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Autonomous systems that can assist humans with increasingly complex tasks are becoming ubiquitous. More-
over, it has been established that a human’s decision to rely on such systems is a function of both their trust
in the system and their own self-confidence as it relates to executing the task of interest. Given that both
under- and over-reliance on automation can pose significant risks to humans, there is motivation for devel-
oping autonomous systems that could appropriately calibrate a human’s trust or self-confidence to achieve
proper reliance behavior. In this article, a computational model of coupled human trust and self-confidence
dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process without
areward function (POMDP/R) that leverages behavioral and self-report data as observations for estimation of
these cognitive states. The model is trained and validated using data collected from 340 participants. Analysis
of the transition probabilities shows that the proposed model captures the probabilistic relationship between
trust, self-confidence, and reliance for all discrete combinations of high and low trust and self-confidence.
The use of the proposed model to design an optimal policy to facilitate trust and self-confidence calibration
is a goal of future work.
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1 INTRODUCTION

The complexity of human interactions with autonomous systems is increasing, as evidenced in
applications including intelligent transportation systems [11], autonomous vehicles [10], mili-
tary operations [28, 29], and medical imaging systems [8]. In turn, this necessitates a greater
understanding of these interactions and how they affect outcomes in terms of metrics such as
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performance [19, 32, 46, 67]. It is well established that knowledge of a human’s cognitive factors,
or states, during their interactions with robots or other autonomous systems is vital to the design
of effective human-automation interaction (HAI) [38, 57]. In particular, the cognitive factors
of human trust and self-confidence play a substantial role in the human’s willingness, and deci-
sion, to rely on automation [25, 31, 33, 34, 43, 44, 62]. Interestingly, the inclusion of automation
support presents the potential for automation bias—an over-reliance on an automated decision
aid, in which the human attributes more authority to the automation than to other sources [55].
This often results in the human neglecting prior knowledge and contradictory evidence to follow
incorrect advice. Consequences of improper reliance, relying too much or too little, can be dire
[56]. For example, it is well supported that miscalibration of trust to automation capabilities is the
cause of misuses and disuse of automation [44]. This motivates the need for calibration of cognitive
factors to achieve appropriate reliance. For example, models enabling cognitive state estimation
and prediction could be used by automation to appropriately trigger system responses through
methods such as transparency adaptation, automation behavior adaptation, or flexible autonomy
[5, 38]. However, accomplishing this often requires mathematical models of human cognitive state
evolution that are suitable for algorithm design.

Several conceptual frameworks have been proposed to model HAI and specifically the role of
different cognitive factors in human behavior and decision-making, particularly as it relates to hu-
man reliance on automation [12, 15, 21, 25, 26, 34, 44, 48, 50, 56, 71]. A majority of these frameworks
are centered around human trust in automation [12, 15, 25, 34] and its effect on reliance. Trust is
well established as a cognitive factor that can be defined in an HAI context as the belief that the
automation will help the human achieve their goal(s) in an uncertain situation [44]. Early quali-
tative models of trust establish that human trust in automation is dependent on factors including
interaction with the operator, context, automation performance, and the user interface [44]. An-
other widely referenced qualitative model by Hoff and Bashir [34] identifies three stratified layers
of trust: dispositional trust—derived from individual characteristics and remains characteristically
constant over time; situational trust—derived from the environment; and learned trust—derived
from preexisting knowledge and the system’s performance. In turn, researchers have highlighted
factors that affect the human’s trust, including system transparency [77], anthropomorphism [18],
and automation reliability [13, 20]. However, in addition to trust, it has been established that the
self-confidence of the human also affects their reliance on automation [16, 22, 42, 43, 53, 56, 73]. For
example, over-reliance on automation can arise as a result of a human with low self-confidence in
their skill to manually execute a particular task [56]. Additionally, biases in one’s self-confidence
(over- or under-confidence) can lead to improper reliance [43].

There has been a significant effort over the last decade to develop computational models for
predicting reliance behavior or the dynamics of trust and self-confidence. An overview of com-
putational models of human trust or self-confidence is provided in Table 1. From a computational
perspective, several models have been developed to predict human trust, particularly in the last
decade. Notably, more recent models of trust are aimed at capturing the probabilistic nature of
human behavior using a variety of mathematical techniques. Computational cognitive models of
trust include auto-regressive moving average vector (ARMAYV) derivations and other linear
models [9, 35, 37, 42], decision analytical models based on decision or game theory [76], dynamic
Bayesian networks [27, 30, 72], and partially observable Markov decision process (POMDP)
models [5, 6, 17]. However, despite several conceptual frameworks supporting the relationship
between trust and self-confidence, comparatively fewer computational models have been devel-
oped to capture this relationship [31, 43, 65]. Many of these models are based upon the “confidence
vs. trust” hypothesis, originally developed in [43], that assumes a human’s reliance on a given
system is dependent on a difference between the human’s trust in the automation and confidence
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Table 1. Summary of Models of Trust or Self-confidence

Category
Papers Trust Self-confidence T-SC Coupling Probabilistic
Lee and Moray, 1992 [42]
Lee and Moray, 1994™ [43]
Gao and Lee, 2006™ [31]
Maanen et al., 2011 [47]
Mikulski et al., 2012 [49]
Saeidi and Wang, 2015 [64]
Juvina et al., 2015 [40]
Xu and Dudek, 2015 [76]
Floyd et al., 2015 [27]
Hu et al., 2016 [36]
Akash et al., 2017 7]
Akash et al., 2018 [4]
DeVisser et al., 2018 [19]
Chen et al., 2018 [17]
Sadrfaridpour et al., 2018 [63]
Wagner et al., 2018 [72]
Hu et al., 2019 [37]
Juvina et al., 2019 [39]
Saeidi and Wang, 2019 [65]
Tao et al., 2020 [70]
Akash et al., 2020 [5]
Azevedo-Sa et al., 2020 [9]
Soh et al., 2020 [69] v
“T-SC Coupling” refers to models that capture the relationship between trust and self-confidence while recog-

nizing that these two individual states affect one another dynamically. *denotes models that are based upon the
“confidence vs. trust” hypothesis.
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in their ability (also known as the relative trust) to execute the task manually [71]. For example,
this hypothesis states that a person whose self-confidence exceeds their trust in the automation
will choose to perform the task manually, and vice versa. However, some researchers have pub-
lished results that contradict this hypothesis [61, 75]. For example, in [75], the authors show that
in a signal detection task, despite their trust in the system being lower than their self-confidence,
participants still relied on the system instead of completing the task manually. Furthermore, the
authors of [61] suggest that operators who have both high trust and high self-confidence tend to
prefer a higher level of automation. Therefore, further investigation of the coupling between trust
and self-confidence is needed to characterize how different combinations of these cognitive states af-
fect human reliance decisions and subsequent performance. This “coupling” refers to models that
capture the relationship between trust and self-confidence while also recognizing that these two
individual states affect one another dynamically. While prior work has explored the coupled rela-
tionship between trust and workload [3], to the knowledge of the authors, there are no existing
models that mathematically characterize the dynamic coupling between trust and self-confidence.

The primary contribution of this article is a probabilistic discrete-state model of human trust
and self-confidence dynamics as they relate to a human’s repeated interactions with automation
assistance. An important feature of the model is its interpretability, which is achieved by first
defining a model structure grounded in cognitive psychology and human factors literature, and
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then parameterizing it using human subject data collected in the context of a game-based task.
The model considers coupling between the states themselves, as well as coupling between the
human’s reliance on the automation assistance and the cognitive states. Furthermore, the model
leverages both behavioral and self-report data for model parameter estimation, collected from 340
human subjects. It is shown that the model’s predictions are consistent with the findings of [61,
75] in that the “confidence vs. trust” hypothesis does not account for all scenarios of trust and self-
confidence interactions. Instead, the coupled effect of human trust and self-confidence on reliance
is captured by the state transition probabilities of the trained model and underscores the need for
computational models that can be used for algorithm design for improved HAL

The article is organized as follows. In Section 2, existing computational models of trust and self-
confidence are presented and discussed in greater detail, along with a comparison to the proposed
approach. In Section 3, the formulation of the trust and self-confidence modeling framework is
presented. The human subject study, including experimental design and implementation, is out-
lined in Section 4. The modeling, training, and validation process is discussed in Section 5. The
trained model is analyzed in Section 6, followed by a discussion of the implications of the results
on the design of human-responsive automation and limitations of the work. Finally, conclusions
and future research directions are discussed in Section 7.

2 RELATED WORK

Before presenting our modeling approach, we describe in greater detail the existing computa-
tional models that relate human trust and self-confidence in HAI contexts. A review of applied
quantitative models of trust is available in [66]. Lee and Moray [42] first developed an ARMAV
time series model in 1992 to model trust as a function of performance efficiency and system
faults. This model was extended in 1994 to capture the relationship between trust, self-confidence,
and reliance on automation, after identifying that the use of automatic control was strongly
correlated to the difference between users’ trust and self-confidence. This model is provided
in Equation (1) and predicts the operators’ allocation strategy by means of the percentage of
automatic control [43]. The model accounts for past automation dependence, a difference in the
operators’ trust and self-confidence states, as well as individual operator bias. The variable ¢ is a
constant representing the current use of automation dependence on past use of automation. The
variables A1 and A2 represent the weights of the difference in trust and self-confidence (T — SC)
and individual bias toward manual operation, respectively. Normally distributed independent
fluctuations are provided by a(t), given time ¢.

%Automatic = ¢p1 X Automatic(t — 1) + A1 X ((T — SC)(t)) + A2 X IndividualBias + a(t) (1)

Gao and Lee [31] developed an alternative model that utilizes the difference between trust and
self-confidence to determine reliance on automation behavior like that of Lee and Moray [43]. The
EDFTmodel is an extended decision field theory (DFT) model [14] used to characterize multiple
decisions made sequentially, as opposed to the single decisions addressed by DFT. The EDFT model
structure utilizes a closed-loop relationship between the context (autonomous C4 and manual Cyy),
information available, operator belief (context autonomous B¢ 4 and manual Bcyy), cognitive state
(trust T and self-confidence SC), intention (P), and decision (reliance). The preference, PR, of mode
is defined as the difference between trust and self-confidence (Equation (2)) and updated given the
context and noise term € representing the uncertainty in trust or self-confidence in Equation (3).
The model is then used to predict the user’s decision to rely on automation or to use manual control
when the preference evolves beyond a given threshold 6.

PR(n) = T(n) — SC(n) @)
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PR(n) =(1—-s)XPR(n—1)+sX[Ca(n—1) —Cp(n—1)] + e(n) (3)

In 2015, Saeidi and Wang [64] developed a performance-based, computational trust and self-
confidence model, TSC (Equation (4)), for autonomy allocation in a UAV context. The TSC model
is a function of the human’s (P) and robot’s (P,) performance at time step k, with performance
level constants ar and by. Similar to the models of [31, 43], this model incorporates a difference
in the cognitive states, human-to-robot trust and self-confidence, to achieve optimal allocation
with consideration of the Yerkes-Dodson law [23] and robot performance decay. Therefore, to
reduce the effects of human workload overload or poor robot performance, the level of autonomy
is switched to maintain the difference, TSC, within the given thresholds. This difference is depicted
in Equation (4).

TSC(k) = arPr(k) — br Py (k) (4)

In 2019, Saeidi and Wang [65] improved upon their trust and self-confidence allocation strategy
by incorporating a TSC-based switching control for manual and fully autonomous mode alloca-
tion. They model the difference between trust and self-confidence as a direct function of human
and robot performance. This is similar to how Lee and Moray [42] model trust as a function of
performance efficiency. Lee and Moray [43] denote T-SC as the difference between subjective rat-
ings of trust and self-confidence, and Gao and Lee [31] treat trust and self-confidence as a function
of the operator’s belief in the automation and manual control capability. The proposed model in
this article will be considering task performance as an action, or input, that affects the dynamic
evolution of the cognitive states of trust and self-confidence, along with other environmental and
task context factors that will be expanded upon in Section 3. Furthermore, among these existing
computational models incorporating cognitive states of both trust and self-confidence, there is a
key similarity in the basis of their frameworks. This similarity is the idea of the “confidence vs.
trust” hypothesis, or assuming the human’s reliance on a given system is dependent on a difference
between the human’s trust in the automation and confidence in their individual ability. On the
other hand, by incorporating cognitive state coupling of the human’s trust and self-confidence,
the model proposed in this article is unique in its ability to capture the relationship between
trust and self-confidence while recognizing that these two individual states affect one another
dynamically.

3 MODEL DEFINITION

A POMDP is an extension of a Markov decision process (MDP) and is defined as a 7-tuple,
(8, A,0,7T,8E,R,y), where S is a finite set of states, A is a finite set of actions, and O is a finite
set of observations [68]. The transition probability function 7~ governs the transition from the
current state s to the next state s’, given the action a. The emission probability function & governs
the likelihood of observing o, given that the process is in state s. Finally, the reward function
R and discount factor y can be used to synthesize an optimal action (control) policy given the
state dynamics. However, designing such a policy is outside the scope of this work; therefore,
throughout the remainder of the article, we will refer to the 5-tuple (S, A, O, T, &) as a POMDP/R.

A POMDP accounts for observability through hidden states; this is particularly useful in the
modeling of human cognitive dynamics, which cannot always be directly measured or observed.
The POMDP is used here to establish a gray-box modeling framework for estimation and prediction
of human trust and self-confidence that can be parameterized using human subject data. This
promotes interpretability of the model. The model definition is supported by existing literature
establishing key relationships between the cognitive states of interest, available observations, and
relevant actions, as described in more detail below. It is worth noting that POMDPs are often
used in robotic contexts in which the states are the robot’s current position, the actions are the
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possible directions the robot can travel in, and the observation is the robot’s future position [58].
However, here we model a human’s cognitive behavior using a POMDP, as is done in [5]. To do so,
we define relevant human cognitive factors as the states of the POMDP, actions are the measures
that influence the cognitive states (namely characteristics of the automation’s input as well as the
human’s experience with it), and observations are the observable characteristics of the human’s
decision.

First, the set of states S is defined as tuples containing the Trust state st and the Self-Confidence
state sgc, in which each state is attributed either a low (]) or high (1) value. This discrete state
definition has been employed in prior POMDP models of human cognitive dynamics and was
shown to be sufficient for real-time trust calibration [5]. Next, the set of actions A is defined
as those variables that affect the state evolution. For HAI contexts, this includes the automation
input (to the task environment) as well as the human’s experience with the automation. The latter
is characterized here as the system performance, which reflects the calculated score earned by the
participant in the previous trial. For example, a participant’s trust is a function of their performance
in the previous trial. This means that transitions in the trust state are driven by the change in
performance between the previous and current trials. It should be noted that because the model
states are defined as factors of the human’s cognition, both uncontrollable and controllable actions
affect the state dynamics [5]. The Automation Input a4 from the agent is controllable and belongs
to the controllable action set A.. However, the system Performance ap is considered uncontrollable
from the agent’s perspective as it is driven in part by the human’s behavior, and therefore belongs
to the uncontrollable action set Ay.. In other words, the POMDP/R in this article is a 6-tuple,
(S, Aye, A, O, T, E). Nevertheless, for consistency with the standard definition of a POMDP/R,
we will combine the controllable and uncontrollable action sets into one action set such that A =
{Ayc, Ac}. Supported by the literature discussed in Section 1 citing the coupling between human
trust and self-confidence, the states are assumed to be coupled according to the following transition
probability functions: 7 (s%.|st, ssc, a) and T (sg. |7, ssc» a).

Finally, the set of observations O is defined as the observable characteristics of the human’s
behavior and decision-making. As discussed earlier, it is well established in the literature that
human reliance on automation is affected by both the human’s trust in the automation and their
self-confidence [24, 44, 56]. In other words, reliance is specifically defined as an observation (as
opposed to an action) in the POMDP/R, with the emission probability function for reliance defined
as &(ogr|st, ssc). It is worth noting that although a user’s past reliance decision could be construed
as a predictor of their future trust in the automation, it is their performance resulting from a
reliance decision that actually influences their state of trust. This further underscores the choice
of reliance as an observation and performance (as a proxy of experience with the automation) as
an uncontrollable action.

While a POMDP/R can be trained with fewer observations than states, doing so makes interpre-
tation of the states difficult. Instead, self-reported self-confidence is used as a second observation
for estimating the human’s self-confidence state; this is described by the following emission prob-
ability function: &(os,sc|ssc). The use of self-reported self-confidence here is supported by its use
in work concerning the application of intelligent tutoring system (ITS) automation to train a
self-confidence model [70]. This creates asymmetry in the emission probability function that aids
interpretability of the model, as discussed in Section 5. The proposed POMDP model definition is
summarized in Table 2 and depicted in Figure 1. For ease of notation, we will denote uncontrol-
lable actions A, as A, such that a,. p = ap and controllable actions A. as A4 such that a. 4 = as
going forward.

Using the transition and emission probabilities, the probability distribution over the states,
otherwise known as the belief state b(s), can be calculated using Equation (5), in which P(-)
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Table 2. Definition of the Human Trust-Self-confidence (T-SC) POMDP/R Model

Trust st

Statess € S S= steT
Self-confidence sg¢ B {Low Trust T l}
~ |High Trust T7
ssc € SC
SC= {ng Self-confidence SC| }
High Self-confidence SCT
Actionsae A A ={Ac, Ayc} aye,p € Auc
Auyc := Performance a,c p Performance Deterioration P~
Ac := Automation Input a. 4 Auc = {Performance Improvement P+}
Ac, A € ﬂc
A, : Context Specific
. Reliance o
OOl;s(e)rvanons 0= Self-reported Self—ConRﬁdence 0srSC o € R

R No Reliance Ry g
- Reliance Rg

osrsc € srSC
SC = Low Self-confidence srSC|
STt = High Self-confidence srSCT

Human trust and self-confidence are modeled as hidden states. The hidden states are affected by actions corresponding
to the user’s performance and the input provided by the automation. The observable characteristics of the user’s chosen
reliance and self-reported self-confidence are modeled as the observations of the POMDP/R.

to ty t;

Actions

Trust  Self-Confidence

Reliance  Self-Reported
Self-Confidence

Fig. 1. A representation of the proposed POMDP/R model of trust and self-confidence. The transition prob-
abilities of trust and self-confidence depend on the previous states of trust and self-confidence. The reliance
observation is dependent on both the trust state and self-confidence state. However, the self-reported self-
confidence observation is dependent on only the self-confidence state.

denotes probability.

P(ols’,a) Y, s P(s[s, a)b(s)
Dyes Plols’,a) X P(s'ls, a)b(s)

b'(s") = P(s"|o, a, b(s)) = (5)
4 HUMAN SUBJECT STUDY

In Section 4.1, the design and intent of the human subject study for model training data collection
is described. The implementation of the study is discussed in Section 4.2, and analysis of behavioral
and self-report data collected from the experiment is presented in Section 4.3.
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4.1 Study Design

Human subject data is collected in the context of a game-based task to parameterize the human
trust-self-confidence (T-SC) model. The experimental platform is an online obstacle avoidance
game in which participants must perform the task of maneuvering an avatar (depicted as a pen-
guin) across the screen in the shortest amount of time while avoiding collisions with six obstacles.
The participants are also informed that an automation assistant is available to help them play the
game. Note that in reality, the “automation assistant” simply scales the user’s mouse input by a pre-
assigned parameter 6. The scaling factor 6 can take on values belonging to any one of three sets:
©r =1{0.7,0.8,0.9}, ©p; = {1.0,1.1,1.2}, and O = {1.3,1.4,1.5}, where 0 € ©; for j = {L, M, H}.
In particular, when 6 < 1, the user will experience an attenuation of their mouse input, and when
0 > 1, their input will be amplified. In order to obtain training data that is agnostic to the dynam-
ics of a specific automation assistance algorithm, the value of 6 experienced by each participant is
assigned to them according to the between-subjects study design described below. In other words,
the scaling factor is not responsive to the human’s performance. Rather, the goal of the experiment
is to obtain a set of training data that captures the effect of a range of values of the automation
assistant’s input on participants’ behavior. Whether a particular value of 6 helps or hinders the
participant is a function of their skill level. For example, automation input values belonging to
Oy scale the user’s input down. While this may be beneficial for a user whose mouse input is
over-reacting, the assistance may not help a user who is already playing well. This is by design
to stimulate changes in the user’s trust and, in turn, reliance on the automation assistance. For
example, we expect that a user whose performance is being aided by the automation assistance
will choose to continue to rely on it, whereas a user who finds the automation to be inhibiting
their performance will do the opposite. Stimulating both increases and decreases in trust is crit-
ical for collecting training data that covers the state space of interest—in this case, all discrete
combinations of low and high trust and self-confidence.

In the game shown in Figure 2, the penguin avatar moves at a constant speed, and its position
is controlled by the participant’s mouse movement. The penguin’s x and y positions are governed
by the following dynamical equations:

X1 = X + AtVeos(Oruy) + d(y)

Yrr1 = Yr + AtVsin(Oruy), ©)
where [x;,1;]7 € R? are the penguin’s position at time ¢, u, € R is the participant’s (mouse) in-
put, and 6 € R is the scaling factor provided by the autonomous assistant in the k*” trial for
k =1,...,10. During the practice round, participants do not receive any input scaling, so 6, = 1.
The game update discrete time interval is At, V is the constant speed, and ¢(y) is an added “wind”
effect that increases in the upward vertical direction and is defined relative to the maximum ver-
tical position, y,,4x. Table 3 provides the specific parameter values used in the experiment. It is
important to note that the automation never takes control away from the participant.

A between-subjects study is designed to elicit changes in each participant’s trust in the automa-
tion assistant and confidence in their ability to play the game (i.e., their self-confidence) over the
course of 10 game trials. Figure 3 shows the sequence of events for each trial in the user study.
Participants are asked to decide whether to rely or not rely on the automation assistant prior
to every trial, as shown in Figure 4(a). Regardless of their reliance choice, prior to the first trial,
each participant is randomly assigned to one of the three © sets. Then, for their first five trials,
a single 0; value is randomly selected within the given © set. In this way, each participant ex-
periences a constant input from the autonomous assistant for five repeated trials. Note that the
participant is not informed of the specific 6 value that is being applied to their input; they only
know that the automation assistance is available and that they can turn it on or off. Moreover, for
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Collisions : 1
Time : 30.3secs

Game 1

Take your cursor to the red box. Click to begin the game. Move the mouse to control the penguin and take it home. Be sure to use your dominant
hand.

Press Next to continue once you complete the game

Fig. 2. A screenshot of the web-deployed game platform in which the participant must guide a penguin
across the computer screen to its home while avoiding obstacles placed in its path.

Table 3. Game Parameters

Parameter X0 A% At 0o $(y)
1
0.75, Y < max
Value [0,200] 75 pixel/sec  0.02sec 1 125, 2Ymax <Y < SYmax
2
L.75, y= 3Ymax
ici e Participant
NewS ;aA:ztrial Pamcépaar:; e mg(erir"::’;aor\:vc: to completes final END
participant survey

Wait for Completion Wait for Response Wait for Response.

Participant A
self-reports trust articipant
and selects reliance
self-confidence for next trial

Wait for Response Wait for Response

Assistance
parameter
updated (8)

Fig. 3. The sequence of events in the experiment. The participant completes a practice trial prior to complet-
ing 10 trials of the game.

any game trial for which they choose not to rely on the automation assistant, 0y = 1. Similarly
to [43], after each trial, participants are prompted to rate their trust (in the automation assistant)
and self-confidence as shown in Figure 4(b). Participants are provided with definitions of the cog-
nitive states prior to rating their trust and self-confidence on a numerical scale of 0-100. Trust is
defined as assured reliance on the character, ability, strength, or truth of someone or something,.
Self-confidence is defined as confidence in oneself and in one’s powers and abilities. While both
trust and self-confidence self-report data are collected, only self-confidence self-report is used ex-
plicitly as an observation in the POMDP/R model as described in Section 3. Self-reported trust is
utilized in validating the model’s predictive capability.

At the sixth trial, a step change in the © set is introduced. The purpose of this step change
is to further stimulate changes in the participant’s trust or self-confidence. Note that to avoid
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Assistance Level Selector

Instructions
In the following games you will have the option of receiving
assistance from automation to optimize your performance
throughout the game.

Two options are available: Disable and Enable assistance

Select your desired option for game 1 below:

Disable Enable

Press Next to continue

(a) Reliance Selection Page
Based on your experience in the previous game, please rate your level of trust in the automation:
(]

O 1 2 N 4 5 & M 8 % 10

Low Moderate o

Based on your experience in the previous game, please rate your agreement with the following statement

"Using the automation helps to improve my score in the game."

(]

0 10 22 0 4 N 6 7 8 % 100

Swongy Undecided Strongy

Disagree Agree

Based on your experience in the previous game, please rate your level of self-confidence in playing the game:
(]

0 0 6 70 8 % 10

(b) Survey Page

Fig. 4. Example screenshots of the survey questions participants answer after each trial of the web-deployed
experiment platform. (a) The reliance selection page in which participants are asked to select to either disable
or enable the automation assistance. (b) The survey questions in which participants are asked to rate their
trust and self-confidence on a numerical scale from 0 to 100.

introducing too large of a step change for some participants relative to others, no participant
for whom 0 € © Vv Oy for trial k = {1, 2, 3, 4, 5} experiences 0 € ©p V Oy for k = {6,7,8,9,10}.
The choice of introducing the step change after five trials was based on analysis of data collected
through pilot experiments. For the remaining five trials, a single 6, value is then randomly selected
within the new © set. Again, 0y = 1 for any trial k during which the participant chooses not to
rely on the automation assistant.

4.2 Implementation

A total of 367 individuals participated in, and completed, the study. These participants were re-
cruited from the Amazon Mechanical Turk platform [1] and completed the study online. To ensure
the collection of quality data, the following criteria were applied to participant selection: partic-
ipants must reside in the United States, have completed more than 500 Human Intelligence
Tasks (HITs), and have a minimum HIT approval rate of 95%. Each participant provided their
consent electronically and was compensated US$1.34 for their participation. The Institutional Re-
view Board at Purdue University approved the study. Due to the online nature of the study, and
given lack of participant supervision, it is assumed that some participants were not adequately
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Fig. 5. Average collisions (left y-axis) and reliance rate (right y-axis) corresponding to the four combinations
of trust and self-confidence, T|SC|, T|SCT, T1SC|, and T1SCT, as self-reported by participants. The error
bars of the average collisions represent the standard error of the mean across participants.

engaged in the study. This was reflected in their unusually low game completion time and high
rate of collisions. To remove any outlying participants, the data from participants with at least
three trials in which their game times were below the 25th percentile and with four or more col-
lisions were removed. These conditions were chosen because they suggested that the participant
dragged the penguin across the screen without attempting to avoid the obstacles. As a result, 27
participants were removed from the dataset. The resulting dataset consists of 340 participants from
the United States (145 females, 190 males, 5 preferred not to disclose or did not identify within ei-
ther gender), ranging in age from 18 to 77 (mean 39.0 and standard deviation 11.9, two participants
did not disclose age).

4.3 Behavioral and Self-reported Data

Prior to training the POMDP/R model, the self-reported data is analyzed to identify behavioral
trends. First, each participant’s trust and self-confidence are identified as high or low by comparing
the participant’s self-reported value to the 50th percentile from all data. In Figure 5 the mean value
of the number of collisions across all data points pertaining to each self-reported state combina-
tion is used to plot the average collisions. On the right y-axis, the number of instances in which
participants chose to rely is counted and divided by the total number of data points in each self-
reported state combination to find and plot the reliance rates. There exist clear distinctions between
each cognitive state combination and the number of collisions and chosen reliance level of each
participant associated with their reporting of each state. From Figure 5, it can be seen that the
state combinations T|SC| and TTSC| correspond to poorer performance—i.e., greater average col-
lisions. The established relationship between trust and reliance captured in previously published
trust models is further underscored in Figure 5; when trust is high, the reliance rate is high, and
vice versa. However, as expected, the addition of self-confidence affects the user’s likelihood to
rely on the autonomous assistant. When trust is low, the users with low self-confidence are 12%
more likely to rely on the autonomous assistant than those with high self-confidence. It should also
be noted that when both trust and self-confidence are high, TTSCT, it would have been expected
that users would not rely on the assistant as often. However, participants who reported being in
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Table 4. Estimator, P-values and Significance of Self-confidence Linear
Regression Analysis

Estimate p-value Significance
Intercept 65.8800  6.5870e — 233 e
Trial 0.5140 1.095e — 04 e
Trust 0.2377 3.6684e — 63 i
1 Collision —7.5242 6.2399e — 15 i
2 Collisions —15.1810  6.3625e — 37 i
3 Collisions —18.1590  5.8977e — 39 .
4 Collisions —23.4750  2.7911e — 41 e
5 Collisions —24.7240  4.5472e — 36 i
6 Collisions —21.3430 6.1672e — 18 i
Time —0.2015 0.0171 *
Automation Enabled —4.8704  6.5045e — 06 e
R? 0.213
Adjusted R? 0.211

Note: *p < 0.05, **p < 0.01, “*p < 0.001.

the TTSCT state demonstrated a high reliance rate and low number of collisions. Finally, the data
show an almost inverse relationship between the TTSCT and T|SC| states. These findings will be
used to aid in model state sorting, as discussed in Section 5.

4.4 Linear Regression Analysis

In order to further investigate the relationship between performance metrics and cognitive states,
multi-variable linear regression analyses were applied to the data using the self-reported numerical
self-confidence and trust data as regressors.

Performance Metrics. In Table 4, the estimated values show that as collisions and game time de-
crease, self-confidence increases. While all performance factors are significant for self-confidence,
the categorical collision factors are much more significant to self-confidence than game time. This
may be because as users progress through the trials and try to improve, avoiding obstacles is their
priority. The intercept shown in Table 4 indicates that when automation is disabled and users have
not collided with any obstacles, the baseline numerical self-confidence is 65.8800. In the trust re-
gression analysis from Table 5, the estimates show that trust decreases when users collide with
four to six obstacles and increases when users collide with one to three obstacles. Additionally, as
game time increases, trust increases. Collisions are not found to be as significant to trust, whereas
game time is; this may be because avoiding more obstacles typically implied that more time was
spent navigating the penguin avatar across the screen. Additionally, the intercept in Table 5 sug-
gests that the user avoiding all obstacles and having automation disabled is very significant to
trust. Overall, these results suggest that self-confidence and trust have a positive relationship with
absolute performance metrics as well as improving performance metrics.

Cognitive States. In both analyses, the corresponding cognitive state is also very significant. In
other words, self-confidence is a significant factor of trust, and vice versa. Both numerical self-
confidence and trust take on values of 0 to 100. Therefore, from the resulting regression estimate,
a numerical trust rating of 100 translates to 23.77 points of self-confidence, and a numerical self-
confidence rating of 100 translates to 33.53 points of trust. This is interesting because not only does
this quantitatively suggest that self-confidence and trust affect each other, but also the relationship
between trust and self-confidence is proportional. If trust and self-confidence are proportional to
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Table 5. Estimator, P-values, and Significance of Trust Linear
Regression Analysis

Estimate p-value Significance
Intercept 10.1720  1.1573e — 04 e
Trial —0.4378 0.0056 *
Self-Confidence 0.3353 3.6684e — 63 o
1 Collision 1.0460 0.3634
2 Collisions 1.6460 0.2521
3 Collisions 0.2924 0.85124
4 Collisions —1.6333 0.4366
5 Collisions —1.4227 0.5481
6 Collisions —3.4316 0.2453
Time 0.3073 0.0022 *
Automation Enabled  28.7120  7.2951e — 198 e
R? 0.310
Adjusted R? 0.308

Note: *p < 0.05, *p < 0.01, “*p < 0.001.

one another, the “confidence vs. trust” hypothesis may not be sufficiently able to predict reliance
behavior when both cognitive states are high or low, thus further supporting the need for a model
that does capture the nuances between trust and self-confidence. This proposed model is discussed
in the next section.

5 MODEL TRAINING AND VALIDATION

The adaptation of the model to the specific HAI context considered in this article is first discussed
in Section 5.1. This is followed by a description of the methods used for model training (Section 5.2)
and model validation (Section 5.3).

5.1 Model Definition

Recall the T-SC cognitive state model defined in Table 2. In the context of the experimental platform
used for data collection, there are two relevant performance metrics: the number of collisions be-
tween the penguin and the obstacles, and the time taken to navigate the penguin to its home in the
game environment. Therefore, the uncontrollable performance action set A, p is further divided
into tuples containing the number of Collisions ac and Game Time ag, as shown in Equation (7).
Additionally, the automation input a4 is the assistance value 0, discretized into the sets O, Oy,
and O as described in Section 4 and referenced in Equation (8). Recall that a4 is a controllable
action in the context of the POMDP/R.

Aue = {ac,ag}

ac € C = {Collision Decrease C~, Collision No Change C°, Collision Increase C*} (7)
ac € G = {Game Time Decrease G~, Game Time Increase G}

ap € A. = {0, 0,,0p} ®)

The transition probabilities for trust 77 : S X TxX A — [0, 1] and self-confidence Ts¢ : S X SC X
A — [0, 1] are each represented by 4 X 2 X 18 matrices that map the probability of transitioning
from combinations of states S of trust s; € T and self-confidence ssc € SC to the next states of
trust and self-confidence, respectively, given an action a € A. The state combination transition
probabilities are the product of the individual transition probabilities of trust and self-confidence,
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as given by
T (s'ls,a) = T (sylst,ssc, a)T (sselst, ssc. a). %)

The emission probability function for reliance Eg : S X R — [0, 1] is represented by a 4 X 2
matrix that maps the probability of reliance on automation og € R given the current trust and
self-confidence belief states. The emission probability function for self-reported self-confidence
Esrsc : SCx srSC — [0, 1] is represented by a 2 X 2 matrix that maps the probability of low or
high self-reported self-confidence os,s¢c € srSC given the current self-confidence state. The overall
emission probabilities are the product of the individual reliance and self-reported self-confidence
emission probabilities, given by

&E(ols) = E(orlsT, ssc)E(osrsclssc)- (10)

Finally, the initial state probabilities for trust z7 : T — [0, 1] and self-confidence 75¢ : SC — [0, 1]
are both given by 1 X 2 matrices that represent the probability of the initial trust state sy and self-
confidence state sgc, respectively. As shown in Figure 1, the reliance observation is dependent on
both the current trust and self-confidence states. However, the self-reported self-confidence ob-
servation is only dependent on the current self-confidence state. In total, there are 152 effective
parameters. There are 18 combinations of actions, consisting of the three collision performance
distinctions, two game time performance distinctions, and three automation input value distinc-
tions. There are four combinations of states, consisting of combinations of low and high levels of
trust and self-confidence. Finally, there are four combinations of observations, consisting of the
two levels of self-reported self-confidence as well as the two levels of reliance.

It should be noted that a limitation of the model is that the action space does not consider
absolute performance. Ideally, the performance actions would be combinations of both change in
performance and absolute performance. However, this would significantly increase the number of
parameters in the model and, in turn, make model training computationally expensive. An analysis
of models trained with performance defined either in absolute terms or as a delta between trials
showed that the POMDP/R based upon change in performance actions leads to better predictability
of the cognitive states and reliance behavior. Therefore, only change in performance is considered
for the model presented here.

5.2 Model Parameter Estimation

It is assumed that trust and self-confidence behavior for the general population can be represented
by a common model. Therefore, the aggregated data of all participants is utilized in estimating
the model parameters, resulting in 340 sequences of data. Previously, an extended version of the
Baum-Welch algorithm was used to estimate the parameters of a discrete observation-space cog-
nitive model [5]. However, literature suggests that the genetic algorithm is not as sensitive to
the initialization of parameters and not as susceptible to local optima as compared to the Baum-
Welch algorithm [59]. Therefore, the genetic algorithm in MATLAB’s Optimization Toolbox [2] is
used to optimize the parameters of the model to maximize the likelihood of the sequences given
the model parameters. The forward algorithm is used to calculate the likelihood of the sequences
[60] in which the algorithm computes, recursively over time, the joint probability of a state s at
time k and the series of observations oy, and actions a.x over time, i.e., P(sg, 0.k, d1.x ). The sum
of P(sn,01:N,a1:N) is calculated to determine the likelihood of the sequence across all states at
the end of the sequence at time N. This gives the probability of the action observation sequence,
P(01.N, a1:n). The model was trained several times using randomized initialization. The resulting
probabilities within each final trained model were identical up to at least four significant figures
with a final log-likelihood of —3,446.4. Further model validation is included in Section 5.3.
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Prior to training the model, the order of the action combinations and observation combinations
is established. More specifically, the action combinations are ordered so that each of the transition
probability matrices associated with these combinations can be distinguished prior to training.
Similarly, the observation combinations are ordered for each of the emission probability matri-
ces. In turn, this enables the state combination labels to be assigned a posteriori to the transition
and emission probabilities, which ultimately enables interpretability and analysis of the trained
probabilities. The assignment is based on the well-established trust-reliance relationship [24, 44]
and context-specific knowledge, such as the expected likelihood of the human’s self-reported self-
confidence matching the model’s prediction of self-confidence.

The state combination order of the resulting transition, emission, and initial probability matri-
ces are sorted into the order T|SC|, T|SCT, TTSC|, and TTSCT after training the model by using
established behavioral trends. Identifying the state combination of each row is possible due to
the asymmetrical nature of the emission probability functions. The self-reported self-confidence
emission probabilities are used to determine the self-confidence state order. The reliance emis-
sion probabilities are used to sort the trust state order by applying the well-known correlation
between trust and reliance [42, 45, 51, 52]. After identifying the corresponding state combination
of each row in the emission probability matrix, all rows and columns associated with states in the
initial, transition, and emission probability matrices are re-ordered to match the prescribed state
combination order.

5.3 Validation

To test the predictive capability of the model and check for over-fitting, two validation methods
are used. First, a 5 X 2-fold cross-validation is applied to the data in which the data is divided
randomly into two equal sets, or folds. The model is trained with one fold and validated using
the other. The entire process is then repeated for five iterations to increase the robustness of the
validation log-likelihood values to variations in the training and testing datasets. The average log-
likelihood of the trained models from 10-fold cross-validation is —1,770.9 + 18.5. In other words,
the average log-likelihood of the 5 X 2-fold cross-validation varied by 1.1%, suggesting that the
model is not overfitting the data.

Next, receiver operating characteristic (ROC) curves are utilized to illustrate the perfor-
mance of the model in predicting the cognitive states and reliance decision of each participant.
The cognitive state ROC curves (Figure 6(b)) are generated by comparing the self-reported cog-
nitive states to the predicted belief state, as calculated using Equation (5), for all 340 participants’
data. The belief state probability of high trust or self-confidence is first compared to a thresh-
old probability, in which the predicted state is classified as high if the belief state probability is
greater than the classification threshold probability. Then, the predicted state is compared to the
self-reported state. As shown in Figure 6(a), this results in a true positive (TP), false positive
(FP), true negative (TN), or false negative (FN), depending on if the predicted state is high or
low and if the predicted state matches the self-report data. For classification thresholds of 0-100%
in increments of 1%, this process is repeated for all data to find the true-positive rate (TPR) and
false-positive rate (FPR) for each threshold probability. The TPRs and FPRs of each threshold
are plotted, resulting in the ROC curve. The reliance ROC curve (Figure 6(d)) is generated using a
similar method, but instead, the maximum belief state probability is used to determine the corre-
sponding emission probability. The emission probability is compared to a classification threshold
probability to predict the participant’s choice of reliance. TPRs and FPRs are found by compar-
ing the predicted reliance to the participant’s actual chosen reliance, as shown in Figure 6(c). The
model can predict both cognitive state levels and reliance choice better than a random guess as
shown in Figures 6(b) and 6(d). This is further supported by the area under the curve (AUC),
an aggregate performance measure across all thresholds. A higher AUC corresponds to a better
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Fig. 6. Receiver Operating Characteristic (ROC) curves for cognitive state and reliance prediction. The given
model classification performance is determined by the area under the curve (AUC), which is denoted in the
legends of plots (b) and (d). As noted, the model achieves a trust AUC of 0.69, self-confidence AUC of 0.62,
and reliance AUC of 0.72. The predicted reliance ROC curve using the “confidence vs. trust” hypothesis is
also plotted in (d) and achieves an AUC of 0.58.

model classification performance. The trained model achieves a trust AUC of 0.69, self-confidence
AUC of 0.62, and reliance AUC of 0.72.

5.4 Comparison Against “Confidence vs. Trust” Hypothesis

As discussed in Section 2, existing models of the relationship between human trust in automa-
tion, human self-confidence, and reliance on automation are based upon the “confidence vs. trust”
hypothesis. Therefore, we compare the proposed model against that hypothesis. Using the self-
reported trust and self-confidence values, an ROC curve using the “confidence vs. trust” hypothesis
to predict participants’ reliance behavior is generated and plotted in Figure 6(d). The true-positive
rate is plotted against the false-positive rate using thresholds ranging from the minimum differ-
ence to the maximum difference between participants’ self-reported trust and self-confidence. The
ROC curve for predicted reliance using the “confidence vs. trust” hypothesis results in an AUC of
0.58 compared to that of the proposed model, which has an AUC of 0.72. From these results, we can
conclude that the predictive capability of the proposed model, with respect to the user’s reliance
decision, is greater. From this metric alone, however, it is not possible to discern what aspect of
the proposed model is responsible for this improvement in reliance prediction. Hence, differences
between the model will be discussed more in Section 6.1.2.
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Fig. 7. The emission probability function for reliance &E(orlsT,ssc) and self-reported self-confidence
E(osrsclssc)- The probabilities are shown next to the arrows.

6 RESULTS AND DISCUSSION

In Section 6.1, the identified emission and transition probabilities are presented and interpreted in
the context of the specific HAI scenario under consideration. This is followed by a discussion of the
implications of the model for improving HAI (Section 6.2) and a review of limitations (Section 6.3).
Note that for ease of readability, the details of model parameters are provided in Appendix A. More-
over, note that to ensure that our model converged to a solution, 10 iterations of the POMDP/R
were trained and the standard error of each parameter was found. It was found that the uncertain-
ties of the initial, transition, and emission probabilities were considerably small compared to the
parameter values themselves and that for several of the parameters, the standard error was found
to be lower than the smallest value considered in MATLAB.

6.1 Results and Analysis

6.1.1 Initial State Probabilities. The initial state probabilities are provided in Table 7 (see Ap-
pendix A.1). From these probabilities it can be inferred that participants tend to initially have high
trust in the autonomous assistant (81.22%) and low self-confidence (60.70%). The initial high trust
is consistent with existing literature that states that humans tend to have positivity bias toward
automation, in which they trust automation prior to having any experience with it [24].

6.1.2 Emission Probabilities. Next the identified emission probabilities, visually depicted in
Figures 7(a) and 7(b), are analyzed. Figure 7(a) shows the probability of reliance given the trust
and self-confidence states, and Figure 7(b) shows the probability of self-reported self-confidence
given the self-confidence state. The first observation from Figure 7(a) is that when the partici-
pant’s self-confidence is high, the resulting probabilities behave similarly to the established trust
and reliance relationship in which low and high trust lead to low and high reliance, respectively.
For example, when participants are in a state of low trust and high self-confidence (T|SCT), they
are highly likely (89.54%) to not rely on the automation. When they are in the TTSCT state, they
are highly likely (89.17%) to rely on it. Interestingly, this relationship is not exhibited when self-
confidence is low. Instead, when participants are in the T|SC| state, the likelihood that they will
disable (48.62%) or enable (51.38%) the automation assistance is nearly equally distributed. The
same is true when participants are in the TTSC| state. This suggests that self-confidence may be
a more significant factor in reliance decisions when the user is in a state of low self-confidence
rather than high self-confidence.
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Table 6. Transition Probabilities for ay € Op,
Decreasing Collisions, and Decreasing Time

Trust Self-confidence

T ™" SCI”  SCT

TISC| 0.0019 0.9981 0.9992 0.0008
TISCT 0.9990 0.0010 0.0037  0.9963
TTSC| 0.7308 0.2692 0.8219 0.1781
TTSCT 0.0403 0.9597 0.0298 0.9702

It is also helpful to compare these probabilities directly to the reliance behavior predicted by
models that build upon the “confidence vs. trust” hypothesis. The computational models discussed
in Section 2 predict reliance based on a difference between the trust and self-confidence states. For
example, using the hypothesis, it would be assumed that the TTSC| state results in the participant
relying and the T|SC] results in them not relying on the automation. However, the emission prob-
abilities shown in Figure 7(a) contradict this; instead, the likelihood of relying on or not relying
on the automation, when self-confidence is low, is nearly 50%. It is worth noting that the proposed
model is probabilistic, whereas existing ones are deterministic. Given the stochastic nature of hu-
man behavior, it is possible that the proposed model is able to better predict reliance behavior
by inherently allowing for stochasticity in the prediction. In particular, it appears that when the
human is in a state of low self-confidence, their behavior may be more stochastic than when they
are in a state of high self-confidence. Recall the validation results shown earlier in Section 5.4 (see
Figure 6(d)) in which the proposed model was a better predictor of reliance than a model based
upon the “confidence vs. trust” hypothesis.

6.1.3 Transition Probabilities. Given that the POMDP/R consists of 3 discrete-valued actions
that result in 18 distinct combinations of actions, there are a total of 18 different transition proba-
bility functions that describe the state transitions. The transition probability functions are divided
to separate the probabilities of trust state transitions and probabilities of self-confidence state tran-
sitions. A complete review of all transition probabilities can be found in Appendix A.2. For clarity
of exposition, a subset of these probabilities is analyzed here. Specifically, the actions associated
with participants’ performance—changes in the number of collisions and game time—are grouped
into cases of performance improvement or deterioration, and the effect of the third action, the
autonomous assistance, is analyzed within these groupings.

Overall Performance Improvement. The overall performance improvement case scenario is that
in which the number of collisions decreases C~ and game time decreases G™. When a4 € Oy, as
shown in Figures 8(a) and 8(d), and for all state combinations, self-confidence is likely to remain
the same at the next trial (>80%). Moreover, when the participant is in the T|SC| state, they are
very likely to transition to a state of high trust (99.81%), suggesting that they associate performance
improvement to the automation rather than themselves. For easier interpretation, the referenced
probabilities are in bold in Table 6.

This is not the case for most participants in the TTSC] state though. Participants’ cognitive
state responses when they are in the TTSC] state are similar for all a4 as shown in Figures 8(a)
to 8(f). They are likely to transition to a state of low trust (73.08%, 77.59%, 99.35%), while they
are likely to remain in a state of low self-confidence (82.19%, 66.08%, 99.92%), suggesting that the
decrease in trust may be a result of the user attributing the performance improvement more toward
themselves than the automation. Upon closer analysis, when a4 € © V Oy, participants had a
26.91% and 22.41% chance, respectively, of remaining in a state of high trust, and a 17.81% and
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Fig. 8. The transition probability function for trust 7'7(3'T|sT, ssc» a) and self-confidence %c(sgclsr, ssc, a).
The performance actions are the overall improvement case scenario in which the number of collisions de-
creases C~ and game time decreases G™. The probabilities of transition are shown next to the appropriate
arrows. (a) The trust transition probabilities for ag € ©r. (b) The trust transition probabilities for a4 € © ;.
(c) The trust transition probabilities for a4 € ©p. (d) The self-confidence transition probabilities foras € ©y.
(e) The self-confidence transition probabilities for ay € ©y;. (f) The self-confidence transition probabilities
foray € Op.

33.92% chance, respectively, of transitioning to a state of high self-confidence. The different values
of as may result in different attributions of performance between the user and automation, which
then affect the participants’ cognitive state responses. When a4 € Oy, as shown in Figures 8(c)
and 8(f), and when the participant is in the T|SC| state, the probability of them transitioning to a
state of high trust (55.29%) or remaining in a state of low trust (44.71%) is approximately equally
distributed. On the other hand, they are more likely to remain in a state of low self-confidence
(75%) than to transition to a state of high self-confidence. These participants may associate the
cause of performance improvement slightly more with the automation than themselves.

Interestingly, for all levels of automation assistance, when participants are in a state of high self-
confidence and experience an overall improvement in performance, they are very likely to remain
in a state of high self-confidence as well as maintain the same level of trust in the autonomous
assistant at the next trial. In other words, a participant’s self-confidence affects their interpretation
of their performance metrics, which in turn affects their trust in the automation.

Partial Performance Improvement. For performance improvement, another case of interest is that
in which the number of collisions does not change but the participants’ game time decreases.
This represents a case of partial improvement. When a, € ©y, as shown in Table 8 (see Appendix
A.2), and when the participant is in the T|SC| state, their likelihood of transitioning to a state
of high trust (45.72%) or low trust (54.28%) is nearly equally distributed. However, they are likely
to remain in a state of low self-confidence (79.49%). This is similar to when participants are in
the T1SC] state and as € ©yy, as shown in Table 9. When a4 € Og, as shown in Table 10, and
the participant is in the T|SC| state, they are highly likely (99.86%) to remain in a state of low
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Fig. 9. Performance and self-reported trust and self-confidence over time.

self-confidence. However, their likelihood of transitioning to a state of high trust is only 29.52%.
When a4 € ©p V Oy and participants are in the T|SC| state, trust increasing suggests that they
are attributing a slight improvement in performance to the automation rather than themselves.
However, when ay € 0y, the fact that participants in a state of high trust are equally likely to
remain in their current state or transition to a state of low trust while their low self-confidence is
likely to be maintained (84.12%) suggests that they are unsure of to whom they should attribute
the improvement in performance.

In comparing these results to the overall improvement case, participants in a state of low self-
confidence are still unlikely to gain confidence and transition to SCT, but they are now not as likely
to attribute any improvement to the automation. This underscores the consequences, from the
perspective of HAL of a human being in a state of low self-confidence. In other words, participants in
a state of low self-confidence may have more difficulty in calibrating their trust in the automation than
those with high self-confidence. An analysis of absolute collision and time performance data (see
Figure 9(a)) shows that as the game progressed, on average, participants’ performance improved
and participants’ self-confidence increased (see Figure 9(b)). In turn, these observations suggest
that in addition to trust calibration, correct calibration of self-confidence is important for improved
HAL, as discussed further in Section 6.2.

Overall Performance Deterioration. Next, cases in which participants’ performance deteriorates
between game trials are analyzed. For all a4, when performance deteriorates and participants are
in the T|SC| state, their trust is highly likely to increase (99.78%, 99.87%, 98.40%) at the next trial.
However, they are likely to remain in a state of low self-confidence (99.92%, 99.84%, 99.98%). This
suggests that these participants associate performance deterioration to themselves rather than the
automation. On the other hand, the autonomous assistance input does have a greater effect on
participants in states of high trust (either TTSC| or TTSCT). When a4 € O, vV Oy (Figures 10(b)
and 10(c)), participants in a state of high trust are very likely (>90%) to transition to a state of
low trust, regardless of their state of self-confidence. This suggests that they strongly attribute the
decrease in performance to the autonomous assistant. This is not true when a4 € ©p, in which
participants who are in a state of TTSC| are likely to remain in a state of high trust at the next
trial. These results highlight that while self-confidence affects participants’ attribution of changes
in performance, so does the user’s experience with the autonomous assistant.

Partial Performance Deterioration. Next, the case in which the number of collisions does not
change but the participants’ game time increases is considered. For a4 € ©p V Oy V O, shown
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Fig. 10. The transition probability function for trust ‘7-T(s'T|sT,ssc,a) and self-confidence
%C(s;CIST,sSC,a). The performance actions are the overall deterioration case scenario in which the
number of collisions increases C* and game time increases G*. The probabilities of transition are shown
next to the appropriate arrows. (a) The trust transition probabilities for aq € ©r. (b) The trust transition
probabilities for ag € ®pf. (c) The trust transition probabilities for as € ©g. (d) The self-confidence
transition probabilities for aq € ©1. (e) The self-confidence transition probabilities for as € ©,1. (f) The
self-confidence transition probabilities for ay € Op.

in Tables 8-10, respectively, and when participants are in the T|SC| state, it is likely for their trust
to increase (99.98%, 99.70%, 99.90%) at the next trial and likely for them to remain in a state of
low self-confidence (95.12%, 99.76%, 100%). These results are consistent with those observed for
the overall performance deterioration case. When a4 € ©y, however, and participants are in the
T1TSC| state, their likelihood of transitioning to a state of low trust (57.68%) or high trust (42.32%) is
more equally distributed than in the overall performance deterioration case. Therefore, the extent
of the change in performance also affects participants’ trust and self-confidence dynamics.

6.2 Implications on the Design of Human-aware Autonomous Systems

As discussed in the previous section, depending on their performance and the input from the
autonomous assistant, participants may attribute their successes and failures to either the au-
tomation or themselves. These observations are a demonstration of attribution theory, a theory
concerned with the processes behind the attempts of humans to explain the cause of behaviors
and events [71, 74]. Understanding the different attributions is important because reliance is not
only affected by participants’ beliefs about the automation’s performance or reliability but also by
cognitive factors affecting this performance [44], in this case, participants’ trust in the automation
and their own self-confidence. Importantly, for the purpose of improving performance and safety
outcomes for different HAI contexts, the proposed probabilistic model can be used to design cogni-
tive state-based feedback policies that help humans correctly attribute changes in performance to
themselves or the automation and, in turn, better calibrate their trust in the automation and their
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self-confidence. Calibration of human trust in HAI is critical to preventing the pitfalls associated
with humans under-trusting or over-trusting autonomous systems [41, 44, 54, 73]. However, to
date, less emphasis has been placed on calibration of self-confidence in HAI, despite the fact that a
human who is incorrectly over-confident in their skills may under-trust the automation they are
interacting with, and vice versa. The model analysis presented here shows that both states must be
calibrated correctly for improving HAI. With knowledge of how the human’s cognitive dynamics
evolve, autonomous systems can be designed to facilitate this, for example, through the use of au-
tomation transparency [6, 77]. Finally, through the comparison of the AUCs from the reliance ROC
curves, it was observed that the trained model outperforms the “confidence vs. trust” hypothesis.
This supports the need for understanding the nuances between trust and self-confidence for the
prediction of human reliance on automation.

6.3 Limitations

It is worthwhile to acknowledge some of the limitations of the proposed model for capturing hu-
man trust and self-confidence dynamics. It is assumed that the cognitive state dynamics evolve
based on the change in the participant’s performance rather than their absolute performance. In
other words, in training the model, the behavior of a skilled participant who experienced slight
improvement was not distinguished from that of a poor-performing participant who likewise had
a slight performance improvement. In future work, this limitation can be mitigated by considering
absolute performance in addition to the change in performance. Furthermore, as is the case with
any model] trained using human data, the conclusions drawn in this article are specific to the HAI
scenario under consideration. However, given the generalized definition of the POMDP/R states,
observations, and actions, future work should investigate how well the transition and emission
probability functions translate to other HAI scenarios and the extent to which new human data is
needed for doing so.

Finally, while a POMDP modeling framework was chosen here for several benefits it offers in
capturing the probabilistic nature of human cognitive dynamics, a limitation of POMDPs is their
scalability. Modest increases in the number of actions, states, or observations can lead to parameter
explosion, thereby increasing the amount of data needed for parameter estimation. Therefore,
the proposed framework may not scale well to more complex HAI scenarios in which additional
actions may need to be defined, for example, to capture the nature of the automation’s input.
Similarly, further discretizing the trust or self-confidence states beyond two discrete values will
also lead to increased model complexity. Therefore, characterizing classes of HAI scenarios in
which this model structure works well, or model adaptations for scenarios in which it does not,
is another direction of future work. Future work may extend the given model to use a continuous
state space to more accurately characterize trust and self-confidence dynamics. This would allow
for incremental changes in these cognitive states to be accounted for [9]. Depending on the context,
actions and observations may also be extended to the continuous space.

7 CONCLUSION

The contribution of this article is a probabilistic model of coupled human trust and self-confidence
dynamics as they evolve during a human’s interaction with automation. The dynamics are mod-
eled as a partially observable Markov decision process without a reward function that leverages
behavioral and self-report data as observations for estimation of the cognitive states. Trust and
self-confidence are modeled as separate discrete states with coupled transition probability func-
tions. By doing so, the model is able to capture the nuanced effects of various combinations of the
states on the participant’s reliance on autonomous assistance. A study was designed and imple-
mented to collect human behavioral and self-report data during their repeated interactions with
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an autonomous assistant in an obstacle avoidance game scenario. Using data collected from 340
human participants, the cognitive model was trained and validated. Analysis of the state transition
probabilities suggests that participants’ attribution of changes in performance to either themselves
or the autonomous assistant varies depending on their states of trust and self-confidence. This
underscores the importance of the proposed model for the design of human-aware automation,
particularly in the context of human trust and self-confidence calibration in HAL

The takeaways of this work are as follows. First, attribution theory is critical when humans are
interacting with automation. Second, the calibration of both trust and self-confidence is impor-
tant to avoid misattributions of skills in HAI for learning contexts. Lastly, by accounting for the
coupling between trust and self-confidence, the proposed model outperforms the “confidence vs.
trust” hypothesis with respect to the prediction of human reliance on automation. This validates
the need to understand the relationship between trust and self-confidence when humans decide
to rely on or not rely on automation. Future work includes validation of the model for other HAI
scenarios, investigation of individual differences that may lead to distinct trust or self-confidence
dynamics, and model-based control algorithm design aimed at, for example, optimally allocating
control authority to the human and automation based on calibration of the human’s trust and
self-confidence.

APPENDIX
A  TRAINED MODEL RESULTS

We present the POMDP model of human trust-self-confidence behavior discussed in Section 5.

A.1 Initial State Probabilities

The initial state probabilities for trust 71 : 1 X T — [0, 1] and self-confidence 7sc : 1 X SC — [0, 1]
are both represented by 1 X 2 matrices that represent the probability of the initial trust state st and
self-confidence state ss¢, respectively. The initial state probabilities are provided in Table 7.

Table 7. Initial Trust State st and
Self-confidence State sg¢c Probabilities

Trust Self-confidence
T T1 SC| SC1
0.1878 0.8122 0.6070 0.3930

A.2 Transition Probabilities

The transition probabilities for trust 77 : S X TxX A — [0, 1] and self-confidence Ts¢ : S X SC X
A — [0, 1] are each represented by 4 X 2 X 18 matrices that map the probability of transitioning
from combinations of states S of trust s; € T and self-confidence ssc € SC to the next states of
trust and self-confidence, respectively, given an action a € A. The state combination transition
probabilities are the product of the individual transition probabilities of trust and self-confidence,
as given by

T (s'ls,a) = T (splst, ssc, a)T (sgelst, ssc, a). (11)

The transition probabilities are provided in Tables 8-10. The transition probability tables are
separated by the action a4. Each table is divided such that the transition probabilities can be iden-
tified based upon the change in performance metrics.
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Table 8. Transition Probabilities for ay € ©1 and Performance Metric Combinations

Collision Decrease, Time Decrease Collision Decrease, Time Increase
Trust Self-confidence Trust Self-confidence
T) T sc) SCY? T) T SCc) SCY?

TISCl 0.0019 0.9981 0.9992 0.0008 TISCl 0.9959 0.0041 0.8142 0.1858
TISCT 0.9990 0.0010 0.0037 0.9963 TISCT 0.8518 0.1482 0.0003 0.9997
TTSCl 0.7308 0.2692 0.8219 0.1781 TTSCl 0.0011 0.9989 0.9696 0.0304
TTSCT 0.0403 0.9597 0.0298 0.9702 TTSCT 0.0001 0.9999 0.0158 0.9842

Collision No Change, Time Decrease Collision No Change, Time Increase
Trust Self-confidence Trust Self-confidence
TV TY SCl” SCT’ TV T SCl’ SCT’

TISCl 0.4572 0.5428 0.7949 0.2051 TISCl 0.0002 0.9998 0.9512 0.0488
TISCT 0.9738 0.0262 0.0030 0.9970 TISCT 0.9534 0.0466 0.0635 0.9365
T1SCl 0.9997 0.0003 0.9612 0.0388 T1SCl 0.0296 0.9704 0.9999 0.0001
T1SCT 0.0013 0.9987 0.0074 0.9926 TTSCT 0.0074 0.9926 0.0266 0.9734

Collision Increase, Time Decrease Collision Increase, Time Increase
Trust Self-confidence Trust Self-confidence
T T Sc) SCY’ T) T Sc) SCY?

TISCl 0.9990 0.0010 0.9552 0.0448 TISCl 0.0022 0.9978 0.9992 0.0008
TISCT 0.9982 0.0018 0.1574 0.8426 TISCT 0.9965 0.0035 0.0054 0.9946
TTSCl 0.0844 0.9156 0.9960 0.0040 TTSCl 0.0004 0.9996 0.9988 0.0012
T1SCT 0.4409 0.5591 0.1010 0.8990 TTSCT 0.6822 0.3178 0.0133  0.9867

Table 9. Transition Probabilities for ay € ®); and Performance Metric Combinations

Collision Decrease, Time Decrease Collision Decrease, Time Increase
Trust Self-confidence Trust Self-confidence
T) T SCJ) SCY’ T) 7 Scl’ SCY’

TISCl 0.9838 0.0162 0.9963 0.0037 TISCl 0.9940 0.0060 0.9919 0.0081
TISCT 0.9973 0.0027 0.0021 0.9979 TISCT 0.9232 0.0768 0.0019 0.9981
TTSCl 0.7759 0.2241 0.6608 0.3392 TTSCl 0.1517 0.8483 0.7768 0.2232
TTSCT 0.0621 0.9379 0.0034 0.9966 TTSCT 0.0753 0.9247 0.0293  0.9707

Collision No Change, Time Decrease Collision No Change, Time Increase
Trust Self-confidence Trust Self-confidence
T T7 SCl” SCt’ T T7 SCl”’  SCT’

TISCl 0.9788 0.0212 0.9720 0.0280 TISCl 0.0030 0.9970 0.9976 0.0024
TISCT 0.9922 0.0078 0.0015 0.9985 TISCT 0.9983 0.0017 0.0033 0.9967
TTSCl 0.5040 0.4960 0.8412 0.1588 TTSCl 0.0018 0.9982 0.9599 0.0401
T1SCT 0.0323 0.9677 0.0230 0.9770 TTSCT 0.0000 1.0000 0.0462 0.9538

Collision Increase, Time Decrease Collision Increase, Time Increase
Trust Self-confidence Trust Self-confidence
T T SCc) SCt’ T T Sc) SCy?

TISCl 0.9989 0.0011 0.9998 0.0002 TISCl 0.0013 0.9987 0.9984 0.0016
TISCT 0.9740 0.0260 0.1244 0.8756 TISCT 0.9933 0.0067 0.1167 0.8833
T1SCl 0.7311 0.2689 0.9735 0.0265 TTSCl 0.9959 0.0041 0.9084 0.0916
TTSCT 0.0531 0.9469 0.1092 0.8908 TTSCT 0.0601 0.9399 0.1858 0.8142
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Table 10. Transition Probabilities for ay € ®y and Performance Metric Combinations

Collision Decrease, Time Decrease Collision Decrease, Time Increase
Trust Self-confidence Trust Self-confidence
T) T SCc) SCY’ T) T Sc)’ SCY’

TISCl] 0.4471 0.5529 0.7465 0.2535 TISC] 0.4109 0.5891 0.6672 0.3328
TISCT 1.0000 0.0000 0.0014 0.9986 TISCT 09199 0.0801 0.0011 0.9989
TTSCl 0.9935 0.0065 0.9992 0.0008 TTSCl 0.0005 0.9995 1.0000 0.0000
TTSCT 0.0027 0.9973 0.0487 0.9513 TTSCT 0.0382 0.9618 0.0048 0.9952

Collision No Change, Time Decrease Collision No Change, Time Increase
Trust Self-confidence Trust Self-confidence
T) 7 SCl”  SCYP TJ) 7 sCl”  SCYP

TISCl 0.7048 0.2952 0.9986 0.0014 TISC| 0.0010 0.9990 1.0000 0.0000
TISCT 0.9958 0.0042 0.0013  0.9987 TISCT 0.9453 0.0547 0.0061 0.9939
TTSCl 0.0071 0.9929 0.8432 0.1568 T1SCl 0.5768 0.4232 0.8019 0.1981
TTSCT 0.0003 0.9997 0.0012 0.9988 T1SCT 0.0127 0.9873 0.0021  0.9979

Collision Increase, Time Decrease Collision Increase, Time Increase
Trust Self-confidence Trust Self-confidence
T) T Scl) SCy? T) T Sc) SCy?

TISCl 0.0020 0.9980 0.9677 0.0323 TISC| 0.0160 0.9840 0.9998 0.0002
TISCT 0.9923 0.0077 0.1525 0.8475 TISCT 0.9853 0.0147 0.0015 0.9985
T1SCl 0.8208 0.1792 0.9524 0.0476 T1SCl 0.9973 0.0027 0.9979 0.0021
T1SCT 0.0683 0.9317 0.0828 0.9172 TTSCT 0.0350 0.9650 0.0456 0.9544

Table 11. Emission Probabilities of the Reliance Observation
or and Self-reported Self-confidence Observation og,s¢

Reliance Self-reported Self-confidence
NR R srSC| srSCT
TISCl 0.4862 0.5138 SC| 0.94438 0.0552
TISCT 0.8954 0.1046 SCT 0.0898 0.9102
TTSCl 0.4983 0.5017
T1SCT 0.1083 0.8917
NR and R denote no reliance and reliance respectively, while high

and low self-reported self-confidence is denoted by srSCT and srSC|
respectively.

A.3 Emission Probabilities

The emission probability function for reliance Er : S X R — [0, 1] is represented by a 4 X 2 ma-
trix that maps the probability of reliance on automation og € R given the current trust and
self-confidence belief states. The emission probability function for self-reported self-confidence
Esrsc : SCX srSC — [0,1] is represented by a 2 X 2 matrix that maps the probability of low or
high self-reported self-confidence os,s¢c € srSC given the current self-confidence state. The over-
all emission probabilities are the product of the reliance and self-reported self-confidence emission
probabilities, given by

E(ols) = E(orlst, ssc)E(osrsclsse)- (12)

The emission probabilities are provided in Table 11.
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