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Abstract—This article investigates the use of proximity-based
positioning as a simple, yet effective, positioning system in
crowded areas. Particularly, proximity-based positioning is a
range-free solution where a receiver computes its position by
knowing where nearby receivers are. The main requirement,
therefore, is that collaborative receivers need to share their
position, which poses a privacy concern and potential limitation
in the widespread use of such approach. This article proposes
a scheme whereby encrypted positions are shared among the
collaborative agents in order to implement a proximity-based
solution that does not reveal the position of neighboring nodes.
With the use of the homomorphic encryption, we establish a
framework that will perform the required operations to obtain
position estimates, while the information of any participating
user or device will remain private. The concept is investigated
and then experimental results provided to support the proposed
methodology, showing equivalent performance to the case where
no privacy-security guarantees are provided.

Index Terms—Proximity-based service positioning, range-free
positioning, collaborative positioning, homomorphic encryption,
privacy-preserving.

I. INTRODUCTION

Both outdoor and indoor location and positioning research
and technology has increased over the past couple decades.
For outdoor tracking, research and technology depend on
the satellite technologies, like Global Navigation Satellite
System (GNSS) such as, Global Positioning System (GPS)
[16]. With an indoor environment, these resources become
limited due to physical infrastructures or other obstacles which
may lead to signal obstructions or distortion. Addressing the
concern of limited GNSS resources for indoor environments
has driven researchers to explore methods in order to improve
the accuracy of estimating location and position values [2].
Studies presented, and not limited to, in [4], [5], [14], have
evaluated different approaches for indoor estimated location
and positioning, one of which is the proximity-based service
(PBS) method.

It is common to use resources like WiFi for PBS, to be
used as alternatives within an indoor setting, as in the case of
fingerprint-based indoor position algorithms, proposed in [11].
Other resources like Bluetooth Low Energy (BLE) devices
with PBS capabilities can also provide a desired outcome,
[7], [27]. Yet, there are other approaches that combine both
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resources to be able to obtain the common goal, as seen in
[24]. Additionally, it is also common to encounter methods
that use collaborating users in order to increase the accuracy
of these estimated values [23]. An emergence of applications
has equally surfaced with these new proposed solutions. As of
recently, the urgency of the social-distance measure due to the
global pandemic caused by COVID-19 has led to the usage of
the PBS, and additionally the increased technology infuse to
smart environments [3], [8], [20]

The proximity-based service process requires the necessary
step to identify target devices that will partake in a network
of devices. With the resources, such as BLE devices or WiFi,
the service is able to identify such target devices who may
fall within the category to engage in such network in order to
optimize the network localization accuracy. In [26], Yin el at.
proposed a general framework to establish a threshold for the
received-signal-strength (RSS) in order to create such optimal
network. As an alternative, other methods include integrating
a weighted K-Nearest Neighbor algorithm [19].

Another part of the proximity-based service is the ability
to produce accurate estimating position and location values.
Just like the initial portion of the service, this area of research
has grown and gain much attention. In [21], Subedi el al.
proposed using a weighted centroid with affinity propagation
clustering to obtain higher accurate estimated values. Bayesian
approaches using the Kalman filter, the particle filter, and the
non-parametric information filter have also been implemented
to remove any noise in the estimated values [15], [25].

These approaches may provide an estimate for position,
velocity, and time (PVT) values, which are desired for indoor
positioning environments, but these methods lack privacy. The
privacy concern is introduced when the sensitive data from col-
laborative users is used during the computation process when
determining the estimated values. An approach that takes into
consideration this privacy concern is the KNN classification
scheme. It adds a privacy layer by adding noise to the sensitive
data used to calculate the PVT estimate values. Based on
Chebyshev’s inequality, however, this approach would require
more resources to validate the estimated values. Thus, more
users are required to reduce the variance of the estimated
values. Accurate estimation results under these conditions may
be infeasible if not enough users are within the service’s range
of operation.

978-1-6654-1772-3/23/$31.00 ©2023 IEEE 235

20
23

 IE
EE

/I
O

N
 P

os
iti

on
, L

oc
at

io
n 

an
d 

N
av

ig
at

io
n 

Sy
m

po
siu

m
 (P

LA
N

S)
 |

 9
78

-1
-6

65
4-

17
72

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
PL

AN
S5

34
10

.2
02

3.
10

14
00

21

Authorized licensed use limited to: Northeastern University. Downloaded on July 02,2024 at 19:29:44 UTC from IEEE Xplore.  Restrictions apply. 



Another approach to preserve privacy, is the use of en-
cryption. A Fully Homomorphic Encryption has gain much
research attention and it was explored in [12] to preserve the
privacy between users to obtain PVT estimated values within
a cooperative positioning scheme.

In this contribution we propose a two-stage solution which
preserves the privacy for a network of users in the proximity-
based service. Since, the privacy concern exists in the com-
putational process of estimating the position of a user, it will
be referred as the proximity-based positioning scheme. This
approach considers all users to be mutually adversarial, or
untrustworthy, and it eliminates the need for a trustworthy
party that has full access to any sensitive data provided by the
network of users. Additionally, it takes into account that the
networks users are capable to communicate with one another
without any issue.

This contribution is organized as follows. Section II dis-
cusses some work related to the paper. Section III, introduces
and analyzes the standard proximity-based positioning scheme,
where the main assumptions and estimators are discussed.
Then, in Section IV, the Fully Homomorphic Encryption
methodology is presented and it provides a description of
how it is used to encrypt sensitive data, while allowing the
scheme to perform the required operations in the encrypted
domain. Section V, describes and analyzes the functionality of
the proposed encrypted proximity-based positioning scheme.
Section VI, contains the evaluation of the estimators analyzed
in Section III as used in the proposed privacy-preserving
proximity-based positioning scheme. Finally, Section VII, con-
cludes with final remarks and proposes possible extensions to
the encrypted proximity-based positioning scheme concept.

II. RELATED WORKS

Several works have explored methods of allowing nearby
neighbors to exchange their own position in a private manner.
One such approach is the k-anonymity method, which ob-
scures the untrusted server rendering it unable to distinguish
the true position of a user and k− 1 other arbitrary positions.
The level of privacy under such approach is proportional to
the number of users within the network. As the number of
k users increases, the privacy level increases. The concept
of proximity-based positioning has also been explored in the
encryption community. Novak el at. proposed a protocol for
identifying a device that is within an indicated distance [18].
Under this protocol, any two users should be willing to share
their position with one another once they are within a certain
proximity of each other. Both users encrypt their position in
such a way that it can be determined if their relative positions
are within an indicated subset boundary. If this is determined
to be true, the user Bob would send user Alice an n polynomial
which Alice must evaluate and send the results back to Bob.
Once Bob obtains a result which met the proximity criteria,
Bob would send Alice his position.

Additionally, Narayanan et al. proposed using ElGamal
encryption in [17] to securely determine the position of a user.
The solution enables the users to adjust the proximity area

Fig. 1. A Proximity-based positioning scheme consists of multiple neighbor-
ing users, sharing their position with the objective of enabling the p-th user
to estimate its position.

in which they operate and indicates whether or not they are
willing to share their position within this area. Additionally, it
depends on a social network or graph to establish relationship
with people. It uses this information, amongst other technology
resources like location tags during the matching process.

III. PROXIMITY-BASED POSITIONING

This section discusses the mathematical model used in
a proximity-based positioning scheme, as well as the main
assumptions required for the estimators in this positioning
solution. The mismatch between the assumed models and the
actual configurations of the network lead to the use of biased
estimators, which is discussed here.

Consider a proximity-based positioning scheme which is
composed of N > 2 neighboring users, who act as mobile
devices. This network of users also know their own position
coordinates, mn, and it is known only to themselves, as
illustrated in Figure 1. There also exist a p-th user who does
not know its position coordinates, mp. The objective of the
network is to provide the p-th user with a position estimate.
All N users are positioned relativity near to the p-th user,
and the distance between it and an n-th user is ∆n. This is
modeled as

mn ≃ mp +∆n 0 < ∥∆n∥ < ϵ n = 1, . . . , N (1)

Assuming that all N users satisfy the condition that the
distance between them and the p-th user is less than the
boundary condition given by ϵ, then it becomes possible to
obtain an estimate of the p-th user’s position. However, the
n-th user may not guarantee that mn is its true position value
due to an existing level of uncertainty. The transmitted position
(1) is modeled as

yn = mn +wn n = 1, . . . , N (2)

where wn is a random term that accounts for measurement un-
certainty, and this uncertainty is independent of the uncertainty
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associated with any other user. wn has a Gaussian distribution
with zero-mean and finite variance

wn ∼ N (0,σ2
wn

I) (3)

Again, the network’s objective is to estimate the position of
the p-th user using the N users observed measurements, also
seen as the transmitted position in (2). From all the observed
measurements, it becomes possible to construct the likelihood
function given the true position of the p-th user, i.e.,

p(y1,y2, . . . ,yN |mp)

The p-th user can find its position value by maximizing the
likelihood function above; this value becomes the estimated
position for the p-th user, i.e.,

m̂p = argmax
mp

p(y1,y2, . . . ,yN |mp) (4)

The estimated position values’ accuracy will highly depend
on the amount of assumptions made during the process of
maximizing the likelihood function, thus leading to the dif-
ferent possible estimators for the proximity-based positioning
scheme. Across all the estimators, it is assume that the
uncertainty in the measurements seen in the observed data
have the same distribution and they are independent from one
another, therefore the observed data values have an iid.

First, consider the case where each n-th user knows the
variance of its measurement uncertainty and this uncertainty
is not the same for all N users (i.e., σ2

wn
̸= σ2

wn′ for n ̸=
n′). Additionally, there exists a distance between the n-th user
and the p-th user (i.e., ∆n ̸= 0). This will be considered the
optimal estimator and is given by,

m̂p =

∑N
n=1(yn −∆n)(σ

−2
wn

I)∑N
n=1(σ

−2
wnI)

(5)

It is not always possible that a user may know the variance
of its measurement uncertainty, therefore this will change the
estimator above. This leads to the next estimator.

The unweighted optimal estimator considers that each mea-
surement uncertainty variance for the observed data is the
same for all the data received, meaning that σ2

wn
= σ2

wn′

for n ̸= n′, but it still considers that each n-th user’s position
is some distance away from the p-th user and is given by,

m̂p =
1

N

N∑
n=1

(yn −∆n) (6)

Similar to the optimal estimator (5), the unweighted optimal
estimator (6) assumes that each n-th user knows the p-th user’s
position, since it knows the distance from the p-th user. This
also considers that the ∆n ̸= 0 for all N users.

The last estimator is the unweighted proximity-based esti-
mator. It has the same assumptions as the unweighted optimal
estimated in (6) and it extends on the assumption that as the
distance between the n-th and p-th users approaches zero and

the n-th user’s position converges to the p-th user’s position,
i.e., mn ≃ mp as ∆n → 0. The estimator is given by,

m̂p =
1

N

N∑
n=1

yn (7)

E[m̂p] =
1

N

N∑
n=1

E[yn]
∆n→0
=

1

N

N∑
n=1

mp = mp (8)

It is noted that the unweighted proximity-based estimator is
consider to be an unbaised estimator, as shown in (8).

The unweighted proximity-based estimator will be con-
sidered later for the encrypted proximity-based positioning
scheme.

IV. HOMOMORPHIC ENCRYPTION

The purpose of this article is to design a privacy-preserving
scheme for proximity-based positioning, which necessitates
sharing of position information among the network of users.
Here we review the fundamental aspects of fully homomorphic
encryption as used in Section V. Research on the topic of
Fully Homomorphic Encryption (FHE) has rapidly increase,
since the first solution was introduced by Gentry [9], [10],
[22]. The significance of FHE is due to its ability to perform
unlimited number of addition and multiplication operations
on ciphertexts, a capability that was not possible before [1].
Since its first proposed solution, many have used the Gentry
blueprint to develop newer FHE schemes based on the com-
putation security of the Learning with Errors (LWE) problem
and the ring-LWE problem. FHE schemes come with a high
computationally expense and this has led to different attempts
to minimize this issue, such as in [6], [10].

A FHE scheme requires three main components: a key gen-
erating algorithm KeyGen(·), an encryption algorithm Enc(·),
and a decryption algorithm Dec(·). The SecretKeyGen and
PublicKeyGen algorithms, which fall under the key generating
algorithm KeyGen(·), are responsible for creating a pair of
private and public keys, respectively. The public key is used
to encrypt a plaintext message into a ciphertext, and the private
key is used to decrypt a ciphertext into a plaintext message. If a
primary user wishes to communicate with a secondary user, the
primary user will generate a set of public and private keys. The
public key is distributed to the secondary user. This secondary
user may then use the public key to encrypt its message before
sending it to the primary user. The primary user then receives
the encrypted message (in ciphertext form) and uses its private
key for the decryption process. After the decryption process,
the primary user will obtain the seondary user’s message. The
private key always remains with the primary user and it is
never distributed to any other user.

Cryptographic homomorphism refers to encryption methods
that allow certain operations to be performed on encrypted
data. A fully homomorphic encryption (FHE) system is one
that supports performing an unlimited number of addition and
multiplication operations on encrypted data without corrupting
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the value obtained when the result is decrypted. This means
that if the encryption and decryption functions are denoted as
Enc(·) and Dec(·), and the operator is represented by f(·, ·),
then for two messages m1 and m2 we have:

Dec(f(Enc(m1),Enc(m2))) = f(m1,m2) (9)

This allows for multi-step computations to be performed on
encrypted data and it will produce the same result as if the data
were not encrypted. Since FHE also allows for an unlimited
number of operations to be performed on encrypted data, it
is usable in the deployment of more complex algorithms and
applications.

As briefly mentioned, the FHE systems are considered to
be secure based on the computational security of the LWE
problem, or its variant, the RLWE problem. The security of
the system is determined by the security parameter, which
are commonly 128-bit, 192-bit, or 256-bit. For a FHE sys-
tem based on the RLWE problem, such as the FV scheme
in [6], messages are converted into plaintexts, which are then
encrypted into ciphertexts. The plaintext space is taken from a
polynomial modulus quotient ring Rt with polynomial degree
n and coefficients with modulus t. Similarly, the ciphertext
is a polynomial in Rq with modulus value q. Based on [6],
the polynomial degree, n, must be a power of 2. A larger n
value leads to a larger polynomial size and it increases the
computation resources. Additionally, with a large polynomial
degree, there is an increase in the ciphertext and plaintext
modulus values, q and t, respectively.

V. ENCRYPTED PROXIMITY-BASED POSITIONING
NETWORK

This section provides an overview of the proposed privacy-
preserving proximity-based positioning scheme. Important
characteristics of the proposed protocol, such as unique users
that will be critical for the protocol, the exchange of informa-
tion, and the application of FHE, are all defined.

A. Overview

The proposed privacy-preserving proximity-based position-
ing scheme uses two layers of encryption to maintain the
privacy for all the users within the network. Figure 2 illustrates
the establishment of these encryption layers, the necessary
inputs and outputs of each layer, and the public and private
keys needed to access these layers.

A layer of encryption is created with a set of public and
private keys. The case of a two layer of encryption, it will
required two sets of public and private keys. A single layer of
encryption would not be appropriate for the privacy-preserving
proximity-based positioning scheme. This will introduces the
possible risk that the user who created the first layer, will
have access to the set of public and private keys. This will
indicate that this user will have access to all the encrypted
data, in this case the positions of all the users, and it will
be able to decrypt all their encrypted messages. However, by
having two layers, this approach will keep the users who have
access to the private keys accountable, and any sensitive data

Fig. 2. The message, mn, is encrypted twice in order to preserve it privacy.
mn is first encrypted using the first public key, Pk(1), then its ciphertext
within the first layer of encryption, Ct

(1)
n is encrypted using the second public

key, Pk(2). This is the ciphertext within the second layer of encryption,
Ct(2). To decrypt the message, a similar process is performed. The second
private key, Sk(2), decrypts Ct(2) to obtain a ciphertext within the first layer
of encryption, Ct

(1)
n and Sk(1) used to decrypt Ct

(1)
n to reveal the message

mn.

will remain private throughout the entire process. Therefore,
the most appropriate approach is to incorporate two layers of
encryption.

Additionally, it is important that two unique users create
these layers of encryption, one user for each layer. If a single
user creates the two layers of encryption, it will obtain access
to the private key for both layers of encryption. This result
is the equivalent to having a single layer of encryption. Since
the user will have access to the private key for both layers
of encryption, this will give the user the ability to decrypt
the doubly encrypted message. To address this issue, one user
creates a single layer of encryption and a different user creates
the second layer of encryption to maintain the integrity of the
scheme.

Furthermore, any user within the network of users may
perform the encrypted computations. For simplicity, it is
determined that the user who creates the second layer of
encryption will perform the encrypted computation.

Following the illustration of Fig 2, the input for the first
layer of encryption is a plaintext message, mn; this is the n-th
user’s position values. Using the public key for the first layer of
encryption (i.e., Pk(1)), mn is converted into a ciphertext, i.e.,
Ct(1)n . Subsequently, Ct(1)n , becomes the input to the second
layer of encryption. Using the public key for the second layer
of encryption (Pk(2)), each element that comprises Ct(1)n are
encrypted, thus producing a ciphertext for each element. The
outcome is a total of (K × L) ciphertexts, where (K × L)
is the dimension of Ct(1)n , and K and L depend on the
encrypted parameters set during the key development process.
For simplicity, let Ct(2)n represent the set of ciphertext within
the second layer of encryption.

Traversing the opposite direction will require the appropri-
ate private key to obtain the message or ciphertext contained in
these ciphertexts. Starting with the second layer of encryption,
the second layer’s private key (i.e., Sk(2)) is required to
decrypt the message within the ciphertexts Ct(2)n . When the
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Fig. 3. The p-th user creates the first pair of keys for the encryption, and the
n′-th user creates the second pair of keys. Both users distribute their public
keys to all N users, except the n′-th user does not need to distribute its public
key to the p-th user.

decryption process finishes, the decrypted result is a set of
coefficients that comprises the ciphertext Ct(1)n . Then, the
first layer’s private key, Sk(2), is used to decrypt Ct(1)n . After
the decryption process, the decrypted result is the encrypted
message. Since the n′-th user created the second layer of
encryption, this will be the same user who will perform the
encrypted computations.

B. Distribution of Keys

The encrypted proximity-based positioning scheme requires
two users to create their own the public and private keys. The
first user, the p-th user, is the user whose position is unknown
as seen in Fig. 1. The second user, the n′-th user, is part of
the set of users that exist near the p-th user. The second user
is chosen at random and n′ ∈ N .

As seen in Fig. 3, the distribution of the keys is performed
in two steps. First, the p-th user creates the first set of keys,
(Pk(1), Sk(1)) and the user distributes Pk(1) to all the users,
including the n′-th user. Simultaneously, the p-th user creates
the first layer of encryption. However, the p-th user retains
its exclusive access to Sk(1). With this access, the p-th user
is capable of decrypting any ciphertext within the first layer
of encryption. This will become important when the p-th user
obtains its estimated position values, thus the p-th user must
always create the first layer of encryption.

The n′-th user creates the second set of keys, (Pk(2), Sk(2))
during the second step. The n′-th user also distributes its public
key to all N users, with the possible exception of the p-th user.
The n′-th user holds its access to the private key Sk(2). Thus,
the n′-th use creates the second layer of encryption and it has
the capability to decrypt all the ciphertexts within the second
layer of encryption.

C. Encryption Process

After receiving the two public keys, (Pk(1), Pk(2)), each
user within the network of users encrypts its position data.

First, they encrypt their data using Pk(1), to create the first
ciphertext Ct(1)n , that is

Ct(1)n = EncPk(1)(mn) n = 1, . . . , N (10)

where mn represents the position values for the n-th user.
Each user creates this ciphertext locally and they do not
transmit this ciphertext to the n′-th user. Instead, each user
uses the second public key, Pk(2) to encrypt Ct(1)n in order
to create a ciphertext within the second layer of encryption,
Ct(2)n , as follows,

Ct
(2)
(n;k,ℓ) = EncPk(2)

(
Ct(1)n (k, ℓ)

)
(11)

where, n = 1, . . . , N , k = 1, . . . ,K , and ℓ = 1, . . . , L.
This is equivalent to encrypting mn twice, once using Pk(1)

then using Pk(2), i.e.,

Ct(2)n = EncPk(2)

(
(EncPk(1)(mn))

)
n = 1, . . . , N

This second layer of encryption requires more than one
ciphertext in order to preserve the privacy of the position data.
From (11), a second layer of encryption will require K · L
ciphertexts from a single user. This indicates that the (kth,
ℓth) element of Ct(1)n needs to be encrypted using Pk(2).
After creating all the required ciphertexts within the second
layer of encryption, the users transmit these ciphertexts to the
n′-th user to perform the encrypted computation.

The n-user can transmit its doubled-encrypted sensitive data
to the n′-th user, knowing that the n′-th user does not have
access to Sk(1), which is required to decrypt the first layer of
encryption. In the case that the p-th user intercepts Ct(2)n , the
n-th user’s data will still remain private due to the fact that
the p-th user does not have access to Sk(2), which is required
to decrypt the second layer of encryption. Therefore, the n-th
user’s sensitive data will remain private at all time.

D. Encryption Operations

The ciphertexts within the second layer of encryption
of all the users are received by the n′-th user, i.e.
{Ct

(2)
1;1:K,1:L, . . . ,Ct

(2)
N ;1:K,1:L}. In total there will be N ·K ·L

ciphertexts received. Recall the n′ user contains the private
key for the second layer of encryption, Sk(2). This will be
of no use to decrypted the plaintext computation results that
occurs within the second layer of encryption, because Sk(1)

is required and only the p-th user has access to it. The n′-th
user will perform the required encrypted computation using
all the received ciphertexts, thus specifying the second layer
of encryption to be the layer of encrypted computation. Using
the estimator in (7), the n′-th user will perform the summation
of all the users encrypted data. Since each ciphertext Ct(1)n ,
maintains the same dimensions, the n′-th user will need to add
the elements that shared the same index across all the users’
ciphertext from the first layer of encryption Ct(1)n as follows,

Ct
(2)
(s,k,ℓ) =

N∑
n=1

(
Ct

(2)
(n,k,ℓ)

)
k = 1, . . . ,K ℓ = 1, . . . , L

(12)
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where Ct
(2)
(s,1:k,1:L) is the encrypted computation solution to

the second layer of encryption. The result of (12) is consistent
of adding the corresponding entries for all the N first level
ciphertexts, and then encrypting the result, i.e

N∑
n=1

Ct
(2)
(n,k=1,ℓ=1) =

N∑
n=1

EncPk(2)

(
Ct(1)n (k = 1, ℓ = 1)

)
= EncPk(2)

(
N∑

n=1

Ct(1)n (k = 1, ℓ = 1)

)
The procedure will be the same for all K and L entries. In
total, there will be N ·K ·L encrypted calculations performed.
If each ciphertext that forms Ct(2)s is decrypted, the result will
be K · L values, which forms all the elements of a first level
ciphertext. Therefore, when (12) performs all the computations
in the second layer of encryption, this becomes the equivalent
of the summation all the users position values, i.e.,

Ct(2)s =
N∑

n=1

EncPk(2)

(
EncPk(1) (mn)

)
= EncPk(2)

(
EncPk(1)

(
N∑

n=1

mn

))
E. Decryption Process

After performing (12), the results remain encrypted within
the second layer of encryption. The n′-th user proceeds to
decrypt the encrypted result using its private key, Sk(2), to
produce a ciphertext within the first layer of encryption, as
follows,

Ct(1)s (k, ℓ) = DecSk(2)

(
Ct

(2)
s,k,ℓ

)
(13)

where k = 1, . . . ,K , ℓ = 1, . . . , L, and Ct(1)s is the decrypted
result of the second layer of encryption. The result produces
a single ciphertext acquiring the same number of entries as
before and more importantly, the results reflects the desire
summation result.

Ct(1)s (k = 1, ℓ = 1) = DecSk(2)

(
Ct

(2)
s,k=1,ℓ=1

)
= DecSk(2)

(
EncPk(2)

(
N∑

n=1

Ct(1)n (k = 1, ℓ = 1)

))

=
N∑

n=1

Ct(1)n (k = 1, ℓ = 1)

The approach above can be repeated for all the K and L
entries to attest that the decrypted results in (13) is equivalent
to summation of the corresponding entries of the non-second-
layer-encryption result. Additionally, (13) also corresponds to
the n′-th user removing the second layer of encryption, i.e.,

Ct(1)s = DecSk(2)

(
EncPk(2)

(
EncPk(1)

(
N∑

n=1

mn

)))

= EncPk(1)

(
N∑

n=1

mn

)

After decrypting the results and obtaining the ciphertext
within the first layer of encryption, the n′-th user transmits
Ct(1)s to the p-th user. The p-th user is the user who created
the pair of keys for the first layer of encryption, thus indicating
that the user has Sk(1). With this key, the p-th user is able to
decrypt Ct(1)s .

The p-th user proceeds to decrypt the received ciphertext
using its private key Sk(1),

m̄ =DecSk(1)

(
Ct(1)s

)
=DecSk(1)

(
EncPk(1)

(
N∑

n=1

mn

))
=

N∑
n=1

mn

(14)

The result from (14), is the summation of position for all
the users in the network. Now, the p-th user can obtain its
estimated position values using (14) and given that number of
users in the network are known, ie,

m̂p =
1

N
m̄ (15)

Throughout the entire process, the sensitive data sent by
all N users remained private. Due to the ability to have
the data encrypted twice by using different public keys, this
prevented the n′-th user to obtain the computational result
after it performed the operations. As mentioned before, the n′-
th user is not required to compute the encrypted computation
seen in Section V-D. Any user within the network of users
or even the p-th user may perform these computations, but
the encrypted result in the second layer of encryption must
always be returned to the n′-th user. This is due to the n′-th
user having access to Sk(2).

The analysis of the encrypted proximity-based positioning
scheme is able to produce the estimator seen in (7), where
the noise variance is constant for all users and mn ≃ mp

as ∆n → 0 for n = 1, . . . , N . Furthermore, this shows that
compared to the estimator in (6), the unweighted proximity-
based estimator is a more realistic estimator, since (6) assumes
that the n-th user knows its distance from the p-th user. This
cannot be the case, since at all time, the p-th user and the
n-th user positions are kept private from each other. Addi-
tionally, we note the importance of computation complexity.
The estimator seen in (5) will require multiple multiplication
operations. Within the FHE domain, this will drastically in-
crease the space overhead and the computation complexity.
Therefore, in the environment of the encrypted proximity-
based positioning scheme, the estimator that requires the least
amount of computational operations would reduce the amount
of space and time that a user needs to make the calculations,
thus making (7) the ideal estimator.

VI. RESULTS

The results are divided into two parts. The first analyzes
the proximity-based position estimator, while the second set
of experiments aim at analyzing the proposed proximity-based
encrypted positioning solution.
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A. Proximity-based Estimator

To analyze the three different estimators, seen in (5), (6),
and (7), we created a simulator that generator random data
(position coordinates) around a stationary position. The data
was generated according to

yn ∼ N (mp +∆n,σ
2
nI) (16)

The mean of the distribution consisted of the ”true” or sta-
tionary position of the p-th user and the deterministic distance
between the p-th user and the n-th user. This deterministic
distance is represented by ∆n. Furthermore, the variance value
for each user was different, thus σ2

n−1 ̸= σ2
n.

The boundary set for the proximity-based positioning
scheme was set to ϵ = 40 (m), as seen in (1). Any user outside
this boundary was not considered to be part of the network of
users.

We evaluated each estimator using different numbers of
observations performed by a certain set of users. For example,
when the simulator set 5 users to be present, it collected a
single sample and determined the RMS error, then a second
time the simulator would observed 2 samples for the same
5 users and then determine the RMS error. The maximum
number of observations record for a certain set of users was
100 measurement values and there were at most 50 users
present. A summary of the RMSE values are given in Fig. 4.

From the results given in Fig. 4, it is clear that the optimal
estimator seen in (5) performed the best compared to the other
two estimators. This estimator did not make much assumptions
from the sample random generator, it had the information of
the true distance between the p-th user and the n-th user. This
means that the estimator did not consider ∆n to be zero.
Furthermore, it also had acknowledge of true values of each
random sample.

The next best estimator is the estimator seen in (6), also
seen in Fig. 4 as the unweighted optimal estimator. Just like
the optimal estimator, the unweighted optimal estimator had
knowledge of the distance between the p-th user and the n-
th user, meaning ∆n−1 ̸= ∆n. With this information, the
estimator was able to minimize the impact from users that
were further away from the p-user. The difference seen the
between the unweighted optimal estimator and the optimal
estimator is established through the knowledge of the variance
of the measurement uncertainty. Since the unweighted optimal
estimator had zero knowledge of the variance, it assumed that
every n-th user measurement uncertainty variance is the same.

The unweighted proximity-based estimator had the most
restrictive assumptions; every n-th user’s variance is the same
and they share the same position as the p-th user. Based on the
results in Fig 4, these estimators will improve as more users
are within the network.

B. Encryption Parameters

Based on the results in section VI-A, we analyzed the
unweighted proximity-based estimator to implement with the
fully homomorphic encryption, using the Pyfhel library [13],

Fig. 4. RMSE performance as a function of the number of collaborative users
n for the ’Optimal Estimator’ in (7), the ’Unweighted optimal estimator’ in
(5), and the ’Unweighted proximity-based estimator’ in (8).

We tested the different encryption parameters, mainly the poly-
nomial degree value n. We saw this parameter to be crucial
for our solution because of its influence in the computational
and storage cost.

As we saw in section IV, the polynomial degree is a factor
on the modulus value for the ciphertext modulus value and it
had the requirement that the polynomial degree needs to be a
value that is a power of 2. The higher the polynomial degree,
the more the ciphertext modulus domain grower. Similarly,
this was the same situation for the plaintext modulus value.

We first tested the case when the polynomial degree value
was set to 1024. This value was set to both layers of encryp-
tion. It is important to note, because of the limitation this value
was not successful with the second layer of encryption. This
second layer of encryption required a higher plaintext modulus
because of the ciphertext coefficient values were high and the
amount of computation seen during the computation process
was excessive for the domain.

Second, we set the polynomial degree to 2048. These results
are seen in Fig. 5. Based on these results, the number of
users that participate within the solution may increase the
computational complexity. As seen earlier, an estimator may
improve accuracy with more users or target devices engage in
the network, but it may hinder performance when addressing
the privacy concern issue. Therefore, increasing the accuracy
will increase the computational cost. The third polynomial
degree tested was 4096. At this value, the ciphertexts grew
exponentially, and it required a large amount of memory
storage. It can be argue that this may become ideal to improve
accuracy, but it also increases the computational cost.

VII. CONCLUSION

This article investigated the use of proximity-based for
range-free positioning of devices. In particular, the contribu-
tion of this work is to present a novel scheme that enables
such positioning in a privacy-preserving manner such that
collaborative agents in the network do not reveal their position
in the process. The proposed framework uses fully homo-
morphic encryption methodology, where certain operations
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Fig. 5. Encrypted Proximity-based positioning run-time with polynomial
degree n set to 2048.

can be perform on encrypted data. We introduced a multi-
layer encryption scheme to implement the privacy-preserving
proximity-based position scheme system which achieves the
objective of preserving position information of agents to be
revealed. We identified that two layers would provide the suf-
ficient about of privacy required and it keeps every participate
accountable in the duration of time. Based on the results,
the proposed scheme will be ideally used with a polynomial
degree small enough that will provide the privacy for the users.
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