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ABSTRACT 

Efficient and accurate building damage assessment is crucial for effective emergency 

response and resource allocation following natural hazards. However, traditional 

methods are often time-consuming and labor-intensive. Recent advancements in 

remote sensing and Artificial Intelligence (AI) have made it possible to automate the 

damage assessment process, and previous studies have made notable progress in 

machine learning classification. However, the application in post-disaster emergency 

response requires an end-to-end model that starts with satellite imagery as input and 

automates the generation of large-scale damage maps as output, which was rarely the 

focus of previous studies. Addressing this gap, this study integrates satellite imagery, 

Geographic Information Systems (GIS), and deep learning. This enables the creation 

of comprehensive, large-scale building damage assessment maps, providing valuable 

insights into the extent and spatial variation of damage. The effectiveness of this 

methodology is demonstrated in Galveston County following Hurricane Ike, where the 

classification of a large ensemble of buildings was automated using deep learning 

models trained on the xBD dataset. The results showed that utilizing GIS can automate 

the extraction of sub-images with high accuracy, while fine-tuning can enhance the 

robustness of the damage classification to generate highly accurate large-scale damage 

maps. Those damage maps were validated against historical reports. 

 

1 | INTRODUCTION 
 

1.1 | Motivation and problem statement 

 

In the aftermath of disasters, the accurate assessment of 

building damage is crucial for guiding emergency 

responses, optimizing resource allocation, and expediting 

social and economic recovery. This assessment serves as 

the foundation for risk-informed decision-making, playing 

a vital role in enhancing community resilience against 

natural hazards (Koliou et al. 2020).  

Current risk assessment methodologies rely on hazard and 

fragility analysis to predict the damage to structures and 

their economic and social consequences (e.g., Masoomi 

and van de Lindt (2016); Koliou and van de Lindt (2020); 

Nofal et al. (2021)). While effective for pre-hazard 

planning, preparedness, and hardening, their dependence 

on probabilistic predictions limits their post-disaster 

applicability due to the substantial aleatory uncertainties 

associated with natural hazards and their interactions with 

structures. 

Methods based on post-disaster damage surveys (e.g., 

Highfield et al. (2014); Aghababaei et al. (2018); 

Aghababaei et al. (2020)) are important for continuous 

refinement of models and codes, estimating long-term 

recovery, and facilitating communities and insurance firms 

in submitting insurance claims. However, they are less 

effective in rapid emergency responses (Lozano et al. 

2023). Traditional post-disaster assessments heavily 

depend on trained ground crews conducting visual 

inspections, leading to inefficiency, prolonged time 

consumption, and risks to crew members from hazardous 

materials and debris (Spencer Jr et al. 2019). 

To address these challenges, there is a growing recognition 

of the potential presented by advanced technologies, such 

as remote sensing, artificial intelligence (AI), and data 

analytics. These are emerging as promising tools capable of 

revolutionizing the assessment process. Since the manual 
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inspection of the remote sensing data usually takes several 

weeks to complete (Lozano et al. 2023), recent studies 

have focused on the integration of AI, particularly deep 

learning, and remote sensing to automate the damage 

assessment process. However, current methods tend to 

concentrate solely on proposing models for machine 

learning classification, rarely extending their methodology 

to incorporate the full system automation starting from the 

acquisition of remote sensing images and ending with the 

generation of large-scale mapping of building damage 

(Matin and Pradhan 2022). This automation is essential to 

provide immediate post-disaster damage evaluation to be 

used in updating risk-assessment predictions of economic 

losses and recovery.  

Hence, ongoing research in the three areas above; 

fragility-based risk assessment, surveys-based damage 

assessment, and AI-based damage classification, are 

currently running in parallel, and each, by itself, has 

limitations in applicability in the immediate and rapid 

post-disaster emergency response. Regional damage maps 

across a disaster-affected region are the main input of most 

risk-assessment methodologies that predict the losses and 

restoration in the short- and long-term recovery phases 

(Koliou et al. 2020). Hence, there is a potential to extend 

the application from pre-hazard mitigation and 

preparedness to post-disaster emergency response and 

adaptive decision-making. This requires a framework 

focusing on automation and data analytics to seamlessly 

transition from satellite images as inputs to the automated 

generation of large-scale damage maps as outputs. 

However, previous studies, discussed in detail in Section 

1.2, focused solely on developing machine learning 

algorithms for damage assessment rather than on the entire 

system from data acquisition to analysis. Hence, a gap lies 

in the transition from technical advancements in machine 

learning classification to the practical implementation of 

automated systems for post-disaster emergency response. 

Another gap pertains to the underutilization of GIS to 

identify buildings despite the heavy utilization of 

geotagged building databases in the risk assessment field 

(Amin Enderami et al. 2022).  

To address these gaps, the current study integrates 

Geographic Information Systems (GIS) with satellite 

imagery and deep learning to automate the generation of 

comprehensive, large-scale building damage maps in the 

disaster region. These maps are intended to provide rapid 

and immediate insights into the extent and spatial variation 

of damage, laying the groundwork for future research to 

utilize them in post-hazard risk-informed decision-

making. Moreover, there is potential for these maps to 

facilitate real-time updates of disaster management plans 

based on evolving on-site conditions, expanding the 

models' capabilities from pre-hazard offline learning to the 

development of digital twins for post-disaster online 

learning (Braik and Koliou 2023).  

The research outlined in this paper introduces a 

methodology designed for the automated and rapid 

generation of large-scale and highly detailed regional 

damage assessment maps in the aftermath of natural 

hazards. Section 2 provides a comprehensive overview of 

the methodology, elucidating the integration of 

georeferenced satellite images, geotagged building data, 

and deep learning. The discussion within this section 

encompasses the validation of machine learning 

classifications, utilizing diverse metrics, and benchmarking 

against historical reports. Section 3 applies the 

methodology to a case study, focusing on Galveston County 

post-Hurricane Ike. The results are validated against 

historical reports, offering a robust demonstration of the 

methodology's effectiveness in post-disaster scenarios. 

Section 4 discusses the limitations of the current study, and 

potential works for future research are explored, building 

upon the groundwork established in this paper. Finally, 

Section 5 summarizes the conclusions drawn from this 

study. 

 

1.2 | Literature review on the automation of building 

damage assessment 

 

The application of deep learning for pattern recognition in 

civil engineering has a history spanning over three decades 

(Adeli and Yeh (1989); Adeli (2001)). In the last decade, 

deep learning found application in various civil engineering 

applications such as construction management (e.g., Rafiei 

and Adeli (2016)), finite element analysis (e.g., Pereira et 

al. (2020)), material engineering (e.g., Rafiei et al. (2017)), 

and modal parameter identification of smart structures (e.g., 

Perez-Ramirez et al. (2016); Pezeshki et al. (2023)). More 

recently, its application in structural health monitoring has 

also gained prominence (Javadinasab Hormozabad et al. 

(2021); Pezeshki et al. (2023)). Several studies focused on 

crack detection in concrete (e.g., Cha et al. (2017); Deng et 

al. (2020); Yang et al. (2018)), while others focused on 

automating the inspection of structural elements in 

buildings and bridges (e.g., Liang (2019); Zheng et al. 

(2022)). Chu et al. (2022) studied tiny crack segmentation 

using attention mechanisms, Ye et al. (2023) investigated 

the detection of slab crack track, Chen et al. (2023) studied 

the online monitoring of crack dynamic development, Shim 

(2023) utilized conditional generative adversarial networks 

for self-training of crack detection, and Yong et al. (2023) 

proposed a framework for zero-shot and few-shot defect 

detection. Also, Cha et al. (2018) utilized deep learning to 

detect various types of damage including steel and bolt 

corrosion. Moreover, researchers proposed frameworks to 

automate the updating of finite element models using deep-

learning-based crack detection (e.g., Zhang and Lin (2022); 

Kong et al. (2023); Gao et al. (2024)).  However, in the 

context of post-disaster regional damage assessment, there 

has been a shift towards the integration of remote sensing 
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technologies with deep learning. Among these, satellite 

imagery and aerial images obtained from unmanned aerial 

vehicles have emerged as primary tools. 

Aerial remote sensing, distinguished by its relatively 

higher resolution, stands out for its ability to detect a wide 

range of damage states. Consequently, researchers have 

been actively exploring its potential for automating the 

damage assessment process. Liu et al. (2020) studied the 

crack assessment of bridge piers using unmanned aerial 

vehicles, while other studies focused on post-disaster 

damage assessment using aerial imagery (e.g., Cheng et al. 

(2021); Hong et al. (2022); Khajwal et al. (2023)). 

However, aerial imagery is often expensive and time-

consuming, and hence, less suitable for rapid emergency 

response compared to satellite imagery (Matin and 

Pradhan 2022). 

In contrast, satellite imagery, despite its comparatively 

lower resolution, offers the advantage of rapid 

accessibility and wider coverage. This makes it 

particularly well-suited for immediate large-scale 

mapping, providing crucial emergency support and 

serving as initial guidance for more in-depth follow-up 

assessments utilizing aerial and terrestrial imagery (Matin 

and Pradhan 2022). The significant challenge of requiring 

a large and comprehensive dataset for model training has 

been addressed to some extent by recent introductions of 

labeled datasets like xBD (Gupta et al. 2019), leading to 

notable progress. 

Several studies (e.g., Li et al. (2019); Kaur et al. (2022)) 

proposed deep learning models to classify post-hazard 

satellite imagery into various damage states. However, no 

discussion was provided beyond machine learning 

classification on how to automate the extraction of the sub-

images. Advancements were made by other studies, 

introducing models that first identify buildings from pre-

disaster images and then classify the damage state from 

the difference between the pre- and post-disaster images. 

Hao et al. (2021) and Wu et al. (2021) proposed attention-

based methodologies that utilize a U-Net for building 

segmentation in pre- and post-disaster images, coupled 

with a Siamese network to compare features and classify 

damage levels based on segmentation masks. Shen et al. 

(2021) employed a two-stage convolutional neural 

network, integrating a U-Net for building localization in 

the first stage and a two-branch multiscale U-Net with a 

cross-directional attention module in the second stage, 

along with data augmentation, to enhance building 

damage assessment from pre- and post-disaster satellite 

images by explicitly considering correlations between the 

images. Gupta and Shah (2021) proposed a localization-

aware loss function for end-to-end training to enhance 

building segmentation and damage classification 

performance. Kaur et al. (2023) employed a hierarchical 

transformer architecture, utilizing four transformer blocks 

to map pre- and post-change features into a common 

domain, generating difference-features of varying 

resolutions, and constructing a hierarchical output from 

these features for building damage assessment. 

Nevertheless, the applicability of these is constrained 

without the georeferencing of buildings necessary for the 

generation of large-scale maps (Matin and Pradhan 2022). 

While Bai et al. (2018) employed the GeoAI platform to 

produce classification results suitable for integration within 

GIS software, the generated output lacks a direct link to any 

existing building database, which limits its utility to 

visualizations and restricts its capability for real-time 

updates of estimates or immediate integration with real-

time statistical analyses. Additionally, all previous works 

depend on the availability of pre- and post-disaster images 

with nearly identical quality and angle, and the 

identification of objects before classification introduces a 

second layer of errors, constraining the robustness and 

generalizability to real-world applications. While the 

potential of GIS has been acknowledged in a few past 

studies (e.g., Cao and Choe (2020); Cao and Choe (2020)), 

these primarily relied on pre-labeled building pixel 

locations within satellite imagery, offering no discussion on 

automating GIS processing for new satellite data. Although 

Miyamoto and Yamamoto (2021) mentioned utilizing 

building databases to extract sub-images of buildings when 

preparing the training dataset, they provided minimal 

elaboration and restricted their methodology and 

application study to comparing various machine learning 

models. Consequently, prior studies integrating deep 

learning with satellite imagery have been limited in their 

applications beyond machine learning classification (Matin 

and Pradhan 2022). 

 

2 | METHODOLOGY 
 

The methodology presented in this section functions as a 

unified pipeline model, seamlessly transitioning from 

georeferenced satellite images as inputs to the generation of 

large-scale damage maps as outputs. The process initiates 

with satellite image processing, incorporating GIS 

information, followed by the extraction of sub-images for 

each building using geotagged data. These two steps allow 

for the automated extraction of building sub-images of the 

new unclassified post-disaster images, which differ from 

the training labeled ones used to train the deep learning 

model. At the core of the methodology is deep learning 

classification, employing a convolutional neural network 

(CNN) model for accurate damage classification. Hence, 

the pre-trained CNN can be used to automate the 

classification of the extracted sub-images into damage 

states. Finally, the integration of classification outcomes 

with the building database facilitates the automated creation 

of comprehensive large-scale damage maps, offering a 

spatial overview of the disaster-affected region. Therefore, 

the complete process could be automated, allowing for 

rapid and large-scale building damage assessment. Figure 1 

visually illustrates the flowchart of the methodology, while 
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detailed discussions are provided in the following sections. 

 

 

Figure 1   Flowchart showing key steps of the proposed methodology for large-scale building damage mapping 

 

2.1 | Georeferenced satellite images 

 

The methodology begins with the acquisition of satellite 

images, leveraging the rapid and wide coverage 

availability from sources such as the United States 

Geological Survey (USGS), the National Oceanic and 

Atmospheric Administration (NOAA), and the European 

Space Agency (ESA). For example, NOAA provides 

timely access to high-resolution satellite imagery after the 

occurrence of a natural hazard.  

When using satellite imagery for assessing building 

damage, it is important to reference the images within a 

GIS framework. This involves providing details such as 

coordinate reference system, projection parameters, and 

transformation information. The satellite images are 

usually encoded using specialized GIS file formats like 

GeoTiff (Mahammad and Ramakrishnan 2003) or 

accompanied with separate world files (ESRI 2024), 

which allows them to be integrated into the broader GIS 

environment. 

A standard world file stores 6 ordered transformation 

parameters: 𝐴, 𝐷, 𝐵, 𝐸, 𝐶, 𝐹, which are pixel size in the x-

direction, negative pixel size in the y-direction, rotation 

about the y-axis, rotation about the x-axis, x-coordinate of 

the center of the upper left pixel, and y-coordinate of the 

center of the upper left pixel, respectively. Consequently, 

the coordinates (𝐿𝑜𝑛𝑖 , 𝐿𝑎𝑡𝑖) of the center of any pixel 𝑖 

with column numbers (𝑥𝑖 , 𝑦𝑖) can be calculated using Eq. 

(1) and Eq. (2), respectively (ESRI 2024). 

𝐿𝑜𝑛𝑖 = 𝐴𝑥𝑖 + 𝐵𝑦
𝑖

+ 𝐶           (1) 

𝐿𝑎𝑡𝑖 = 𝐷𝑥𝑖 + 𝐸𝑦
𝑖

+ 𝐹           (2) 

 

2.2 | Sub-image extraction using geotagged building data 

 

The utilization of deep learning for object detection is 

essential for objects that are typically not geotagged, such 

as post-hazard tree fall patterns (Rhee et al. 2021). When it 

comes to building identification, the necessity for deep 

learning arises only in the absence of geotagged building 

data; however, it becomes redundant when such data is 

readily available. Given that governments and counties 

usually maintain comprehensive datasets, and testbeds 

provide accessible data for research purposes (Amin 

Enderami et al. 2022), it becomes more efficient to leverage 

such existing data for extracting building sub-images. 

Employing highly accurate geotagged data ensures that the 

building identification process is virtually error-free and 

allows the deep learning model to focus exclusively on the 

damage classification task. By integrating them with 

georeferenced satellite imagery, sub-images of every 

building within the target region can be automatically 

extracted with the size of extraction proportional to the area 

or dimensions of the building. These sub-images represent 

the input of the deep learning classification model discussed 

in the next section. 

 

2.3 | Damage classification using deep learning 

 

2.3.1 | Training dataset 

 

Sections 2.1 and 2.2 above discussed the GIS processing 
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and building sub-image extraction of the target post-

disaster images. These differ than the training dataset 

needed to train the CNN, which is discussed in this section. 

A comprehensive dataset is essential for training a robust 

model to accurately classify buildings based on their 

damage states. It exposes the model to diverse examples of 

building damage, facilitating learning and generalization 

of associated patterns. Recent contributions, notably the 

xBD dataset (Gupta et al. 2019), help address this 

challenge and allow for the extraction of thousands of 

labeled sub-images of buildings for model training and 

testing. While xBD is the largest building damage 

assessment dataset to date, covering 16 different natural 

hazards, including earthquakes, hurricanes, floods, 

tornados, fires, and more, there is recognition that more 

thorough datasets may be required in the future (Matin and 

Pradhan 2022). This acknowledgment stems from 

potential differences between the terrain and damage 

patterns present in target satellite images and those 

covered in the training data. Fine-tuning, as discussed 

later, may be necessary to address this challenge. 

The xBD dataset comprises both pre- and post-hazard 

satellite images, with post-hazard images labeled for four 

damage states: no damage, minor damage, major damage, 

and collapse. Identifying minor damage, relying on subtle 

features like missing roof elements and minor cracks, 

proves challenging in satellite imagery, yielding sub-

optimal results in prior studies (e.g., Kaur et al. (2023)). 

Acknowledging this limitation, the current study focuses 

on the more distinguishable classes; no damage, major 

damage, and destroyed. Therefore, the immediate and 

rapid classification using satellite images can serve as an 

initial step for more comprehensive assessments, utilizing 

higher quality aerial and terrestrial imagery capable of 

capturing additional damage states. With the availability 

of higher-resolution satellite imagery, future research can 

explore their utility in detecting more nuanced damage 

states. 

The xBD dataset consists of large-scale satellite images, 

with accompanying files of the pixel location of buildings 

within these images. Since the CNN used in this paper 

takes sub-images of buildings as input, the xBD sub-

images were extracted using the pixel locations, with each 

image having a size of 120x120 pixels. Then, the images 

were manually filtered to include only the high-quality 

ones with distinct damage state, to ensure accurate training 

of the CNN. None of the selected sub-images included 

minor damage states as discussed earlier. These are used 

for the training and differ from the sub-images discussed 

in the previous section, which are automatically extracted 

from the satellite images using geolocations obtained from 

building databases. Since the images extracted 

automatically from the satellite ones could potentially 

have parts from neighboring buildings, especially in urban 

regions with closely spaced buildings, the training dataset 

was selected to include some images with neighboring 

buildings appearing. While the Hurricane Ike application 

dataset only includes post-disaster images, future research 

could be applied to other testbeds with both pre- and post-

disaster satellite images available. Hence, advanced CNN 

models could be utilized to have such neighboring buildings 

artificially removed from the sub-images. This is 

acknowledged as a limitation of the current study. 

 

2.3.2 | CNN training 

 

CNN is a specialized deep learning model designed for 

image recognition and classification tasks, excelling in the 

analysis of intricate patterns within visual data (Goodfellow 

et al. 2016). This research employs a CNN architecture to 

automate the classification of building damage states in 

post-disaster satellite imagery. The proposed CNN model in 

this paper focuses on the classification of building sub-

images, leveraging prior building identification through 

geotagging. This targeted approach allows for the use of a 

relatively shallow network. 

The input to the CNN consists of labeled images, each 

represented as a 3D tensor with dimensions corresponding 

to pixels (height and width) and RGB normalized channels. 

The model architecture includes convolutional, pooling, 

fully connected, and SoftMax layers. Convolutional layers 

are integral for spatial feature extraction, employing 

convolution operations to identify patterns and detect local 

features. The application of ReLU activation functions 

within these layers introduces non-linearity, enabling the 

network to capture complex relationships in the data. 

Pooling layers systematically down sample spatial 

dimensions, contributing to dimensionality reduction and 

computational efficiency. Fully connected layers play a 

central role in comprehensive learning, connecting nodes 

between layers and integrating high-level features. The final 

SoftMax layer transforms the network's output into pseudo 

probabilities for each class, reflecting the model's 

confidence in its predictions. The classification is 

determined by selecting the class with the highest 

probability, representing the model's final classification 

output. Figure 2 visually represents the standard CNN 

architecture, illustrating the arrangement of convolutional 

(Conv), pooling (pool) layers, and fully connected (FC) 

layers, followed by a SoftMax layer and a classification 

layer (Goodfellow et al. (2016); Roberts et al. (2022); 

Prince (2023)).  

The loss function serves as a critical component in the 

training of neural networks, guiding the optimization 

process by quantifying the dissimilarity between predicted 

values and ground-truth labels. In the context of multi-

classification tasks, the cross-entropy loss stands out as a 

widely adopted and effective choice for minimizing the 

disparity between predicted and actual class distributions 

(Krizhevsky et al. 2017). The cross-entropy loss penalizes 

the model more severely when its predicted probabilities 

deviate from the true distribution. Mathematically, the 
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cross-entropy loss for a multi-class classification task is 

defined as shown in Eq. (3), where 𝑚 is the number of 

classes, 𝑞𝑖 is the ground-truth label, and 𝑝𝑖 is the SoftMax 

probability. 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ [𝑞𝑖 log(𝑝𝑖)]𝑚
𝑖=1          (3) 

 

Figure 2   CNN architecture for image classification 

 

2.3.3 | Performance evaluation and fine-tuning 

 

Evaluating the model's performance is an important step in 

ensuring its efficacy in building damage state 

classification, employing key metrics such as accuracy, 

precision, recall, F1 score, and the confusion matrix 

(Powers 2020). Initially, the testing data, derived from a 

subset of the training dataset, serves as a benchmark to 

assess the model's proficiency in pattern recognition. 

However, success with the testing data doesn't guarantee 

generalization to new data. Therefore, for new target 

satellite images, an extracted subset is essential to evaluate 

the model's ability to generalize. When the model performs 

well on testing data but shows suboptimal results on the 

application data, it suggests challenges related to 

generalization, implying that the new satellite images don't 

align with the characteristics of the training images. In such 

cases, transfer learning through fine-tuning, using a small 

manually classified sample from the target satellite images, 

becomes necessary. This enhances the model's proficiency, 

ensuring it excels not only in controlled testing conditions 

but also demonstrates robust performance in real-world 

applications. 

 

2.4 | Large-scale mapping 

 

Following the CNN training, the model is applied to 

classify every geotagged sub-image extracted from the 

satellite imagery into distinct damage states. This 

automated mapping enables the creation of comprehensive 

damage maps, providing a spatial overview of damage 

variation across the affected disaster region. The geotagged 

sub-images, being connected to the building database, offer 

additional utility beyond mapping. They can serve as inputs 

for statistical analyses, contributing valuable insights into 

damage patterns. Moreover, they provide a means to update 

pre-hazard prediction models, enhancing the predictive 

capabilities of future assessments. 

 

3 | APPLICATION STUDY 
 
3.1 | Hurricane Ike satellite images and Galveston 

Testbed 

 

The application of the proposed methodology is 

demonstrated using the Galveston testbed and Hurricane 

Ike satellite images. In contrast to the xBD dataset utilized 

for model training, the Hurricane Ike images were 

independently sourced from NOAA (NOAA 2008). 

Additionally, the geotagged building data was acquired 

from Incore (Incore 2023). This diversification of data 

sources ensures a comprehensive validation of the model's 

robustness in real-world scenarios.  

Figure 3 (a) provides a detailed overview of the building 

map of Galveston, incorporating a total of 84,024 

buildings. This breakdown includes 49,060 buildings in 

Mainland Galveston, 29,480 buildings in Galveston Island, 

and 5,484 buildings in Bolivar Peninsula. Complementing 

this, Figure 3 (b) shows the projection of satellite images 

onto Galveston County, totaling 527 images, each with 

dimensions ranging between 2.75 km to 3.75 km. The 

integration of these maps is presented in Figure 4, 

showcasing the projection of geotagged buildings over 

sample georeferenced satellite images in Mainland 

Galveston, Galveston Island, and Bolivar Peninsula. The 

seamless alignment between the two maps ensures error-

free extraction of building sub-images.
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Figure 3   Graphic view of Galveston Island’s: (a) Building map (b) Post-Ike satellite images 

 

Figure 4   Projection of geotagged buildings over sample georeferenced satellite images in: (a) Mainland Galveston (b) Galveston Island (c) 

Bolivar Peninsula 

 
3.2 | CNN training and testing 

 

Approximately 5,000 high-quality labeled sub-images 

were extracted from the xBD dataset, representing samples 

from four hazards, namely Hurricane Harvey, Hurricane 

Michael, Joplin Tornado, and Tuscaloosa Tornado. The 

dataset was partitioned, allocating 80% for training and the 

remaining 20% split equally between validation and testing 

subsets. To address class imbalance, the training dataset 

underwent oversampling using the SMOTE technique 

(Chawla et al. 2002). Additionally, data augmentation 

techniques, such as random contrast and brightness 

adjustments, were employed to enhance variability, 

resulting in an augmented dataset comprising 

approximately 29,000 sub-images for training.  

The architecture of the CNN encompasses five 

convolutional layers (of 3x3 filters with sizes 32, 64, 

128,128, 128), five max-pooling layers (2x2), and five fully 

connected layers (of sizes 128, 128, 64, 64, 32). The model, 

concluding with a Softmax layer for classification, is 

characterized by a total of 485,187 trainable parameters. 

This architecture was selected based on manual 

experiments. Then, hyperparameter tuning was performed 

using the validation data. Therefore, the training of the 

model underwent 15 epochs with a batch size of 64, 

utilizing the Adam optimizer with a 0.001 learning rate and 

the cross-entropy loss function.  

The model's performance was evaluated on the testing 

dataset, achieving accuracy, precision, Recall, and F1 

scores of 93%, 90%, 86%, and 88%, respectively. Figure 5 

presents the confusion matrix for the testing dataset, 

illustrating the CNN's high accuracy in classifying the non-

damaged and destroyed damage states (98% and 96%, 

respectively), with sufficient accuracy for the major 

damage state (65%). Additionally, Table 1 compares the 

model's performance with previous published papers. 

While the table demonstrates the current methodology's 

strong performance compared to state-of-the-art studies, 

any further direct conclusions should consider the major 

differences between studies, such as the variations in the 

number of damage classes, training datasets, use of pre-

hazard images, and consideration of segmentation tasks 

before classification. For example, while Kaur et al. (2022) 

achieved a higher F1 score, the current study would achieve 
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an even higher F1 score of 98% if both major damage and 

destroyed damage states are merged since most of the error 

shown in Figure 5 stems from the confusion between these 

two damage states. 

 

Figure 5   Confusion matrix of testing data 

 

Table 1   Comparision of the testing results of the current study 

with previously published papers  

Reference 

Number 

of 

classes 

Training 

dataset 

Satellite 

images 
CNN task 

F1 

score 

(%) 

Li et al. 

(2019) 
3 Sandy 

Post 

only 
Classification 68 

Dotel et 

al. (2020) 
4 Harvey 

Pre and 

post 

Classification 

& 

segmentation 

68 

Kaur et al. 

(2022) 
2 Harvey 

Post 

only 
Classification 96 

Kaur et al. 

(2023) 
4 xBD 

Pre and 

post 

Classification 

& 

segmentation 

80 

Current 

paper 
3 xBD 

Post 

only 
Classification 88 

 

Moreover, it should be noted that the high performance on 

the testing data indicates the CNN's efficacy on images 

with characteristics similar to the xBD dataset, 

encompassing comparable damage, building, and terrain 

patterns. The training sub-images, chosen for high quality 

and distinctive damage patterns, allowed the CNN to 

effectively learn features, especially as it could focus 

exclusively on this task, given successful building 

identification using GIS. The testing subset served to 

protect against overfitting. However, it's crucial to 

acknowledge that this doesn't guarantee the model's 

generalizability to new hazards with different patterns. 

While most previous studies conclude at this stage, this 

study goes further by applying the methodology to the 

Galveston testbed when subjected to Hurricane Ike, as 

discussed in the subsequent sections. 

 

3.3 | CNN evaluation on real-world data 

 

The CNN model's performance was evaluated using 

approximately 600 sub-images extracted from Hurricane 

Ike satellite imagery. To establish a ground truth for 

comparison, these sub-images underwent manual 

classification. Figure 6 (a) shows the confusion matrix 

when applying the trained CNN model on the real-world 

data. Despite the model's success in classifying "no 

damage" and "destroyed" classes, its performance was 

suboptimal for "major damage". This suggests that the 

damage patterns of Hurricane Ike significantly differ from 

those in the xBD dataset, necessitating transfer learning via 

fine-tuning. 

Figure 6 (b), Figure 6 (c), and Figure 6 (d) show the 

confusion matrices after fine-tuning the model with 0.5%, 

1.0%, and 1.5% of Hurricane Ike sub-images, respectively. 

The fine-tuning subsets excluded any evaluation data to 

ensure accurate assessment. Moreover, Table 2 

summarizes the evaluation metrics for all 4 cases. These 

highlight the positive impact of fine-tuning on the model's 

robustness, demonstrating a significant enhancement in 

performance with an increased fine-tuning sample size. 

Given that real-world applications often cover areas with 

diverse damage patterns and terrains compared to the 

training data, as evident in this application study, fine-

tuning becomes important to ensure the methodology's 

robustness in varied scenarios.  

Figure 7 shows a sample of classified sub-images using the 

fine-tuned model. These sub-images were automatically 

extracted from the post-disaster satellite imagery using the 

methodology proposed in Section 2.2, and then fed into the 

pre-trained CNN model. While most of the images were 

correctly classified as demonstrated in Figure 6 (d), the 

model still misclassified some images. It is also worth 

noting that the extraction included some parts of 

neighboring buildings, which is acknowledged as a 

limitation of utilizing GIS and building area features in 

extracting the sub-images. 
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Figure 6   Confusion matrix of Ike data: (a) Without fine-tuning (b) Fine-tuned with 0.5% of Ike images (c) Fine-tuned with 1.0% of Ike 

images(d) Fine-tuned with 1.5% of Ike images 

 

Table 2   Accuracy, precision, recall, and F1 scores for various fine-tuning levels  

Evaluation Metric Without Fine-tuning Fine-tuning with 

0.5% of Ike sub-

images 

Fine-tuning with 

1.0% of Ike sub-

images 

Fine-tuning with 

1.5% of Ike sub-

images 

Accuracy (%) 85 80 88 90 

Precision (%) 82 75 85 85 

Recall (%) 74 79 83 87 

F1 (%) 75 76 84 86 

 

Figure 7   Sample of classified sub-images 

 
3.4 | Classification outcomes 

 

The fine-tuned model was applied to classify all extracted 

sub-images, and subsequently, the classification results 

were geotagged and projected back onto the satellite 

images. In Figure 8, Figure 9, and Figure 10, sample 

classification maps for Mainland Galveston, Galveston 

Island, and Bolivar Peninsula are presented, respectively. 

These maps visually show the model's classification 

outcomes across various geographic areas, providing 

valuable insights into the spatial distribution of building 

damage states following Hurricane Ike. The buildings were 

precisely identified and accurately classified using the 

proposed methodology. Figure 8 illustrates no damage 

classification for all buildings in the satellite image, 

representing the situation in most areas on Mainland 

Galveston. Figure 9 shows a substantial amount of major 

damage and some destruction in Palm Beach, while Figure 

10 showcases significant damage and destruction on the 

Bolivar Peninsula.
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Figure 8   Sample map of Galveston Mainland’s: (a) Satellite image (b) Detection of major damage and destruction 

 
Figure 9   Sample map of Galveston Island’s: (a) Satellite image (b) Detection of major damage and destruction 
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Figure 10   Sample map of Bolivar Peninsula’s: (a) Satellite image (b) Detection of major damage and destruction 

 
3.5 | Large-scale mapping and validation against 

historical reports 

 

Galveston County, spanning Galveston Island, Bolivar 

Peninsula, and Mainland Galveston, provides a diverse 

landscape that showcases distinctive damage patterns 

resulting from Hurricane Ike. This diversity allows for a 

comprehensive evaluation of the methodology’s 

effectiveness in capturing and categorizing unique damage 

and destruction features in each region.  

As per historical reports (FCD (2008); Berg (2009); 

Highfield et al. (2014)), the Bolivar Peninsula emerged as 

the most severely affected area, with a majority of its 

buildings either destroyed or suffering major damage. 

Approximately 3,266 buildings on the peninsula faced 

destruction or severe damage in the aftermath of the 

hurricane. Galveston Island, on the other hand, displayed a 

more varied pattern of damage. Higher damage levels were 

observed on the bay side, attributed to surge washing back 

from the bay. The main city on the right portion of 

Galveston Island, closer to the seawall, experienced 

comparatively less destruction, but considerable damage, 

nonetheless. In contrast, the western part of the island 

suffered the most extensive destruction. Mainland 

Galveston, like Houston-surrounding area, was fortunate to 

avoid significant damage, sparing most of its buildings 

from the major impacts of the hurricane. 

Figure 11 illustrates a large-scale damage map of 

Galveston County, covering tens of thousands of buildings 

across the entire region. Generated using the proposed 

methodology, the map aligns well with the historical 

reports, depicting the Bolivar Peninsula as severely 

affected, with thousands of buildings extensively damaged 

or destroyed. Galveston Island exhibits concentrated 

damage on the bay side, while Galveston Mainland appears 

to be the least affected, with very few buildings damaged 

and even fewer destroyed. Complementing the map, Figure 

12 presents bar plots of damage classification results for 

Galveston County as a whole, Mainland Galveston, 

Galveston Island, and Bolivar Peninsula. The plots align 

well with the historical records and further support the 

conclusions made based on Figure 11 regarding the spatial 

variability of damage between the different regions. The 

statistics generated in Figure 12 can be automatically and 

rapidly generated using the proposed methodology, which 

holds great potential to gain immediate insight into the 

spatial distribution of damage. This can be used to update 

emergency response plans and direct rescue crews. 

Moreover, there is a potential to integrate social science 

with the results of the current methodology to identify 

socially vulnerable areas within the disaster affected 

region. 

In contrast to historical reports that took weeks to prepare, 

such as Highfield et al. (2014), which stated that assessing 

only 1,500 buildings took 2,000 hours of fieldwork, the 

map and statistics presented here can be generated 

automatically and almost immediately after the hazard, as 

soon as satellite images become available.  

It is important to acknowledge that while satellite images 

prove effective in detecting major damage and destruction, 

their efficacy in identifying minor damages may be limited. 

In the case of Galveston County, where around 24,000 

buildings experienced some level of damage (FCD 2008), 

the proposed methodology concentrates specifically on 

detecting the buildings that either faced destruction or 

suffered major damage. Consequently, the damage 

assessment derived from satellite images provides a 

comprehensive overview, serving as an initial step for a 
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more thorough evaluation utilizing additional data sources, 

such as aerial and terrestrial imagery. The potential 

integration of these diverse data sources could be explored 

in a future study, where a unified methodology combines 

all available sources of data-driven damage detection.

 

 

Figure 11   Galveston County large-scale map for the detection of major damage and destruction 

 

 

Figure 12   Bar plots of damage classification results for (a) Galveston County (all parts) (b) Mainland Galveston (c) Galveston Island (d) 

Bolivar Peninsula 
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4 | DISCUSSION, LIMITATIONS, AND 

FUTURE WORK 
 

4.1 |  Strengths and weaknesses of the proposed 

methodology compared to state-of-the-art methodologies 

 

The primary strength of the proposed methodology lies in 

its full automation, spanning from initial satellite image 

acquisition to large-scale damage mapping. This 

comprehensive approach distinguishes it from prior 

studies, offering a valuable tool for future disaster risk 

management methodologies. Importantly, it eliminates the 

need for pre-hazard images with identical quality and 

angles to post-disaster imagery, a requirement in previous 

segmentation-focused approaches. Leveraging highly 

accurate geo-tagged building data enables precise 

extraction of building sub-images, reducing potential errors 

introduced by machine learning techniques. Nevertheless, 

the reliance on geotagged building databases presents a 

limitation, restricting the methodology's applicability in 

scenarios where such data is unavailable. Furthermore, 

while comparison between pre- and post-hazard images 

could enhance CNN’s performance, the current 

methodology solely relies on post-disaster imagery, 

missing out on potential improvements afforded by pre-

disaster data integration. These comparisons are 

summarized in Table 3. 

 
Table 3   Comparing the advantages and disadvantages of the 

proposed methodology other to state-of-the-art methodologies  

References 

Method for 

building 

identification 

Building 

identification 

depends on the 

availability of 

Automates 

the 

generation of 

large-scale 

damage maps 

Li et al. (2019), 

Kaur et al. (2022) 
N/A N/A No 

Hao et al. (2021), 

Wu et al. (2021), 

Shen et al. (2021), 

Gupta and Shah 

(2021), Kaur et al. 

(2023) 

Deep learning 

Pre-hazard 

satellite 

imagery 

No 

Current paper GIS 

Geotagged 

building 

database 

Yes 

 
4.2 | Limitations and future works 

 

Despite the promising results for the automation of large-

scale damage mapping, the proposed methodology still has 

limitations in its current form. The study relies heavily on 

the xBD dataset. While being one of the most 

comprehensive datasets, xBD suffers from a relatively low 

resolution and doesn’t fully represent the diversity of 

building damage patterns and archetypes worldwide. 

Hence, future work could enhance the generalization across 

different disaster scenarios by expanding the training 

datasets to include a more diverse range of hazards and 

regions. Consequently, the robustness of the methodology 

could be further validated by applying it to other types of 

natural hazards, such as tornados, earthquakes, and 

wildfires. 

Moreover, damage detection using satellite imagery is 

limited to major roof damage and complete destruction of 

walls. Therefore, future work could integrate geolocation 

features (as suggested by Cao and Choe (2020)) and 

engineering models to predict the minor and moderate 

damage states. These features associated with different 

hazards could include the distance from the earthquake 

epicenter and earthquake magnitude, distance from the 

shoreline and hurricane scale, or distance from the tornado 

center path and tornado intensity. This will necessitate a 

more complex deep learning model compared to the simple 

CNN architecture utilized in the current study. Therefore, 

exploring advanced deep learning architectures and 

techniques would further augment the model's capacity to 

capture damage patterns. In addition to the U-net and 

Siamese structures discussed earlier, future research could 

explore the application of other sophisticated deep learning 

algorithms such as neural dynamic classification and self-

supervised learning algorithms (Rafiei and Adeli (2017); 

Alam et al. (2020); Rafiei et al. (2022)). 

Integrating the proposed methodology with building 

databases holds significant potential, allowing the 

combination of pre-hazard risk assessment models with 

post-hazard immediate response strategies, representing a 

significant step towards achieving a disaster management 

digital twin. Hence, restoration and recovery models could 

be updated using real-time-generated damage 

classifications. This could also facilitate continuous 

learning and model improvement by updating physics-

based prediction models.  

Moreover, the large-scale maps generated by the 

methodology lay the groundwork for comprehensive 

damage assessment, incorporating terrestrial and aerial 

imagery alongside field observations. Therefore, the 

temporal integration of satellite imagery and real-time data 

streams could introduce a dynamic element to damage 

assessment, allowing for more responsive and up-to-date 

analyses. 

 

5 | CONCLUSIONS 
 

This research introduces a methodology to automate the 

large-scale damage assessment following natural hazards. 

The novelty lies in the utilization of geotagged building 

datasets to extract sub-images from georeferenced satellite 

imagery, resulting in error-free building identification, and 

enabling deep learning to focus on damage classification. 

Hence, the entire system can be automated starting from the 

acquisition of satellite imagery and ending with the 

generation of large-scale damage maps connected to 
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building databases, as explained in the methodology 

introduced in Section 2. 

The application study presented in Section 3, using the 

Galveston Testbed and Hurricane Ike satellite images, 

showcased the methodology’s efficiency in identifying 

buildings using GIS, and the training of the CNN using the 

xBD dataset showed high performance on testing datasets, 

with an F1 score of 88%. Fine-tuning further ensured the 

model's robust performance when applied to a new dataset 

with diverse landscapes and damage patterns, with an F1 

score of 86%. The validation against historical reports 

provided evidence of the model's high accuracy in 

detecting damage patterns and spatial variability. 

This research serves to automate the rapid generation of 

large-scale damage assessment maps, offering valuable 

support for immediate emergency response, and 

establishing a foundation for future advancements in 

disaster management and recovery efforts. The next step is 

to apply the current methodology in disaster management 

by updating the risk-assessment predictions using post-

disaster damage assessment, hence, extending the risk-

assessment models toward disaster management digital 

twins. 
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