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ABSTRACT

Efficient and accurate building damage assessment is crucial for effective emergency
response and resource allocation following natural hazards. However, traditional
methods are often time-consuming and labor-intensive. Recent advancements in
remote sensing and Artificial Intelligence (AI) have made it possible to automate the
damage assessment process, and previous studies have made notable progress in
machine learning classification. However, the application in post-disaster emergency
response requires an end-to-end model that starts with satellite imagery as input and
automates the generation of large-scale damage maps as output, which was rarely the
focus of previous studies. Addressing this gap, this study integrates satellite imagery,
Geographic Information Systems (GIS), and deep learning. This enables the creation
of comprehensive, large-scale building damage assessment maps, providing valuable
insights into the extent and spatial variation of damage. The effectiveness of this
methodology is demonstrated in Galveston County following Hurricane Ike, where the
classification of a large ensemble of buildings was automated using deep learning
models trained on the xBD dataset. The results showed that utilizing GIS can automate
the extraction of sub-images with high accuracy, while fine-tuning can enhance the
robustness of the damage classification to generate highly accurate large-scale damage

1 | INTRODUCTION

1.1 | Motivation and problem statement

In the aftermath of disasters, the accurate assessment of
building damage is crucial for guiding emergency
responses, optimizing resource allocation, and expediting
social and economic recovery. This assessment serves as
the foundation for risk-informed decision-making, playing
a vital role in enhancing community resilience against
natural hazards (Koliou et al. 2020).

Current risk assessment methodologies rely on hazard and
fragility analysis to predict the damage to structures and
their economic and social consequences (e.g., Masoomi
and van de Lindt (2016); Koliou and van de Lindt (2020);
Nofal et al. (2021)). While effective for pre-hazard
planning, preparedness, and hardening, their dependence
on probabilistic predictions limits their post-disaster
applicability due to the substantial aleatory uncertainties

maps. Those damage maps were validated against historical reports.

associated with natural hazards and their interactions with
structures.

Methods based on post-disaster damage surveys (e.g.,
Highfield et al. (2014); Aghababaei et al. (2018);
Aghababaei et al. (2020)) are important for continuous
refinement of models and codes, estimating long-term
recovery, and facilitating communities and insurance firms
in submitting insurance claims. However, they are less
effective in rapid emergency responses (Lozano et al.
2023). Traditional post-disaster heavily
depend on trained ground crews conducting visual
inspections, leading to inefficiency, prolonged time
consumption, and risks to crew members from hazardous
materials and debris (Spencer Jr et al. 2019).

To address these challenges, there is a growing recognition
of the potential presented by advanced technologies, such
as remote sensing, artificial intelligence (Al), and data
analytics. These are emerging as promising tools capable of
revolutionizing the assessment process. Since the manual

assessments
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inspection of the remote sensing data usually takes several
weeks to complete (Lozano et al. 2023), recent studies
have focused on the integration of Al, particularly deep
learning, and remote sensing to automate the damage
assessment process. However, current methods tend to
concentrate solely on proposing models for machine
learning classification, rarely extending their methodology
to incorporate the full system automation starting from the
acquisition of remote sensing images and ending with the
generation of large-scale mapping of building damage
(Matin and Pradhan 2022). This automation is essential to
provide immediate post-disaster damage evaluation to be
used in updating risk-assessment predictions of economic
losses and recovery.

Hence, ongoing research in the three areas above;
fragility-based risk assessment, surveys-based damage
assessment, and Al-based damage classification, are
currently running in parallel, and each, by itself, has
limitations in applicability in the immediate and rapid
post-disaster emergency response. Regional damage maps
across a disaster-affected region are the main input of most
risk-assessment methodologies that predict the losses and
restoration in the short- and long-term recovery phases
(Koliou et al. 2020). Hence, there is a potential to extend
the application from pre-hazard mitigation and
preparedness to post-disaster emergency response and
adaptive decision-making. This requires a framework
focusing on automation and data analytics to seamlessly
transition from satellite images as inputs to the automated
generation of large-scale damage maps as outputs.
However, previous studies, discussed in detail in Section
1.2, focused solely on developing machine learning
algorithms for damage assessment rather than on the entire
system from data acquisition to analysis. Hence, a gap lies
in the transition from technical advancements in machine
learning classification to the practical implementation of
automated systems for post-disaster emergency response.
Another gap pertains to the underutilization of GIS to
identify buildings despite the heavy utilization of
geotagged building databases in the risk assessment field
(Amin Enderami et al. 2022).

To address these gaps, the current study integrates
Geographic Information Systems (GIS) with satellite
imagery and deep learning to automate the generation of
comprehensive, large-scale building damage maps in the
disaster region. These maps are intended to provide rapid
and immediate insights into the extent and spatial variation
of damage, laying the groundwork for future research to
utilize them in post-hazard risk-informed decision-
making. Moreover, there is potential for these maps to
facilitate real-time updates of disaster management plans
based on evolving on-site conditions, expanding the
models' capabilities from pre-hazard offline learning to the
development of digital twins for post-disaster online
learning (Braik and Koliou 2023).

The research outlined in this paper introduces a
methodology designed for the automated and rapid
generation of large-scale and highly detailed regional
damage assessment maps in the aftermath of natural
hazards. Section 2 provides a comprehensive overview of
the methodology, eclucidating the integration of
georeferenced satellite images, geotagged building data,
and deep learning. The discussion within this section
encompasses the learning
classifications, utilizing diverse metrics, and benchmarking
against historical reports. Section 3 applies the
methodology to a case study, focusing on Galveston County
post-Hurricane Ike. The results are validated against
historical reports, offering a robust demonstration of the
methodology's effectiveness in post-disaster scenarios.
Section 4 discusses the limitations of the current study, and
potential works for future research are explored, building
upon the groundwork established in this paper. Finally,
Section 5 summarizes the conclusions drawn from this
study.

validation of machine

1.2 | Literature review on the automation of building
damage assessment

The application of deep learning for pattern recognition in
civil engineering has a history spanning over three decades
(Adeli and Yeh (1989); Adeli (2001)). In the last decade,
deep learning found application in various civil engineering
applications such as construction management (e.g., Rafiei
and Adeli (2016)), finite element analysis (e.g., Pereira et
al. (2020)), material engineering (e.g., Rafiei et al. (2017)),
and modal parameter identification of smart structures (e.g.,
Perez-Ramirez et al. (2016); Pezeshki et al. (2023)). More
recently, its application in structural health monitoring has
also gained prominence (Javadinasab Hormozabad et al.
(2021); Pezeshki et al. (2023)). Several studies focused on
crack detection in concrete (e.g., Cha et al. (2017); Deng et
al. (2020); Yang et al. (2018)), while others focused on
automating the inspection of structural elements in
buildings and bridges (e.g., Liang (2019); Zheng et al.
(2022)). Chu et al. (2022) studied tiny crack segmentation
using attention mechanisms, Ye et al. (2023) investigated
the detection of slab crack track, Chen et al. (2023) studied
the online monitoring of crack dynamic development, Shim
(2023) utilized conditional generative adversarial networks
for self-training of crack detection, and Yong et al. (2023)
proposed a framework for zero-shot and few-shot defect
detection. Also, Cha et al. (2018) utilized deep learning to
detect various types of damage including steel and bolt
corrosion. Moreover, researchers proposed frameworks to
automate the updating of finite element models using deep-
learning-based crack detection (e.g., Zhang and Lin (2022);
Kong et al. (2023); Gao et al. (2024)). However, in the
context of post-disaster regional damage assessment, there
has been a shift towards the integration of remote sensing
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technologies with deep learning. Among these, satellite
imagery and aerial images obtained from unmanned aerial
vehicles have emerged as primary tools.

Aerial remote sensing, distinguished by its relatively
higher resolution, stands out for its ability to detect a wide
range of damage states. Consequently, researchers have
been actively exploring its potential for automating the
damage assessment process. Liu et al. (2020) studied the
crack assessment of bridge piers using unmanned aerial
vehicles, while other studies focused on post-disaster
damage assessment using aerial imagery (e.g., Cheng et al.
(2021); Hong et al. (2022); Khajwal et al. (2023)).
However, aerial imagery is often expensive and time-
consuming, and hence, less suitable for rapid emergency
response compared to satellite imagery (Matin and
Pradhan 2022).

In contrast, satellite imagery, despite its comparatively

lower resolution, offers the advantage of rapid
accessibility and wider coverage. This makes it
particularly ~ well-suited for immediate large-scale

mapping, providing crucial emergency support and
serving as initial guidance for more in-depth follow-up
assessments utilizing aerial and terrestrial imagery (Matin
and Pradhan 2022). The significant challenge of requiring
a large and comprehensive dataset for model training has
been addressed to some extent by recent introductions of
labeled datasets like xBD (Gupta et al. 2019), leading to
notable progress.

Several studies (e.g., Li et al. (2019); Kaur et al. (2022))
proposed deep learning models to classify post-hazard
satellite imagery into various damage states. However, no
discussion was provided beyond machine learning
classification on how to automate the extraction of the sub-
images. Advancements were made by other studies,
introducing models that first identify buildings from pre-
disaster images and then classify the damage state from
the difference between the pre- and post-disaster images.
Hao et al. (2021) and Wu et al. (2021) proposed attention-
based methodologies that utilize a U-Net for building
segmentation in pre- and post-disaster images, coupled
with a Siamese network to compare features and classify
damage levels based on segmentation masks. Shen et al.
(2021) employed a two-stage convolutional neural
network, integrating a U-Net for building localization in
the first stage and a two-branch multiscale U-Net with a
cross-directional attention module in the second stage,
along with data augmentation, to enhance building
damage assessment from pre- and post-disaster satellite
images by explicitly considering correlations between the
images. Gupta and Shah (2021) proposed a localization-
aware loss function for end-to-end training to enhance
building segmentation and damage classification
performance. Kaur et al. (2023) employed a hierarchical
transformer architecture, utilizing four transformer blocks
to map pre- and post-change features into a common
domain, generating difference-features of varying

2 |

resolutions, and constructing a hierarchical output from
these features for building damage assessment.
Nevertheless, the applicability of these is constrained
without the georeferencing of buildings necessary for the
generation of large-scale maps (Matin and Pradhan 2022).
While Bai et al. (2018) employed the GeoAl platform to
produce classification results suitable for integration within
GIS software, the generated output lacks a direct link to any
existing building database, which limits its utility to
visualizations and restricts its capability for real-time
updates of estimates or immediate integration with real-
time statistical analyses. Additionally, all previous works
depend on the availability of pre- and post-disaster images
with nearly quality and angle, and the
identification of objects before classification introduces a
second layer of errors, constraining the robustness and
generalizability to real-world applications. While the
potential of GIS has been acknowledged in a few past
studies (e.g., Cao and Choe (2020); Cao and Choe (2020)),
these primarily relied on pre-labeled building pixel
locations within satellite imagery, offering no discussion on
automating GIS processing for new satellite data. Although
Miyamoto and Yamamoto (2021) mentioned utilizing
building databases to extract sub-images of buildings when
preparing the training dataset, they provided minimal
their methodology and
application study to comparing various machine learning
models. Consequently, prior studies integrating deep
learning with satellite imagery have been limited in their
applications beyond machine learning classification (Matin
and Pradhan 2022).

identical

elaboration and restricted

METHODOLOGY

The methodology presented in this section functions as a
unified pipeline model, seamlessly transitioning from
georeferenced satellite images as inputs to the generation of
large-scale damage maps as outputs. The process initiates
with satellite image processing, incorporating GIS
information, followed by the extraction of sub-images for
each building using geotagged data. These two steps allow
for the automated extraction of building sub-images of the
new unclassified post-disaster images, which differ from
the training labeled ones used to train the deep learning
model. At the core of the methodology is deep learning
classification, employing a convolutional neural network
(CNN) model for accurate damage classification. Hence,
the pre-trained CNN can be used to automate the
classification of the extracted sub-images into damage
states. Finally, the integration of classification outcomes
with the building database facilitates the automated creation
of comprehensive large-scale damage maps, offering a
spatial overview of the disaster-affected region. Therefore,
the complete process could be automated, allowing for
rapid and large-scale building damage assessment. Figure 1
visually illustrates the flowchart of the methodology, while
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detailed discussions are provided in the following sections.
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Figure 1 Flowchart showing key steps of the proposed methodology for large-scale building damage mapping

2.1 | Georeferenced satellite images
The methodology begins with the acquisition of satellite
images, leveraging the rapid and wide coverage
availability from sources such as the United States
Geological Survey (USGS), the National Oceanic and
Atmospheric Administration (NOAA), and the European
Space Agency (ESA). For example, NOAA provides
timely access to high-resolution satellite imagery after the
occurrence of a natural hazard.
When using satellite imagery for assessing building
damage, it is important to reference the images within a
GIS framework. This involves providing details such as
coordinate reference system, projection parameters, and
transformation information. The satellite images are
usually encoded using specialized GIS file formats like
GeoTiff (Mahammad and Ramakrishnan 2003) or
accompanied with separate world files (ESRI 2024),
which allows them to be integrated into the broader GIS
environment.
A standard world file stores 6 ordered transformation
parameters: A, D, B, E, C, F, which are pixel size in the x-
direction, negative pixel size in the y-direction, rotation
about the y-axis, rotation about the x-axis, x-coordinate of
the center of the upper left pixel, and y-coordinate of the
center of the upper left pixel, respectively. Consequently,
the coordinates (Lon;, Lat;) of the center of any pixel i
with column numbers (x;,y;) can be calculated using Eq.
(1) and Eq. (2), respectively (ESRI 2024).

Lon; = Ax; + By, + C D

Lat; = Dx; + Ey, + F (2)

2.2 | Sub-image extraction using geotagged building data
The utilization of deep learning for object detection is
essential for objects that are typically not geotagged, such
as post-hazard tree fall patterns (Rhee et al. 2021). When it
comes to building identification, the necessity for deep
learning arises only in the absence of geotagged building
data; however, it becomes redundant when such data is
readily available. Given that governments and counties
usually maintain comprehensive datasets, and testbeds
provide accessible data for research purposes (Amin
Enderami et al. 2022), it becomes more efficient to leverage
such existing data for extracting building sub-images.
Employing highly accurate geotagged data ensures that the
building identification process is virtually error-free and
allows the deep learning model to focus exclusively on the
damage classification task. By integrating them with
georeferenced satellite imagery, sub-images of every
building within the target region can be automatically
extracted with the size of extraction proportional to the area
or dimensions of the building. These sub-images represent
the input of the deep learning classification model discussed
in the next section.

2.3 | Damage classification using deep learning

2.3.1 | Training dataset

Sections 2.1 and 2.2 above discussed the GIS processing



5

BRAIK AND KOLIOU

and building sub-image extraction of the target post-
disaster images. These differ than the training dataset
needed to train the CNN, which is discussed in this section.
A comprehensive dataset is essential for training a robust
model to accurately classify buildings based on their
damage states. It exposes the model to diverse examples of
building damage, facilitating learning and generalization
of associated patterns. Recent contributions, notably the
xBD dataset (Gupta et al. 2019), help address this
challenge and allow for the extraction of thousands of
labeled sub-images of buildings for model training and
testing. While xBD is the largest building damage
assessment dataset to date, covering 16 different natural
hazards, including earthquakes, hurricanes, floods,
tornados, fires, and more, there is recognition that more
thorough datasets may be required in the future (Matin and
Pradhan 2022). This acknowledgment stems from
potential differences between the terrain and damage
patterns present in target satellite images and those
covered in the training data. Fine-tuning, as discussed
later, may be necessary to address this challenge.

The xBD dataset comprises both pre- and post-hazard
satellite images, with post-hazard images labeled for four
damage states: no damage, minor damage, major damage,
and collapse. Identifying minor damage, relying on subtle
features like missing roof elements and minor cracks,
proves challenging in satellite imagery, yielding sub-
optimal results in prior studies (e.g., Kaur et al. (2023)).
Acknowledging this limitation, the current study focuses
on the more distinguishable classes; no damage, major
damage, and destroyed. Therefore, the immediate and
rapid classification using satellite images can serve as an
initial step for more comprehensive assessments, utilizing
higher quality aerial and terrestrial imagery capable of
capturing additional damage states. With the availability
of higher-resolution satellite imagery, future research can
explore their utility in detecting more nuanced damage
states.

The xBD dataset consists of large-scale satellite images,
with accompanying files of the pixel location of buildings
within these images. Since the CNN used in this paper
takes sub-images of buildings as input, the xBD sub-
images were extracted using the pixel locations, with each
image having a size of 120x120 pixels. Then, the images
were manually filtered to include only the high-quality
ones with distinct damage state, to ensure accurate training
of the CNN. None of the selected sub-images included
minor damage states as discussed earlier. These are used
for the training and differ from the sub-images discussed
in the previous section, which are automatically extracted
from the satellite images using geolocations obtained from
building databases. Since the images extracted
automatically from the satellite ones could potentially
have parts from neighboring buildings, especially in urban
regions with closely spaced buildings, the training dataset
was selected to include some images with neighboring

buildings appearing. While the Hurricane Ike application
dataset only includes post-disaster images, future research
could be applied to other testbeds with both pre- and post-
disaster satellite images available. Hence, advanced CNN
models could be utilized to have such neighboring buildings
artificially removed from the sub-images. This is
acknowledged as a limitation of the current study.

2.3.2 | CNN training

CNN is a specialized deep learning model designed for
image recognition and classification tasks, excelling in the
analysis of intricate patterns within visual data (Goodfellow
et al. 2016). This research employs a CNN architecture to
automate the classification of building damage states in
post-disaster satellite imagery. The proposed CNN model in
this paper focuses on the classification of building sub-
images, leveraging prior building identification through
geotagging. This targeted approach allows for the use of a
relatively shallow network.

The input to the CNN consists of labeled images, each
represented as a 3D tensor with dimensions corresponding
to pixels (height and width) and RGB normalized channels.
The model architecture includes convolutional, pooling,
fully connected, and SoftMax layers. Convolutional layers
are integral for spatial feature extraction, employing
convolution operations to identify patterns and detect local
features. The application of ReLU activation functions
within these layers introduces non-linearity, enabling the
network to capture complex relationships in the data.
Pooling layers systematically down sample spatial
dimensions, contributing to dimensionality reduction and
computational efficiency. Fully connected layers play a
central role in comprehensive learning, connecting nodes
between layers and integrating high-level features. The final
SoftMax layer transforms the network's output into pseudo
probabilities for each class, reflecting the model's
confidence in its predictions. The classification is
determined by selecting the class with the highest
probability, representing the model's final classification
output. Figure 2 visually represents the standard CNN
architecture, illustrating the arrangement of convolutional
(Conv), pooling (pool) layers, and fully connected (FC)
layers, followed by a SoftMax layer and a classification
layer (Goodfellow et al. (2016); Roberts et al. (2022);
Prince (2023)).

The loss function serves as a critical component in the
training of neural networks, guiding the optimization
process by quantifying the dissimilarity between predicted
values and ground-truth labels. In the context of multi-
classification tasks, the cross-entropy loss stands out as a
widely adopted and effective choice for minimizing the
disparity between predicted and actual class distributions
(Krizhevsky et al. 2017). The cross-entropy loss penalizes
the model more severely when its predicted probabilities
deviate from the true distribution. Mathematically, the
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cross-entropy loss for a multi-class classification task is
defined as shown in Eq. (3), where m is the number of
classes, q; is the ground-truth label, and p; is the SoftMax

Conv3

Flatten
_ SoftMax
FC3
FC2
Cl

probability.

CrossEntropy = — X%, [q; log(p,)] 3)

Classification
Output

pool3 F

Figure 2 CNN architecture for image classification

2.3.3 | Performance evaluation and fine-tuning
Evaluating the model's performance is an important step in
ensuring its efficacy in building damage state
classification, employing key metrics such as accuracy,
precision, recall, F1 score, and the confusion matrix
(Powers 2020). Initially, the testing data, derived from a
subset of the training dataset, serves as a benchmark to
assess the model's proficiency in pattern recognition.
However, success with the testing data doesn't guarantee
generalization to new data. Therefore, for new target
satellite images, an extracted subset is essential to evaluate
the model's ability to generalize. When the model performs
well on testing data but shows suboptimal results on the
application data, it suggests challenges related to
generalization, implying that the new satellite images don't
align with the characteristics of the training images. In such
cases, transfer learning through fine-tuning, using a small
manually classified sample from the target satellite images,
becomes necessary. This enhances the model's proficiency,
ensuring it excels not only in controlled testing conditions
but also demonstrates robust performance in real-world
applications.

2.4 | Large-scale mapping

Following the CNN training, the model is applied to
classify every geotagged sub-image extracted from the
satellite imagery into distinct damage states. This
automated mapping enables the creation of comprehensive
damage maps, providing a spatial overview of damage
variation across the affected disaster region. The geotagged
sub-images, being connected to the building database, offer
additional utility beyond mapping. They can serve as inputs

for statistical analyses, contributing valuable insights into
damage patterns. Moreover, they provide a means to update
pre-hazard prediction models, enhancing the predictive
capabilities of future assessments.

3 | APPLICATION STUDY
3.1 | Hurricane Ike satellite images and Galveston
Testbed

The application of the proposed methodology is
demonstrated using the Galveston testbed and Hurricane
Ike satellite images. In contrast to the xBD dataset utilized
for model training, the Hurricane Ike images were
independently sourced from NOAA (NOAA 2008).
Additionally, the geotagged building data was acquired
from Incore (Incore 2023). This diversification of data
sources ensures a comprehensive validation of the model's
robustness in real-world scenarios.

Figure 3 (a) provides a detailed overview of the building
map of Galveston, incorporating a total of 84,024
buildings. This breakdown includes 49,060 buildings in
Mainland Galveston, 29,480 buildings in Galveston Island,
and 5,484 buildings in Bolivar Peninsula. Complementing
this, Figure 3 (b) shows the projection of satellite images
onto Galveston County, totaling 527 images, each with
dimensions ranging between 2.75 km to 3.75 km. The
integration of these maps is presented in Figure 4,
showcasing the projection of geotagged buildings over
sample georeferenced satellite images in Mainland
Galveston, Galveston Island, and Bolivar Peninsula. The
seamless alignment between the two maps ensures error-
free extraction of building sub-images.
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3.2 | CNN training and testing

Approximately 5,000 high-quality labeled sub-images
were extracted from the xBD dataset, representing samples
from four hazards, namely Hurricane Harvey, Hurricane
Michael, Joplin Tornado, and Tuscaloosa Tornado. The
dataset was partitioned, allocating 80% for training and the
remaining 20% split equally between validation and testing
subsets. To address class imbalance, the training dataset
underwent oversampling using the SMOTE technique
(Chawla et al. 2002). Additionally, data augmentation
techniques, such as random contrast and brightness
adjustments, were employed to enhance variability,
resulting in an augmented dataset comprising
approximately 29,000 sub-images for training.

The architecture of the CNN encompasses
convolutional layers (of 3x3 filters with sizes 32, 64,
128,128, 128), five max-pooling layers (2x2), and five fully
connected layers (of sizes 128, 128, 64, 64, 32). The model,
concluding with a Softmax layer for classification, is
characterized by a total of 485,187 trainable parameters.
This architecture was selected based on manual

five

experiments. Then, hyperparameter tuning was performed
using the validation data. Therefore, the training of the
model underwent 15 epochs with a batch size of 64,
utilizing the Adam optimizer with a 0.001 learning rate and
the cross-entropy loss function.

The model's performance was evaluated on the testing
dataset, achieving accuracy, precision, Recall, and Fl1
scores of 93%, 90%, 86%, and 88%, respectively. Figure 5
presents the confusion matrix for the testing dataset,
illustrating the CNN's high accuracy in classifying the non-
damaged and destroyed damage states (98% and 96%,
respectively), with sufficient accuracy for the major
damage state (65%). Additionally, Table 1 compares the
model's performance with previous published papers.
While the table demonstrates the current methodology's
strong performance compared to state-of-the-art studies,
any further direct conclusions should consider the major
differences between studies, such as the variations in the
number of damage classes, training datasets, use of pre-
hazard images, and consideration of segmentation tasks
before classification. For example, while Kaur et al. (2022)
achieved a higher F1 score, the current study would achieve
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an even higher F1 score of 98% if both major damage and
destroyed damage states are merged since most of the error
shown in Figure 5 stems from the confusion between these
two damage states.
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-000
Nodamage  Major damage
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Destroyad

Figure 5 Confusion matrix of testing data

Table 1 Comparision of the testing results of the current study
with previously published papers

R Training |Satellite F1
IReference of datase tg images CNN task score
classes g %)
Lietal. Post . .
(2019) 3 Sandy only Classification 68
Dotel et A Harve Pre and Class1gcat1on .
al. (2020) y post .
segmentation
Kaur et al. Post . .
(2022) 2 Harvey only Classification | 96
Classification
Kaur et al. 4 <BD Pre and & %0
(2023) post .
segmentation
Current Post . .
3 xBD Classification 88
paper only

Moreover, it should be noted that the high performance on
the testing data indicates the CNN's efficacy on images
with characteristics similar to the xBD dataset,
encompassing comparable damage, building, and terrain
patterns. The training sub-images, chosen for high quality
and distinctive damage patterns, allowed the CNN to
effectively learn features, especially as it could focus
exclusively on this task, given successful building
identification using GIS. The testing subset served to
protect against overfitting. However, it's crucial to
acknowledge that this doesn't guarantee the model's
generalizability to new hazards with different patterns.

While most previous studies conclude at this stage, this
study goes further by applying the methodology to the
Galveston testbed when subjected to Hurricane Ike, as
discussed in the subsequent sections.

3.3 | CNN evaluation on real-world data

The CNN model's performance was evaluated using
approximately 600 sub-images extracted from Hurricane
Ike satellite imagery. To establish a ground truth for
comparison, these sub-images underwent
classification. Figure 6 (a) shows the confusion matrix
when applying the trained CNN model on the real-world
data. Despite the model's success in classifying "no
damage" and "destroyed" classes, its performance was
suboptimal for "major damage". This suggests that the
damage patterns of Hurricane Ike significantly differ from
those in the xBD dataset, necessitating transfer learning via
fine-tuning.

Figure 6 (b), Figure 6 (c), and Figure 6 (d) show the
confusion matrices after fine-tuning the model with 0.5%,
1.0%, and 1.5% of Hurricane Ike sub-images, respectively.
The fine-tuning subsets excluded any evaluation data to
assessment. Moreover, Table 2
summarizes the evaluation metrics for all 4 cases. These
highlight the positive impact of fine-tuning on the model's
robustness, demonstrating a significant enhancement in
performance with an increased fine-tuning sample size.
Given that real-world applications often cover areas with
diverse damage patterns and terrains compared to the
training data, as evident in this application study, fine-
tuning becomes important to ensure the methodology's
robustness in varied scenarios.

Figure 7 shows a sample of classified sub-images using the
fine-tuned model. These sub-images were automatically
extracted from the post-disaster satellite imagery using the
methodology proposed in Section 2.2, and then fed into the
pre-trained CNN model. While most of the images were
correctly classified as demonstrated in Figure 6 (d), the
model still misclassified some images. It is also worth
noting that the extraction included some parts of
neighboring buildings, which is acknowledged as a
limitation of utilizing GIS and building area features in
extracting the sub-images.
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Table 2 Accuracy, precision, recall, and F1 scores for various fine-tuning levels

=000

Evaluation Metric | Without Fine-tuning Fine-tuning with Fine-tuning with Fine-tuning with
0.5% of Ike sub- 1.0% of Ike sub- 1.5% of Ike sub-
images images images
Accuracy (%) 85 80 88 90
Precision (%) 82 75 85 85
Recall (%) 74 79 83 87
F1 (%) 75 76 84 86

Labeled
Destroyed Major damage No damage

No damage

Major damage
Predicted

Destroyed

Figure 7 Sample of classified sub-images
3.4 | Classification outcomes

The fine-tuned model was applied to classify all extracted

sub-images, and subsequently, the classification results
were geotagged and projected back onto the satellite
images. In Figure 8, Figure 9, and Figure 10, sample
classification maps for Mainland Galveston, Galveston
Island, and Bolivar Peninsula are presented, respectively.
These maps visually show the model's classification
outcomes across various geographic areas, providing
valuable insights into the spatial distribution of building
damage states following Hurricane Ike. The buildings were
precisely identified and accurately classified using the
proposed methodology. Figure 8 illustrates no damage
classification for all buildings in the satellite image,
representing the situation in most areas on Mainland
Galveston. Figure 9 shows a substantial amount of major
damage and some destruction in Palm Beach, while Figure
10 showcases significant damage and destruction on the
Bolivar Peninsula.
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3.5 | Large-scale mapping and validation against

historical reports

Galveston County, spanning Galveston Island, Bolivar
Peninsula, and Mainland Galveston, provides a diverse
landscape that showcases distinctive damage patterns
resulting from Hurricane Ike. This diversity allows for a
comprehensive of the methodology’s
effectiveness in capturing and categorizing unique damage
and destruction features in each region.

As per historical reports (FCD (2008); Berg (2009);
Highfield et al. (2014)), the Bolivar Peninsula emerged as
the most severely affected area, with a majority of its
buildings either destroyed or suffering major damage.
Approximately 3,266 buildings on the peninsula faced
destruction or severe damage in the aftermath of the
hurricane. Galveston Island, on the other hand, displayed a
more varied pattern of damage. Higher damage levels were
observed on the bay side, attributed to surge washing back
from the bay. The main city on the right portion of
Galveston Island, closer to the seawall, experienced
comparatively less destruction, but considerable damage,
nonetheless. In contrast, the western part of the island
suffered the most extensive destruction. Mainland
Galveston, like Houston-surrounding area, was fortunate to
avoid significant damage, sparing most of its buildings
from the major impacts of the hurricane.

Figure 11 illustrates a large-scale damage map of
Galveston County, covering tens of thousands of buildings
across the entire region. Generated using the proposed
methodology, the map aligns well with the historical
reports, depicting the Bolivar Peninsula as severely
affected, with thousands of buildings extensively damaged
or destroyed. Galveston Island exhibits concentrated

evaluation

damage on the bay side, while Galveston Mainland appears
to be the least affected, with very few buildings damaged
and even fewer destroyed. Complementing the map, Figure
12 presents bar plots of damage classification results for
Galveston County as a whole, Mainland Galveston,
Galveston Island, and Bolivar Peninsula. The plots align
well with the historical records and further support the
conclusions made based on Figure 11 regarding the spatial
variability of damage between the different regions. The
statistics generated in Figure 12 can be automatically and
rapidly generated using the proposed methodology, which
holds great potential to gain immediate insight into the
spatial distribution of damage. This can be used to update
emergency response plans and direct rescue crews.
Moreover, there is a potential to integrate social science
with the results of the current methodology to identify
socially vulnerable arcas within the disaster affected
region.

In contrast to historical reports that took weeks to prepare,
such as Highfield et al. (2014), which stated that assessing
only 1,500 buildings took 2,000 hours of fieldwork, the
map and statistics presented here can be generated
automatically and almost immediately after the hazard, as
soon as satellite images become available.

It is important to acknowledge that while satellite images
prove effective in detecting major damage and destruction,
their efficacy in identifying minor damages may be limited.
In the case of Galveston County, where around 24,000
buildings experienced some level of damage (FCD 2008),
the proposed methodology concentrates specifically on
detecting the buildings that either faced destruction or
suffered major damage. Consequently, the damage
assessment derived from satellite images provides a
comprehensive overview, serving as an initial step for a
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more thorough evaluation utilizing additional data sources,  in a future study, where a unified methodology combines
such as aerial and terrestrial imagery. The potential  all available sources of data-driven damage detection.
integration of these diverse data sources could be explored
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4 | DISCUSSION, LIMITATIONS, AND
FUTURE WORK

4.1 | Strengths and weaknesses of the proposed
methodology compared to state-of-the-art methodologies

The primary strength of the proposed methodology lies in
its full automation, spanning from initial satellite image
acquisition to large-scale damage mapping. This
comprehensive approach distinguishes it from prior
studies, offering a valuable tool for future disaster risk
management methodologies. Importantly, it eliminates the
need for pre-hazard images with identical quality and
angles to post-disaster imagery, a requirement in previous
segmentation-focused approaches. Leveraging highly
accurate geo-tagged building data enables precise
extraction of building sub-images, reducing potential errors
introduced by machine learning techniques. Nevertheless,
the reliance on geotagged building databases presents a
limitation, restricting the methodology's applicability in
scenarios where such data is unavailable. Furthermore,
while comparison between pre- and post-hazard images
CNN’s performance, the
methodology solely relies on post-disaster imagery,
missing out on potential improvements afforded by pre-
disaster data integration. These comparisons are
summarized in Table 3.

could enhance current

Table 3 Comparing the advantages and disadvantages of the
proposed methodology other to state-of-the-art methodologies

Buildin Automates
Method for . . g the
. identification .
References building generation of
. . S depends on the
identification e large-scale
availability of
damage maps
Lietal. (2019),
A A
Kaur et al. (2022) N N Mo
Hao et al. (2021),
Wu et al. (2021), Pre-hazard
Shen et al. (2021), Deep learnin, satellite No
Gupta and Shah P < image
(2021), Kaur et al. ety
(2023)
Geotagged
Current paper GIS building Yes
database

4.2 | Limitations and future works

Despite the promising results for the automation of large-
scale damage mapping, the proposed methodology still has
limitations in its current form. The study relies heavily on
the xBD dataset. While being one of the most
comprehensive datasets, xBD suffers from a relatively low
resolution and doesn’t fully represent the diversity of
building damage patterns and archetypes worldwide.
Hence, future work could enhance the generalization across

different disaster scenarios by expanding the training
datasets to include a more diverse range of hazards and
regions. Consequently, the robustness of the methodology
could be further validated by applying it to other types of
natural hazards, such as tornados, earthquakes, and
wildfires.

Moreover, damage detection using satellite imagery is
limited to major roof damage and complete destruction of
walls. Therefore, future work could integrate geolocation
features (as suggested by Cao and Choe (2020)) and
engineering models to predict the minor and moderate
damage states. These features associated with different
hazards could include the distance from the earthquake
epicenter and earthquake magnitude, distance from the
shoreline and hurricane scale, or distance from the tornado
center path and tornado intensity. This will necessitate a
more complex deep learning model compared to the simple
CNN architecture utilized in the current study. Therefore,
exploring advanced deep learning architectures and
techniques would further augment the model's capacity to
capture damage patterns. In addition to the U-net and
Siamese structures discussed earlier, future research could
explore the application of other sophisticated deep learning
algorithms such as neural dynamic classification and self-
supervised learning algorithms (Rafiei and Adeli (2017);
Alam et al. (2020); Rafiei et al. (2022)).

Integrating the proposed methodology with building
databases holds significant potential, allowing the
combination of pre-hazard risk assessment models with
post-hazard immediate response strategies, representing a
significant step towards achieving a disaster management
digital twin. Hence, restoration and recovery models could
be wupdated using real-time-generated damage
classifications. This could also facilitate continuous
learning and model improvement by updating physics-
based prediction models.

Moreover, the large-scale maps generated by the
methodology lay the groundwork for comprehensive
damage assessment, incorporating terrestrial and aerial
imagery alongside field observations. Therefore, the
temporal integration of satellite imagery and real-time data
streams could introduce a dynamic eclement to damage
assessment, allowing for more responsive and up-to-date
analyses.

5 | CONCLUSIONS

This research introduces a methodology to automate the
large-scale damage assessment following natural hazards.
The novelty lies in the utilization of geotagged building
datasets to extract sub-images from georeferenced satellite
imagery, resulting in error-free building identification, and
enabling deep learning to focus on damage classification.
Hence, the entire system can be automated starting from the
acquisition of satellite imagery and ending with the
generation of large-scale damage maps connected to
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building databases, as explained in the methodology
introduced in Section 2.

The application study presented in Section 3, using the
Galveston Testbed and Hurricane Ike satellite images,
showcased the methodology’s efficiency in identifying
buildings using GIS, and the training of the CNN using the
xBD dataset showed high performance on testing datasets,
with an F1 score of 88%. Fine-tuning further ensured the
model's robust performance when applied to a new dataset
with diverse landscapes and damage patterns, with an F1
score of 86%. The validation against historical reports
provided evidence of the model's high accuracy in
detecting damage patterns and spatial variability.

This research serves to automate the rapid generation of
large-scale damage assessment maps, offering valuable
support for immediate emergency and
establishing a foundation for future advancements in
disaster management and recovery efforts. The next step is
to apply the current methodology in disaster management
by updating the risk-assessment predictions using post-
disaster damage assessment, hence, extending the risk-
assessment models toward disaster management digital
twins.

response,
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