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Abstract—Direct position estimation is an alternative GNSS
positioning method, which parameterizes the received satellite
signals as a function of the target dynamics and solves the
position, velocity, and time (PVT) quantities directly from the
raw signal, as opposed to using observables. It is also recognized
as a one-step positioning method, in contrast to the traditional
two-step GNSS positioning method which first estimates the
observables and then estimate PVT through those intermediate
quantities. It has been shown that DPE outperforms the two-step
method in low-SNR scenarios, where the early combination of
the signals improve the receiver sensitivity and its exploitation of
weak signals. This paper improves the existing DPE approach by
modeling the carrier phase components in terms of the position of
the receiver. In this new framework, termed Precise DPE (PDPE),
a new maximum likelihood estimator is derived based on the
proposed signal model. This article present the first results of
PDPE using a real raw GNSS signal dataset, which is used to
compare PDPE performance against DPE and two-step solutions.
Results show that PDPE provides improved precision compared
to DPE and, additionally, outperforms the two-step method in
precision and sensitivity.

Index Terms—GNSS, direct positioning, precise positioning,
maximum likelihood estimator

I. INTRODUCTION

Global navigation satellite system (GNSS) provides posi-
tioning, navigation and timing solutions by utilizing transmit-
ted signals from satellites. The common GNSS positioning
method is to estimate the observables, e.g. pseudorange,
Doppler shift and carrier phase, and determine the position
through these observables. This traditional method and its
advanced techniques for improving positioning performance,
such as dual frequencies, real-time kinematics and precise
point positioning, have been thoroughly described in many
famous GNSS textbooks [1]–[5]. Specially, detailed software
configurations and practical algorithms are discussed in [6],
which helps the real-world GNSS receiver design on the
Global position system (GPS) and Galileo. However, the
GNSS positioning performance could be extremely mitigated
in unfavorable environments [7], [8], such as indoor scenarios,
multipath propagation, signal jamming, poor satellite geometry
and high dynamics target. High-sensitivity (HS) GNSS re-
ceivers usually perform better in these harsh environments. For
example, long coherent integration time for signal acquisition
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is designed to improve the capability of the receiver for
leveraging weak signals [1], [9].

Direct position estimation (DPE) is such a novel design
of a HS GNSS receiver. It computes the position, velocity
and time (PVT) solution by fusing the signals from visible
satellites at an early stage of processing and thus improves
the sensitivity of receiver. The DPE method directly use
the received signal to estimate the PVT solution without
measuring some intermediate quantities, in contrast to the
traditional two-step (2SP) method, which first estimates the
observables for each satellite and then use these observables
to find the optimal PVT solution usually by Least Square (LS)
method. As a HS GNSS receiver technique, the DPE approach
has great tolerance of extreme environments. It has been shown
that both 2SP and DPE approaches lead to an asymptotically
unbiased and precise positioning result with large data record,
while the bias and variance of the DPE positioning could
be much lower than the ones of 2SP method [10]. From the
perspective of estimation error bounds, one could show that the
DPE approach outperforms the 2SP approach by comparing
their Cramér-Rao bounds [11], [12]. Besides, when the a
priori information is exploited, the Bayesian bound (e.g. Ziv-
Zakai bounds) can help predict the maximum likelihood (ML)
estimator performance under different carrier-to-noise density
(C/N0) levels [13], [14] and DPE has a robust behavior than
2SP does in the sense that it can operate at lower carrier-to-
noise density (C/N0) value.

In GNSS DPE approach, the received signal model should
be formulated as a function of the dynamics of the receiver.
This model and the corresponding ML estimator have been
explicitly clarified in [15]. However, most of the existing
works on DPE receivers consider the received satellite signal
model as a pure pseudo-random noise (PRN) code model
without a carrier-phase component which depends on the
target PVT parameters. The assumption is convenient for the
simulation implementation, but could reject the high-precision
potential of DPE method, since the carrier phase is obviously
more sensitive to the dynamics (e.g. position of the receiver),
compared to the chip delay of the C/A code. Besides, the
previous work on DPE verifies their result on the simulated
satellite signal instead of signals from real-world receivers.
In this paper we propose the so-called Precise DPE (PDPE)
approach and connect it to the real-world GNSS receiver and
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signal processing design through the leverage of carrier-phase
parameters.

The rest of this paper is organized as following. In Section
II, we will review the DPE model and ML estimator of the
previous work. Then we will introduce the received signal
model for PDPE and develop a new ML estimator based
on that in Section III. In Section IV, we will process the
popular dataset sampled from the common real-world GNSS
receiver and exploit PDPE approach developed in this paper.
The positioning performance among 2SP, DPE and PDPE will
be compared and some conclusion will be drawn in Section
V based on the experiment results.

II. REVIEW OF DPE APPROACH

As described in [1] and [15], an antenna receives the GNSS
signal as a summation of signals from its visible satellites.
Each transmission signal has a well-known structure, which
includes the time-delay and Doppler shift effects. The distinc-
tive modeling from DPE perspective is that those observables
can be modeled by their physical relation with the target states
and thus the received signal can be expressed as the function of
the target dynamics. For example, the pseudorange, computed
as ρi = cτi with c being speed of light constant, is modeled
as

ρi = ϱi(θ) + c(δt− δti) + ϵi, (1)

with the following definitions:

ϱi(θ) geometric distance ||ri − θ|| between the i-th
satellite, located at ri = (rx,i, ry,i, rz,i)

⊤, and
the receiver, whose position θ = (θx, θy, θz)

⊤

is to be estimated;
c speed of light;
δt the unsolved receiver clock bias with respect to

GNSS time;
δti the i-th satellite clock bias with respect to

GNSS time given by the ephemeris;
ϵi errors term including ephemeris errors, relativis-

tic effects, etc.

For neat notation, the tropospheric delay ∆Ti, ionospheric
delay ∆Ii and multipath effect are ignored in the pseudorange
model [5, Ch. 21]. The Doppler shift is modeled as

fd,i = −(vi − v)⊤ui(1 + δ̇t)
fc
c
, (2)

where vi = (vx,i, vy,i, vz,i)
⊤ is the velocity vector of the i-th

satellite, v = (vx, vy, vz)
⊤ is the velocity of the receiver, δ̇t

is the clock shift of the receiver, ui denotes the unit vector
from the receiver pointing to the i-th satellite as shown below

ui =
ri − θ

||ri − θ||
, (3)

where ||·|| denotes the 2-norm or Euclidean norm of the vector
and fc denotes the carrier-wave frequency of the received
GNSS signal.

Hence, if we consider the the position θ, velocity v, clock
offset δt, and clock rate δ̇t as the dynamics of the receiver

and concatenate all variables of interest together, e.g., κ =
(θ⊤, δt,v⊤, δ̇t)⊤, the mixed signal model in complex band
can be parameterized as

x(t) =
M∑
i=1

aisi(t− τi(κ)) exp(j2πfd,i(κ)t) + n(t), (4)

where M is the number of satellites the receiver has in view,
the subindex i ∈ {1, 2, · · · ,M} denotes each satellite, a is the
complex amplitude with its phase being the so-called carrier-
phase component φi = ∠ai, s(t) is the navigation signal
spread through PRN code, τ is the time-delay from the satellite
to the receiver, fd is the Doppler-shift, and n(t) ∼ N (0, σ2

n)
denotes a complex additive white Gaussian noise (AWGN)
process which includes unmodeled terms besides line-of-sight
(LOS) signals.

Assuming that x ∈ CK×1 denotes the K-samples vector
of the received signals, the ML solution for maximizing the
likelihood of this x is equivalent to minimizing the following
cost function [5, Ch. 21]:

J(a,κ) = ||x−C(κ)a||2, (5)

where C ∈ CK×M denotes a matrix of local replicas whose
columns are local replica sequences of K samples generated
for each satellite as shown below

C(κ) = (c1, c2, · · · , cM ), (6)

where

ci =


si
(
Ts − τi(κ)

)
exp (−j2πfd,i(κ)Ts)

si
(
2Ts − τi(κ)

)
exp (−j2πfd,i(κ)2Ts)

...
si
(
KTs − τi(κ)

)
exp (−j2πfd,i(κ)KTs)

 , (7)

and a = (a1, a2, · · · , aM )⊤ ∈ CM×1 is the vector of
the complex amplitude of each satellite. Then following the
derivation from [5, Ch. 21], the ML estimator of κ is

κ̂ = argmax
κ

{
M∑
i=1

|xHci(κ)|2
}

= ΛDPE(a,κ) , (8)

which can also be interpreted as the non-coherent combination
of the cross-ambiguity functions (CAF) from the M satellites
in such a way that the cost function (8) is maximized.

The optimization performance of (8) will directly affect the
precision, accuracy and time cost of the estimation and thus
play a great role in DPE implementation. There exists a set
of useful optimization tools, such as brute-force grid search,
gradient-based method and random search, which have deeply
discussed in many fields and applications. From the DPE
perspective, for example, an open-source grid-dependent DPE
receiver prototype is designed to improve the computational
and localization performance by parallelizing computational
structure [16]. Some works (e.g. [11] and [5, Ch. 21]) leverage
the Accelerated Random Search (ARS) [17] to solve the
optimization problem. The following work and experiments
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(a) DPE

(b) PDPE

Fig. 1. Representation of (a) DPE and (b) PDPE cost functions over a 1000× 1000 m2 area (left), on a zoomed 100× 100 m2 area over the same function
range (middle), and a continuously zoomed 0.2× 0.2 m2 area around the true position.

will also use the ARS approach and we will further discuss
the choice in the experiment.

III. DPE WITH CARRIER PHASE
In this section, we propose the PDPE approach by relating

the carrier phase in the signal model to the receiver dynamics.
Then based on this received signal model, we will derive a
new ML estimator for receiver dynamics.

One may notice that the received signal model (4) encom-
passes the carrier phase information in its complex amplitude
ai. In fact, the carrier phase, which is interpreted as the phase
change caused by the signal travelling, can be related to the
pseudorange between the satellite and the receiver. Hence
we separate the carrier phase component from the complex
amplitude in (4) and consider it as a function of the target
dynamics.

Assuming that The positions of the M satellites, which are
visible to the receiver at a given time instant, are given by
ri = (rx,i, ry,i, rz,i)

⊤, i ∈ {1, 2, · · · ,M} and the real-value
amplitude scalar of each transmission signal is denoted by α,
the complete model of the received signal is

x(t) =

M∑
i=1

αis(t− τi(κ)) exp (j2πfd,i(κ)t) exp (jφi(κ)) + n(t),

(9)

and we have

τi(κ) =
1

c
||θ − ri||+ (δt− δti)

fd,i(κ) = −(vi − v)⊤ui(θ)(1 + δ̇t)
fc
c

φi(κ) = 2π
||θ − ri||+ c(δt− δti)

λ
, (10)

where λ is the wavelength of the corresponding satellite signal
band. The model of the carrier-phase φi comes from its
physical meaning of how it shifts the phase of the signal. The
models of delay τ and Doppler shift are reproducing the same
model in (1) and (2) to clarify the above expression (9).

In order to implement DPE approach with real-world data
record, we assume the receiver samples the signal at a fixed
rate fs = 1/Ts. The model can be rewritten in its discrete-time
vector form equivalent as

x(kTs) = α⊤ωk(κ) + n(kTs), (11)

where α = [α1, α2, · · · , αM ]⊤ ∈ RM×1 is the real-value
amplitude vector, n(kTs) denotes the sampled AWGN process
and ωk(κ) ∈ CM×1 denotes the vector of the shifted PRN
codes as shown in (12)
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ωk(κ) =


ω1(κ)
ω2(κ)

...
ωM (κ)

 =


s1(κ)d1(κ)Φ1(κ)
s2(κ)d2(κ)Φ2(κ)

...
sM (κ)dM (κ)ΦM (κ)



=


s1(kTs − τ1) exp (j2πfd,1kTs) exp (jφ1)
s2(kTs − τ2) exp (j2πfd,2kTs) exp (jφ2)

...
sM (kTs − τM ) exp (j2πfd,MkTs) exp (jφM )

 . (12)

Supposing that total K samples are recorded in an
observation window, forming the snapshot vector x =
[x1, x2, · · · , xK ]⊤ ∈ CK×1 with xk ≜ x(kTs), by maximiz-
ing the the log-likelihood function of the received signal given
unknown parameter L(x|κ), the estimator is given as

κ̂ = argmin
κ

J(α̂,κ)

= argmax
κ

ℜ{xHΩ}ℜ{ΩHΩ}−1ℜ{xHΩ}⊤ ,
(13)

where ℜ{·} denotes the real part of a complex value; and
Ω = (ω1,ω2, · · · ,ωK)⊤ ∈ CK×M contains the samples of
the local replica (the columns) of the M satellites (the rows).

Assuming that the processed signal in x is sampled at the
chip rate from GPS L1 C/A signals, we can further simplify the
estimator by making use of the approximation ΩHΩ ≈ I due
to the desirable auto-correlation properties of the PRN codes
used in GPS without secondary peaks in their auto-correlation
function [5, Ch. 21]. In this case, we have

JGPS(α̂,κ) = xHx−ℜ{xHΩ}ℜ{xHΩ}⊤. (14)

which leads to

κ̂ = argmin
κ

JGPS(α̂,κ)

= argmax
κ

ℜ{xHΩ}ℜ{xHΩ}⊤

= argmax
κ

M∑
i=1

ℜ{xH c̄i(κ)}2

= argmax
κ

ΛPDPE(a,κ), (15)

where c̄i is the local replica vector for the i-th satellite

c̄i(κ) =


si(Ts − τi) exp (j2πfd,iTs) exp (jφi)

si(2Ts − τi) exp (j2πfd,i2Ts) exp (jφi)
...

si(KTs − τi) exp (j2πfd,iKTs) exp (jφi)

 ,

(16)
which contrasts to the local replica ci, defined in (7) and used
in DPE solution (5). In PDPE, c̄i is the i-th column of matrix
Ω containing the samples of the M local replicas. One should
notice that this new estimator for PDPE takes the real part
rather than the absolute value of the cost function.

Fig. 2. Acquisition metric for the considered real-data experiment.

Fig. 3. Estimate of the x coordinate in ECEF and the associated cost function
value during ARS iterations.

IV. EXPERIMENTAL RESULTS

In recent years, the software-defined radio (SDR) paradigm
has been rapidly developed for communication, data collection
and signal processing fields. The SDR applications on GNSS
receiver side has raised spread focus due to its simplified
radio architectures, high flexibility of prototyping and low
cost benefits [18], [19] (see [20] for a recent comprehensive
review). SDR techniques enable one to collect the GNSS data
with multi-receiver and multi-band, which can be processed
with reconfigurable and reprogramming software online or
offline [21]. For example, GNSS-SDR is developed as an
open source GNSS software-defined receiver for positioning,
navigation or any signal processing algorithms of interest [22].
To promote the interoperability of GNSS SDR data collections
and processors, a metadata standard is created by ION for
GNSS sampling data file decoding and encoding [23]. In
a meanwhile, several such data files sampled from popular
SDRs, e.g. HackerRF, LimeSDR, SiGe, USRP, etc., are re-
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(a) ECEF Coordinate (b) Latitude, Longitude and Altitude

Fig. 4. Position estimation result of 2SP, DPE and PDPE approaches in ECEF coordinate (left) and latitude, longitude and altitude system (right).

leased on https://sdr.ion.org/api-sample-data.html. The follow-
ing experiments are implemented with the website dataset
recored by LimeSDR, which is sampled at 10 MHz with 16
bit I/Q complex signal and 420 KHz intermediate frequency
for GPS L1 signals. The dataset description indicates that total
8 GPS L1 signals with the PRN 2, 5, 6, 7, 9, 13, 29 and 30
are acquired, while we removed 3 of them due to relatively
low acquisition metric (e.g. PRN 13, 16) and low elevation
(e.g. PRN 29) as shown in Fig. 2.

A. Cross-Ambiguity Function
In this section, the CAFs of DPE and PDPE approach are

plotted to help readers understand why the carrier phase, as a
function of the receiver position, can improve the DPE posi-
tioning performance. Similarly as in [13], in order to visualize
the cost function, only 2-dimensional position coordinates
(θx, θy) are considered as unknown variables, while the other
parameters in κ are fixed to their true values. For realization,
we select the samples of an arbitrary one-millisecond sequence
of raw signal recorded by the SDR.

The CAFs in Fig. 1 has been normalized by its maximum
value. Both of the cost functions (DPE and PDPE) have one
obvious peak when we observe the shape of the CAFs from 1
km range of the true location. However, within a smaller range,
the shape of standard DPE cost function will soon become
flat. When the range is zoomed within decimeter level, it is
not likely to find a unique maximum point since some areas
become completely flat. On the other hand, the carrier phase
in PDPE brings high sensitivity of the cost function value
to the estimate position. Hence, the cost function of PDPE
is always able to fluctuate with the change of the receiver
position estimate, which improves the precision of the DPE
approach.

B. Estimation Result
It is intuitive to separate the estimation of the position

and velocity of the target in the traditional state estimation

problem. Hence this section will focus on estimation of
the position-related parameters and consider velocity-related
parameters as given or known variables. The 3-dimensional
position in Earth-centered, Earth-fixed (ECEF) coordinate sys-
tem and the clock bias of the receiver will be considered as 4
unknown variables [θx, θy, θz, δt]

⊤ ≜ [θ⊤, δt]⊤.
As discussed earlier, many useful optimization tools can

be employed to solve the optimization problem in the ML
estimator (5) and (15), which is equivalent to looking for
the maximum point in Fig. 1. The gird search method can
find the maximum by computing and comparing CAF values
at all candidates of receiver position. However, due to the
multivariate estimation and precision we expect to reach, it
will cost huge data storage space and computation time. The
extreme fluctuating shape of the PDPE CAF also prevents the
utilization of gradient-based method. Hence, we exploit ARS
method [17] to search the optimization solution for [θ⊤, δt]⊤,
in which the consuming time can be limited by the fixed
number of iterations and the precision can be controlled by
the minimum search step. One should notice that the ARS
parameter setting should enable the position search and the
cost function value to converge. For example, when we set the
maximum search step as 1 m and recursively search in 1000
iterations, the searching parameter and cost function value will
converge under these settings as shown in figure 3. Although
only the searching process of one coordinate is shown due to
the plot restriction, the four variables in [θ⊤, δt]⊤ are searched
simultaneously in iterations.

Fig. 4 shows the position estimation result of the receiver
with 10000 ms recorded GNSS signal in ECEF coordinate and
latitude, longitude and altitude system. The traditional 2SP
method is exploited by the open-source GNSS-SDR [6], [22]
as a benchmark. The receiver processes and tracks the signal
every 10 ms so that total 1000 times of estimation is generated.
DPE and PDPE are implemented by ARS based on a sequence
of one-millisecond GNSS signal samples every 10 ms. Thus
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Fig. 5. Empirical CDF of position estimation error.

1000 times of estimation are computed corresponding to the
same time stamp of 2SP method. To clarify the positioning
performance, Fig. 5 shows empirical cumulative distribution
function (CDF) of the position estimation error based on the
result in Fig. 4. From the cloud points gathering pattern in
Fig. 4 and the error distribution in Fig. 5, one can find that the
proposed PDPE approach outperforms DPE, and consequently
2SP method as well, in the terms of less bias and more
precision.

V. CONCLUSIONS

This paper proposed a novel GNSS direct-positioning ap-
proach, termed Precise DPE (PDPE), which extends the ex-
isting DPE framework by relating the carrier-phase to the
receiver dynamics. This brings a new maximum likelihood
estimator of the position parameter, which not only brings
the high-sensitivity benefits that DPE had but also increased
precision brought by employing the carrier-phase variable.
Another contribution of this paper is to present, the first
implementation of PDPE on real data and its comparison to
DPE and two-steps solutions. The methods were implemented
on a software-defined radio platform and the associated im-
plementation aspects were addressed. The experiments show
that the PDPE performs better than the standard DPE in terms
of both precision and accuracy, and as expected it outperforms
traditional two-step methodologies.
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[13] P. Closas and A. Gusi-Amigó, “Direct position estimation of GNSS
receivers: Analyzing main results, architectures, enhancements, and
challenges,” IEEE Signal Processing Magazine, vol. 34, no. 5, pp. 72–
84, 2017.
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