeddi, et al. 284 

(2021) to (m/s) in this study). Figure 2 (b) shows the fragility surface of transmission towers 285 

subjected to wind load. 286 

𝑃(𝑇𝑜𝑤𝑒𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑉𝑊, 𝜃𝑊) = 1 − [1 − 𝜎(𝛽0 + 𝛽1𝑉𝑊 sin(𝜃𝑊))][1 − 𝜎(𝛽2 + 𝛽3𝑉𝑊 cos(𝜃𝑊))]      (3) 287 

The electrical substations are rarely damaged by wind but are vulnerable to flooding caused by 288 

the flood accompanying hurricanes. The fragility curve for electrical substations adopted from 289 

FEMA (FEMA, 2009) and obtained from Sánchez-Muñoz et al. (2020) is incorporated into the 290 

model, where the intensity measure is the flood height 𝐹 (m). The curve was fitted to a lognormal 291 

distribution with parameters 𝜆 = 0.443 and 𝜁 = 0.168. Therefore, the probability of failure of 292 

substations can be computed using Eq. (4), where Φ(y) is the cumulative distribution function of 293 
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the standard normal distribution. Figure 2 (c) shows the fragility curve for substations subjected to 294 

flood. 295 

𝑃(𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝐹) = Φ((ln(𝐹) − 𝜆)/𝜁)                                                                              (4)  296 

Once the fragility functions for all elements of the DT model are acquired, the probability of 297 

damage for a line 𝑃𝐿 containing 𝑛 elements (poles or towers) can be calculated using Eq. (5), where 298 

𝑃𝑖 is the probability of failure of the ith element within the line.  299 

𝑃𝐿 = 1 − ∏ (1 − 𝑃i)
𝑛
𝑖=1                                                                                                                            (5)  300 

It should be noted that ignoring the effect of adjacent elements might under-estimate the failure 301 

probabilities of connected poles and towers, while not considering the statistical correlations might 302 

over-estimate the probabilities of failure of lines (Salman et al., 2015; Darestani et al., 2017). 303 

However, due to the lack of data on the spatial correlation between adjacent poles and towers and 304 

to simplify the model, an assumption of statistical independence between elements within a line 305 

𝑃𝐿 is adopted. Furthermore, it’s worth noting that in this paper, the parameters of the fragility 306 

functions are modeled as point estimates. While previous studies have suggested modeling these 307 

parameters as random variables, which would allow for the incorporation of uncertainties and 308 

subsequent updating based on data evidence (e.g., Lu & Zhang, 2022), this approach would 309 

significantly impact the computational efficiency of the framework required for online learning. 310 

 311 
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Figure 2: Fragility functions for (a) Wood poles under various combinations of wind-wave-surge loads; (b) 312 
Transmission towers subjected to wind load of various velocities and directions; (c) Substations subjected to various 313 

flood depths.  314 

2.4. Bayesian network and prior outage probabilities  315 

A BN is a probabilistic directed acyclic graph representing the causal structure between 316 

variables. The random variables are represented by nodes, while the edges between the nodes 317 

represent conditional dependencies. The BN can be viewed as a compact representation of the joint 318 

probability distribution between the random variables. In general, the full joint probability 319 

distribution of a BN with 𝑛 number of nodes can be written as shown in Eq. (6). 320 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))𝑛
𝑖=1                                                                                    (6)  321 

For this model, two types of nodes are assigned to each substation, transmission line, and 322 

distribution line in the BN. The first node (physical node) represents the physical state of the 323 

element (failed or survived) and is equal to the probability of failure discussed in Section 2.3, while 324 

the second node (performance node) represents the performance state of the element (outage or 325 

functioning) and is governed by both the state of the physical node of the same element and the 326 

state of the performance node of the upstream element. This is further explained using Figure 3 327 

which presents a version of a small sample BN. In Figure 3, “F” stands for physical node, while 328 

“P” stands for performance node. Therefore, FS1, FT1, FD1, and FD2 are the physical nodes of 329 

substation-1, transmission line-1, distribution line-1, and distribution line-2, respectively, while 330 

PS1, PT1, PD1, and PD2 are the performance nodes of the above. Moreover, building clusters C1, 331 

C2, and C3 are assigned performance nodes representing the state of power outage/restoration.  332 

The edges between nodes represent the conditional dependencies. Hence, conditional probability 333 

distribution (CPD) tables are constructed to show the conditional probabilities for each child node 334 

given its parent nodes. In this paper, 0 is used to represent failure or outage, while 1 is used for 335 

survival or restoration. For a node without parents (such as the physical nodes in the EPN), the 336 
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CPD simply includes the physical probability of failure 𝑃𝑓 discussed in the previous section and 337 

shown in Figure 4 (a). On the other hand, the CPD of the performance node for the most upstream 338 

element (such as PS1 in Figure 3) depends only on the physical node of the same element, as shown 339 

in Figure 4 (b). Moreover, the CPD of the performance node for the intermediate elements depends 340 

on both the physical node of the same element and its parent performance node, as shown in Figure 341 

4 (c), while the CPD of the customer’s performance node depends only on its parent performance 342 

node, as shown in Figure 4 (d). 343 

 344 
Figure 3: Sample BN. 345 

 346 
Figure 4: CPD tables for (a) physical node; (b) upstream performance node; (c) intermediate performance node; 347 

(d) customer performance node. F= 0 or 1 represent the failure or survival states of the node respectively, P=0 or 1 348 
represents the outage or restoration states of the node respectively, and 𝑃𝑓 is the probability of failure of the node 349 

After building the BN, the probability of failure for every node within the network is calculated 350 

using forward propagation exact inference algorithms such as the variable elimination (VE) 351 

(Darwiche, 2009) algorithm. The VE algorithm is used to efficiently calculate marginal 352 

probabilities in the BN by iteratively eliminating variables until the desired variable is the only 353 

one left. 354 
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A simple example of a BN (𝑋1 → 𝑋2 → 𝑋3 → 𝑋4) can be used to demonstrate the VE algorithm, 355 

where 𝑋1, 𝑋2, 𝑋3, and 𝑋4 are binary random variables having P(𝑋1) , P(𝑋2|𝑋1) , P(𝑋3|𝑋2),  and 356 

P(𝑋4|𝑋3) as factors representing the conditional probabilities associated with their nodes. These 357 

conditional probabilities can be directly obtained from the BN’s CPD tables. Hence, the joint 358 

probability distribution can be factorized as shown in Eq. (7). If the desired query is to compute 359 

P(𝑋4), then 𝑋1,𝑋2, and 𝑋3 need to be eliminated via VE as shown in Eq. (8). 360 

𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4) = P(𝑋4|𝑋3) P(𝑋3|𝑋2) P(𝑋2|𝑋1) P(𝑋1)                                                                    (7) 361 

P(𝑋4) = ∑ [∑ (∑ [P(𝑋4|𝑋3) P(𝑋3|𝑋2) P(𝑋2|𝑋1) P(𝑋1)]𝑋1
)𝑋2

]𝑋3
=362 

∑ [P(𝑋4|𝑋3) ∑ (P(𝑋3|𝑋2) ∑ [P(𝑋2|𝑋1) P(𝑋1)]𝑋1
)𝑋2

]𝑋3
= ∑ [P(𝑋4|𝑋3) ∑ [P(𝑋3|𝑋2) P(𝑋2)]𝑋2

]𝑋3
=363 

∑ [P(𝑋4|𝑋3) P(𝑋3)]𝑋3
                                                                                                                                  (8)  364 

The process described above is generalizable to larger networks consisting of any number of 365 

nodes that are not necessarily in a chain. Therefore, the VE algorithm can evaluate the prior outage 366 

probabilities for every functional node by systematically computing their marginal probabilities 367 

by eliminating their parent nodes through forward propagation (Darwiche, 2009). While, in 368 

general, the computational complexity of the VE algorithm is exponentially related to the size of 369 

the data, it drops down to being linearly related if the BN is a polytree, as discussed in Section 2.1. 370 

2.5. Dynamic Bayesian network and posterior outage probabilities 371 

The prior probabilities of the BN can be updated when new data (evidence) becomes available. 372 

The proposed DT is designed to be updatable using various sources of evidence, whether it is 373 

observed physical failure of substations, transmission towers, or utility poles, or being a detected 374 

outage/restoration of any substation, line, or building within the network.  375 

The VE algorithm discussed earlier is again used to perform forward and/or backward 376 

propagation to compute the posterior marginals, where the joint probability distribution is 377 

conditioned over the evidence (Darwiche, 2009). The BN must be updated in real-time since the 378 



18 

evidence data comes in separate batches, and because the outage and restoration states change over 379 

time, and therefore should only be used at the time it had been received.  380 

The iterative updating of the BN is performed in the proposed model using a DBN, where the 381 

updated failure probabilities of physical nodes become the initial probabilities of failures of the 382 

next BN. As shown in Figure 5, if evidence is received that customer C3 is out of power, then the 383 

probabilities of the entire BN at time 𝑡0 (BN0) are updated using the VE algorithm. Hence, knowing 384 

the real-time state of a few nodes within the system can enhance our estimations for all nodes that 385 

share common parent (upstream) nodes with them. Then, the updated physical node probabilities 386 

are passed to the BN at the time step 𝑡1 (BN1). Again, if evidence is received that the distribution 387 

line D2 is out of power while customer C1 got its power restored, then the failure probabilities of 388 

physical nodes of BN1 are updated and then passed to the next BN at the time step 𝑡2 (BN2). 389 

Likewise, the DBN is updated for every time step 𝑡𝑚. 390 

 391 
Figure 5: Sample DBN. 392 

3. Application case study  393 

3.1. Application of DT model on Galveston Island testbed 394 
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The application of the proposed DT framework is demonstrated via an application case study for 395 

the Galveston Island testbed subjected to Hurricane Ike hazard loads. An extensive literature 396 

review on the Galveston testbed and other testbeds used in community resilience research is 397 

summarized in Amin Enderami et al. (2022). Detailed data of Galveston’s EPN (locations, 398 

properties, and connectivity of substations, transmission towers, and utility poles) and building 399 

inventories (locations and properties) in addition to Ike’s simulation data were obtained from 400 

Darestani and Padgett (2022) and Incore (2023). 401 

The data was cleaned and processed as discussed in section 2.1 to ensure a connected, directed, 402 

and polytree network starting from the substation located on the mainland before Galveston’s 403 

bridge and continuing through transmission towers, intermediate substations, and distribution 404 

poles. Except for a submarine power cable that connects the mainland to Galveston Island, all lines 405 

are assumed to be overhead. Moreover, the distribution lines consist of 3 wires of a 0.0183m 406 

diameter (Salman et al., 2015), and the substations are assumed to lay on an elevated foundation 407 

pad 0.7m tall, above which they will be vulnerable to flooding.  408 

The cleaned EPN dataset consists of 13,207 utility poles, 52 transmission towers, and 9 409 

substations, in addition to 24,756, 2,681, and 357 residential, commercial, and industrial building 410 

inventories, respectively. These buildings were clustered using the DBSCAN algorithm into 2,102, 411 

1,108, and 248 residential, commercial, and industrial clusters, respectively. In order to balance 412 

between computational efficiency (larger clusters) and model accuracy (smaller clusters), a 40m 413 

maximum distance for clustering was selected. Moreover, the EPN poles and towers were 414 

aggregated into lines, and the end lines (leaf nodes) not connected to building clusters were pruned. 415 

In summary at the DT model, the EPN consists of 2,718 distribution lines, 1 transmission line, and 416 
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9 substations. The EPN of Galveston Island is shown in Figure 6, and the building inventory map 417 

before and after clustering is shown in Figure 7 (a) and Figure 7 (b), respectively. 418 

  419 
Figure 6: Graphic view of Galveston Island’s EPN incorporated in the DT model. 420 

 421 

 422 
Figure 7: Building inventory map: (a) before clustering; (b) after clustering. 423 

Fragility functions were used to estimate the failure probabilities shown in Figure 8. To get more 424 

insight on the estimations, the expected number of failures for each category (substations, tower, 425 

or poles) was calculated by summing the probabilities of failures for elements within the category 426 

by assuming that they follow independent Bernoulli distributions (Wang, 1993). The transmission 427 

towers are the least affected, with 0 expected failed towers, while the utility poles suffered 428 
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considerable damage with 211 expected failed poles. Moreover, the substations are highly 429 

vulnerable to large flood depths with 4 substations experiencing flooding.  430 

  431 
Figure 8: Estimated probability of failure to EPN’s elements. 432 

In the next step of the proposed framework, the BN was built using the 8,914 EPN and customer 433 

nodes, and the VE forward propagation was used to estimate the outage probabilities for 434 

customers, as shown in Figure 9 (a). The model estimated an almost complete power outage for 435 

the entire island, with 96.3% of the customer’s electricity estimated to be wiped out. Building-type 436 

specific estimations can be made to allow decision-makers to give different weights to different 437 

land uses, with estimated outages of 96.4%, 96.0%, and 94.2% for residential, commercial, and 438 

industrial buildings, respectively. Moreover, since the priority of repair is usually given to the 439 

substations, decision-makers might be interested in the outage conditions immediately after the 440 

substations are repaired. This can be estimated by updating the BN using the repair evidence. We 441 

performed this scenario (all substations are repaired) and the results are shown in Figure 9 (b).  442 

After updating the physical state of all substations to “repaired”, the model’s estimations show that 443 

electricity was restored to customers in some areas on the island. However, the model still 444 

estimates a large blackout due to failed poles.  445 



22 

 446 

 447 
Figure 9: DT outage map for: (a) prior estimations (b) posterior estimations after repair of substations. 448 

3.1.1. Validation of the case study results using historical data 449 

As per the historical records, Hurricane Ike destroyed 10,300 utility poles, 238 transmission 450 

towers, and 383 substations, causing 3.9 million customers in nine states in the United States to 451 

lose power (Hoffman et al., 2009). However, the majority of the damaged transmission towers 452 

were reported to be in Louisiana and east Texas, while transmission towers in the Greater Houston 453 

area performed well with no major damage (Prochazka, 2009). Outages were primarily caused by 454 

damage to distribution lines and substations, with 8,500 utility poles in the Greater Houston area 455 

requiring replacement following the hurricane (Mckinley, 2008; Prochazka, 2009). Furthermore, 456 

four substations on Galveston Island were flooded, with three being restored within three days and 457 

the fourth requiring complete replacement (Prochazka, 2009). The day after the hurricane, two of 458 

the major power supplying companies in the Greater Houston area reported that 99% of their 459 

customers were without power and that the electricity in the Galveston Island and Bolivar 460 

Peninsula had been completely wiped out (Reuters, 2008; Hoffman et al., 2009).  461 

The DT model’s results, as presented in Figure 9 (a) and discussed in the previous section, are 462 

consistent with the historical data, as the model estimated a nearly complete power outage for most 463 
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of the island. Furthermore, the model estimated considerable failure to utility poles and 464 

substations, while transmission towers had low failure probabilities. The validation of the model’s 465 

results against the historical records is summarized in Table 2. 466 

Table 2: Validation of the DT model estimations with historical data 467 

 

Historical records 

(Mckinley, 2008; Reuters, 2008; 

Hoffman et al., 2009; Prochazka, 2009) 

DT model estimations 

Power outage 
99% of customers lost electricity in the 

Greater Houston Region 

96.3% of customers lost 

electricity in Galveston 

Flooded substations 4 in Galveston 4 in Galveston 

Damaged towers 0 in Galveston 0 in Galveston 

Damaged poles 
Considerable damage to utility poles 

(~8500) in the Greater Houston Region 
211 in Galveston 

 468 

3.2. Case study using Twitter data and dynamic Bayesian network 469 

The DBN method discussed in section 2.5 can be used to update the BN using evidence data. 470 

Scrapping tweets as old as Hurricane Ike is difficult because of Twitter’s policies that make it 471 

harder to scrape tweets the older they get. This and the fact that Twitter was still a new social 472 

media platform at that time and geotagging was not as common as it is today makes it almost 473 

impossible to scrape tweets from the time of Ike’s occurrence to be applied in this study. In order 474 

to evaluate the capability of the proposed framework to be updated with real-time data, tweets 475 

were instead scraped for winter storm Uri which resulted in a power outage in Texas and 476 

particularly Galveston Island in 2021 (King et al., 2021). Tweet scrapping was performed using 477 

the SNSCRAPE Python library (JustAnotherArchivist, 2021). The tweets were filtered to only 478 

include geotagged tweets between February 13th and 20th (2021) that include the keywords 479 

“power”, “outage”, and “electricity” with the geotagged locations being on Galveston Island. We 480 

obtained 65 tweets and manually classified them into “outage”, “restoration”, and “neutral” tweets. 481 

After the classification, the data includes 36 outage tweets and 19 restoration tweets, each of which 482 
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was assigned to the nearest residential building, and then used as evidence to update the DBN. 483 

While the use of Uri’s data doesn’t have historical accuracy as it comes from a different storm, it 484 

still can demonstrate how the BN can be updated and follow the data obtained from the actual 485 

system in real-time. Therefore, when evidence data is obtained for the outage/restoration state of 486 

any customer, this information can be used to update the prior outage probabilities for the entire 487 

island, affecting the estimations for customers who share a common upstream line with those for 488 

whom evidence have been received, even if we haven’t directly obtained data for them. This is 489 

shown in Figure 10 (b), where the posterior outage probabilities show the restoration of power to 490 

large areas of the island driven by only 19 restoration tweets.  491 

 492 

 493 
Figure 10: DT outage map for (a) prior estimations (b) posterior estimations using Twitter data (related to winter 494 

storm Uri). 495 

3.3. Discussion on the computational efficiency of the proposed DT framework 496 

The Python programming language is used to code all the analysis in this study on a desktop 497 

computer with 64 GB RAM, (3.7) GHz CPU, and Intel Xeon E3 processor. The BN was highly 498 

efficient in modeling thousands of nodes, with approximately 75 seconds of run time for the 499 

forward propagation algorithm. Moreover, the total run time for the iterative updating of the DBN 500 

using Twitter’s data was around 16 minutes.  501 
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4. Conclusions and future work 502 

This paper introduces a simple and practical DT framework of the EPN when subjected to 503 

hurricanes. First, the foundations of the concept of the DT at the community level are clearly 504 

established, and the DT is presented as a tool for prediction and decision-making, thus making it 505 

applicable and giving it a clear and well-defined purpose. Then, the proposed framework is 506 

discussed in detail starting from data analysis and ending with the use of the DT for offline and 507 

online learning. After that, the DT is applied to the Galveston testbed using Ike’s simulated 508 

hurricane as an application case study, and it is demonstrated that the proposed method is capable 509 

of efficiently modeling a large network with tens of thousands of EPN elements and buildings. 510 

Finally, the results are validated using historical outage and failure data and are shown to provide 511 

detailed and highly accurate estimations. 512 

The proposed DT is designed to be scalable and able to extend to model other infrastructure 513 

systems and ultimately model the community as a system of systems. Moreover, it can pave the 514 

way for future DT frameworks. Therefore, future research can expand the current work to model 515 

the interdependencies between the EPN and other critical infrastructure systems such as water, 516 

transportation, and telecommunication networks. The proposed framework can also be extended 517 

to a life cycle and periodic maintenance DT of the EPN and other infrastructure systems. Future 518 

research can target post-disaster management and how the proposed DT can be used to guide and 519 

redirect restoration plans. Thus, this paper lays the groundwork for future research on community 520 

and infrastructure digital twins, which is a crucial step toward achieving smart and resilient city 521 

planning. 522 
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