
A Collaborative RTK Approach to Precise Positioning for Vehicle
Swarms in Urban Scenarios

Daniel Medina1, Helena Calatrava2, J. Manuel Castro-Arvizu1, Pau Closas2 and Jordi Vilà-Valls3

Abstract—Location information is fundamental in nowadays
society and key for prospective driverless vehicles and a plethora
of safety-critical applications. Global Navigation Satellite Systems
(GNSS) constitute the main information supplier for outdoor
positioning, with worldwide all-weather availability. While the
use of GNSS carrier phase observations leads to precise location
estimates, its performance can be easily jeopardized in urban
scenarios, where satellite availability may be limited or obser-
vations may be corrupted by harsh propagation conditions. The
satellite shortage is especially relevant for Real Time Kinematic
(RTK), whose capability to estimate a precise positioning solution
rapidly decays with weak observation models. To address this
limitation, this article introduces the concept of collaborative
RTK (C-RTK), an approach to precise positioning using swarms
of vehicles, where a set of users participate in the vehicle network.
The idea is that users with good satellite visibility assist users
that evolve in constrained environments. This work introduces the
C-RTK functional model, an estimation solution and associated
performance bounds. Illustrative Monte Carlo simulation results
are provided, which highlight that, by exploiting the cross-
correlation terms present among the users’ observations, C-RTK
improves their positioning their of accuracy and availability.

Index Terms—GNSS, Precise Positioning, Real Time Kinematic
(RTK), Cooperative localization

I. INTRODUCTION

Location-based services, as well as prospective intelligent
transportation systems (i.e., driverless automobiles, unmanned
ships, robots) entail reliable and precise positioning infor-
mation for their successful operation [1]. Global Navigation
Satellite Systems (GNSS) have become the gold standard
and backbone for outdoor positioning and this dependence
can only but grow in the future [2]. Typically, two types
of GNSS ranging measurements can be exploited to obtain
position, velocity and time (PVT) estimates (i.e., also Doppler
measurements can be used, but they are not considered in
this study [3], [4]): 1) code-based observations (pseudorange),
derived from the apparent satellite signal time-of-flight; 2)
carrier phase observations, derived from locally aligning a
replica of the incoming signal and counting the cycles (time)
elapsed over a temporal extent.
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Fig. 1. Illustration for C-RTK: a set of nearby N users and a base station
collect GNSS observations. The location of each of these j = 1, . . . , N users,
bj , may be estimated locally by each of the users (standard RTK), or jointly
estimated in a centralized manner (C-RTK). One of the major advantages of
the proposed C-RTK approach is the provision of precise positioning to users
that operate in constrained propagation conditions.

While code-based positioning constitutes the most extended
GNSS commercial solution [5], with instantaneous solution
of meter-level accuracy, its precision results deficient for
modern applications. On the other hand, carrier phase-based
positioning leads to a much higher precision, at the expense of
estimating the unknown integer number of cycles, also called
ambiguities. Based on the type of correction data used and
the combination of observations, two precise positioning tech-
niques are distinguished: Precise Point Positioning (PPP) and
Real Time Kinematics (RTK), the first not being a real-time
solution. This work focuses on RTK, a differential positioning
approach for which the position of a target is estimated with
respect to a nearby geolocated base station. Typically, the base
station transmits the locally observed GNSS measurements
to the target via Internet protocol and the target exploits
these observations to eliminate the atmospheric and satellite-
related delays. RTK approach is well established since the
early 1990s, initially for surveying and geodetic purposes, with
nearly instantaneous cm-level accuracies [2], [6], [7].

Nevertheless, RTK positioning performance can be easily
jeopardized for various reasons, e.g., the separation between
base and target is excessively large, multipath effects or
limited/constrained satellite visibility. Some of the aforemen-
tioned challenges may be circumvented in various manners,
for instance, long distance baselines can be palliated using
partial ambiguity resolution techniques [8], [9], and multipath
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effects can be hindered with robust estimation [10], [11],
beamforming [12], [13] or multi-sensor integration [14], [15].
Unfortunately, some of these solutions are challenging to im-
plement at a mass-market level, due to its high computational
and economical cost. Furthermore, the high structures present
in deep urban environments obstruct the satellite visibility and
constrain the overall GNSS coverage, for which the previous
contributions do not provide a satisfactory answer.

Under these circumstances, the framework of collaborative
localization in wireless sensor networks has emerged as a
revolutionary alternative of ever-growing interest [16]–[18].
In this context, location-aware information is shared among
the agents (users) of a network, or communicated to a central
computing node, so that the overall positioning performance
(for the complete set of users) is enhanced. When consid-
ering the perspective of inter-agent ranging enabled by new
technologies, hybrid cooperative positioning will constitute a
breakthrough for reliable and seamless localization [19]–[21].
Another interesting feature of such collaborative approach
is that it may provide positioning capabilities to users of
the network under harsh or GNSS-denied conditions [22].
While the benefits of GNSS-terrestrial collaborative local-
ization networks have been successfully showcased, previous
works focused solely in the use of GNSS code observations,
which ignited this contribution.

This work introduces the concept of collaborative RTK
(C-RTK), a network approach to RTK precise positioning,
its observation functional model and the Cramér-Rao Bound
(CRB) associated with its estimation problem. In C-RTK, the
users of the network or vehicles of the swarm transmit their
received GNSS observations to a central processing center
(CPC), which also receives the observations from the nearest
base station. Such CPC (i.e., which may be a master vehicle
of the swarm) performs the standard double difference (DD)
observation combination [2, Ch. 20] between the base and
users’ measurements and then jointly solves the position and
integer ambiguities estimation for all users in the network.
Once the solution is estimated, the CPC would transmit the
users back with a precise positioning solution. A pictorial
representation is shown in Figure 1.

Due to the DD combination with respect to the base station,
the observations’ noise model presents high cross-correlation
among all users which, in turn, improves the integer estimation
and leads to an enhanced positioning performance. Results
based on an illustrative Monte Carlo simulation (refer to Sec-
tion IV) demonstrate the promising performance of C-RTK,
showcasing that the positioning improves with the number of
network peers and, especially in scenarios with limited satellite
coverage, extensively outperforms conventional RTK. The
latter is one of the major advantages of the proposed C-RTK
approach, where standalone vehicles that would be otherwise
denied a precise positioning solution are now helped by the
rest of vehicles operating under better propagation/visibility
conditions.

The rest of the paper is organized as follows. Section
II presents the basics of RTK positioning and introduces

the C-RTK observation model. Section III is devoted to the
estimation of the mixed model, both for RTK and C-RTK, as
well as the associated estimation bounds. Finally, Sections IV
and V present the simulation results and the conclusions of
this work, respectively.

II. COLLABORATIVE RTK MODEL

In the following, the conventional RTK observation model
is first detailed. Then, the C-RTK observation model is intro-
duced and its stochastic modeling discussed.

A. RTK Observation Model

Let us consider that n + 1 GNSS satellites are being
simultaneously received over a single frequency at the j-
th user and at a base station. At a particular time instance,
the code and carrier phase observations for the i-th satellite
measured at the j-th user are given by

ρij = ∥pi − pj∥+ Ii + T i + c
(
dtj − dti

)
+ εij ,

Φi
j = ∥pi − pj∥ − Ii + T i + c

(
dtj − dti

)
+ λN i

j + ϵij ,
(1)

where the superscripts and subscripts make reference to the
satellite and the user, respectively. Then, ρ and Φ are the
code and carrier phase measurements, pj and pi are the
user and satellite positions, Ii and T i are the ionospheric
and tropospheric delays, c is the speed of light, dti, dtj are
the satellite and user receiver clock offsets, λ is the carrier
wavelength, N i is the unknown number of cycles, and εi, ϵi

are the noises containing the remaining unmodeled errors for
the code and carrier phase observables.

To eliminate or disminish the atmospheric-related errors
and the clock offsets, the DD combination integrates the n
observations received at the base station and user with respect
to an additional “pivot” satellite, as illustrated in Fig. 2. Thus,
a particular DD combination between the i-th and r-th (pivot)
satellite, base and user is as follows,

DDρi,rj,m = ρij − ρim − (ρrj − ρrm), (2)

DDΦi,r
j,m = Φi

j − Φi
m − (Φr

j − Φr
m), (3)

and the complete vector of DD observations processed in
conventional RTK results

yj =
[
DDΦj⊤,DDρj

⊤
]⊤

(4)

=
[
DDΦ1,r

j,m, . . . , DDΦn,r
j,m, DDρ1,rj,m, . . . , DDρn,rj,m

]⊤
.

The resulting observation model is denoted as mixed model,
since the unknowns include real- and integer-valued parame-
ters, and it is typically formulated following its linearized form
as

yj ∼ N (Aaj +Bbj ,Σj) ,with aj ∈ Zn, bj ∈ R3, (5)

where bj = pj−pm represents the unknown j-th user position
(with respect to the known base station position pm), and aj is
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Fig. 2. Depiction of the satellites, base station and j-th target receiver involved
in conventional RTK processing.

the vector of integer ambiguities. A, B are the system design
matrices

A =

[
λ · In
0n

]
, B =

[
DG
DG

]
, D =

[
−1n,1, In

]
, (6)

where In is the n-dimensional unit matrix, 0n is the n-
dimensional null matrix and 1n,1 is a column vector of ones.
D ∈ Rn+1,n is the double differencing matrix and G ∈ Rn,3

is the geometry matrix containing the satellite steering vectors
[2, Ch. 21]. Σj represents the observations’ covariance matrix
and is described as

Σj =

[
2 · σ2

Φ ·DW−1D⊤

2 · σ2
ρ ·DW−1D⊤

]
, (7)

where σΦ, σρ are the zenith-referenced standard deviation for
the carrier phase and code observables, and W is a weighting
matrix (typically dependent on the satellite elevation or the
signal strength). Thus, RTK processing consists on solving the
mixed model in (5) (i.e., estimate bj and aj) to get a precise
estimate on the j-th user’s location.

B. Collaborative RTK Observation Model

Let us now assume that N users and a close-by base
station simultaneously track n + 1 satellites over a particular
frequency. C-RTK assumes that all observations have been
transmitted to a CPC in charge of estimating the positioning
solution for the complete network of users. Thus, the C-RTK
mixed model is cast as

ỹ ∼ N
(
Ãã+ B̃b̃, Σ̃

)
,with ã ∈ Zn·N , b̃ ∈ R3·N , (8)

where ỹ ∈ R2·n·N stacks the DD carrier phase and code
observations as

ỹ =
[
DDΦ⊤

1 , . . . ,DDΦ⊤
N ,DDρ⊤

1 , . . . ,DDρ⊤
N

]⊤
, (9)

and the vectors ã, b̃ contain the unknown integer ambiguities
and locations for the N users, such that

ã =
[
a⊤
1 , . . . ,a

⊤
N

]⊤
, b̃ =

[
b⊤1 , . . . , b

⊤
N

]⊤
, (10)

and the design matrices are adapted consequently

Ã =

[
IN ⊗ λ · In
IN ⊗ 0n

]
, B̃ =

[
IN ⊗DG
IN ⊗DG

]
, (11)

with ⊗ the Kronecker product. Finally, the C-RTK observa-
tions’ covariance matrix Σ̃ is described by

Σ̃ =

[
D̃ ⊗ σ2

Φ ·DW−1D⊤

D̃ ⊗ σ2
ρ ·DW−1D⊤

]
,

(12)
with D̃ the mixing matrix to relate the base and users
observations:

D̃ =
[
IN + 1N,N .

]
(13)

A relevant note is that, while the unknown parameters are
completely uncorrelated among different users (unless inter-
agent ranging measurements are available), the C-RTK covari-
ance matrix introduces important cross-correlations. Since the
DD combination is performed between each user and the base
station, this additional information is of great importance, es-
pecially when the observation model is weak (e.g., when only
a limited number of satellites are available). This occurrence
is, indeed, very similar to the GNSS joint position and attitude
estimation problem where this correlation was shown to bring
significant advantages [23].

Another significant remark relates to the fact that users
might neither track the same number nor the same satellites
simultaneously. For instance, vehicles traversing urban scenar-
ios, where the presence of skyscrapers and other high metallic
structures predominate, would track a significant lower amount
of satellites in comparison to other vehicles circulating in open
sky conditions. In that case, the matrix dimensions for the
elements of (8) shall be adapted accordingly, with the satellites
in common across the network introducing the useful cross-
correlations.

III. COLLABORATIVE RTK ESTIMATION AND BOUNDS

This section briefly explains the estimation problem of
interest and the associated C-RTK estimation performance
bound, in form of CRB.

A. Estimation Problem

The system of observations in (8) constitutes a complex
optimization problem, due to the mixture of real and integer
parameters. As for conventional RTK, a weighted least-squares
formulation is as follows[

ǎ

b̌

]
= arg min

(a,b)∈Zn·N×R3·N

∥∥∥ỹ − Ãa− B̃b
∥∥∥2
Σ̃
, (14)

where the notation ã and b̃ has been exchanged for a, b,
respectively, for nomenclature simplicity. Due to the integer
nature of a, an explicit solution to (14) is not known. Instead,
a three-step decomposition constitutes the most-widely applied
solution approach [24], expressed as

min
a∈Zn·N

b∈R3·N

∥ỹ − Ãa− B̃b∥2
Σ̃
= min

â∈Zn·N

b̂∈R3·N

∥ỹ − Ãâ− B̃b̂∥2
Σ̃

(15a)

+ min
a∈Zn·N

∥â− a∥2Pââ
(15b)

+ min
b∈R3·N

∥b̂(a)− b∥2Pb̂(a)
, (15c)
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where (15a) disregards the integer constraints on the ambigu-
ities and results in the so-called float solution. In terms of pre-
cision, the float solution aligns with that of differential code-
based positioning, still insufficient for safety-critical applica-
tions. Then, (15b) constitutes an integer least squares (ILS)
adjustment, where the real-valued ambiguities are mapped to
integer ones. Finally, (15c) constitutes the fixed solution, which
leads to high precision positioning by virtue of constraining
the positioning solution based on the integer ambiguities. Note
that, high precision positioning is reached only when the
integer ambiguities are correctly estimated. For more details
on the previous optimization problem, please refer to [2, Ch.
23]. In a nutshell, solving the C-RTK problem corresponds to
the joint estimation of the individual RTK processes for every
user, with the additional consideration of the cross-correlated
noise. While the complexity and the search space increases
moderately, the C-RTK performance improves the chances of
finding the correct set of integer ambiguities, when compared
to individual instances of RTK.

B. Bounds for Collaborative RTK

When considering an estimation problem, studying its asso-
ciated performance bounds result fundamental to understand
which is the best achievable (i.e., lower bounds) and the
minimal (i.e., upper bounds) estimation performance. In the
following, we shortly summarize the main results in [25]–[27],
for the CRB of the mixed model, as well as the bootstrapped-
based bound for integer estimation.

Let us denote with CRBreal the CRB matrix associated with
the float positioning solution, given by

CRBreal ≜ tr
(
[F ]−1

[1:3·N,1:3·N ]

)
, (16)

F =
[
B̃, Ã

]⊤
Σ̃−1

[
B̃, Ã

]
,

with [F ][1:3·N,1:3·N ] denoting a submatrix of F comprising
from the first to the 3N -th rows and columns. The CRB for
the positioning solution of the mixed model, CRBmixed, can
be derived from [25] using the matrices and vectors in (8).

Similarly, understanding the performance of an estimator
for the ILS is key to fully characterize the mixed model.
Thus, the ILS success rate (i.e., the probability of correctly
estimating the integer ambiguities) can be upper bounded by
the performance of the bootstrapped integer estimator [28], as

Ps ≜ P (ǎ = a) =
n·N∏
i=1

[
2Φ

(
1

2σâ′
i

)
− 1

]
, (17)

with Φ(·) the cumulative normal distribution, and σâ′
i

the
square-root for the diagonal values resulting from the lower-
diagonal-upper decomposition of Pââ [27].

Taking into consideration the afore-described bounds, one
can easily compare, in an analytical manner, the positioning
performance of conventional RTK against C-RTK. Particularly,
we aim at answering the following questions:

a) In open sky conditions, does the positioning accuracy
improves with C-RTK?

b) Which is the RTK vs C-RTK performance in terms of
probability of correctly estimating the integer solution?

c) If only a subset of users is affected by constrained
propagation conditions, and the rest is in ideal open sky
conditions, which is the RTK vs C-RTK performance for
the constrained set?

d) Is the performance of C-RTK affected by the number of
users conforming the collaborative network?

To answer these questions, we will resort to an illustrative
Monte Carlo experimentation, where we will compare the
estimation bounds of RTK and C-RTK against the performance
of their estimators.

IV. RESULTS

For the comparative performance assessment between RTK
and C-RTK, an illustrative GNSS RTK experiment is simu-
lated. A total of ten satellites (whose geometry is depicted
in the skyplot of Fig. 3) are tracked by a base station of
known location, with six vehicles receiving correction data
from such station, and track a number of these satellites. Then,
two study-cases are considered based on the number of tracked
satellites by the vehicles: i) an open sky scenario where the
network is fully connected, meaning that all vehicles and the
base station simultaneously receive observations from the ten
satellites (blue + red); ii) an urban scenario where two vehicles
present a limited sky visibility and track four satellites (marked
in red in Fig. 3), while the remaining users track the ten.
Notice that this scenario is representative of a typical urban
constrained satellite visibility environment.

Fig. 3. Skyplot for the tracked satellites used for the simulated scenario. The
red points correspond to the satellites tracked by the vehicles traversing an
urban environment.

A range of precision levels is evaluated, such that the
code zenith-referenced standard deviation varies from 0.01
m (i.e., an asymptotic case with very low noise) to 0.1 m
(i.e., relatively high noise level). In all cases, the carrier
phase zenith-referenced standard deviation is two orders of
magnitude lower than the code counterpart. In addition, the
noise across satellites is assumed to be identically distributed
(therefore, the weighting matrix is set to W = I). For each
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variation of noise level and case study, 1.000 Monte Carlo
runs are performed to obtain statistically meaningful results.

A. Open Sky Scenario

Fig. 4 depicts the 3D position root mean squared error
(RMSE) against the range of standard deviations for code
measurements. The dashed blue and orange lines represent
the CRB for the position estimate for a single user based on
the mixed model for RTK and C-RTK, respectively, while the
dashed black line depicts the CRB for the real-valued (i.e.,
float solution) signal model. Estimators are depicted with solid
lines in blue and orange for conventional RTK and C-RTK,
respectively.

Fig. 4. Open sky scenario: positioning RMSE for estimators of the RTK
and C-RTK models and square-root of CRBs as a function of the standard
deviation of undifferenced code observables.

As extensively discussed in [25], [26], three regions of
operation for the estimators’ performance exist: asymptotic
behaviour (where the ambiguities are correctly estimated and
the resulting positioning solution presents high accuracy), a
threshold region (where some integer ambiguities are wrongly
estimated and introduce a bias on the solution), and a large
noise regime (when the integer ambiguities cannot be correctly
resolved and the inherent precision of carrier phase measure-
ments is not exploited). In comparison to conventional RTK,
the proposed C-RTK scheme poses two clear advantages: first,
the accuracy of the positioning solution increases both for the
float and fixed estimates; second, the asymptotic regime holds
for a wider range of noise magnitudes.

A similar conclusion can be drawn from Fig. 5, which illus-
trates the experimental success ratio Ps –i.e., the chances for
correctly estimating the integer ambiguities– of ILS estimators
at the C-RTK and RTK models. For completeness, the ILS
upper bound in (17) for the RTK and C-RTK problems (on
black dashed and dotted lines, respectively) is also shown.

B. Urban Scenario

The second scenario covers the case in which certain
vehicles (i.e., 2 out of 6) suffer from limited satellite coverage,
while some other are in open sky conditions. Thus, this
experiment aim at addressing whether C-RTK may enhance
the chances to precisely locate vehicles in urban scenarios, that

Fig. 5. Open sky scenario: experimental success rate Ps for RTK and C-RTK
and associated ILS upper bounds against the magnitude of code noises.

is, if considering a vehicle swarm some of the vehicles in good
operation conditions can help others that evolve under harsh
environments. As for the previous section, the positioning
RMSE and experimental success rate are depicted in Figs.
6 and 7, respectively, and make reference to the positioning
performance for the vehicles with low/constrained satellite
observability.

Fig. 6 shows a clear deterioration on the positioning per-
formance when compared to the open sky scenario, with
high precision localization being available only for low noise
conditions. Still, C-RTK provides the same advantages w.r.t.
conventional RTK that was already observed for the open sky
scenario: the precision is increased and so are the chances to
correctly estimate the integer ambiguities (Fig. 7).

Fig. 6. Urban scenario: positioning RMSE for estimators of the RTK and C-
RTK models and square-root of CRBs as a function of the standard deviation
of undifferenced code observables.

More importantly, we suspect that such gain in positioning
performance is related to the number of vehicles within the
swarm, with the theoretical proof being part of the future
work. Thus, a forthcoming scenario where vehicles are fully
connected and the necessary data exchange possible, C-RTK
has potential to overtake RTK as the standard method for high
precision localization.
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Fig. 7. Urban scenario: experimental success rate Ps for RTK and C-RTK
and associated upper bounds for ILS as a function of the code noise.

V. CONCLUSIONS

This work studies how collaborative users can be leveraged
to improve over RTK-based positioning. The basic principle
is that the double differencing of observables that RTK per-
forms, correlates the noise terms among nearby users. C-RTK
constitutes an alternative technical solution to conventional
RTK: instead of receiving corrections from a base station, the
users in the network share their observations with the base
station and a central computing node, the latter in charge of
jointly estimating the positioning solution for all users. To gain
understanding of the C-RTK processing, its functional model
is introduced and the similarities to standard RTK showcased.
Similarly, the estimation process and its associated estimation
upper and lower bounds are discussed. From extensive Monte
Carlo simulations we can conclude that C-RTK increases
the positioning performance (in terms of precision) and the
likelihood to correctly estimate the integer ambiguities. C-RTK
exhibits its maximum potential for scenarios in which certain
receivers in the collaborative set have low satellite coverage,
with the remaining receivers featuring open sky conditions
being able to “assist” the former in order to enable high
precision localization..
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