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ABSTRACT

Monitoring interferences to satellite-based navigation systems is of
paramount importance in order to reliably operate critical infrastruc-
tures, navigation systems, and a variety of applications relying on
satellite-based positioning. This paper investigates the use of crowd-
sourced data to achieve such detection and monitoring at a central
node that receives the data from an arbitrary number of agents in
an area of interest. Under ideal conditions, the pathloss model is
used to compute the Cramér-Rao Bound of accuracy as well as the
corresponding maximum likelihood estimator. However, in real sce-
narios where obstructions and reflections are common, the signal
propagation is far more complex than the pathloss model can ex-
plain. We propose to augment the pathloss model with a data-driven
component, able to explain the complexities of the propagation chan-
nel. The paper shows a general methodology to jointly estimate the
interference location and the parameters of the augmented model,
showing superior performances in complex scenarios such as those
encountered in urban environments.

Index Terms— Jamming localization, GNSS, augmented
physics-based model, neural networks.

1. INTRODUCTION

Global Navigation Satellite System (GNSS) is a general term that en-
compasses satellite-based navigation systems such as GPS, Galileo,
Glonass and Beidou among others [1, 2]. It relies on a constella-
tion of satellites synchronously emitting known signals, which en-
able computation of a receiver position, velocity, and time (PVT)
unknowns. GNSS is arguably the primary technology when it comes
to position, navigation, and timing (PNT) applications, such as intel-
ligent transportation systems [3–5], critical infrastructures [6], envi-
ronmental applications [7], or agriculture applications [8] to name
a few. However, the increasing dependence on GNSS has created
a concern about its potential vulnerabilities [9], mostly related to
GNSS vulnerability to simple jamming interferences [10,11] or more
complex spoofing attacks [12].

It is therefore of crucial importance to develop interference mon-
itoring systems that can detect and localize the possible threats in
an area [13, 14]. In this paper we are particularly interested in con-
gested areas, where malicious users are more prone to operate, where
crowdsourced [15] data can be leveraged in order to implement such
monitoring. In particular, we foresee a system where agents navigate
an area with capabilities of transmitting the measured signal power
at the corresponding GNSS frequency bands. Recall that GNSS sig-
nals are transmitted using a spread-spectrum system such that they
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are below the receiver’s noise floor, as a consequence signal values
with powers larger than the noise floor would likely correspond to
a jamming signal being present in the vicinity. If a large number
of agents convey this information to a central unit, the data can be
processed in order to localize the source of jamming interferences
and, ultimately, take corrective measures. Several challenges of this
approach are addressed in this paper, namely the need for an accu-
rate signal propagation model from which one can perform infer-
ence . The nominal pathloss model has severe disadvantages when
it comes to complex environments, given that accounting for reflec-
tions and obstructions is not simple. To overcome this, we propose
to augment the pathloss model with a data-driven component (e.g.
a neural network, or NN for short) that is able to learn the position
dependent parts of the propagation model that are complex to accu-
rately model. We refer to these models as augmented physics-based
models (APBMs), which were successfully used, through different
implementations and augmented models, in other applications such
as hyperspectral unmixing [16], learning differential equations [17],
or tracking [18].

Section 2 presents the jammer localization problem, discussing
the nominal pathloss signal propagation model that is used as a
measurement equation in the proposed scheme. Under the nomi-
nal model, the Cramér-Rao bound (CRB) of estimation accuracy
is derived as well as the maximum likelihood estimator (MLE).
The proposed APBM augmentation to the pathloss is discussed in
Section 3, where it is shown how we propose to jointly estimate
the jammer’s location and the parameters of the augmented model.
Experiments are provided in Section 4 for i) an open-sky scenario
where the pathloss is an accurate model, which is used to validate
the proposed methods; and ii) a more complex urban scenario,
where the received signal powers are generated using ray tracing
techniques, where the APBM shows its superiority to plain pathloss
modeling. Finally, Section 5 discusses the main conclusions and
outlook of this work.

2. PATHLOSS-BASED ESTIMATION OF JAMMER’S
POSITION

2.1. The pathloss measurement model

We propose a crowdsourced framework where the position of the
jammer is estimated from a sequence of N observations of the jam-
mer power at several locations. In particular, the n-th observation
yn (dBW) is related to the vector of parameters we want to estimate
through a generic function f(xn;θ), such that

yn = f(xn;θ) + ξn (1)

where xn = (x
(1)
n , . . . , x

(D)
n )⊤ is the location where the measure-

ment took place, θ = (θ1, . . . , θD)⊤ is the jammer location in D
dimensions (often 3), and ξn is the measurement noise, which isIC
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assumed to be additive and independent of xn and θ. This measure-
ment model is particularly relevant in the context of GNSS interfer-
ence monitoring since useful signals are received below the noise
floor and large signal powers can be regarded as jamming signals.

A common model for received signal strength (RSS) observa-
tions is the pathloss model [19]:

f(xn;θ) = P0 − γ10 log10 d(xn,θ) (2)

where P0 (dBW) is the jammer power at the reference distance of
1 m, and d(xn,θ) is the distance between the n-th observer at xn

and the jammer [20]. It is defined as

d(xn,θ) = ∥xn − θ∥ =
√

(xn − θ)⊤(xn − θ) (3)

with ∥ · ∥ being the Euclidean norm.

2.2. The Cramér-Rao bound

The CRB of the i-th parameter is defined through the Fisher infor-
mation matrix (FIM) [21] as

[I(θ)]ij = −E

[
∂2 ln p(y;θ)

∂θi∂θj

]
(4)

where p(y;θ) is the likelihood function of the observed data and
y = (y1, . . . , yN )⊤ is the vector of observations. As a result

var([θ̂]i) ≥ [I−1(θ)]ii (5)

gives the minimum variance attainable by an unbiased estimator θ̂
of the parameters θ.

In (2), the unpredictable shadowing effects are modeled by ξn
and are experienced by measurements which have the same loca-
tions, but different clutter on the propagation path. It has been
shown that in nominal conditions this measurement noise can be
modeled with a log-normal distribution [22, 23], thus resulting in
ξn ∼ N (0, σ) when values are expressed in dB as in (2). As a
result, the vector of observations y is distributed according to

y|θ ∼ N (µ(θ),C(θ)) (6)

We can thus resort to a generalized CRB for the general Gaussian
case [21], which under the assumption of independent measure-
ments and constant variance can be simplified to

[I(θ)]ij =
1

σ2

N∑
n=1

∂f(xn;θ)

∂θi

∂f(xn;θ)

∂θj
. (7)

where we used C(θ) = σ2I . Using the particular expression of the
pathloss model in (2), the FIM can be further particularized, obtain-
ing

∂f(xn;θ)

∂θi
= −10γ

∂ log10(d(xn,θ))

∂θi
(8)

=
−10γ

d(xn,θ) ln 10

(2θi − 2x
(i)
n )

2d(xn,θ)
(9)

=
−10γ

ln 10

(θi − x
(i)
n )

d2(xn,θ)
. (10)

The elements of the FIM then become

[I(θ)]ij =
100γ2

σ2(ln (10))2

N∑
n=1

(θi − x
(i)
n )(θj − x

(j)
n )

d4(xn,θ)
(11)

resulting in

I(θ) =
100γ2

σ2(ln (10))2

N∑
n=1

1

d4(xn,θ)
(θ − xn)(θ − xn)

⊤ . (12)

The CRB for the i-th element of θ̂ can be obtained by replac-
ing (12) into (5). For the 2-dimensional case we can derive a simple
analytic CRB for the estimator of the jammer’s position. Thus, the
inverse of I(θ) can be easily computed leading to

var(θ̂1) ≥
σ2(ln (10))2

100γ2

b

ab− c2
(13)

var(θ̂2) ≥
σ2(ln (10))2

100γ2

a

ab− c2
· (14)

where we defined

a =

N∑
n=1

(θ1 − x
(1)
n )2

d4(xn,θ)
(15)

b =

N∑
n=1

(θ2 − x
(2)
n )2

d4(xn,θ)
(16)

c =

N∑
n=1

(θ1 − x
(1)
n )(θ2 − x

(2)
n )

d4(xn,θ)
. (17)

2.3. Maximum Likelihood Estimator

In this section we present the MLE for the jammer’s position θ, con-
sidering an arbitrary RSS function f(xn;θ). For this, let us define
X = {x1, . . . ,xN} and D = {yn,xn}Nn=1 as a dataset composed
of N i.i.d. pairs of loci xn and RSS measurements yn. Assum-
ing (6) to define the statistical characteristics of the model in (1), the
likelihood distribution can be written as:

p(y|X, θ) =

N∏
n=1

p(yn|xn,θ)

=
1

(2πσ2)N/2
exp

{
− 1

2σ2

N∑
n=1

(yn − f(xn;θ))
2

}
. (18)

The log-likelihood function is therefore

ln p(y|X, θ) = −N

2
ln (2πσ2)− 1

2σ2

N∑
n=1

(yn−f(xn;θ))
2 (19)

The estimator for the jammer’s location, θ̂, can be found by maxi-
mizing the log-likelihood as

θ̂MLE = argmax
θ

ln p(y|X, θ) . (20)

One drawback of the pathloss model is that f(xn;θ) → ∞
when d(xn,θ) → 0. This generates singularities in the likelihood
function that need to be addressed when solving the optimization
in (20). To circumvent this issue we modified (2) to

f̄(xn;θ) = P0 − γ10 log10{max(d(xn,θ), dF )} (21)

where dF is the far-field distance, a limit that depends on the char-
acteristics of the transmitting antenna and above which the far-field
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assumption that motivates the pathloss formulation in (20) is consid-
ered to hold [24]. The effect of this choice is twofold. First, infinite
values are removed from the observation function and singularities
are avoided. Secondly, the “holes” visible in Figure 1 (left panel) are
filled before the gradient becomes too steep, towards the singularity
points. In this way the maximization of the log-likelihood can be
pursued efficiently through gradient-based methods. The resulting
log-likelihood is shown in Figure 1 (right panel). This strategy is
also effective when minimizing the cost function described next.

Fig. 1. Log-likelihood with respect to different θ, measured under an
ideal pathloss propagation scenario with f(xn;θ) (left panel) and
f̄(xn;θ) (right panel).

3. AUGMENTED PHYSICS-BASED ESTIMATION OF
JAMMER’S POSITION

Although the pathloss model in (1) is well suited to describe the jam-
ming RSS field over open-spaces, it fails to capture the complexity
of urban or indoor scenarios where multiple reflections and attenu-
ations might occur. Additionally, our practical experience indicated
that naive, in the sense that no prior information regarding the jam-
ming field is incorporated in the model, NNs can only represent the
jamming field accurately enough if humongous amounts of data is
readily available. For this reason, in this section we propose an aug-
mented physics-based (i.e., pathloss-based) neural network model
where the NN acts as a nonlinear correction term around the pathloss
function. Recently, APBMs have been used successfully in different
scenarios [16–18, 25]. Here, we propose to augment the modified
pathloss model with NNs leading to an enhanced model:

h(xn;θ,ϕ) = f̄(xn;θ) + g(xn;ϕ) (22)

where ϕ ∈ RM is the vector of neural network’s parameters, which
is thus trained with the dataset D. The measurement model in (1)
can then be re-written as

yn = h(xn;θ,ϕ) + ξn , (23)

and used to perform inference as described later in this section.
To limit the NN from overpowering the physics-based model,

the authors in [16,18] considered different regularizations employed
to force the NN to act as a correction term around the physics-based
model, maintaining interpretability of the overall model. Similarly,
we consider a ℓ2 regularization to control the NN contribution. Thus,
we define the regularized cost function as

C(D,θ,ϕ) =

N∑
n=1

∥yn − h(xn;θ,ϕ)∥22 + β∥ϕ∥22 (24)

where β ∈ R+ is a scalar controlling the regularization over the
NN’s parameters, such that when β = 0 the NN can dominate the

APBM and when β → ∞ the NN contribution is reduced. Although
β can be empirically set on a scenario-dependent basis, β = 1 suits
a wide range of conditions, as we show in the next section. Finally,
we define the optimization problem with respect to the jammer loca-
tion θ and the NN’s parameters ϕ as a empirical risk minimization
problem as:

(θ̂, ϕ̂) = argmin
θ,ϕ

Ep̂(D)

{
C(D,θ,ϕ)

}
(25)

where the expectation operator is taken with respect to the empirical
data distribution p̂(D).

4. EXPERIMENTS

In this section we present our experimental results in two simulated
scenarios: an ideal scenario, where the jamming signal propagates
according to a nominal pathloss (PL) model, defined by γ = 2 and
described by (2); and an urban scenario, subject to intense multipath
and shadowing effects. Both scenarios are effectively described by
the power fields in Figure 2 and 3, respectively. The urban scenario is
modeled exploiting a ray tracing approach [26, 27], computing mul-
tiple propagation paths using 3-D environment geometry and elec-
tromagnetic analysis, including free-space loss and reflection losses
up to 4 reflections.

Fig. 2. Power measurements under nominal path loss propagation.

Fig. 3. Power measurements under ray tracing model propagation.

Particularly, we compare the localization performance of (i) the
MLE in (20) under the PL model assumption; (ii) the proposed
APBM (β = 1) implemented as in (25); (iii) the APBM (β = 1)
where the parameter P0 is also estimated jointly along θ and ϕ,
which is of practical importance; (iv) a PL-only solution for (25)
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where h(xn;θ,ϕ) = f̄(xn;θ); and (v) a NN-only solution for
(25) where h(xn;θ,ϕ) = g(xn;ϕ). Additionally, we plot the CRB
(under the PL model) for the sake of benchmarking.

The NN model is a feed-forward network with 2 hidden layers
of 200 and 100 neurons and a hyperbolic tangent activation function.
The PL model in (ii) and (iv) is initialized with the same informa-
tion available to the MLE, i.e. P0 and γ. The models are trained
over 200 epochs with a learning rate of 0.4, exploiting the Adam
optimizer [28] and batch learning.

Both scenarios involve a static jammer, transmitting with P0 =
10 dBW. We collected 10000 observations over an area of 1 km2,
yielding, on average, 1 observation every 10×10m square. Since the
signal power decreases very fast with respect to the distance from the
source, weak power observations are poorly informative and buried
in the noise floor. Only the 15 most powerful observations were
fed to the estimators. We repeated the data collection for different
measurement noise variance and therefore different interference-to-
noise ratio (INR), defined as INR = 10 log10 P0/σ

2 . For each INR
level, NMC = 100 Monte Carlo realizations were simulated to col-
lect statistics about the estimators performances. To compare the dif-
ferent approaches we consider the root-mean-square error (RMSE)
computed over each dimension of θ as

RMSEθi =

√√√√ 1

NMC

NMC∑
n=1

(θi − θ̂i,n)2 (26)

Fig. 4. RMSE in the PL propagation scenario.

Fig. 5. RMSE in the ray tracing propagation scenario.

In the PL scenario, addressed in Figure 4, the jamming signal
propagates in nominal conditions, according to (2), and (i) and (iv)
are based on a model that matches exactly this propagation rule. Not
surprisingly, as the INR increases, they are all approaching the CRB,
which is also based on perfect modeling. The use of the PL model
component alone enables to closely follow the MLE, even at low
INR values, where the fixed implementation settings might prevent
such method to perform at its best. Indeed, it is worth stressing that
the common settings described at the beginning of this section are
kept constant for all the scenarios and methods. Moreover, the so-
lution adopted to circumvent the pathloss formula singularities (see
Section 2.3) might affect the learning process in a systematic way
for a given set of measurements and jammer locations. On the con-
trary, despite the simple propagation rule, the NN-only solution is
unable to effectively learn the model and it is not able to improve fur-
ther above 20 dB of INR. When the separate components are joined
again to realize the APBM we observe a low RMSE, very close to
the MLE, also around 10 dB where the complete system (ii) is out-
performing the PL-only model (iv). In these conditions, the NN
component is probably helping the APBM to overcome the learn-
ing flaws of the PL model. Conversely at very low INR the high
amount of measurement noise has a counter-productive effect on the
joint learning. The APBM can also work being P0-blind (iii), with
no knowledge about the jammer’s power and indeed converge to a
correct estimation (Figure 4). In this case the NN is effectively able
to learn a constant term, which compensate for the missing jammer
information, providing a fundamental aid. The low RMSE values
attained by the MLE and PL model in Figure 4 are possible thanks
to a perfect knowledge of the propagation environment. When it
comes to a realistic scenario such as the one in Figure 3, few valid
assumptions on the pathloss can be made. This results in the jammer
location estimation performances shown in Figure 5. The MLE and
PL-only solution are far from the attainable minimum, instead the
APBM and NN-only model are performing better. How close are
their respective RMSE values strictly depends on how far the actual
propagation model is from an ideal pathloss. The more mismatched
is the PL model the closer the APBM performance is to the NN, as
in this case. It is worth noting that despite the large difference be-
tween the propagation scenarios, the APBM can seamlessly adapt to
both without changes. Also, in this realistic scenario, the ability of
the APBM to perform a successful P0-blind estimation is even more
relevant, since this information is not usually available.

5. CONCLUSION

In this work we proposed a jamming source localization strategy
using crowdsourced measurements. We investigated the use of an
augmented physics-based model (APBM) approach that models the
complex propagation channel with a physics-based pathloss model
and a data-driven NN component, jointly estimating the position of
the jamming source and the NN model parameters. The proposed
method exhibited flexibility to characterize both ideal propagation
conditions and complex urban scenarios, attaining a performance
comparable to a perfect model-aware MLE in the first case, and bet-
ter than a stand-alone NN in the latter. Moreover, such performance
can be reached also with no information about the jamming source,
thus without knowledge about the transmission power, a parameter
not available in realistic scenarios. Further works will investigate the
adaptability of the method in dynamic scenarios, involving a moving
and intermittent jammer, considering also continual learning to ad-
dress the changes in data distribution. To address privacy concerns,
we intend to connect this work with federated learning schemes.
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