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A Computational Model of Coupled Human Trust and 

Self-confidence Dynamics 
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Autonomous systems that can assist humans with increasingly complex tasks are becoming ubiquitous. More- 
over, it has been established that a human’s decision to rely on such systems is a function of both their trust 
in the system and their own self-confidence as it relates to executing the task of interest. Given that both 
under- and over-reliance on automation can pose significant risks to humans, there is motivation for devel- 
oping autonomous systems that could appropriately calibrate a human’s trust or self-confidence to achieve 
proper reliance behavior. In this article, a computational model of coupled human trust and self-confidence 
dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process without 
a reward function (POMDP/R) that leverages behavioral and self-report data as observations for estimation of 
these cognitive states. The model is trained and validated using data collected from 340 participants. Analysis 
of the transition probabilities shows that the proposed model captures the probabilistic relationship between 
trust, self-confidence, and reliance for all discrete combinations of high and low trust and self-confidence. 
The use of the proposed model to design an optimal policy to facilitate trust and self-confidence calibration 
is a goal of future work. 
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 INTRODUCTION 

he complexity of human interactions with autonomous systems is increasing, as evidenced in
pplications including intelligent transportation systems [ 11 ], autonomous vehicles [ 10 ], mili-
ary operations [ 28 , 29 ], and medical imaging systems [ 8 ]. In turn, this necessitates a greater
nderstanding of these interactions and how they affect outcomes in terms of metrics such as
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erformance [ 19 , 32 , 46 , 67 ]. It is well established that knowledge of a human’s cognitive factors,
r states, during their interactions with robots or other autonomous systems is vital to the design
f effective human-automation interaction (HAI) [ 38 , 57 ]. In particular, the cognitive factors
f human trust and self-confidence play a substantial role in the human’s willingness, and deci-
ion, to rely on automation [ 25 , 31 , 33 , 34 , 43 , 44 , 62 ]. Interestingly, the inclusion of automation
upport presents the potential for automation bias—an over-reliance on an automated decision
id, in which the human attributes more authority to the automation than to other sources [ 55 ].
his often results in the human neglecting prior knowledge and contradictory evidence to follow
ncorrect advice. Consequences of improper reliance, relying too much or too little, can be dire
 56 ]. For example, it is well supported that miscalibration of trust to automation capabilities is the
ause of misuses and disuse of automation [ 44 ]. This motivates the need for calibration of cognitive
actors to achieve appropriate reliance. For example, models enabling cognitive state estimation
nd prediction could be used by automation to appropriately trigger system responses through
ethods such as transparency adaptation, automation behavior adaptation, or flexible autonomy

 5 , 38 ]. However, accomplishing this often requires mathematical models of human cognitive state
volution that are suitable for algorithm design. 
Several conceptual frameworks have been proposed to model HAI and specifically the role of
ifferent cognitive factors in human behavior and decision-making, particularly as it relates to hu-
an reliance on automation [ 12 , 15 , 21 , 25 , 26 , 34 , 44 , 48 , 50 , 56 , 71 ]. A majority of these frameworks
re centered around human trust in automation [ 12 , 15 , 25 , 34 ] and its effect on reliance. Trust is
ell established as a cognitive factor that can be defined in an HAI context as the belief that the
utomation will help the human achieve their goal(s) in an uncertain situation [ 44 ]. Early quali-
ative models of trust establish that human trust in automation is dependent on factors including
nteraction with the operator, context, automation performance, and the user interface [ 44 ]. An-
ther widely referenced qualitative model by Hoff and Bashir [ 34 ] identifies three stratified layers
f trust: dispositional trust—derived from individual characteristics and remains characteristically
onstant over time; situational trust—derived from the environment; and learned trust—derived
rom preexisting knowledge and the system’s performance. In turn, researchers have highlighted
actors that affect the human’s trust, including system transparency [ 77 ], anthropomorphism [ 18 ],
nd automation reliability [ 13 , 20 ]. However, in addition to trust, it has been established that the
elf-confidence of the human also affects their reliance on automation [ 16 , 22 , 42 , 43 , 53 , 56 , 73 ]. For
xample, over-reliance on automation can arise as a result of a human with low self-confidence in
heir skill to manually execute a particular task [ 56 ]. Additionally, biases in one’s self-confidence
over- or under-confidence) can lead to improper reliance [ 43 ]. 
There has been a significant effort over the last decade to develop computational models for
redicting reliance behavior or the dynamics of trust and self-confidence. An overview of com-
utational models of human trust or self-confidence is provided in Table 1 . From a computational
erspective, several models have been developed to predict human trust, particularly in the last
ecade. Notably, more recent models of trust are aimed at capturing the probabilistic nature of
uman behavior using a variety of mathematical techniques. Computational cognitive models of
rust include auto-regressive moving average vector (ARMAV) derivations and other linear
odels [ 9 , 35 , 37 , 42 ], decision analytical models based on decision or game theory [ 76 ], dynamic
ayesian networks [ 27 , 30 , 72 ], and partially observable Markov decision process (POMDP)

odels [ 5 , 6 , 17 ]. However, despite several conceptual frameworks supporting the relationship
etween trust and self-confidence, comparatively fewer computational models have been devel-
ped to capture this relationship [ 31 , 43 , 65 ]. Many of these models are based upon the “confidence
s. trust” hypothesis , originally developed in [ 43 ], that assumes a human’s reliance on a given
ystem is dependent on a difference between the human’s trust in the automation and confidence
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Table 1. Summary of Models of Trust or Self-confidence 

Category 
Papers Trust Self-confidence T-SC Coupling Probabilistic 
Lee and Moray, 1992 [ 42 ] � 

Lee and Moray, 1994 * [ 43 ] � � 

Gao and Lee, 2006 * [ 31 ] � � � 

Maanen et al., 2011 [ 47 ] � 

Mikulski et al., 2012 [ 49 ] � � 

Saeidi and Wang, 2015 * [ 64 ] � � 

Juvina et al., 2015 [ 40 ] � � 

Xu and Dudek, 2015 [ 76 ] � � 

Floyd et al., 2015 [ 27 ] � 

Hu et al., 2016 [ 36 ] � 

Akash et al., 2017 [ 7 ] � 

Akash et al., 2018 [ 4 ] � 

DeVisser et al., 2018 [ 19 ] � 

Chen et al., 2018 [ 17 ] � � 

Sadrfaridpour et al., 2018 [ 63 ] � � 

Wagner et al., 2018 [ 72 ] � 

Hu et al., 2019 [ 37 ] � 

Juvina et al., 2019 [ 39 ] � 

Saeidi and Wang, 2019 [ 65 ] � � � 

Tao et al., 2020 [ 70 ] � � 

Akash et al., 2020 [ 5 ] � � 

Azevedo-Sa et al., 2020 [ 9 ] � 

Soh et al., 2020 [ 69 ] � � 

“T-SC Coupling” refers to models that capture the relationship between trust and self-confidence while recog- 
nizing that these two individual states affect one another dynamically. ∗denotes models that are based upon the 
“confidence vs. trust” hypothesis . 
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n their ability (also known as the relative trust ) to execute the task manually [ 71 ]. For example,
his hypothesis states that a person whose self-confidence exceeds their trust in the automation
ill choose to perform the task manually, and vice versa. However, some researchers have pub-
ished results that contradict this hypothesis [ 61 , 75 ]. For example, in [ 75 ], the authors show that
n a signal detection task, despite their trust in the system being lower than their self-confidence,
articipants still relied on the system instead of completing the task manually. Furthermore, the
uthors of [ 61 ] suggest that operators who have both high trust and high self-confidence tend to
refer a higher level of automation. Therefore, further investigation of the coupling between trust
nd self-confidence is needed to characterize how different combinations of these cognitive states af-
ect human reliance decisions and subsequent performance. This “coupling” refers to models that
apture the relationship between trust and self-confidence while also recognizing that these two
ndividual states affect one another dynamically . While prior work has explored the coupled rela-
ionship between trust and workload [ 3 ], to the knowledge of the authors, there are no existing
odels that mathematically characterize the dynamic coupling between trust and self-confidence.
The primary contribution of this article is a probabilistic discrete-state model of human trust

nd self-confidence dynamics as they relate to a human’s repeated interactions with automation
ssistance. An important feature of the model is its interpretability, which is achieved by first
efining a model structure grounded in cognitive psychology and human factors literature, and
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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hen parameterizing it using human subject data collected in the context of a game-based task.
he model considers coupling between the states themselves, as well as coupling between the
uman’s reliance on the automation assistance and the cognitive states. Furthermore, the model
everages both behavioral and self-report data for model parameter estimation, collected from 340
uman subjects. It is shown that the model’s predictions are consistent with the findings of [ 61 ,
5 ] in that the “confidence vs. trust” hypothesis does not account for all scenarios of trust and self-
onfidence interactions. Instead, the coupled effect of human trust and self-confidence on reliance
s captured by the state transition probabilities of the trained model and underscores the need for
omputational models that can be used for algorithm design for improved HAI. 
The article is organized as follows. In Section 2 , existing computational models of trust and self-

onfidence are presented and discussed in greater detail, along with a comparison to the proposed
pproach. In Section 3 , the formulation of the trust and self-confidence modeling framework is
resented. The human subject study, including experimental design and implementation, is out-
ined in Section 4 . The modeling, training, and validation process is discussed in Section 5 . The
rained model is analyzed in Section 6 , followed by a discussion of the implications of the results
n the design of human-responsive automation and limitations of the work. Finally, conclusions
nd future research directions are discussed in Section 7 . 

 RELATED WORK 

efore presenting our modeling approach, we describe in greater detail the existing computa-
ional models that relate human trust and self-confidence in HAI contexts. A review of applied
uantitative models of trust is available in [ 66 ]. Lee and Moray [ 42 ] first developed an ARMAV
ime series model in 1992 to model trust as a function of performance efficiency and system
aults. This model was extended in 1994 to capture the relationship between trust, self-confidence,
nd reliance on automation, after identifying that the use of automatic control was strongly
orrelated to the difference between users’ trust and self-confidence. This model is provided
n Equation ( 1 ) and predicts the operators’ allocation strategy by means of the percentage of
utomatic control [ 43 ]. The model accounts for past automation dependence, a difference in the
perators’ trust and self-confidence states, as well as individual operator bias. The variable ϕ is a
onstant representing the current use of automation dependence on past use of automation. The
ariables A1 and A2 represent the weights of the difference in trust and self-confidence ( T − SC)
nd individual bias toward manual operation, respectively. Normally distributed independent
uctuations are provided by a (t ), given time t . 

% Aut omat ic = ϕ1 ×Aut omat ic (t − 1 ) +A1 × ((T − SC ) (t ) ) +A2 × Indi vi dualBi as + a (t ) (1)

Gao and Lee [ 31 ] developed an alternative model that utilizes the difference between trust and
elf-confidence to determine reliance on automation behavior like that of Lee and Moray [ 43 ]. The
DFT model is an extended decision field theory (DFT) model [ 14 ] used to characterize multiple
ecisions made sequentially, as opposed to the single decisions addressed by DFT. The EDFT model
tructure utilizes a closed-loop relationship between the context (autonomous C A and manual C M ),
nformation available, operator belief (context autonomous B CA and manual B CM ), cognitive state
trust T and self-confidence SC), intention ( P ), and decision (reliance). The preference, PR, of mode
s defined as the difference between trust and self-confidence (Equation ( 2 )) and updated given the
ontext and noise term ϵ representing the uncertainty in trust or self-confidence in Equation ( 3 ).
he model is then used to predict the user’s decision to rely on automation or to use manual control
hen the preference evolves beyond a given threshold θ . 

PR ( n) = T ( n) − SC ( n) (2)
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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PR ( n) = ( 1 − s ) × PR (n − 1 ) + s × [ C A (n − 1 ) −C M (n − 1 )] + ϵ (n) (3)

In 2015, Saeidi and Wang [ 64 ] developed a performance-based, computational trust and self-
onfidence model, TSC (Equation ( 4 )), for autonomy allocation in a UAV context. The TSC model
s a function of the human’s ( P h ) and robot’s ( P r ) performance at time step k , with performance
evel constants a T and b T . Similar to the models of [ 31 , 43 ], this model incorporates a difference
n the cognitive states, human-to-robot trust and self-confidence, to achieve optimal allocation
ith consideration of the Yerkes-Dodson law [ 23 ] and robot performance decay. Therefore, to
educe the effects of human workload overload or poor robot performance, the level of autonomy
s switched to maintain the difference, TSC, within the given thresholds. This difference is depicted
n Equation ( 4 ). 

T S C (k ) = a T P r (k ) − b T P H (k ) (4)

In 2019, Saeidi and Wang [ 65 ] improved upon their trust and self-confidence allocation strategy
y incorporating a TSC-based switching control for manual and fully autonomous mode alloca-
ion. They model the difference between trust and self-confidence as a direct function of human
nd robot performance. This is similar to how Lee and Moray [ 42 ] model trust as a function of
erformance efficiency. Lee and Moray [ 43 ] denote T-SC as the difference between subjective rat-
ngs of trust and self-confidence, and Gao and Lee [ 31 ] treat trust and self-confidence as a function
f the operator’s belief in the automation and manual control capability. The proposed model in
his article will be considering task performance as an action, or input, that affects the dynamic
volution of the cognitive states of trust and self-confidence, along with other environmental and
ask context factors that will be expanded upon in Section 3 . Furthermore, among these existing
omputational models incorporating cognitive states of both trust and self-confidence, there is a
ey similarity in the basis of their frameworks. This similarity is the idea of the “confidence vs.
rust” hypothesis , or assuming the human’s reliance on a given system is dependent on a difference
etween the human’s trust in the automation and confidence in their individual ability. On the
ther hand, by incorporating cognitive state coupling of the human’s trust and self-confidence,
he model proposed in this article is unique in its ability to capture the relationship between
rust and self-confidence while recognizing that these two individual states affect one another
ynamically. 

 MODEL DEFINITION 

 POMDP is an extension of a Markov decision process (MDP) and is defined as a 7-tuple,
 S, A, O, T , E, R, γ ), where S is a finite set of states, A is a finite set of actions, and O is a finite
et of observations [ 68 ]. The transition probability function T governs the transition from the
urrent state s to the next state s ′ , given the action a . The emission probability function E governs
he likelihood of observing o , given that the process is in state s . Finally, the reward function
and discount factor γ can be used to synthesize an optimal action (control) policy given the

tate dynamics. However, designing such a policy is outside the scope of this work; therefore,
hroughout the remainder of the article, we will refer to the 5-tuple ( S, A, O, T , E) as a POMDP/R.
A POMDP accounts for observability through hidden states; this is particularly useful in the
odeling of human cognitive dynamics, which cannot always be directly measured or observed.
he POMDP is used here to establish a gray-box modeling framework for estimation and prediction
f human trust and self-confidence that can be parameterized using human subject data. This
romotes interpretability of the model. The model definition is supported by existing literature
stablishing key relationships between the cognitive states of interest, available observations, and
elevant actions, as described in more detail below. It is worth noting that POMDPs are often
sed in robotic contexts in which the states are the robot’s current position, the actions are the
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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ossible directions the robot can travel in, and the observation is the robot’s future position [ 58 ].
owever, here we model a human’s cognitive behavior using a POMDP, as is done in [ 5 ]. To do so,
e define relevant human cognitive factors as the states of the POMDP, actions are the measures
hat influence the cognitive states (namely characteristics of the automation’s input as well as the
uman’s experience with it), and observations are the observable characteristics of the human’s
ecision. 
First, the set of states S is defined as tuples containing the Trust state s T and the Self-Confidence

tate s SC , in which each state is attributed either a low ( ↓) or high ( ↑) value. This discrete state
efinition has been employed in prior POMDP models of human cognitive dynamics and was
hown to be sufficient for real-time trust calibration [ 5 ]. Next, the set of actions A is defined
s those variables that affect the state evolution. For HAI contexts, this includes the automation
nput (to the task environment) as well as the human’s experience with the automation. The latter
s characterized here as the system performance, which reflects the calculated score earned by the
articipant in the previous trial. For example, a participant’s trust is a function of their performance
n the previous trial. This means that transitions in the trust state are driven by the change in
erformance between the previous and current trials. It should be noted that because the model
tates are defined as factors of the human’s cognition, both uncontrollable and controllable actions
ffect the state dynamics [ 5 ]. The Automation Input a A from the agent is controllable and belongs
o the controllable action set A c . However, the system Performance a P is considered uncontrollable
rom the agent’s perspective as it is driven in part by the human’s behavior, and therefore belongs
o the uncontrollable action set A uc . In other words, the POMDP/R in this article is a 6-tuple,
 S, A uc , A c , O, T , E). Nevertheless, for consistency with the standard definition of a POMDP/R,
e will combine the controllable and uncontrollable action sets into one action set such that A =

 A uc , A c } . Supported by the literature discussed in Section 1 citing the coupling between human
rust and self-confidence, the states are assumed to be coupled according to the following transition
robability functions: T (s ′ T |s T , s SC , a ) and T (s 

′ 
SC |s T , s SC , a ). 

Finally, the set of observations O is defined as the observable characteristics of the human’s
ehavior and decision-making. As discussed earlier, it is well established in the literature that
uman reliance on automation is affected by both the human’s trust in the automation and their
elf-confidence [ 24 , 44 , 56 ]. In other words, reliance is specifically defined as an observation (as
pposed to an action) in the POMDP/R, with the emission probability function for reliance defined
s E (o R |s T , s SC ). It is worth noting that although a user’s past reliance decision could be construed
s a predictor of their future trust in the automation, it is their performance resulting from a
eliance decision that actually influences their state of trust. This further underscores the choice
f reliance as an observation and performance (as a proxy of experience with the automation) as
n uncontrollable action. 
While a POMDP/R can be trained with fewer observations than states, doing so makes interpre-

ation of the states difficult. Instead, self-reported self-confidence is used as a second observation
or estimating the human’s self-confidence state; this is described by the following emission prob-
bility function: E (o srSC |s SC ). The use of self-reported self-confidence here is supported by its use
n work concerning the application of intelligent tutoring system (ITS) automation to train a
elf-confidence model [ 70 ]. This creates asymmetry in the emission probability function that aids
nterpretability of the model, as discussed in Section 5 . The proposed POMDP model definition is
ummarized in Table 2 and depicted in Figure 1 . For ease of notation, we will denote uncontrol-
able actions A uc as A p such that a u c ,P = a P and controllable actions A c as A A such that a c,A = a A
oing forward. 
Using the transition and emission probabilities, the probability distribution over the states,
therwise known as the belief state b (s ), can be calculated using Equation ( 5 ), in which P (·)
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Table 2. Definition of the Human Trust–Self-confidence (T-SC) POMDP/R Model 

States s ∈ S S = 
[ 

Trust s T 
Self-confidence s SC 

] 
s T ∈ T 

T = 

{ 
Low Trust T ↓ 
High Trust T ↑ 

} 

s SC ∈ SC 

SC = 

{ 
Low Self-confidence SC ↓ 
High Self-confidence SC ↑ 

} 

Actions a ∈ A A = { A c , A uc } 
A uc : = Performance a u c ,P 
A c : = Automation Input a c,A 

a u c ,P ∈ A uc 

A uc = 

{ 
Performance Deterioration P −

Performance Improvement P +

} 

a c,A ∈ A c 

A c : Context Specific 

Observations 
o ∈ O

O = 
[ 

Reliance o R 
Self-reported Self-Confidence o srSC 

] 
o R ∈ R 

R = 

{ 
No Reliance R NR 

Reliance R R 

} 

o srSC ∈ srSC 

srSC = 

{ 
Low Self-confidence s rSC ↓ 
High Self-confidence s rSC ↑ 

} 

Human trust and self-confidence are modeled as hidden states. The hidden states are affected by actions corresponding 
to the user’s performance and the input provided by the automation. The observable characteristics of the user’s chosen 
reliance and self-reported self-confidence are modeled as the observations of the POMDP/R. 

Fig. 1. A representation of the proposed POMDP/R model of trust and self-confidence. The transition prob- 
abilities of trust and self-confidence depend on the previous states of trust and self-confidence. The reliance 
observation is dependent on both the trust state and self-confidence state. However, the self-reported self- 
confidence observation is dependent on only the self-confidence state. 

d

 

4

I  

i  

a

enotes probability. 

b ′ (s ′ ) = P (s ′ |o, a, b (s )) = 
P (o |s ′ , a ) ∑ 

s ∈S P (s 
′ |s , a )b (s ) ∑ 

s ′ ∈S P (o |s ′ , a ) 
∑ 

s ∈S P (s 
′ |s , a )b (s ) (5)

 HUMAN SUBJECT STUDY 

n Section 4.1 , the design and intent of the human subject study for model training data collection
s described. The implementation of the study is discussed in Section 4.2 , and analysis of behavioral
nd self-report data collected from the experiment is presented in Section 4.3 . 
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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.1 Study Design 

uman subject data is collected in the context of a game-based task to parameterize the human
rust–self-confidence (T-SC) model. The experimental platform is an online obstacle avoidance
ame in which participants must perform the task of maneuvering an avatar (depicted as a pen-
uin) across the screen in the shortest amount of time while avoiding collisions with six obstacles.
he participants are also informed that an automation assistant is available to help them play the
ame. Note that in reality, the “automation assistant” simply scales the user’s mouse input by a pre-
ssigned parameter θ . The scaling factor θ can take on values belonging to any one of three sets:

L = {0 . 7 , 0 . 8 , 0 . 9 }, ΘM = {1 . 0 , 1 . 1 , 1 . 2 }, and ΘH = {1 . 3 , 1 . 4 , 1 . 5 }, where θ ∈ Θj for j = {L, M, H }.
n particular, when θ < 1 , the user will experience an attenuation of their mouse input, and when
> 1 , their input will be amplified. In order to obtain training data that is agnostic to the dynam-

cs of a specific automation assistance algorithm, the value of θ experienced by each participant is
ssigned to them according to the between-subjects study design described below. In other words,
he scaling factor is not responsive to the human’s performance. Rather, the goal of the experiment
s to obtain a set of training data that captures the effect of a range of values of the automation
ssistant’s input on participants’ behavior. Whether a particular value of θ helps or hinders the
articipant is a function of their skill level. For example, automation input values belonging to

L scale the user’s input down. While this may be beneficial for a user whose mouse input is
ver-reacting, the assistance may not help a user who is already playing well. This is by design
o stimulate changes in the user’s trust and, in turn, reliance on the automation assistance. For
xample, we expect that a user whose performance is being aided by the automation assistance
ill choose to continue to rely on it, whereas a user who finds the automation to be inhibiting
heir performance will do the opposite. Stimulating both increases and decreases in trust is crit-
cal for collecting training data that covers the state space of interest—in this case, all discrete
ombinations of low and high trust and self-confidence. 
In the game shown in Figure 2 , the penguin avatar moves at a constant speed, and its position

s controlled by the participant’s mouse movement. The penguin’s x and y positions are governed
y the following dynamical equations: 

x t+1 = x t + ΔtV cos (θk u t ) + ϕ (y) 

y t+1 = y t + ΔtV sin(θk u t ), 
(6)

here [ x t , y t ] T ∈ R 
2 are the penguin’s position at time t , u t ∈ R is the participant’s (mouse) in-

ut, and θk ∈ R is the scaling factor provided by the autonomous assistant in the k th trial for
 = 1 , . . . , 10 . During the practice round, participants do not receive any input scaling, so θ0 = 1 .
he game update discrete time interval is Δt , V is the constant speed, and ϕ (y) is an added “wind”
ffect that increases in the upward vertical direction and is defined relative to the maximum ver-
ical position, y max . Table 3 provides the specific parameter values used in the experiment. It is
mportant to note that the automation never takes control away from the participant. 
A between-subjects study is designed to elicit changes in each participant’s trust in the automa-

ion assistant and confidence in their ability to play the game (i.e., their self-confidence) over the
ourse of 10 game trials. Figure 3 shows the sequence of events for each trial in the user study.
articipants are asked to decide whether to rely or not rely on the automation assistant prior
o every trial, as shown in Figure 4 (a). Regardless of their reliance choice, prior to the first trial,
ach participant is randomly assigned to one of the three Θ sets. Then, for their first five trials,
 single θ1 value is randomly selected within the given Θ set. In this way, each participant ex-
eriences a constant input from the autonomous assistant for five repeated trials. Note that the
articipant is not informed of the specific θ value that is being applied to their input; they only
now that the automation assistance is available and that they can turn it on or off. Moreover, for
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Fig. 2. A screenshot of the web-deployed game platform in which the participant must guide a penguin 
across the computer screen to its home while avoiding obstacles placed in its path. 

Table 3. Game Parameters 

Parameter x 0 V Δt θ0 ϕ (y)

Value [0, 200] 75 pixel/sec 0.02 sec 1 
0.75, 
1.25, 
1.75, 

y < 1 3 y max 
1 
3 y max ≤ y < 2 3 y max 

y ≥ 2 
3 y max 

Fig. 3. The sequence of events in the experiment. The participant completes a practice trial prior to complet- 
ing 10 trials of the game. 
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ny game trial for which they choose not to rely on the automation assistant, θk = 1 . Similarly
o [ 43 ], after each trial, participants are prompted to rate their trust (in the automation assistant)
nd self-confidence as shown in Figure 4 (b). Participants are provided with definitions of the cog-
itive states prior to rating their trust and self-confidence on a numerical scale of 0–100. Trust is
efined as assured reliance on the character, ability, strength, or truth of someone or something.
elf-confidence is defined as confidence in oneself and in one’s powers and abilities. While both
rust and self-confidence self-report data are collected, only self-confidence self-report is used ex-
licitly as an observation in the POMDP/R model as described in Section 3 . Self-reported trust is
tilized in validating the model’s predictive capability. 
At the sixth trial, a step change in the Θ set is introduced. The purpose of this step change

s to further stimulate changes in the participant’s trust or self-confidence. Note that to avoid
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Fig. 4. Example screenshots of the survey questions participants answer after each trial of the web-deployed 
experiment platform. (a) The reliance selection page in which participants are asked to select to either disable 
or enable the automation assistance. (b) The survey questions in which participants are asked to rate their 
trust and self-confidence on a numerical scale from 0 to 100. 
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ntroducing too large of a step change for some participants relative to others, no participant
or whom θk ∈ ΘL ∨ ΘH for trial k = {1 , 2 , 3 , 4 , 5 } experiences θk ∈ ΘL ∨ ΘH for k = {6 , 7 , 8 , 9 , 10 }.
he choice of introducing the step change after five trials was based on analysis of data collected
hrough pilot experiments. For the remaining five trials, a single θ2 value is then randomly selected
ithin the new Θ set. Again, θk = 1 for any trial k during which the participant chooses not to
ely on the automation assistant. 

.2 Implementation 

 total of 367 individuals participated in, and completed, the study. These participants were re-
ruited from the Amazon Mechanical Turk platform [ 1 ] and completed the study online. To ensure
he collection of quality data, the following criteria were applied to participant selection: partic-
pants must reside in the United States, have completed more than 500 Human Intelligence

asks (HITs) , and have a minimum HIT approval rate of 95%. Each participant provided their
onsent electronically and was compensated US$1.34 for their participation. The Institutional Re-
iew Board at Purdue University approved the study. Due to the online nature of the study, and
iven lack of participant supervision, it is assumed that some participants were not adequately
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Fig. 5. Average collisions (left y-axis) and reliance rate (right y-axis) corresponding to the four combinations 
of trust and self-confidence, T ↓ SC ↓ , T ↓ SC ↑ , T ↑ SC ↓ , and T ↑ SC ↑ , as self-reported by participants. The error 
bars of the average collisions represent the standard error of the mean across participants. 
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ngaged in the study. This was reflected in their unusually low game completion time and high
ate of collisions. To remove any outlying participants, the data from participants with at least
hree trials in which their game times were below the 25th percentile and with four or more col-
isions were removed. These conditions were chosen because they suggested that the participant
ragged the penguin across the screen without attempting to avoid the obstacles. As a result, 27
articipants were removed from the dataset. The resulting dataset consists of 340 participants from
he United States (145 females, 190 males, 5 preferred not to disclose or did not identify within ei-
her gender), ranging in age from 18 to 77 (mean 39.0 and standard deviation 11.9, two participants
id not disclose age). 

.3 Behavioral and Self-reported Data 

rior to training the POMDP/R model, the self-reported data is analyzed to identify behavioral
rends. First, each participant’s trust and self-confidence are identified as high or low by comparing
he participant’s self-reported value to the 50th percentile from all data. In Figure 5 the mean value
f the number of collisions across all data points pertaining to each self-reported state combina-
ion is used to plot the average collisions. On the right y-axis, the number of instances in which
articipants chose to rely is counted and divided by the total number of data points in each self-
eported state combination to find and plot the reliance rates. There exist clear distinctions between
ach cognitive state combination and the number of collisions and chosen reliance level of each
articipant associated with their reporting of each state. From Figure 5 , it can be seen that the
tate combinations T ↓ SC ↓ and T ↑ SC ↓ correspond to poorer performance—i.e., greater average col-
isions. The established relationship between trust and reliance captured in previously published
rust models is further underscored in Figure 5 ; when trust is high, the reliance rate is high, and
ice versa. However, as expected, the addition of self-confidence affects the user’s likelihood to
ely on the autonomous assistant. When trust is low, the users with low self-confidence are 12%
ore likely to rely on the autonomous assistant than those with high self-confidence. It should also
e noted that when both trust and self-confidence are high, T ↑ SC ↑ , it would have been expected
hat users would not rely on the assistant as often. However, participants who reported being in
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 



39:12 K. J. Williams et al. 

Table 4. Estimator, P-values and Significance of Self-confidence Linear 
Regression Analysis 

Estimate p-value Significance 
Intercept 65.8800 6 . 5870 e − 233 *** 
Trial 0.5140 1 . 095 e − 04 *** 
Trust 0.2377 3 . 6684 e − 63 *** 

1 Collision −7 . 5242 6 . 2399 e − 15 *** 
2 Collisions −15 . 1810 6 . 3625 e − 37 *** 
3 Collisions −18 . 1590 5 . 8977 e − 39 *** 
4 Collisions −23 . 4750 2 . 7911 e − 41 *** 
5 Collisions −24 . 7240 4 . 5472 e − 36 *** 
6 Collisions −21 . 3430 6 . 1672 e − 18 *** 

Time −0 . 2015 0.0171 * 
Automation Enabled −4 . 8704 6 . 5045 e − 06 *** 

R 
2 0.213 

Adjusted R 
2 0.211 

Note: * p < 0 .05 , ** p < 0 .01 , *** p < 0 .001 . 
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he T ↑ SC ↑ state demonstrated a high reliance rate and low number of collisions. Finally, the data
how an almost inverse relationship between the T ↑ SC ↑ and T ↓ SC ↓ states. These findings will be
sed to aid in model state sorting, as discussed in Section 5 . 

.4 Linear Regression Analysis 

n order to further investigate the relationship between performance metrics and cognitive states,
ulti-variable linear regression analyses were applied to the data using the self-reported numerical
elf-confidence and trust data as regressors. 

Performance Metrics . In Table 4 , the estimated values show that as collisions and game time de-
rease, self-confidence increases. While all performance factors are significant for self-confidence,
he categorical collision factors are much more significant to self-confidence than game time. This
ay be because as users progress through the trials and try to improve, avoiding obstacles is their
riority. The intercept shown in Table 4 indicates that when automation is disabled and users have
ot collided with any obstacles, the baseline numerical self-confidence is 65.8800. In the trust re-
ression analysis from Table 5 , the estimates show that trust decreases when users collide with
our to six obstacles and increases when users collide with one to three obstacles. Additionally, as
ame time increases, trust increases. Collisions are not found to be as significant to trust, whereas
ame time is; this may be because avoiding more obstacles typically implied that more time was
pent navigating the penguin avatar across the screen. Additionally, the intercept in Table 5 sug-
ests that the user avoiding all obstacles and having automation disabled is very significant to
rust. Overall, these results suggest that self-confidence and trust have a positive relationship with
bsolute performance metrics as well as improving performance metrics. 

Cognitive States . In both analyses, the corresponding cognitive state is also very significant. In
ther words, self-confidence is a significant factor of trust, and vice versa. Both numerical self-
onfidence and trust take on values of 0 to 100. Therefore, from the resulting regression estimate,
 numerical trust rating of 100 translates to 23.77 points of self-confidence, and a numerical self-
onfidence rating of 100 translates to 33.53 points of trust. This is interesting because not only does
his quantitatively suggest that self-confidence and trust affect each other, but also the relationship
etween trust and self-confidence is proportional. If trust and self-confidence are proportional to
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Table 5. Estimator, P-values, and Significance of Trust Linear 
Regression Analysis 

Estimate p-value Significance 
Intercept 10.1720 1 . 1573 e − 04 *** 
Trial −0 . 4378 0.0056 ** 

Self-Confidence 0.3353 3 . 6684 e − 63 *** 
1 Collision 1.0460 0.3634 
2 Collisions 1.6460 0.2521 
3 Collisions 0.2924 0.85124 
4 Collisions −1 . 6333 0.4366 
5 Collisions −1 . 4227 0.5481 
6 Collisions −3 . 4316 0.2453 

Time 0.3073 0.0022 * 
Automation Enabled 28.7120 7 . 2951 e − 198 *** 

R 
2 0.310 

Adjusted R 
2 0.308 

Note: * p < 0 .05 , ** p < 0 .01 , *** p < 0 .001 . 
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ne another, the “confidence vs. trust” hypothesis may not be sufficiently able to predict reliance
ehavior when both cognitive states are high or low, thus further supporting the need for a model
hat does capture the nuances between trust and self-confidence. This proposed model is discussed
n the next section. 

 MODEL TRAINING AND VALIDATION 

he adaptation of the model to the specific HAI context considered in this article is first discussed
n Section 5.1 . This is followed by a description of the methods used for model training (Section 5.2 )
nd model validation (Section 5.3 ). 

.1 Model Definition 

ecall the T-SC cognitive state model defined in Table 2 . In the context of the experimental platform
sed for data collection, there are two relevant performance metrics: the number of collisions be-
ween the penguin and the obstacles, and the time taken to navigate the penguin to its home in the
ame environment. Therefore, the uncontrollable performance action set A u c ,P is further divide d
nto tuples containing the number of Collisions a C and Game Time a G , as shown in Equation ( 7 ).
dditionally, the automation input a A is the assistance value θ , discretized into the sets ΘL , ΘM ,
nd ΘH as described in Section 4 and referenced in Equation ( 8 ). Recall that a A is a controllable
ction in the context of the POMDP/R. 

A uc = {a C , a G } 
a C ∈ C = { Collision Decrease C 

−, Collision No Change C 

0 , Collision Increase C 

+} 
a G ∈ G = { Game Time Decrease G 

−, Game Time Increase G 

+} 
(7)

a A ∈ A c = {ΘL , ΘM , ΘH } (8)

he transition probabilities for trust T T : S × T × A → [0 , 1] and self-confidence T SC : S × SC ×
 → [0 , 1] are each represented by 4 × 2 × 18 matrices that map the probability of transitioning

rom combinations of states S of trust s T ∈ T and self-confidence s SC ∈ SC to the next states of
rust and self-confidence, respectively, given an action a ∈ A. The state combination transition
robabilities are the product of the individual transition probabilities of trust and self-confidence,
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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s given by 

T (s ′ |s, a ) = T (s ′ T |s T , s SC , a )T (s 
′ 
SC |s T , s SC , a ). (9)

The emission probability function for reliance E R : S × R → [0 , 1] is represented by a 4 × 2
atrix that maps the probability of reliance on automation o R ∈ R given the current trust and
elf-confidence belief states. The emission probability function for self-reported self-confidence
 srSC : SC × srSC → [0 , 1] is represented by a 2 × 2 matrix that maps the probability of low or
igh self-reported self-confidence o srSC ∈ srSC given the current self-confidence state. The overall
mission probabilities are the product of the individual reliance and self-reported self-confidence
mission probabilities, given by 

E (o |s ) = E (o R |s T , s SC )E (o srSC |s SC ). (10)

inally, the initial state probabilities for trust πT : T → [0 , 1] and self-confidence πSC : SC → [0 , 1]
re both given by 1 × 2 matrices that represent the probability of the initial trust state s T and self-
onfidence state s SC , respectively. As shown in Figure 1 , the reliance observation is dependent on
oth the current trust and self-confidence states. However, the self-reported self-confidence ob-
ervation is only dependent on the current self-confidence state. In total, there are 152 effective
arameters. There are 18 combinations of actions, consisting of the three collision performance
istinctions, two game time performance distinctions, and three automation input value distinc-
ions. There are four combinations of states, consisting of combinations of low and high levels of
rust and self-confidence. Finally, there are four combinations of observations, consisting of the
wo levels of self-reported self-confidence as well as the two levels of reliance. 
It should be noted that a limitation of the model is that the action space does not consider

bsolute performance. Ideally, the performance actions would be combinations of both change in
erformance and absolute performance. However, this would significantly increase the number of
arameters in the model and, in turn, make model training computationally expensive. An analysis
f models trained with performance defined either in absolute terms or as a delta between trials
howed that the POMDP/R based upon change in performance actions leads to better predictability
f the cognitive states and reliance behavior. Therefore, only change in performance is considered
or the model presented here. 

.2 Model Parameter Estimation 

t is assumed that trust and self-confidence behavior for the general population can be represented
y a common model. Therefore, the aggregated data of all participants is utilized in estimating
he model parameters, resulting in 340 sequences of data. Previously, an extended version of the
aum-Welch algorithm was used to estimate the parameters of a discrete observation-space cog-
itive model [ 5 ]. However, literature suggests that the genetic algorithm is not as sensitive to
he initialization of parameters and not as susceptible to local optima as compared to the Baum-
elch algorithm [ 59 ]. Therefore, the genetic algorithm in MATLAB’s Optimization Toolbox [ 2 ] is
sed to optimize the parameters of the model to maximize the likelihood of the sequences given
he model parameters. The forward algorithm is used to calculate the likelihood of the sequences
 60 ] in which the algorithm computes, recursively over time, the joint probability of a state s k at
ime k and the series of observations o 1: k and actions a 1: k over time, i.e., P (s k , o 1: k , a 1: k ). The sum
f P (s N , o 1: N , a 1: N ) is calculated to determine the likelihood of the sequence across all states at
he end of the sequence at time N . This gives the probability of the action observation sequence,
(o 1: N , a 1: N ). The model was trained several times using randomized initialization. The resulting
robabilities within each final trained model were identical up to at least four significant figures
ith a final log-likelihood of −3,446.4. Further model validation is included in Section 5.3 . 
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Prior to training the model, the order of the action combinations and observation combinations
s established. More specifically, the action combinations are ordered so that each of the transition
robability matrices associated with these combinations can be distinguished prior to training.
imilarly, the observation combinations are ordered for each of the emission probability matri-
es. In turn, this enables the state combination labels to be assigned a posteriori to the transition
nd emission probabilities, which ultimately enables interpretability and analysis of the trained
robabilities. The assignment is based on the well-established trust-reliance relationship [ 24 , 44 ]
nd context-specific knowledge, such as the expected likelihood of the human’s self-reported self-
onfidence matching the model’s prediction of self-confidence. 
The state combination order of the resulting transition, emission, and initial probability matri-

es are sorted into the order T ↓ SC ↓ , T ↓ SC ↑ , T ↑ SC ↓ , and T ↑ SC ↑ after training the model by using
stablished behavioral trends. Identifying the state combination of each row is possible due to
he asymmetrical nature of the emission probability functions. The self-reported self-confidence
mission probabilities are used to determine the self-confidence state order. The reliance emis-
ion probabilities are used to sort the trust state order by applying the well-known correlation
etween trust and reliance [ 42 , 45 , 51 , 52 ]. After identifying the corresponding state combination
f each row in the emission probability matrix, all rows and columns associated with states in the
nitial, transition, and emission probability matrices are re-ordered to match the prescribed state
ombination order. 

.3 Validation 

o test the predictive capability of the model and check for over-fitting, two validation methods
re used. First, a 5 × 2-fold cross-validation is applied to the data in which the data is divided
andomly into two equal sets, or folds. The model is trained with one fold and validated using
he other. The entire process is then repeated for five iterations to increase the robustness of the
alidation log-likelihood values to variations in the training and testing datasets. The average log-
ikelihood of the trained models from 10-fold cross-validation is −1 , 770 . 9 ± 18 . 5 . In other words,
he average log-likelihood of the 5 × 2-fold cross-validation varied by 1 . 1% , suggesting that the
odel is not overfitting the data. 
Next, receiver operating characteristic (ROC) curves are utilized to illustrate the perfor-
ance of the model in predicting the cognitive states and reliance decision of each participant.
he cognitive state ROC curves (Figure 6 (b)) are generated by comparing the self-reported cog-
itive states to the predicted belief state, as calculated using Equation ( 5 ), for all 340 participants’
ata. The belief state probability of high trust or self-confidence is first compared to a thresh-
ld probability, in which the predicted state is classified as high if the belief state probability is
reater than the classification threshold probability. Then, the predicted state is compared to the
elf-reported state. As shown in Figure 6 (a), this results in a true positive (TP) , false positive
FP) , true negative (TN) , or false negative (FN) , depending on if the predicted state is high or
ow and if the predicted state matches the self-report data. For classification thresholds of 0–100%
n increments of 1%, this process is repeated for all data to find the true-positive rate (TPR) and
alse-positive rate (FPR) for each threshold probability. The TPRs and FPRs of each threshold
re plotted, resulting in the ROC curve. The reliance ROC curve (Figure 6 (d)) is generated using a
imilar method, but instead, the maximum belief state probability is used to determine the corre-
ponding emission probability. The emission probability is compared to a classification threshold
robability to predict the participant’s choice of reliance. TPRs and FPRs are found by compar-
ng the predicted reliance to the participant’s actual chosen reliance, as shown in Figure 6 (c). The
odel can predict both cognitive state levels and reliance choice better than a random guess as
hown in Figures 6 (b) and 6 (d). This is further supported by the area under the curve (AUC) ,
n aggregate performance measure across all thresholds. A higher AUC corresponds to a better
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Fig. 6. Receiver Operating Characteristic (ROC) curves for cognitive state and reliance prediction. The given 
model classification performance is determined by the area under the curve (AUC), which is denoted in the 
legends of plots (b) and (d). As noted, the model achieves a trust AUC of 0.69, self-confidence AUC of 0.62, 
and reliance AUC of 0.72. The predicted reliance ROC curve using the “confidence vs. trust” hypothesis is 
also plotted in (d) and achieves an AUC of 0.58. 
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odel classification performance. The trained model achieves a trust AUC of 0.69, self-confidence
UC of 0.62, and reliance AUC of 0.72. 

.4 Comparison Against “Confidence vs. Trust” Hypothesis 

s discussed in Section 2 , existing models of the relationship between human trust in automa-
ion, human self-confidence, and reliance on automation are based upon the “confidence vs. trust”
ypothesis. Therefore, we compare the proposed model against that hypothesis. Using the self-
eported trust and self-confidence values, an ROC curve using the “confidence vs. trust” hypothesis
o predict participants’ reliance behavior is generated and plotted in Figure 6 (d). The true-positive
ate is plotted against the false-positive rate using thresholds ranging from the minimum differ-
nce to the maximum difference between participants’ self-reported trust and self-confidence. The
OC curve for predicted reliance using the “confidence vs. trust” hypothesis results in an AUC of
.58 compared to that of the proposed model, which has an AUC of 0.72. From these results, we can
onclude that the predictive capability of the proposed model, with respect to the user’s reliance
ecision, is greater. From this metric alone, however, it is not possible to discern what aspect of
he proposed model is responsible for this improvement in reliance prediction. Hence, differences
etween the model will be discussed more in Section 6.1.2 . 
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Fig. 7. The emission probability function for reliance E (o R |s T , s SC ) and self-reported self-confidence 
E (o srSC |s SC ). The probabilities are shown next to the arrows. 

6

I  

t  

i  

N  

o  

w  

t  

p  

t

6

 

p  

t  

i  

a

 

F  

a  

g  

p  

a  

F  

a  

a  

c  

d  

s  

a  

r

 RESULTS AND DISCUSSION 

n Section 6.1 , the identified emission and transition probabilities are presented and interpreted in
he context of the specific HAI scenario under consideration. This is followed by a discussion of the
mplications of the model for improving HAI (Section 6.2 ) and a review of limitations (Section 6.3 ).
ote that for ease of readability, the details of model parameters are provided in Appendix A . More-
ver, note that to ensure that our model converged to a solution, 10 iterations of the POMDP/R
ere trained and the standard error of each parameter was found. It was found that the uncertain-
ies of the initial, transition, and emission probabilities were considerably small compared to the
arameter values themselves and that for several of the parameters, the standard error was found
o be lower than the smallest value considered in MATLAB. 

.1 Results and Analysis 

6.1.1 Initial State Probabilities. The initial state probabilities are provided in Table 7 (see Ap-
endix A.1 ). From these probabilities it can be inferred that participants tend to initially have high
rust in the autonomous assistant (81.22%) and low self-confidence (60.70%). The initial high trust
s consistent with existing literature that states that humans tend to have positivity bias toward
utomation, in which they trust automation prior to having any experience with it [ 24 ]. 

6.1.2 Emission Probabilities. Next the identified emission probabilities, visually depicted in
igures 7 (a) and 7 (b), are analyzed. Figure 7 (a) shows the probability of reliance given the trust
nd self-confidence states, and Figure 7 (b) shows the probability of self-reported self-confidence
iven the self-confidence state. The first observation from Figure 7 (a) is that when the partici-
ant’s self-confidence is high, the resulting probabilities behave similarly to the established trust
nd reliance relationship in which low and high trust lead to low and high reliance, respectively.
or example, when participants are in a state of low trust and high self-confidence ( T ↓ SC ↑ ), they
re highly likely (89.54%) to not rely on the automation. When they are in the T ↑ SC ↑ state, they
re highly likely (89.17%) to rely on it. Interestingly, this relationship is not exhibited when self-
onfidence is low. Instead, when participants are in the T ↓ SC ↓ state, the likelihood that they will
isable (48.62%) or enable (51.38%) the automation assistance is nearly equally distributed. The
ame is true when participants are in the T ↑ SC ↓ state. This suggests that self-confidence may be
 more significant factor in reliance decisions when the user is in a state of low self-confidence
ather than high self-confidence. 
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Table 6. Transition Probabilities for a A ∈ ΘL , 
Decreasing Collisions, and Decreasing Time 

Trust Self-confidence 
T ↓’ T ↑’ SC ↓’ SC ↑’ 

T ↓SC ↓ 0.0019 0.9981 0.9992 0.0008
T ↓SC ↑ 0.9990 0.0010 0.0037 0.9963 

T ↑SC ↓ 0.7308 0.2692 0.8219 0.1781
T ↑SC ↑ 0.0403 0.9597 0.0298 0.9702 
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It is also helpful to compare these probabilities directly to the reliance behavior predicted by
odels that build upon the “confidence vs. trust” hypothesis. The computational models discussed

n Section 2 predict reliance based on a difference between the trust and self-confidence states. For
xample, using the hypothesis, it would be assumed that the T ↑ SC ↓ state results in the participant
elying and the T ↓ SC ↓ results in them not relying on the automation. However, the emission prob-
bilities shown in Figure 7 (a) contradict this; instead, the likelihood of relying on or not relying
n the automation, when self-confidence is low, is nearly 50%. It is worth noting that the proposed
odel is probabilistic, whereas existing ones are deterministic. Given the stochastic nature of hu-
an behavior, it is possible that the proposed model is able to better predict reliance behavior
y inherently allowing for stochasticity in the prediction. In particular, it appears that when the
uman is in a state of low self-confidence, their behavior may be more stochastic than when they
re in a state of high self-confidence. Recall the validation results shown earlier in Section 5.4 (see
igure 6 (d)) in which the proposed model was a better predictor of reliance than a model based
pon the “confidence vs. trust” hypothesis. 

6.1.3 Transition Probabilities. Given that the POMDP/R consists of 3 discrete-valued actions
hat result in 18 distinct combinations of actions, there are a total of 18 different transition proba-
ility functions that describe the state transitions. The transition probability functions are divided
o separate the probabilities of trust state transitions and probabilities of self-confidence state tran-
itions. A complete review of all transition probabilities can be found in Appendix A.2 . For clarity
f exposition, a subset of these probabilities is analyzed here. Specifically, the actions associated
ith participants’ performance—changes in the number of collisions and game time—are grouped
nto cases of performance improvement or deterioration, and the effect of the third action, the
utonomous assistance, is analyzed within these groupings. 

Overall Performance Improvement . The overall performance improvement case scenario is that
n which the number of collisions decreases C 

− and game time decreases G 
−. When a A ∈ ΘL , as

hown in Figures 8 (a) and 8 (d), and for all state combinations, self-confidence is likely to remain
he same at the next trial ( > 80%). Moreover, when the participant is in the T ↓ SC ↓ state, they are
ery likely to transition to a state of high trust (99.81%), suggesting that they associate performance
mprovement to the automation rather than themselves . For easier interpretation, the referenced
robabilities are in bold in Table 6 . 
This is not the case for most participants in the T ↑ SC ↓ state though. Participants’ cognitive

tate responses when they are in the T ↑ SC ↓ state are similar for all a A as shown in Figures 8 (a)
o 8 (f). They are likely to transition to a state of low trust (73.08%, 77.59%, 99.35%), while they
re likely to remain in a state of low self-confidence (82.19%, 66.08%, 99.92%), suggesting that the
ecrease in trust may be a result of the user attributing the performance improvement more toward
hemselves than the automation. Upon closer analysis, when a A ∈ ΘL ∨ ΘM , participants had a
6.91% and 22.41% chance, respectively, of remaining in a state of high trust, and a 17.81% and
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Fig. 8. The transition probability function for trust T T (s ′ T |s T , s SC , a ) and self-confidence T SC (s 
′ 
SC 
|s T , s SC , a ). 

The performance actions are the overall improvement case scenario in which the number of collisions de- 
creases C 

− and game time decreases G 
−. The probabilities of transition are shown next to the appropriate 

arrows. (a) The trust transition probabilities for a A ∈ ΘL . (b) The trust transition probabilities for a A ∈ ΘM . 
(c) The trust transition probabilities for a A ∈ ΘH . (d) The self-confidence transition probabilities for a A ∈ ΘL . 
(e) The self-confidence transition probabilities for a A ∈ ΘM . (f) The self-confidence transition probabilities 
for a A ∈ ΘH . 
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3.92% chance, respectively, of transitioning to a state of high self-confidence. The different values
f a A may result in different attributions of performance between the user and automation, which
hen affect the participants’ cognitive state responses. When a A ∈ ΘH , as shown in Figures 8 (c)
nd 8 (f), and when the participant is in the T ↓ SC ↓ state, the probability of them transitioning to a
tate of high trust (55.29%) or remaining in a state of low trust (44.71%) is approximately equally
istributed. On the other hand, they are more likely to remain in a state of low self-confidence
75%) than to transition to a state of high self-confidence. These participants may associate the
ause of performance improvement slightly more with the automation than themselves. 
Interestingly, for all levels of automation assistance, when participants are in a state of high self-

onfidence and experience an overall improvement in performance, they are very likely to remain
n a state of high self-confidence as well as maintain the same level of trust in the autonomous
ssistant at the next trial. In other words, a participant’s self-confidence affects their interpretation
f their performance metrics, which in turn affects their trust in the automation . 

Partial Performance Improvement . For performance improvement, another case of interest is that
n which the number of collisions does not change but the participants’ game time decreases.
his represents a case of partial improvement. When a A ∈ ΘL , as shown in Table 8 (see Appendix
.2 ), and when the participant is in the T ↓ SC ↓ state, their likelihood of transitioning to a state
f high trust (45.72%) or low trust (54.28%) is nearly equally distributed. However, they are likely
o remain in a state of low self-confidence (79.49%). This is similar to when participants are in
he T ↑ SC ↓ state and a A ∈ ΘM , as shown in Table 9 . When a A ∈ ΘH , as shown in Table 10 , and
he participant is in the T ↓ SC ↓ state, they are highly likely (99.86%) to remain in a state of low
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Fig. 9. Performance and self-reported trust and self-confidence over time. 
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elf-confidence. However, their likelihood of transitioning to a state of high trust is only 29.52%.
hen a A ∈ ΘL ∨ ΘH and participants are in the T ↓ SC ↓ state, trust increasing suggests that they
re attributing a slight improvement in performance to the automation rather than themselves.
owever, when a A ∈ ΘM , the fact that participants in a state of high trust are equally likely to
emain in their current state or transition to a state of low trust while their low self-confidence is
ikely to be maintained (84.12%) suggests that they are unsure of to whom they should attribute
he improvement in performance. 
In comparing these results to the overall improvement case, participants in a state of low self-

onfidence are still unlikely to gain confidence and transition to SC ↑ , but they are now not as likely
o attribute any improvement to the automation. This underscores the consequences, from the
erspective of HAI, of a human being in a state of low self-confidence. In other words, participants in
 state of low self-confidence may have more difficulty in calibrating their trust in the automation than
hose with high self-confidence. An analysis of absolute collision and time performance data (see
igure 9 (a)) shows that as the game progressed, on average, participants’ performance improved
nd participants’ self-confidence increased (see Figure 9 (b)). In turn, these observations suggest
hat in addition to trust calibration, correct calibration of self-confidence is important for improved
AI, as discussed further in Section 6.2 . 

Overall Performance Deterioration . Next, cases in which participants’ performance deteriorates
etween game trials are analyzed. For all a A , when performance deteriorates and participants are
n the T ↓ SC ↓ state, their trust is highly likely to increase (99.78%, 99.87%, 98.40%) at the next trial.
owever, they are likely to remain in a state of low self-confidence (99.92%, 99.84%, 99.98%). This
uggests that these participants associate performance deterioration to themselves rather than the
utomation. On the other hand, the autonomous assistance input does have a greater effect on
articipants in states of high trust (either T ↑ SC ↓ or T ↑ SC ↑ ). When a A ∈ ΘM ∨ ΘH (Figures 10 (b)
nd 10 (c)), participants in a state of high trust are very likely ( > 90%) to transition to a state of
ow trust, regardless of their state of self-confidence. This suggests that they strongly attribute the
ecrease in performance to the autonomous assistant. This is not true when a A ∈ ΘL , in which
articipants who are in a state of T ↑ SC ↓ are likely to remain in a state of high trust at the next
rial. These results highlight that while self-confidence affects participants’ attribution of changes
n performance, so does the user’s experience with the autonomous assistant. 

Partial Performance Deterioration . Next, the case in which the number of collisions does not
hange but the participants’ game time increases is considered. For a A ∈ ΘL ∨ ΘM ∨ ΘH , shown
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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Fig. 10. The transition probability function for trust T T (s ′ T |s T , s SC , a ) and self-confidence 

T SC (s ′ SC |s T , s SC , a ). The performance actions are the overall deterioration case scenario in which the 

number of collisions increases C 
+ and game time increases G 

+. The probabilities of transition are shown 
next to the appropriate arrows. (a) The trust transition probabilities for a A ∈ ΘL . (b) The trust transition 
probabilities for a A ∈ ΘM . (c) The trust transition probabilities for a A ∈ ΘH . (d) The self-confidence 
transition probabilities for a A ∈ ΘL . (e) The self-confidence transition probabilities for a A ∈ ΘM . (f) The 
self-confidence transition probabilities for a A ∈ ΘH . 
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n Tables 8 –10 , respectively, and when participants are in the T ↓ SC ↓ state, it is likely for their trust
o increase (99.98%, 99.70%, 99.90%) at the next trial and likely for them to remain in a state of
ow self-confidence (95.12%, 99.76%, 100%). These results are consistent with those observed for
he overall performance deterioration case. When a A ∈ ΘH , however, and participants are in the
 ↑ SC ↓ state, their likelihood of transitioning to a state of low trust (57.68%) or high trust (42.32%) is
ore equally distributed than in the overall performance deterioration case. Therefore, the extent
f the change in performance also affects participants’ trust and self-confidence dynamics. 

.2 Implications on the Design of Human-aware Autonomous Systems 

s discussed in the previous section, depending on their performance and the input from the
utonomous assistant, participants may attribute their successes and failures to either the au-
omation or themselves. These observations are a demonstration of attribution theory, a theory
oncerned with the processes behind the attempts of humans to explain the cause of behaviors
nd events [ 71 , 74 ]. Understanding the different attributions is important because reliance is not
nly affected by participants’ beliefs about the automation’s performance or reliability but also by
ognitive factors affecting this performance [ 44 ], in this case, participants’ trust in the automation
nd their own self-confidence. Importantly, for the purpose of improving performance and safety
utcomes for different HAI contexts, the proposed probabilistic model can be used to design cogni-
ive state-based feedback policies that help humans correctly attribute changes in performance to
hemselves or the automation and, in turn, better calibrate their trust in the automation and their
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elf-confidence. Calibration of human trust in HAI is critical to preventing the pitfalls associated
ith humans under-trusting or over-trusting autonomous systems [ 41 , 44 , 54 , 73 ]. However, to
ate, less emphasis has been placed on calibration of self-confidence in HAI, despite the fact that a
uman who is incorrectly over-confident in their skills may under-trust the automation they are
nteracting with, and vice versa. The model analysis presented here shows that both states must be
alibrated correctly for improving HAI. With knowledge of how the human’s cognitive dynamics
volve, autonomous systems can be designed to facilitate this, for example, through the use of au-
omation transparency [ 6 , 77 ]. Finally, through the comparison of the AUCs from the reliance ROC
ur ves, it was obser ved that the trained model outperforms the “confidence vs. trust” hypothesis.
his supports the need for understanding the nuances between trust and self-confidence for the
rediction of human reliance on automation. 

.3 Limitations 

t is worthwhile to acknowledge some of the limitations of the proposed model for capturing hu-
an trust and self-confidence dynamics. It is assumed that the cognitive state dynamics evolve
ased on the change in the participant’s performance rather than their absolute performance. In
ther words, in training the model, the behavior of a skilled participant who experienced slight
mprovement was not distinguished from that of a poor-performing participant who likewise had
 slight performance improvement. In future work, this limitation can be mitigated by considering
bsolute performance in addition to the change in performance. Furthermore, as is the case with
ny model trained using human data, the conclusions drawn in this article are specific to the HAI
cenario under consideration. However, given the generalized definition of the POMDP/R states,
bservations, and actions, future work should investigate how well the transition and emission
robability functions translate to other HAI scenarios and the extent to which new human data is
eeded for doing so. 
Finally, while a POMDP modeling framework was chosen here for several benefits it offers in

apturing the probabilistic nature of human cognitive dynamics, a limitation of POMDPs is their
calability. Modest increases in the number of actions, states, or observations can lead to parameter
xplosion, thereby increasing the amount of data needed for parameter estimation. Therefore,
he proposed framework may not scale well to more complex HAI scenarios in which additional
ctions may need to be defined, for example, to capture the nature of the automation’s input.
imilarly, further discretizing the trust or self-confidence states beyond two discrete values will
lso lead to increased model complexity. Therefore, characterizing classes of HAI scenarios in
hich this model structure works well, or model adaptations for scenarios in which it does not,
s another direction of future work. Future work may extend the given model to use a continuous
tate space to more accurately characterize trust and self-confidence dynamics. This would allow
or incremental changes in these cognitive states to be accounted for [ 9 ]. Depending on the context,
ctions and observations may also be extended to the continuous space. 

 CONCLUSION 

he contribution of this article is a probabilistic model of coupled human trust and self-confidence
ynamics as they evolve during a human’s interaction with automation. The dynamics are mod-
led as a partially observable Markov decision process without a reward function that leverages
ehavioral and self-report data as observations for estimation of the cognitive states. Trust and
elf-confidence are modeled as separate discrete states with coupled transition probability func-
ions. By doing so, the model is able to capture the nuanced effects of various combinations of the
tates on the participant’s reliance on autonomous assistance. A study was designed and imple-
ented to collect human behavioral and self-report data during their repeated interactions with
CM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 
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n autonomous assistant in an obstacle avoidance game scenario. Using data collected from 340
uman participants, the cognitive model was trained and validated. Analysis of the state transition
robabilities suggests that participants’ attribution of changes in performance to either themselves
r the autonomous assistant varies depending on their states of trust and self-confidence. This
nderscores the importance of the proposed model for the design of human-aware automation,
articularly in the context of human trust and self-confidence calibration in HAI. 
The takeaways of this work are as follows. First, attribution theory is critical when humans are

nteracting with automation. Second, the calibration of both trust and self-confidence is impor-
ant to avoid misattributions of skills in HAI for learning contexts. Lastly, by accounting for the
oupling between trust and self-confidence, the proposed model outperforms the “confidence vs.
rust” hypothesis with respect to the prediction of human reliance on automation. This validates
he need to understand the relationship between trust and self-confidence when humans decide
o rely on or not rely on automation. Future work includes validation of the model for other HAI
cenarios, investigation of individual differences that may lead to distinct trust or self-confidence
ynamics, and model-based control algorithm design aimed at, for example, optimally allocating
ontrol authority to the human and automation based on calibration of the human’s trust and
elf-confidence. 

PPENDIX 

 TRAINED MODEL RESULTS 

e present the POMDP model of human trust–self-confidence behavior discussed in Section 5 . 

.1 Initial State Probabilities 

he initial state probabilities for trust πT : 1 × T → [0 , 1] and self-confidence πSC : 1 × SC → [0 , 1]
re both represented by 1 × 2 matrices that represent the probability of the initial trust state s T and
elf-confidence state s SC , respectively. The initial state probabilities are provided in Table 7 . 

Table 7. Initial Trust State s T and 
Self-confidence State s SC Probabilities 

Trust Self-confidence 
T ↓ T ↑ SC ↓ SC ↑ 

0.1878 0.8122 0.6070 0.3930 

.2 Transition Probabilities 

he transition probabilities for trust T T : S × T × A → [0 , 1] and self-confidence T SC : S × SC ×
 → [0 , 1] are each represented by 4 × 2 × 18 matrices that map the probability of transitioning

rom combinations of states S of trust s T ∈ T and self-confidence s SC ∈ SC to the next states of
rust and self-confidence, respectively, given an action a ∈ A. The state combination transition
robabilities are the product of the individual transition probabilities of trust and self-confidence,
s given by 

T (s ′ |s, a ) = T (s ′ T |s T , s SC , a )T (s 
′ 
SC |s T , s SC , a ). (11)

The transition probabilities are provided in Tables 8 –10 . The transition probability tables are
eparated by the action a A . Each table is divided such that the transition probabilities can be iden-
ified based upon the change in performance metrics. 
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 3, Article 39. Publication date: June 2023. 



39:24 K. J. Williams et al. 

Table 8. Transition Probabilities for a A ∈ ΘL and Performance Metric Combinations 

Collision Decrease, Time Decrease Collision Decrease, Time Increase 
Trust Self-confidence Trust Self-confidence 

T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 
T ↓SC ↓ 0.0019 0.9981 0.9992 0.0008 T ↓SC ↓ 0.9959 0.0041 0.8142 0.1858 
T ↓SC ↑ 0.9990 0.0010 0.0037 0.9963 T ↓SC ↑ 0.8518 0.1482 0.0003 0.9997 
T ↑SC ↓ 0.7308 0.2692 0.8219 0.1781 T ↑SC ↓ 0.0011 0.9989 0.9696 0.0304 
T ↑SC ↑ 0.0403 0.9597 0.0298 0.9702 T ↑SC ↑ 0.0001 0.9999 0.0158 0.9842 
Collision No Change, Time Decrease Collision No Change, Time Increase 

Trust Self-confidence Trust Self-confidence 
T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 

T ↓SC ↓ 0.4572 0.5428 0.7949 0.2051 T ↓SC ↓ 0.0002 0.9998 0.9512 0.0488 
T ↓SC ↑ 0.9738 0.0262 0.0030 0.9970 T ↓SC ↑ 0.9534 0.0466 0.0635 0.9365 
T ↑SC ↓ 0.9997 0.0003 0.9612 0.0388 T ↑SC ↓ 0.0296 0.9704 0.9999 0.0001 
T ↑SC ↑ 0.0013 0.9987 0.0074 0.9926 T ↑SC ↑ 0.0074 0.9926 0.0266 0.9734 

Collision Increase, Time Decrease Collision Increase, Time Increase 

Trust Self-confidence Trust Self-confidence 
T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 

T ↓SC ↓ 0.9990 0.0010 0.9552 0.0448 T ↓SC ↓ 0.0022 0.9978 0.9992 0.0008 
T ↓SC ↑ 0.9982 0.0018 0.1574 0.8426 T ↓SC ↑ 0.9965 0.0035 0.0054 0.9946 
T ↑SC ↓ 0.0844 0.9156 0.9960 0.0040 T ↑SC ↓ 0.0004 0.9996 0.9988 0.0012 
T ↑SC ↑ 0.4409 0.5591 0.1010 0.8990 T ↑SC ↑ 0.6822 0.3178 0.0133 0.9867 

Table 9. Transition Probabilities for a A ∈ ΘM and Performance Metric Combinations 

Collision Decrease, Time Decrease Collision Decrease, Time Increase 
Trust Self-confidence Trust Self-confidence 

T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 
T ↓SC ↓ 0.9838 0.0162 0.9963 0.0037 T ↓SC ↓ 0.9940 0.0060 0.9919 0.0081 
T ↓SC ↑ 0.9973 0.0027 0.0021 0.9979 T ↓SC ↑ 0.9232 0.0768 0.0019 0.9981 
T ↑SC ↓ 0.7759 0.2241 0.6608 0.3392 T ↑SC ↓ 0.1517 0.8483 0.7768 0.2232 
T ↑SC ↑ 0.0621 0.9379 0.0034 0.9966 T ↑SC ↑ 0.0753 0.9247 0.0293 0.9707 
Collision No Change, Time Decrease Collision No Change, Time Increase 

Trust Self-confidence Trust Self-confidence 
T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 

T ↓SC ↓ 0.9788 0.0212 0.9720 0.0280 T ↓SC ↓ 0.0030 0.9970 0.9976 0.0024 
T ↓SC ↑ 0.9922 0.0078 0.0015 0.9985 T ↓SC ↑ 0.9983 0.0017 0.0033 0.9967 
T ↑SC ↓ 0.5040 0.4960 0.8412 0.1588 T ↑SC ↓ 0.0018 0.9982 0.9599 0.0401 
T ↑SC ↑ 0.0323 0.9677 0.0230 0.9770 T ↑SC ↑ 0.0000 1.0000 0.0462 0.9538 

Collision Increase, Time Decrease Collision Increase, Time Increase 

Trust Self-confidence Trust Self-confidence 
T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 

T ↓SC ↓ 0.9989 0.0011 0.9998 0.0002 T ↓SC ↓ 0.0013 0.9987 0.9984 0.0016 
T ↓SC ↑ 0.9740 0.0260 0.1244 0.8756 T ↓SC ↑ 0.9933 0.0067 0.1167 0.8833 
T ↑SC ↓ 0.7311 0.2689 0.9735 0.0265 T ↑SC ↓ 0.9959 0.0041 0.9084 0.0916 
T ↑SC ↑ 0.0531 0.9469 0.1092 0.8908 T ↑SC ↑ 0.0601 0.9399 0.1858 0.8142 
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Table 10. Transition Probabilities for a A ∈ ΘH and Performance Metric Combinations 

Collision Decrease, Time Decrease Collision Decrease, Time Increase 
Trust Self-confidence Trust Self-confidence 

T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 
T ↓SC ↓ 0.4471 0.5529 0.7465 0.2535 T ↓SC ↓ 0.4109 0.5891 0.6672 0.3328 
T ↓SC ↑ 1.0000 0.0000 0.0014 0.9986 T ↓SC ↑ 0.9199 0.0801 0.0011 0.9989 
T ↑SC ↓ 0.9935 0.0065 0.9992 0.0008 T ↑SC ↓ 0.0005 0.9995 1.0000 0.0000 
T ↑SC ↑ 0.0027 0.9973 0.0487 0.9513 T ↑SC ↑ 0.0382 0.9618 0.0048 0.9952 
Collision No Change, Time Decrease Collision No Change, Time Increase 

Trust Self-confidence Trust Self-confidence 
T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 

T ↓SC ↓ 0.7048 0.2952 0.9986 0.0014 T ↓SC ↓ 0.0010 0.9990 1.0000 0.0000 
T ↓SC ↑ 0.9958 0.0042 0.0013 0.9987 T ↓SC ↑ 0.9453 0.0547 0.0061 0.9939 
T ↑SC ↓ 0.0071 0.9929 0.8432 0.1568 T ↑SC ↓ 0.5768 0.4232 0.8019 0.1981 
T ↑SC ↑ 0.0003 0.9997 0.0012 0.9988 T ↑SC ↑ 0.0127 0.9873 0.0021 0.9979 

Collision Increase, Time Decrease Collision Increase, Time Increase 
Trust Self-confidence Trust Self-confidence 

T ↓’ T ↑’ SC ↓’ SC ↑’ T ↓’ T ↑’ SC ↓’ SC ↑’ 
T ↓SC ↓ 0.0020 0.9980 0.9677 0.0323 T ↓SC ↓ 0.0160 0.9840 0.9998 0.0002 
T ↓SC ↑ 0.9923 0.0077 0.1525 0.8475 T ↓SC ↑ 0.9853 0.0147 0.0015 0.9985 
T ↑SC ↓ 0.8208 0.1792 0.9524 0.0476 T ↑SC ↓ 0.9973 0.0027 0.9979 0.0021 
T ↑SC ↑ 0.0683 0.9317 0.0828 0.9172 T ↑SC ↑ 0.0350 0.9650 0.0456 0.9544 

Table 11. Emission Probabilities of the Reliance Observation 
o R and Self-reported Self-confidence Observation o srSC 

Reliance Self-reported Self-confidence 
NR R srSC ↓ srSC ↑

T ↓SC ↓ 0.4862 0.5138 SC ↓ 0.9448 0.0552
T ↓SC ↑ 0.8954 0.1046 SC ↑ 0.0898 0.9102
T ↑SC ↓ 0.4983 0.5017 
T ↑SC ↑ 0.1083 0.8917 

NR and R denote no reliance and reliance respectively, while high 
and low self-reported self-confidence is denoted by s rSC ↑ and s rSC ↓ 
respectively. 
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.3 Emission Probabilities 

he emission probability function for reliance E R : S × R → [0 , 1] is represented by a 4 × 2 ma-
rix that maps the probability of reliance on automation o R ∈ R given the current trust and
elf-confidence belief states. The emission probability function for self-reported self-confidence
 srSC : SC × srSC → [0 , 1] is represented by a 2 × 2 matrix that maps the probability of low or
igh self-reported self-confidence o srSC ∈ srSC given the current self-confidence state. The over-
ll emission probabilities are the product of the reliance and self-reported self-confidence emission
robabilities, given by 

E (o |s ) = E (o R |s T , s SC )E (o srSC |s SC ). (12)

he emission probabilities are provided in Table 11 . 
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