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Abstract—Global navigation satellite systems (GNSSs) are a
vital technology for many applications. The received signals, how-
ever, are weak and easily vulnerable to intentional/unintentional
interference. Jamming signals are becoming a serious threat for
GNSS users and the localization of the jammer is an effective
countermeasure to such attacks. Congested areas are particularly
sensitive to these kinds of attacks, but they also present an
opportunity to leverage crowdsourced data for threat monitoring
purposes. In this context, we foresee a system where agents
navigate an area with the ability to transmit the measured
signal power, information that can be leveraged for jamming
localization purposes. We propose a crowdsourced-based scheme
for jammer localization, based on a signal propagation model,
enhanced through the use of physics-based path loss modeling
and an augmented, data-driven, component. This method can
outperform the maximum likelihood estimator in a realistic
scenario, despite the limited knowledge of the propagation model.
The disruptive effect on agents’ own position estimation affects
the final jammer localization outcome, which is evaluated in this
paper. In the work, we provide extensive experimentation to mea-
sure the effect of denied or degraded positioning on crowdsourced
estimation as a function of relevant parameters such as agents’
positioning error, observation density, and measurement noise.

Index Terms—Jamming localization, GNSS, augmented
physics-based model, neural networks.

I. INTRODUCTION

The monitoring of interference to radionavigation systems
is extremely important as it is necessary to ensure the reliable
operation of various critical applications that rely on Global
Navigation Satellite Systems (GNSSs) and their positioning,
navigation and timing (PNT) services. GNSS is a term that
refers to various satellite-based navigation systems, such as
GPS, Galileo, GLONASS, and Beidou [1], [2]. These systems
use a network of satellites that transmit synchronized signals,
which allow receivers to calculate their position, velocity, and
time (PVT). GNSSs are a vital technology for PNT appli-
cations such as intelligent transportation systems and rang-
ing [3]-[7], critical infrastructures [8], [9], environmental [10]
and space applications [11], [12], among others. However,
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due to the increasing reliance on GNSSs [13], there is a
growing concern about their vulnerabilities [14], particularly
with regards to the susceptibility of GNSSs to jamming
interference [15], [16] and spoofing attacks [17]. Moreover,
GNSS signals are very weak and it is quite easy to get access
to an effective intentional interference source. Indeed GNSS
signals are below a receiver’s noise floor because of their
spread-spectrum modulation. Therefore, in-band signals with
power levels higher than the noise floor could indicate the
presence of a jamming signal in the surroundings. It is thus
fundamental to develop interference monitoring systems that
can detect and locate potential threats in a given area [18],
[19].

Congested areas are particularly sensitive to these kinds of
attacks, but they also present an opportunity to leverage crowd-
sourced data to implement such monitoring systems [20]. Le.
even though malicious attackers are more prone to operate,
in such areas, there is also a potential abundance of jamming
detection events. Moreover, highly-frequented spots are also
more likely to have a higher concentration of static internet of
things (IoT) devices or 5G nodes, which might integrate GNSS
receivers and are presumably aware of their fixed location [21].
Nonetheless, crowdsourcing approaches are becoming particu-
larly relevant as GNSS receivers integration in “smart” devices
covers an enormous portion of the receivers’ market share [13].
Not surprisingly, many researchers proposed crowdsourcing
approaches to tackle jamming localization [22]-[26]. In this
context, we foresee a system where agents make observations
within an area, have the capabilities of communicating the
measured signal power in the GNSS frequency bands, and
are aware of their position with some level of accuracy.
If a sufficient number of agents collect and transmit this
information to a central unit, the data can be used to determine
the location of the interference source and take corrective
action.

To perform such an inference, however, one needs an
accurate signal propagation model. Previous works leveraging
crowdsourced data for jamming localization generally assumed
a known channel model [23], [25], [26], while others, like in



[22], foresee unknown channels but only within the boundaries
of an ideal path loss model’s parameters. However, the nominal
path loss model is not adequate to model complex—and
often crowded—environments like urban or indoor scenarios,
due, for example, to reflections and obstructions. It may
instead be necessary to use a data-driven method such as a
neural network (NN) to augment the path loss model. This
enhanced model, called an augmented physics-based model
(APBM), can learn those propagation components that cannot
be easily modeled through analytical or empirical formulations
and rather are strictly dependent on the complex propagation
environment [27], [28]. Different implementations of APBMs
have been successfully used in different contexts [29]-[31].

The use of APBMs to tackle the jammer localization
problem was recently introduced in [27], [28] in a baseline
scenario, considering static agents, with exact knowledge of
their position. However, for plain GNSS-equipped agents, a
jamming event can easily degrade localization capabilities
and often completely deny users localization, even over a
large area, as shown in a preliminary analysis reported in
this work. The ultimate impact depends on many factors
such as the presence of obstructions to the jamming signal,
the jammer transmitting power and signal characteristics, and
the agent equipment and conditions. In particular, a GNSS
receiver might be enhanced with anti-jamming solutions, able
to provide a position fix even in close proximity to the
jammer [32]. Moreover, many agents (e.g. smartphones) can
rely on alternative location-dependent measurements (inertial
navigation systems (INSs), cellular networks), and are able
to propagate their position with a degraded accuracy, even
under severe jamming [22]. Other static agents might serve
also as network nodes (e.g. IoT devices or 5G nodes) and
their position knowledge is unaffected by the interference.
Nonetheless, agents’ reliability might be partially known at
a system level and can be leveraged to improve the estimation
process. Overall, the jamming impact heavily depends on the
crowdsourcing scenario in its entirety, mainly causing (i) a
reduction of available observations and (ii) a degraded agents
position estimation, in a variable mixture.

This motivates the analysis reported in this work, where
the jammer localization performance is tested against both
agents’ position estimation accuracy and density of jamming
power observations. These parametric analyses allow to thor-
oughly characterize the proposed APBM technique, without
focusing on a specific scenario, whose outcome would largely
depend on arbitrary assumptions about the jammer and the
crowdsourced devices. We complement the analysis with an
investigation of the effect of measurement noise on the jammer
position estimation, both with accurate and uncertain agents’
positions. Two representative jamming signal propagation sce-
narios are addressed to assess the proposed method. An open-
sky scenario in which the log-distance path loss is an accurate
model [33]; and a more complex urban scenario, in which the
measured power levels of the received signals are generated
using ray tracing techniques [34], [35] and the APBM can
show its superiority to plain path loss modeling.
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The rest of the paper is organized as follows. Section II
presents the localization of a jammer and discusses the use of
a nominal path loss propagation model. The section also de-
rives the Cramér-Rao bound (CRB) and maximum likelihood
estimator (MLE) for estimation accuracy under the nominal
model. Section III introduces the APBM. Section IV provides
experimental results to quantify the impact of a jammer on
agents’ position estimation capabilities. Then, the robustness
of the jammer localization method is assessed against different
levels of agents’ position accuracy and observation density
under both path loss and urban propagation scenarios. The final
section summarizes the main conclusions and future prospects
of the work.

II. PATHLOSS-BASED ESTIMATION OF JAMMER’S POSITION
A. The path loss measurement model

In the proposed framework, the position of the jammer is
estimated from a sequence of N observations of the jammer
power at different agents’ locations. Each observation is re-
lated to the vector of parameters to be estimated by a general
model, that can be expressed as

Yn = f(Xnae) + gn (1)

where y,, is the n-th observation in dBW. The generic function
f(xp;0) depends on x, = (xﬁﬂ), e 7I»ELD))T, the location
of the agent, and is parametrized by @ = (0y,...,0p) ", the
jammer’s coordinates in D dimensions (usually D = 3). In (1),
&, is the additive measurement noise, which is assumed to
be independent of x,, and 8. Such a measurement model is
particularly useful in the context of GNSS interference because
the signals are received below the noise floor, hence large
signal powers can be considered as indications of jamming.

The log-distance path loss model is a widely adopted model
for received signal strength (RSS) observations [36] and can
be used to explicitly define f(x,;@) such that

f(xn;0) = Py — v10logyo d(x,,0) . 2)

In (2), Py is the jammer power in dBW at the reference
distance of 1 m, and d(xy, 0) is the distance between the n-th
observer at x,, and the jammer [33]. It is defined as

d(x1,0) = Ix — 0]l = 1/ (x0 — 0) T (x, — 0)

with || - || being the Euclidean norm.

Agents locations are generally known to some precision.
Without loss of generality, we model such error on the
estimated position %, = (24 (D))T, such that

(1)
n
# ~N(@D ok, i=1,...D.

3)

“4)

B. The Cramér-Rao bound

The CRB sets the lower theoretical limit achievable by
an unbiased estimator @ of the parameters 6 in terms of its
variance. As a result

var([0];) > [I71(0)]s )
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where [I(0)];; is an element of the Fisher information matrix
(FIM).

When the adopted model is the one in (2), the noise term &,
in (1) models the unpredictable shadowing effects experienced
by measurements. It has been shown in [37], [38] that in
nominal conditions this term can be modeled with a log-
normal distribution [37], [38], hence resulting in

&n ~ N(O7 02)

when values are expressed in dB as in (2).

This allows computing the FIM for the general Gaussian
case [39], which under the assumption of independent mea-
surements and constant variance can be simplified to

af ( Xm 0) 0f(xn;0)
[1(0)];; = .
2"21 09,

(6)

)

Particularizing this expression for our case using (2), we get

1002 1

T0) = 2 (10))2 2= #1(x,,0)

(0—x,)(0— xn)T

. (8)

. By replacing (8) into (5), the CRB for the i-th element of
6 can be obtained. When D = 2, the inverse of I(6) can be
easily computed leading to

N a2(In(10))2 b
var(61) > (100(72)) b — o2 &)
p o%(In(10))?2 @
var(fy) > 1007 ab_& . (10)
where we defined
N (1)\2
_ (01 —an’)
=2 i, 6) (b
n=1
N (2)\2
_ (02 —an”)
b= .0 (12
n=1
¢= EN: (O = 2 )6~ o) (13)
d*(xp, 0)

The interested reader can refer to our previous work [27],
[28] for a complete derivation.

C. Maximum Likelihood Estimator

To provide a theoretical benchmarking solution to our
analysis, we compute the MLE for a generic measurement
model such as the one defined in (1). For this, let us define a
dataset D = {y,,, %, })_, composed of N i.i.d. pairs of RSS
measurements y,, and loci x,. Then, because of (1) and (6),
the log-likelihood function is

Inp(y|X, 0) = f(%n:0))?

N
Z
" (14)

where p(y|X,0) is the likelihood function of the observed
datay = (y1,...,yn) and X = {x;,...,xy}. The MLE

N
5 In 27r0
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for the jammer’s location, 6, can be found by maximizing the
log-likelihood as

N argmaxInp(y|X, 6) . (15)
0

The widely adopted log-distance path loss model does not
hold for small values of distance. Indeed, f(x,,;0) — oo when
d(xy,0) — 0, causing the presence of singularities in the like-
lihood function. These special cases need to be addressed to
support the computation of (15) through optimization methods.
To this purpose, we modified (2) to

f(xn;0) = Po — 4101log; o {max(d(xy,0),dr)} .

In the equation, dp is the far-field distance. It is a limit
above which the far-field assumption holds, motivating the
path loss formulation in (2) [40]. Adopting (16) we obtain
a smoother log-likelihood function, fostering its maximization
through gradient-based methods [27], [28]. This approach is
effectively exploited also to minimize the cost function of the
augmented model, as described in the following section.

(16)

III. AUGMENTED PHYSICS-BASED ESTIMATION OF
JAMMER’S POSITION

The path loss model in equation (2) is effective for de-
scribing the RSS in open spaces or as a first approximation,
but it does not account for the additional complexities that
can occur in urban or indoor environments, where there may
be multiple reflections and signal fading. On the other hand,
using a NN without incorporating prior information about the
propagation laws often requires a large amount of data to
accurately model the jamming field. With this in mind, we
exploit an augmented approach, where a physics-based model,
in this case the modified path loss f(x,;8), is expanded by a
data-driven component, g(x,;¢) which can be implemented
through a NN, being ¢ € RM the vector of NN’s parameters.
This component is supposed to act as a correction term around
the path loss function, resulting in the enhanced model

h(xn; 8, ¢) = f(xn;0) + g(xn; @) - (17)
The measurement model in (1) becomes therefore
Yn = h(Xn§0>¢)+§n , (18)
and is used to build a cost function
N
C(D,0,¢) = |yn — hixn;0,0)> + B3 (19)

n=1

whose minimization leads to the APBM estimation through

0, ){C(D, 0, ¢)} .

An /5 regularization is used in the cost function (19) to prevent
the NN from growing indefinitely in the tentative to model the
complex power field. A scalar term, § € R, is controlling the
regularization, such that when 8 = 0 the NN role in the APBM
model prevails, while when 5 — oo the NN contribution is
limited. In (20), the estimation problem is defined with respect

é, Py) = argminEyp (20)

6.9,P
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to the jammer location € and the NN’s parameters ¢ as an
empirical risk minimization problem; the expectation operator
is taken with respect to the empirical data distribution p(D).
It is worth stressing that this estimator does not need any
information about the characteristics of the jammer (i.e. its
transmission power). It can, in fact, learn also P, as part of
the minimization process described by (20).

Our NN implementation is a feed-forward network with
2 hidden layers of 200 and 100 neurons and a hyperbolic
tangent activation function. The models are trained trough
batch learning for 200 epochs, with a learning rate of 0.4,
using the Adam optimizer [41].

IV. RESULTS AND DISCUSSION

In our analysis, we considered two propagation scenarios
for the electromagnetic field produced by the jammer. Our
goal is to span the wide range of propagation environments
that can be experienced. A first, ideal, scenario is entirely
described by the path loss formula in (2) and, in the following,
referred to as path loss scenario. It is specifically defined by
the values reported in Table I and a visual description of the
field over an area of 1km? is reported in Figure la. A second,
more challenging, urban scenario, is computed through a ray
tracing approach [34], [35] in an urban environment. The
parameters for the ray tracing simulation are described in
Table II and the resulting field is shown in Figure 2a. In our
experiments we compared the estimation performance of the
proposed APBM with the MLE, and an NN-only estimation,
where h(x,;0,¢) = g(x,;®), and therefore without any
physics-based prior knowledge on the propagation scenario.
The estimation results were aggregated over Nyic = 50 Monte
Carlo simulations to provide a meaningful characterization.
Each Monte Carlo realization involves a different set of mea-
surements y, and measurement data X,,, to avoid conditioning
the solution with respect to the agents’ layout. The CRB is also
reported as an indication of how good the performance of the
proposed method is. To compare the different approaches we
used the root-mean-square error (RMSE), calculated for each
dimension of 8 as

1 Nwmc R
RMSEy, = Moo Z(ai —0;0)2 .

n=1

2y

TABLE I: Path loss scenario simulated parameters.

Parameter Value
Py 10dBW
0 2

The computed fields allow us to quantify the jammer effect
on a user and its capability to self-localize through GNSSs.
In the path loss scenario, it can be easily verified that the
minimum received power over the area is around —50 dBW.
Assuming a receiver noise density Ny = —204 dBW-Hz [44],
we can observe a minimum of jammer-to-noise-density power
ratio (J/Np) of 154 dB-Hz, a value that can likely disrupt any
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Fig. 1: Jammer power field under path loss conditions.

TABLE II: Raytracing simulation parameters.

Max. no. of reflections
Ray tracing method
Launched rays average separation
Surface material
Surface permittivity
Surface conductivity

Parameter Value
Py 10dBW
Jammer frequency 1575.42MHz (L1)
Location 41.8800 -87.6295

4
Shooting and bouncing rays (SBR)
0.5391°
Concrete [42], [43]
531-e9 ?
0.0548 S/m

a
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c0 = 8.8542 - 10712 Fm~"! is the vacuum dielectric permittivity.
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Fig. 2: Jammer power field for a raytracing simulation in urban
scenario.

PNT capability of a GNSS receiver over the considered area,
especially if no mitigation techniques are implemented [32],
[45]. Moving further away from the field peak, the disruptive
effect is attenuated. However, because of their weakness and
distance from the jammer, observations made at the edges of
the observed area are already poorly informative with respect
to the jammer’s position and this can only get worse as we
move away from the power source.

On the other hand, in an urban scenario, the received
jamming signal power decreases rapidly due to obstructions
and much lower J/N can be experienced within the observed
area. In the simulated scenario, for instance, the minimum
received power is around —126 dBW; a value that, under the
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previous assumptions, leads to a J/Ny of 78dB-Hz, a level
of interference that can be tolerated by many GNSS receivers
in good satellites visibility [32], [45]. Because of the complex
propagation scenario, such J/N, values are also experienced
close to the source (see Figure 2b), however, it is still true
that such low values are, on the one hand, poorly informative
and, on the other, likely associated with an error-prone agent
position estimation because of non-negligible jamming. Both
aspects lead to a degraded jammer localization.

A. Impact of estimated agents positions accuracy

Following the previous considerations, the impact of the
agents position estimation accuracy on the jammer localization
is assessed for different values of oy, as defined in (4). A
fixed 5dB level of interference-to-noise ratio (INR), defined
as

FPo
INR = 10log; o) (22)
was chosen to perform the simulation, corresponding to o =
1.78 dBW. For this set of experiments, an observation density
of 0.01 obs./m? was investigated. This implies one observation
every 10 x 10 m? square, resulting in a total of 10 000 power
measurements over the observed area of 1 km? for the path loss
scenario and 100 measurements over 10 000 m? for the urban
scenario, to limit the computational effort to a practicable
amount. Nonetheless, only the 15 largest observations were
provided as input to the estimators, which means they were
fed with a subset of the datapoints highlighted in Figures 1b
and 2b. The resulting RMSEs are reported in Figure 3.

The MLE has a perfect knowledge of the propagation laws
experienced by the jamming signal in a path loss scenario. Not
surprisingly, focusing on Figure 3a, it can be noticed that the
MLE bounds the APBM performance for both components of
the estimated parameter. On the other hand, the augmented
model performance is very close to the MLE, despite its
deficient model, lacking the knowledge of the jammer trans-
mission power. For high o0, the MLE starts diverging from
the APBM. This may happen because the increased uncertainty
on the agents’ position tricks the latter into trusting less the
path loss model, yielding power to the NN component, which
cannot provide an estimate that is as good as the MLE output
in this scenario. Indeed, it can be seen in Figure 3a, how the
NN-only estimation struggles to accurately model the path loss
field.

On the contrary, as shown in Figure 3b, the more complex
scenario of Figure 2b cannot be modeled correctly by the
MLE, which is mismodeling the field. Nonetheless, also the
NN-only estimator is outperformed by the APBM because
of its lacking of a priori information about the propagation
physics. This means that, although not sufficient by itself, the
path loss propagation is a relevant model also in this complex
urban scenario, encouraging our adaptive approach. Because
of the more challenging propagation environment, it is now
harder to provide a correct estimation and a generally higher
RMSE can be observed. The agents position error has again
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Fig. 3: RMSE of jammer position estimation against agents’
position accuracy.

a similar impact, moving the final estimation of about 10 m
when 0,4 varies from 0 to 10 m.

B. Impact of observation density

As discussed in Section I, some agents may be more
resilient than others to the disruptive action of a jammer,
causing a plethora of different behaviors. The resulting sce-
nario largely depends on the assumptions made about the
devices participating to the crowdsourcing, whose number can
be highly reduced under a jamming signal. It is thus important
to study the effect, on the proposed estimation method, of a
reduced number of observations over an area, as we do in the
following by varying the observation density.

The resulting RMSEs are reported in Figure 4 and were
obtained with a constant INR of 5dB and no uncertainty on
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the estimated agents position to avoid conditioning the results
with other error sources.

As expected, the RMSE gets better as the observation
density increases; this is more evident in the path loss scenario,
reported in Figure 4a and particularly in a zoomed-in version,
in Figure 4b. Nonetheless, even when moving from 40 to
120 observations over a square of 100 x 100 m?, the RMSE
variation is limited to few meters. This suggests that, as long
as the observations are informative, i.e. they are powerful and
not buried into the measurement noise, we need very few
measurements to locate the jammer. In an urban scenario, it is
more likely to have uninformative measurements, due to ob-
structions and other signal weakening phenomena. With less,
important, observations, reducing the datapoints can result in
the loss of measurements that are more relevant than others in
the estimation process. Despite the fact that each Monte Carlo
realization involves a different agents distribution, because of
the fixed environment geometry (e.g. building locations), the
estimations of §; and 6y are not affected in the same way by
the scarcity of measurements. In Figure 4c for instance, when
passing from 60 to 40 observations per 100 x 100 m?, we have
a remarkable performance drop for RMSEy,. Potentially, this
is because, on average, a value as low as 4 - 103 obs./m? is
enough to dramatically cut down the profitable observations
for the estimation of 05.

C. Impact of measurement noise

Fixing the observation resolution to 0.01 obs./m? and the
agents position estimation noise (opos = 10 m), we can observe
the combined effect of this error source while varying the INR.
The resulting RMSE outcomes are reported in Figure 5.

Also in this analysis, we can see that the MLE can out-
perform the augmented model only in an ideal propagation
environment, such as the path loss scenario investigated in
Figure 5a, where the MLE has a perfect knowledge of the
model. In a realistic scenario, the MLE cannot reach the
performance of the APBM due to mismodeling, as shown
in Figure 5b. The NN-only estimator instead, while doing
better than the MLE in the urban environment, it is still
outperformed by the APBM estimator in both propagation
scenarios. Performance gaps aside, it is worth noting that all
the estimators cannot improve above a certain INR, reaching a
plateau. This means that the achievable performance is limited
by the inaccurate position of the agents, which unsurprisingly
worsen the final jammer location estimation. Interestingly
enough, the minimum RMSE reached in the ideal path loss
scenario is around 10 m, which is also the value of op in this
experiment (Figure 5a). A relationship that can be verified also
by looking at Figure 3a.

This bounding effect of the agents position uncertainty
can be easily confirmed by looking at Figure 6, where the
previous experiment is repeated using exact agents positions.
In the ideal case, the estimators can reach arbitrary good
performances, approaching the CRB (Figure 6b). The urban
scenario instead challenges the estimation method highlighting
its limits, also without errors on agents positions estimations.
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Fig. 4: RMSE of jammer position estimation against observa-
tion density.
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Fig. 5: RMSE of jammer position estimation against INR with
agents position estimation affected by error.

The resulting RMSE values cannot approach zero due to the
complex propagation environment and the lack of very close
observations around the main peak. Nevertheless, the APBM
outperforms both the MLE and the NN-only estimator even in
this complex and unpredictable scenario and without the need
to know the jammer transmission power.

V. CONCLUSION

This paper proposes to leverage crowdsourced data from
a number of agents navigating an area, with the purpose of
localizing GNSS jamming sources. Compared to other ap-
proaches this solution fuses the information from a multitude
of receivers, as opposed to having a more specific jamming
localization solution based on multi-antenna [46] or synthetic
aperture [47] solutions. The proposed localization scheme is
based on maximum likelihood estimation, while using an aug-
mented physics-based model (APBM) to better characterize
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the propagation channel experienced by the jamming signal in
the area of interest. APBMs are a family of powerful data-
driven models, which preserve available physics knowledge
regarding the problem. The article showed outstanding jammer
localization results of APBMs in challenging urban scenarios
under a variety of realistic errors and nuisances affecting the
capabilities of the collaborative agents. This method proved
to seamlessly adapt to very different propagation scenarios,
without any prior information about the characteristics of the
jammer.
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