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Abstract

The myotendinous junction (MTJ) acts as a bridge between
muscle and tendon; yet its high stiffness relative to muscle
fibers renders the tissue susceptible to injuries due to eccentric
loading disparities. The limited regenerative capacity of MTJ
tissue and potential for postsurgical scarring and reinjury ne-
cessitates complementary therapeutics that can enhance
cellular interactions, restore mechanical properties, and sup-
port tissue rehabilitation.

This review explores various approaches to engineer the
MTJ utilizing biomaterial scaffolds and cellularized materials
that mimic structure and function. While biomimetic materials
show promise, challenges remain due to the interface’s
complexity and differing patient- and location-specific
structure—function characteristics, necessitating further
research to address these gaps. This review also highlights
the importance of studying MTJ injuries in women’s health
and craniofacial reconstruction. Furthermore, engineered
MTJ models provide versatile platforms for investigating
trauma and degeneration, thus offering potential for
advancing research across multiple fields, shedding light on
interactions at tissue interfaces, and shaping the future of
MTJ rehabilitation.
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Introduction

Despite the high prevalence of musculoskeletal disor-
ders, affecting nearly half of the adult population in the
United States and accruing healthcare costs that surpass
those associated with major diseases such as diabetes
and cardiovascular diseases, research into reparative and
regenerative treatments for musculoskeletal disorders
remains notably underfunded [5,6].

A recent systematic review focusing on the muscle—
tendon—bone complex revealed that failures at the
myotendinous junction (MT]) were linked to 28% of
the musculoskeletal injuries studied [8]. The MT], also
referred to as the musculotendinous junction, is the
tissue bridge between a muscle and tendon that trans-
fers tensile and contractile forces between muscle fila-
ments and collagen fibers in tendon in a healthy
homeostatic state (Figure 1). However, the high stiff-
ness of tendon tissue relative to the compliant muscle
fibers makes this region especially susceptible to in-
juries because the differences in loading can result in
tearing of the interfacing tissues [9,10]. Of the reported
injuries, the mean age of the population was 33.7 + 0.5
years as these patients were significantly younger than
those suffering from tendon or enthesis injuries [8].
While only 8% of these injuries were associated with
evident trauma, a significant 92% were instigated by
noncontact events and occurred in well-trained athletes.
"This highlights that M'T] injuries can occur in younger
populations during non-traumatic events, emphasizing
the need for research funding in this field [5,8].

MTT injuries can be broadly characterized by two cate-
gories: minor strains and complete rupture, which
occur when overloading causes major tissue separation [9].
Treatment options for minor M'T] injuries, such as the rest,
ice, compression, elevation (RICE) method, nonsteroidal
anti-inflammatory drugs (e.g. Advil® or ibuprofen), muscle
relaxants (Flexeril® also known as cyclobenzaprine),
anticonvulsant medications (e.g. gabapentin), and physical
therapy, provide symptomatic relief but do not significantly
promote restoration. Furthermore, limb immobilization,
which is a treatment option for generic musculoskeletal
injuries, results in altered tendon—muscle integration
leading to reduced MTJ surface area, intramuscular
fibrosis, muscle cell atrophy, and diminished tensile prop-
erties [11,12]. Conversely, subjecting the MT] to
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Figure 1
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Schematic of the myotendinous junction (MTJ) highlighting the interdigi-
tation at the interface of the muscle and tendon tissues necessary for
mechanical transmission. Distinctive extracellular matrix (ECM) compo-
nents of native tissue regions [2,3] are presented for each tissue type of
muscle (red triangle), tendon (gray triangle), the overlapping region of the
MTJ (purple rectangle), and components found throughout all regions
(long red-to-gray gradient rectangle). Created with BioRender.com.

mechanical load demonstrates remarkable adaptability,
thus increasing its junctional interface to accommodate
different load intensities [13]. Complete MTJ ruptures
often necessitate surgical intervention to repair the torn
interfacial tissue, but there is a risk of rerupture and scar
tissue formation at the site of injury due to the poor
intrinsic reparative characteristic of the hypocellular and
hypovascular tendinous end [14]. While specific mecha-
nisms of M'TJ injury and reinjury remain to be elucidated,
tendon reinjury is well documented. Thus, M'T] reinjury in
this review is referenced within the context of tendon.
Despite advancements in surgical interventions, approxi-
mately 80% of reinjuries occur at the initial injury site,
which highlights an unmet need in treating MT] injuries
[15]. Therefore, there has been a shift in the paradigm
toward complementing surgery with a tissue-engineered
solution to rehabilitate the MT].

In this review, we describe current engineering tech-
nologies to recapitulate the MT]J] mechanics and
microarchitecture with the goal of repairing and reha-
bilitating the interfacial tissue. The technologies

discussed are biomimetic materials, such as acellular
scaffolds and cell-based constructs. We also aim to
elucidate potential directions for further M'TJ research,
as well as current gaps in the field and ways to include
factors such as genetic disease, biological sex, and
anatomical location into future efforts toward regener-
ative rehabilitation.

Criteria for designhing engineered MTJ
platforms

Composition and architectural analysis as it pertains
to engineering the MTJ

The ultrastructure and microenvironment of musculo-
skeletal tissues are uniquely adept at transferring me-
chanical forces; therefore, understanding these
interactions at the M'T] is crucial to engineering func-
tional MT] therapies. The M'T] is made up of complex
hierarchical structures and organized microstructural
components that contribute to its function. The MT] is
broadly characterized by three regions: muscle, tendon,
and the overlapping transitional region [3,9,14], as
depicted in Figure 1.

Ultrastructure and extracellular matrix composition of
skeletal muscle

Skeletal muscle is a highly vascularized, innervated
connective tissue composed of hierarchical myotubes
that facilitate internal force generation. These
myotubes are supported by extracellular matrix
(ECM) proteins, including collagens, laminins, fibro-
nectin, glycoproteins, proteoglycans, and elastins
[16,17]. The endomysium, the connective tissue sur-
rounding each muscle fiber within a bundle, is rich in
collagen type IV and laminins, which provide an
anchoring point at the MT] region [18,19]. More
broadly, collagen type I and collagen type III provide
structural support, whereas laminins and elastins
interface with cell surface proteins to aid in force
transduction between the bulk tissue and the indi-
vidual cells. At the cellular level, force transduction at
the ECM and cellular interface is modulated through
laminins, dystrophin-glycoprotein complex, integrins,
and a signal transduction cascade. Proteins such as
dystrophin and desmin play a role in contractile
functions, whereas proteins such as vinculin and talin
are involved in F-actin cytoskeletal function [20,21].
Muscle tissue contraction is specifically driven
through the interactions of cell surface proteins that
transmit signals to the sarcolemma through the
dystrophin-associated glycoprotein complex [21,22].
Alterations in the viscoelasticity of the ECM through
injury, disease, or scar tissue formation can disrupt
signals and influence muscle contractility, as well as
cytoskeletal rearrangement [23]. As mentioned, skel-
etal muscle is specialized in force generation;

Current Opinion in Biomedical Engineering 2024, 30:100532

www.sciencedirect.com


http://BioRender.com
www.sciencedirect.com/science/journal/24684511

however, active movement and locomotion are facili-
tated by force transmission to the tendon.

Ultrastructure and ECM composition of tendon

Contrary to skeletal muscle, tendons are hypocellular,
sparsely vascularized tissues that are purely reactive to
forces transmitted from muscles to bone. In the
tendon region, tendon fibroblasts are surrounded by a
primarily collagen type I matrix. This matrix also
contains small amounts of collagen types III, V, XI,
XII, and XIV [24,25]. The collagen forms fiber-like
structures aligned along the tendon’s length,
providing excellent uniaxial mechanical strength.
Various noncollagenous proteins are also present,
including proteoglycans, glycoproteins, and glyco-
conjugates. Tendinous proteoglycans, decorin, bigly-
can, fibromodulin, and lumican play a crucial role in
assembling collagen fibrils and maintaining tendon’s
mechanical integrity [9]. Other proteoglycans, such as
aggrecan, increase water content in the tendon to
provide compression resistance. Glycoproteins found
in the tendon include lubricin, which aids in fiber
sliding, tensacin-C (T'nc), and tenomodulin (Tnmd),
which is a marker for tendon maturation [24]. Upon
injury, tendons exhibit disrupted microarchitecture
with disorganized collagen type III fibers, reduced
fibril diameter, and increased cellularity. The ECM of
injured tendons also have altered composition,
elevated proteoglycan content, and disrupted collagen
cross-linking, contributing to compromised mechani-
cal properties and impaired tissue healing. The
uniqueness of tendon and muscle, respectively,
culminate in a unique structural and microenviron-
mental gradient in the MTJ.

Ultrastructure and ECM composition of MTJs

The ultrastructure of the MT]J involves special
structures such as the Z-line from the muscle fiber
and sarcoplasmic invaginations at the interface, which
increase the contact area between muscle and tendon
[18,26,27]. The myofilaments from the terminal sar-
comeres also connect to the muscle’s outer mem-
brane. While tendons mainly have collagen fibers
aligned lengthwise, the MTJ fibers closer to muscle
are in multidirectional orientations. When observed in
three dimensions, the muscle shows furrow-like in-
dentations, whereas the tendon has ridge-like pro-
trusions [28].

The interfacing region between muscle and tendon
consists of finger-like muscle projections that extend
into the tendon ECM (Figure 1), making up the bulk of
the M'T] region [18,26]. Aligned actin-binding proteins
and filaments increase the junctional surface area,
efficiently transferring eccentric loads from myofibrils
to the tendon’s larger area. These interdigitations
enhance force transfer, prevent slippage during muscle
contraction, and ensure that force transmission remains
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parallel to the muscle basement membrane to reduce
shear stress and prevent interface failure. The complex
interdigitations and folds enable a mechanically
responsive interface, with altering gene and protein
expression levels occurring in response to increased
loads [28].

The tissue composition of muscle, tendon, and MT]
have many common ECM components, such as collagen
I, but unique differential expression of the respective
tissues is shown in Figure 1 [2,3,26]. Collagen type XXII
is exclusively found at the MT] and displays interdigi-
tated folding into the muscle fiber membrane that as-
sists with force transmission and structural stability
[18,29—31]. In fact, a recent study on zebrafish M'T]s by
Malbouyres et al. revealed Col XXIIal knockout sam-
ples displayed reductions in locomotion and posture due
to diminished force transmission capabilities [31]. Pro-
teomic analysis of the MT]J also identified Caveolin 2
(CAV2), neurepithelial stem cell protein (Nestin),
Annexin Al (ANXA), and neural cell adhesion molecule
(NCAM1) as being uniquely expressed in the MT]
region [2,3,32]. Collagen types I, 111, and VI are present
throughout all regions of the MT]J. Collagen type VI
extends the endomysium to the MT] and enhances
attachment [28]. Collagen type I contributes to MT]
stability and adaptability to increased loads, while
collagen type III is involved in ECM remodeling after
injury [13,18]. Collagen type IV and laminin are the
main components of the muscle basement membrane
that connect the M'T] region to the muscle endomysium
[18,19,21]. In addition, collagen type IV can assist in
connection between the MT] region and the tendon
[25]. Novel MTJ-enriched proteins of cartilage inter-
mediate layer protein and integrin alpha 10 (ITGA10)
were found to be located near the muscle end to assist
with ECM binding at the MT] interface [3].

Similar to other musculoskeletal tissues, cells in the
MT] interface region respond to local stresses in the
ECM via integrin binding, transmitting external sig-
nals through collagens and laminins to membrane
bound and intracellular proteins such as tensin,
vinculin, paxillin, and talin [13,19,33—35]. Further-
more, it is demonstrated that M'T] ECM development
is dependent on muscle contraction, potentially
during embryonic maturation [36]. It has been shown
that the M'T] microenvironment varies among tissue
location, as well as anatomical differences between
species and individual patients [37—40]. For example,
there is a lack of desmin or nestin I in the extraocular
MT], whereas these are proteins are highly expressed
in high-load-bearing MTJs [39]. MTJs in the mdx
mouse, the mouse model used to study muscular
dystrophy, showed greater collagen type III deposition
[40]. It has also been shown that the structure, me-
chanics, and composition of MTJs in the pelvic floor
vary with biological sex and change drastically during
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pregnancy, thus highlighting the subjectivity of
anatomical location [37,38]. Collectively, the ECM
and cellular interactions within the MT] contribute to
the structural integrity, force transmission, and coor-
dinated functioning of the muscle—tendon interface,
while recognizing that age, biological sex, and
anatomical location may introduce variations in these
characteristics. These elements are crucial in
preventing injury at the MTJ and rationalize a need
for tissue-engineered constructs to recapitulate such
components.

Soluble factors and intertissue communication

Cells within skeletal muscle secrete a variety of growth
factors and cytokines, such as insulin-like growth factor-
1 (IGF-1) and transforming growth factor-beta (TGF-f),
throughout development, during tissue homeostasis, in
response to exercise and in response to injury, with
known variations as a function of biological sex and
anatomical location [41—47]. Cells within tendon tissue
are also known to express similar growth factors
(e.g. IGF-1) and cytokines during tissue development,
tissue homeostasis, and response to injury [24,48—51].
As with all tissues, the concentration and bioavailability
of these signals varies with time. Similarly, both skeletal
muscle and tendon tissues respond to soluble cues from
blood vessels (e.g. vascular endothelial growth factor) or
from immune cells responding to injury (e.g. platelet-
derived growth factor) [18,52—57].

Specifically, within the MT]J, these growth factors and
cytokines can participate in the activation of both muscle
and tendon fibroblasts, among other cells, influencing
MT] adaptability under mechanical load. In rat models
undergoing a fast-runner exercise regime, there is a
demonstrated 2-fold increased expression of peroxisome-
proliferator-activated receptor-gamma coactivator-1 alpha
(PGC-1a) and enhanced expression of TGF-B in the
muscle portion of the MT], alongside an observed upre-
gulation of the IGF-1 receptor in the tendinous portion
[13]. The enhanced expression of these soluble signals at
the M'T]J also correlated with morphological modifications
that enabled increased muscle—tendon interactions at the
interface [13]. Thus, a solid understanding of these
signaling cascades can inform the use of soluble factors in
the development of 7z vitro M'T] model systems.

It is also important to consider the bioavailability and
active signaling that occurs within healthy tissue vs.
injured tissues. The bioavailability of these factors is
tightly regulated by binding to ECM and pro-
teoglycans [58,59]. Growth factors and other soluble
signals such as insulin play pivotal roles in MT]
development, homeostasis, and healing and are critical
to regenerative rehabilitation via tissue engineering
strategies. Thus, incorporation of these soluble signals
into engineered solutions may improve clinical
outcomes.

Mechanical and structural characteristics of MTJ
platforms

The MT]J exhibits specific mechanical and structural
properties that are critical for function and efficient
force transfer. Comparable to other mechanoresponsive
tissues, the MT] has an aligned ECM that absorbs and
disperses external loading forces transferred in the
tissue [18,19]. The matrix alignment contributes to the
transition of viscoelastic behavior from the highly
compliant contractile muscle to the stiffer tendon.
Thus, the role of the MT]J is to appropriately transmit
external loads between muscle and tendon, though the
expected loads may vary across anatomical locations and
fiber types, biological sex, comorbidities, and species
(e.g. mouse vs. human) [39,60,61].

Muscles are embedded in the tendinous ECM with
varying ratios of tendon-to muscle-lengths, which is
contingent on the location within the body and patient
features. Furthermore, the efficiency of the load transfer
depends on the tendon—fiber-to-muscle-fiber ratio [27].
Therefore, the relative length of tendon and muscle
fibers in the MTJ should be considered when engi-
neering MT] scaffolds. These regionalized tissue-length
ratios culminate in varied mechanical properties that
align more closely with the predominant tissue con-
centration. To ensure the seamless integration of a
multicomposite scaffold that can support the mechani-
cal interface of the two regions, it is crucial to consider
the mechanical properties of native human tendon and
skeletal muscle. For example, the Young’s moduli of
native human tendon and skeletal muscle in the lower
limbs are reported to be in the range of 660—1200 MPa
and 60—290 MPa, respectively [14,62]. While elastic
moduli values for muscle and tendon drastically transi-
tion from a passive state to a tensile, flexed state, results
consistently demonstrate that tendon is at least one
order of magnitude different in its measured properties
[63]. It should thus be noted that musculoskeletal
tissue mechanics are not always easy to quantify, as
demonstrated in a tendon ultrasonography study by
Finni et al. [64]. Though noninjured Achilles tendons
displayed a 5.8% strain at maximum volumetric
contraction compared to injured counterparts strained
to 3.1%, the method by which tendon length was
normalized caused significant changes in the results
[64]. Analyzing tendon strain from the aponeurosis
proximal to the M'TJ rather than the MT]J itself results
in significantly higher strains and displacements, which
are measurements of the aponeurosis rather than the
tendon itself [64]. The role of the aponeurosis and MT]J
in tendinous mechanical observation further confounds
the necessary mechanical properties required of a
therapy due to the variability and subjectivity of
collection methodology. Therefore, it is critical that an
engineered biomaterial must be able to sufficiently
mimic and withstand the mechanical loading within the
MT] by adapting to various loads and promoting
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functional reparative processes. However, mechanical
measurements of the MT]J vary as a function of the
location, role, and species (e.g. mouse or rat compared to
human). This underscores the importance of integrating
multicomposite scaffolds that can accurately replicate
the mechanical properties of the native tissue and
effectively support the unique mechanics of the
different M'TJs through structural mimicry at the
interface.

Cellular components of healthy and pathological
MTJs

The complex cellular milieu in the MTYJ is a heteroge-
neous population of resident and infiltrating cells from
the muscle and tendon tissues [18,65,66]. The MT]’s
intricate cellular composition ensures effective inte-
gration and force transfer between the two structurally
different muscle and tendon tissues, but populations
and structure can shift due to injury or exercise
[26,67,68]. In healthy muscle, the primary functional
unit is the multinucleated myofiber, which is created by
myoblast fusion during development or repair and
facilitated by skeletal muscle satellite cells [18,27,69].
The complex muscle tissue is also comprised of stromal
cells, endothelial cells, and immune cells such as mac-
rophages [47,57], and nerve cells to facilitate contrac-
tion and movement [70—72]. Healthy tendons are
characterized by tenocytes, tendon fibroblasts, and
tendon/stem progenitor cells, which are all vital for
maintenance and repair. These cells, residing among
collagen fibrils, are crucial for the tendon-healing pro-
cess [73,74]. Healing involves both intrinsic tenocytes
and extrinsic cells, including immune cells for inflam-
mation management and endothelial cells for angio-
genesis and delivering nutrients to the repair site
[58,75,76]. Cellular diversity is evident in the transition
from the muscle to the tendon components of the MT],
where each play a vital role in shaping its structural
integrity and functionality. Tenoblasts and tenocytes are
actively involved in the synthesis and maintenance of
the tendon’s ECM, emphasizing the inherent charac-
teristics of this hypovascular tissue [77]. Myoblasts and
myotubes are present at the MT] and form the transi-
tional area where muscle fibers merge into the tendon
tissue. Satellite cells, which are crucial for muscle repair,
are also found in the M'T], aiding in tissue regeneration
upon injury [78]. Furthermore, endothelial cells emerge
as vital agents in the repair process for both muscle and
tendon components [79]. Surprisingly, adipocytes, or fat
cells, are present in healthy MT]Js and are suspected to
facilitate M'T] remodeling via cytokine signaling [9,80].
Yan et al. identified a novel subpopulation of muscle—
tendon progenitor cells (MTPs), characterized by their
dual expression of muscle and tendon marker genes.
These MTPs, capable of bridging the cellular and
functional divide between muscle and tendon tissues,
demonstrated significant regenerative properties. When
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implanted into an MT] injury model, the MTPs exhibit
the ability to facilitate tissue repair and regeneration,
underscoring their potential for bidirectional differen-
tiation [66].

When injuries occur at the MT], these diverse cell types
work together to initiate repair processes, restore tissue
function, and aid in the recovery of both the muscle and
the tendon components of the junction [73]. Further-
more, studies such as those by Rieu et al., along with
others [81,82], provide valuable insights into cellular
preferences and interactions within the MT]. Recog-
nizing that accurate ECM influences are pivotal in
shaping cellular phenotype and maintaining proper
cellular function are imperative for engineering MT]
materials that will support homeostasis and minimize
inflammatory responses. By understanding the role of
exercise and injury on cell adaptations within the MT]J,
engineered muscle—tendon units can be constructed
and enhanced, yielding promising advancements in the
development of i vitro M'T] model development and
validation.

Rehabilitative strategies for the MTJ via
biomimetic engineering

When developing strategies to repair, augment, or pro-
tect the MT] during injury or invasive surgery, it is
essential to consider the native tissue micro-
architecture, such as porosity and alignment. The MT]
region is an interface between two drastically different
tissues, in terms of structural organization. Muscle
tissue is aligned and compliant, with substantial cellular
complexity to enable muscle contraction. In contrast,
tendons enhance axial mechanical properties. When
subjected to mechanical stress, the MT] experiences a
transition from contractile, force-generating muscle
tissue to stiff load-bearing tendon [17].

Biomimetic scaffolds capture the intricacies of tissue
microarchitecture and mechanics, offering precise con-
trol over these properties at the microscale and nano-
scale.Ideally, a biomimetic MTJ scaffold should mirror
the muscle—tendon mechanical gradient and the
transfer of forces across the interface. Techniques to
create nanofibrous- and microfibrous structures, such as
electrospinning [74], ice templating [83—86], and
three-dimensional (3D) printing, can be used to achieve
these structural and functional features. In addition to
mimicking the MT] structure, the cellular interaction
between tenocytes and myotubes is significant in the
repair and maintenance of the MT] interface [87].
Therefore, a biomimetic scaffold should support cell
attachment, maintenance, and differentiation upon
implantation, and promote organization and integration
of the resident cells. Decellularized extracellular
matrices [7,32] provide an ideal biomimetic environ-
ment for cell attachment adhesion by providing the
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relevant adhesion proteins such as laminin and collagen.
The following section describes current biomimetic
approaches to recapitulate the native MT] environment
within z vitro and  vivo model systems.

Utilizing electrospun scaffolds for mechanical
mimicry in the MTJ

Electrospinning is a scaffold fabrication method for
tissue engineering, which has been widely leveraged to
target the repair of tissue junctions, such as the enthesis
interface connecting tendon to bone [88]. However,
only one study has investigated the use of electro-
spinning for the MT] [74], despite substantial in-
vestigations of materials for the aponeurosis [88].
Electrospinning offers precise control over nanofibrous
fiber diameter and orientation, porosity, degradation
rate, and mechanical strength, which makes this tech-
nique attractive in fabricating the MT] structure.
Electrospinning can also be tuned to spatially deposit
nanofibers of varying compositions to mimic the
triphasic MT] structure and mechanical gradient. Ladd
et al. developed triphasic nanofibrous scaffolds for M'T]
repair using a polycaprolactone/collagen (PCL/col) and
poly (I-lactide)/collagen (PLLLA/col) mixture [74]. The
scaffold featured distinct regions with varying porosity
and alignment mirroring native M'T] microarchitecture.
The PLLA region exhibited an elastic modulus of
27.62 MPa while rupturing at a strain percentage of 35%,
whereas the PCL region had an elastic modulus of
4.5 MPa and a 130% strain at failure [74]. The inter-
facing region displayed intermediate properties (elastic
modulus: 20 MPa). While the scaffold failed to precisely
match MT] mechanics, the novel design supported cell
attachment and differentiation as NIH3'T'3 fibroblasts
and C2C12 myoblasts attached and differentiated into
myotubules [74]. This work also established comparable
trends in the mechanical profiles of the interface and
highlights the potential of the use of integrated scaffolds
for engineering M'TJ composites.

Application of decellularized scaffolds in MTJ
regeneration

Composite scaffolds for interfacial tissue engineering
face challenges replicating interfacial muscle—tendon
microarchitectures. Abnormalities in MT] develop-
ment or regeneration can lead to functional disability
and unforeseen outcomes [29,31]; therefore, it is
imperative that homeostatic tissue ultrastructure and
mechanics are as closely replicated as possible. Intact
decellularized extracellular matrix (d-ECM) may
address these issues by preserving the native ECM
structure and components, comparable to native MT]J
ultrastrcture and composition, as described in Figure 1.
While mammalian ECM materials have been used
extensively in tissue repair [75], research on decellu-
larized scaffolds for M'T] regeneration remains limited
[58,76]. Developing an optimal decellularization

protocol that maintains native architecture and elastic-
ity while fully removing cellular components could lead
to better recapituclation of native MT] structures
within  vitro engineered MTJs. Moreover, under-
standing how these decellularization protocols preserve
the native ECM composition is critical as proteomic
profiling of MT] regions revealed that Col XXII, CAV2Z,
and ANXA are differentially expressed in the MT]
region compared to the skeletal muscle and tendon re-
gions [2,3,31,32].

Zhao et al. examined a decellularized porcine Achilles
tendon MT]J (D-MT]J), preserving tissue structure and
integrity [32]. The D-MT] retained mechanical
strength and promoted new myofiber formation 30 days
post implantation in a rabbit-muscle-defect model. It
facilitated muscle regeneration, as evidenced by the
expression of key regulatory genes such as myoblast
determination protein (MyoD) and myosin heavy chain
(MyHC), both of which are crucial for regeneration and
functionality [32]. Complementary to proteomics as-
sessments of native skeletal muscle, the D-MTTJ struc-
ture was found to have upregulation of laminins,
annexins, and myosins relevant to force transduction
[2,3,32]. However, assessment of the tendon or MT]-
specific proteins was not performed on the D-MT]
structure, and future success of this material should
consider all regional compositions of the MT] [32].
Compared to native-MTJ controls, the D-MT] resulted
in a thinner fibrotic capsule and less inflammation [32].
This study was the first to assess the biological response
of a decellularized M'T] scaffold [32]. However, further
research is needed to assess long-term effects as well as
explore degradability and force generation in large
animal studies. Nevertheless, Zhao et al.’s results are
consistent with other results using decellularized ECM-
based materials, where decellularied ECM is able to
effectively restore 3D structure, ultrastructure, vascular
networks, and ECM components in whole organs such as
skin, lungs, and kidneys while minimizing inflammation
and promoting resident cell infiltration [89—91].

Decellularized tissues can also be used as compositional
or adhesive cues, even when the original tissue archi-
tecture is lost during processing (e.g. milling, digestion)
for applications in electrospinning, spray coating, 3D
bioprinting, among other applications [77,92—95]. For
M'T]J reconstruction, Turner et al. used xenogeneic small
intestinal submucosa (SIS) ECM in a canine model
following gastrocnemius M'T] resection [78]. The au-
thors decellularized xenogeneic canine SIS using
chemical and mechanical methods and created a par-
ticulate material that was vacuum pressed into a layered
structure [78]. The results showed the xenogeneic d-
ECM scaffold recruited progenitor cells and promoted
vascularization and innervation of the MT] six months
post implantation [78]. These finding suggest the
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biological influence of the decellularized ECM in
improving regeneration and cell infiltration.

Electrospinning and d-ECM are both useful approaches
for recapitulating the muscle—tendon interface due to
the ability of each to mimic the structure and environ-
ment of native tissues. As the development of new
cellularized  vitro M'T] models emerge, we expect that
investigators will utilize these material formats in their
construct development.

Cellular and structural biomimicry in MTJ
engineering

Cell-based scaffolds aim to recreate native tissue envi-
ronments by promoting cellular adhesion and optimizing
matrix deposition and degradation rates. When com-
bined with a scaffold designed to replicate specific
tissue structures, cell-laden constructs may enhance
repair, provide insights into fundamental interactions,
and serve as platforms for investigating disease. In the
context of the MTJ, where muscle and tendon tissues
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intricately interface, cell types such as myoblasts and
tenocytes play pivotal roles. Tendon cells contribute to a
collagen I matrix, whereas muscle cells form myofibers
that exert lateral forces on the tendon matrix, aligning
tenocytes and collagen fibrils along the force direction.
When cell-based scaffolds can organize these essential
cell populations, researchers can begin to understand
how these interactions are interrupted during injury and
disease, thus, improving our understanding of cell ma-
terial interactions, cell phenotypes, and neotissue for-
mation within the MT]. Creating cellular, structurally
mimetic constructs holds the potential to unveil com-
plex tissue interactions at interfacial tissues, exempli-
fied by current cell-seeded, biomimetic MTJ constructs,
with recent work highlighted in Figure 2.

Employing hydrogels for 3D cell-culture constructs

Polymeric hydrogels can be formulated as injectable, 3D
printable, and controllable materials that provide a
suitable environment for cellular encapsulation, pro-
moting the incorporation of relevant cell types involved
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Schematics adapted from ** papers highlighting recapitulation of MTJ microarchitecture (a) Cellularized aligned hydrogel formation in decellularized
muscle extracellular matrix (MECM) and tendon extracellular matrix (tECM) [1] utilizes the native microenvironment to support relevant tissue growth.
(b) Proteomics analysis of mECM and tECM [1] match the proteomics of native tissue supporting the author’s use of decellularized hydrogels as a
successful construct for MTJ rehabilitation. (¢) Cryo-bioprinted cell-laden hydrogel demonstrating distinct aligned muscle, tendon, and MTJ regions [4].
Fluorescence imaging shows regional distribution and overlap of relevant muscle and tendon cells throughout the aligned cryo-bioprinted structure [4]
confirming the precise control of microstructure and cellular orientation. (d) Images of a three-dimensional printed muscle-bioink and tendon-bioink
structure with contact in the mixing zone during printing [7]. Interdigitation of the muscle- and tendon-bioink at day 28 [7] mimics the microarchitecture of
native MTJ. Cell growth over 14 and 28 days shows the potential long-term applications of this construct not usually found in traditional bioprinting.
Abbreviation: MTJ = myotendinous junction.
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in M'T] regeneration. 3D printable hydrogels enable the
creation of patient-specific structures, enhance tissue
integration, and support regeneration. Hydrogel
matrices can be engineered to deliver controlled release
of bioactive molecules, including growth factors and
cytokines, which support tissue remodeling; however,
hydrogels as a whole exhibit poor load-bearing capabil-
ities and would not be directly used as a therapy for M'T]
rupture.

Despite not being widely used for MT] regeneration
due to limited mechanical properties, they are often
used to study fundamental cell—cell and cell—matrix
interactions [87,96,97]. Early investigations, such as
those by Swasdison and Mayne in 1991, used collagen
type I hydrogels to study MT] development mecha-
nisms, observing spontaneously contractile muscle
fibers surrounded by continuous basal lamina, yet the
direct insertion of collagen fibers into muscle fibers
remained unconfirmed [98]. Recent efforts by Gaffney
et al. utilized porcine-derived muscle and tendon ECM-
based hydrogels to explore interface-specific in-
teractions [1]. The utility of the ECM-derived hydro-
gels allows for relevant microenvironments to be
retained and the mechanical property modulation of
specific tissue regions. The different hydrogel and cell
types evaluated (Figure 2a) allowed for proteomic
evaluation of the tissue constructs. Proteomic analysis
(Figure 2b) identified similar protein expression as
previously mentioned for native tissue (Figure 1) [1,2],
but also a few proteins with lower levels of expression
possibly caused by the decellularization process [1].
Over a five-day culture period, tendon-ECM (tECM)
hydrogels led to the highest paxillin expression in
C2C12 cells, with myoblasts and tendon fibroblasts also
showing elevated paxillin expression compared to con-
trols [1]. Collagen type XXII was present in tECM but
not in muscle-ECM, and tendon fibroblasts displayed
significantly higher collagen XXII staining in tECM
hydrogels than in controls [1]. As previously mentioned,
collagen XXII is an MT]J-specific protein implicated in
force generation and transmission [31]. Though the
mechanisms distinguishing collagen XXII expression in
tECM hydrogels compared to muscle-ECM hydrogels
remain unclear, the increased expression of this MT]-
specific protein highlights the therapeutic potential of
these scaffolds to mimic the microenvironment of native
MT]J. These hydrogel-based studies shed light on MT]J-
related protein expression and interactions, despite the
limitations of hydrogels in M'T] regeneration.

Cell-based hydrogel scaffolds are created to counteract
the limited regenerative capabilities and concerns
regarding scar formation, impaired mechanics, and
infiltration of fatty tissue during M'T] reconstruction
[99]. Notably, Luo et al. demonstrated the creation of a
cell-laden hydrogel scaffold with anisotropic, inter-
connected microchannels using a cryo-bioprinting

technique [4]. These microchannels have the poten-
tial to enhance nutrient diffusion and replicate the MT]J
interface. Additionally, the method offers precise
printing control and cryogenic preservation, ensuring
architectural accuracy and scaffold stability [4]. Luo
et al. successfully created a construct that mimics the
MT] structure, as shown by their incorporation of
myoblasts and fibroblasts and use of alignment [4]. The
authors applied precise structural control and demon-
strated a multiregion construct for the muscle, tendon,
and overlapping M'T] regions (Figure 2c¢, [4]) similar to
the regional distributions of proteins described in
Figure 1. Despite the success of these m vitro experi-
ments, it is crucial to acknowledge the existence of
challenges and possible limitations. These include the
absence of examination regarding cell differentiation
impact, which could potentially affect overall cell
function, limited scalability, and demands for technical
expertise. Further research through 7 vivo studies is
essential to advance cryo-printing technology.

Bioprinting approaches in MTJ tissue engineering

Bioprinting offers a promising avenue for M'T] recon-
struction, enabling the study of interfacing tissue com-
ponents such as inflammation and force dispersion.
Merceron et al. created a 3D bioprinted construct
comprising muscle, tendon, and an interface region
using a 3D computer-aided design and four extrusion
materials containing myoblasts and fibroblasts [100].
The scaffold consisted of three regions: a muscle region
with an elastic modulus of 0.39 = 0.05 MPa, a tendon
region with an elastic modulus of 46.67 & 2.67 MPa, and
an interface region with an elastic modulus of
1.03 &= 0.14 MPa. Cell viability studies on day 7 revealed
94% viability for myoblasts and 83.8% for fibroblasts,
with the development of aligned myotubes on the
muscle side and successful ECM generation by fibro-
blasts on the tendon side [100]. Although promising for
a reparative, biomimetic construct, further research is
needed to investigate collagen deposition and focal ad-
hesions, which anchor the intracellular cytoskeleton to
the ECM, in the MT]J. Focal adhesions at the MT],
which are commonly associated with integrin signaling
pathways, are responsible for cell—matrix attachment
and respond to force transmission throughout the ECM
[18,101]. Optimizing 3D printing parameters to closely
resemble native tissue may improve cell—cell and cell—
matrix interactions and improve adhesion in the inter-
mediate tissue gradient. These scaffolds, while not
equivalent to native MT]J, can replicate desired in-
teractions at interfacing tissues, including injury
response, inflammation, and regionalized force loading.

Similarly, Laternser et al. developed an automated bio-
printing technique for muscle and tendon tissue
models, using a photopolymerized bioink with biocom-
patibility, precise structure, and scalability [100]. They
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used a Ge]MA-PEGDMA-based ink containing skeletal
muscle cells and tenocytes, resulting in bioprinted tis-
sues that displayed proliferation, differentiation, and
muscle contractions in response to mechanical stimu-
lation [100]. Histological analysis confirmed muscle and
tendon differentiation, with gene expression markers
including collagen type I, III, and Tnmd for tendon, and
myogenin, MyHC-2, and alpha-actinin 2 (ACTNZ2) for
muscle [100], resembling MT]J-like interactions re-
ported by others [1,18]. Originally designed for drug
screening, this bioprinting technique to create cell-
laden constructs shows promise in MT] research,
allowing precise spatial deposition of desired micro-
architecture and analysis under mechanical load [100].

Bioprinting the M'T] is challenging due to the necessary
replication of the physiological environment. Kim et al.
addressed the challenge of bioprinting the MTJ by
utilizing d-ECMs and human adipose-derived stem cells
(hASCs) to create a 3D model comprising muscle,
tendon, and interfacing units [7]. Following tissue
decellularization, muscle bioink and tendon bioink,
derived from decellularized muscle and tendon,
respectively, were mixed with hASCs and extruded to
form materials [7]. Immunofluorescence staining and
reverse-transcription polymerase chain reaction (RT-
PCR) analysis showed upregulation of myogenic and
tenogenic genes, suggesting successful differentiation.
MT]J-associated genes were also observed to be upre-
gulated in the constructs with the most overlap of the
muscle and tendon bioinks (Figure 2d) [7]. These re-
sults indicate the scaffold’s capability to replicate M'T]
regions induces hASC differentiation and aids in un-
derstanding MTJ development and reconstruction
approaches.

Development of advanced 3D constructs for MTJ
recapitulation

Three-dimensional tissue-engineered constructs that
structurally and biologically mimic the MTJ can serve as
both a therapeutic to restore the MT]J tissue and as an
in vitro model to study the complex interactions at the
interface. In vitro M'T] models are essential for investi-
gating tissue homeostasis, muscle—tendon crosstalk,
and M'T]-related gene expression. To this end, Gaffney,
Fisher, and colleagues uncovered the role of mechano-
transduction at the MT] on cellular phenotype [102].
Muscle tissues were engineered in a novel bioreactor to
evaluate paxillin and type XXII collagen expression.
C2C12 myoblasts were cultured in collagen type 1
hydrogels or tECM around movable anchors for 10 days,
followed by cyclic stimulation over 2 and 4 weeks
alongside static cultures. The protein expression of
paxillin remained unchanged between hydrogel mate-
rials in static cultures but increased by 62% in tECM
under mechanical stimulation relative to the collagen
hydrogen. Furthermore, type XXII collagen protein
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expression was present in all tissues after 2 weeks, with
greater abundance observed in the mechanically stim-
ulated tissues, which is supported by studies conducted
on human MT], where type XXII collagen expression
upregulated in the MTJ compared to the individual
muscle and tendon tissues [26]. Interestingly, the static
tECM-cultured group resulted in an increased expres-
sion compared to the collagen hydrogel, demonstrating
the influence of the substrate-material properties on
protein expression [102]. Findings from this study
clucidate the cellular crosstalk and protein modulation
in the MTJ in physiological loading conditions using a
tissue-engineering M'T] model, which is an avenue for
potential future work in studying M'TJ development.

Schon et al. also developed an MTJ-biomimetic
construct to improve MT] surgical outcomes. The
construct was a novel biologically active composite sur-
gical mesh containing a polyglycolic acid scaffold and
multipotent stem cells (MSCs) within an alginate
hydrogel to facilitate cellular delivery and address the
challenge of poor suture retention in muscle during
tension-free repair [103]. Utilizing a mesh-embedded
hydrogel allows for controlled cellular delivery and
enhanced alignment, offering a promising approach for
effective MT] regeneration via soluble and structural
cues. The tissue-engineering M'T] was evaluated in a
murine Achilles-gastrocnemius/soleus junction injury
mode. By day 14, the MSC-loaded surgical mesh
displayed tissue alignment and increase collagen type 1
expression, similar to tendinous tissue [103]. Overall,
this study demonstrated the potential of the MSC-
loaded surgical mesh as an integrated approach for
enhancing tendon repair and regeneration in the
Achilles-gastrocnemius/soleus  junction of murine
models.

Engineered constructs have also been evaluated in
preclinical models. VanDusen et al. created scaffold-free
skeletal muscle units (SMUs) using isolated muscle
cells from a rat soleus muscle and tissue-engineered
bone anchors from residual bone marrow cells [104].
The resulting SMUs were implanted into murine
models for 28 days to assess the therapeutic efficacy
following a 30% resection of the tibialis anterior muscle.
Although the desired application was for volumetric
muscle loss, the group demonstrated a fully integrable
therapy capable of muscle regeneration, angiogenesis,
and innervation. L.aminin was found in high concentra-
tions in the SMU ECM and upregulated paxillin
expression, suggesting MTJ] development [104].
Another hallmark exhibited by the SMUs was the
distinct alignment of muscle fibers [104], which is
imperative in regenerating musculoskeletal tissues, and
lack of immune response. The therapeutics were unable
to replicate the full mechanical profile of native MT]
and muscle; however, VanDusen et al. was able to
demonstrate the efficacy of their SMUs with respect to
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innervation, blood supply, and overall cellular in-
teractions [104].

In addition to studying M'T] development or evaluating
implantable materials, 3D tissue-engineered constructs
are pivotal for restoring MTJ structure and function.
Reconnecting muscle and tendon are vital for regener-
ating the ruptured M'TJ, including bridging nerve con-
nections and maintaining sufficient vasculature.
Hashimoto et al. sought to focus on these challenges via
use of skeletal-muscle-derived multipotent stem cell
(Sk-MSC) sheet pellets for MT] regeneration in ro-
dents with complete tibialis anterior ruptures [105].
Primarily focused on muscle recovery, Sk-MSC sheet
pellets containing essential myogenic, neurotrophic, and
vascular growth factors ruptures, labeled as “bio-bonds,”
were overlaid on the ruptured MTJ, and evaluation for
short- and long-term biological outcomes [105]. The
engrafted cells formed an interconnected network of
tendon and muscle fibers. Mechanical bridging of the
tendon and muscle was observed through engrafted
fibroblast migration ruptures [105]. To further improve
the impact of this strategy, efforts could be made to
comprehensively address both muscle and tendon
components to offer more effective treatments for
musculotendinous injuries, given the promising poten-
tial of Sk-MSC sheet pellets for MT] regeneration.
While the study by Hashimoto et al. offers significant
information about cell-based 3D tissue-engineering
MT]J construct, future work should focus on the inves-
tigation of the mechanics at the interface, which are
crucial for maintaining force transmission at the MT]J.
Furthermore, the initial work predominantly concen-
trates on muscle mass and tetanic tension [106], and
future investigations should include functional assess-
ments, such as evaluation of range of motion. Future
work in the development of cellularized constructs
should also evaluate ECM production and composition,
working to understand how ECM composition or ECM
secretion changes over time, given the shifts observed
following exercise and injury in preclinical and clinical
evaluations [36,102] and recent M'TJ proteome profiling
[2,3].

Future directions in MTJ tissue engineering

Repairing and rehabilitating the MT] remains a chal-
lenge due to the complexity of the tissue structure and
function. Understanding the cellular function and
multi-tissue interactions, which are influenced by the
compositional gradient along the MT]J, is critical in
advancing the field of MT] tissue engineering. This
review addresses the knowledge gap by providing
detailed information about the ECM composition,
microstructure, mechanical properties, and cellular
components that contribute to the maintenance, repair,
and regeneration of the muscle, tendon, and MT]J. The
variations in MT] structure and function, which are

dependent on anatomical location, sex, age, and disease,
are also highlighted in this review to inform researchers
of the importance in considering these anatomical dif-
ferences when developing MT]-specific tissue-engi-
neering approaches (Figure 3). Moreover, the
development of m vitro M'T] models to study cellular-
tissue interactions at the interface and the develop-
ment of MTJ-like materials to repair and restore the
MT]J’s structure and function are discussed in this
review.

The current MTJ tissue engineering approaches for
clinical treatment are centered around mimicking the
MT] microarchitecture and mechanics to provide
structural cues for the innate endogenous healing cells
and developing cell-based scaffolds to promote early
cell—cell interactions upon implantation. Microscale
and nanoscale fabrication techniques, such as electro-
spinning and bioprinting, replicate the intricate transi-
tional M'T] microarchitecture and provide a biomimetic
structure to promote cellular attachment, integration,
and organization of resident muscle and tendon-healing
cells, while decellularized materials serve as biologically
derived templates with native ECM proteins to further
promote restoration of MT] structure and mechanics.
However, a limitation of these acellular strategies is the
absence of the initial cell—cell interactions and subse-
quent release of growth factors (e.g. IGF-1); both of
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Schematic of the myotendinous junction (MTJ) at various locations
throughout the body. While recent work has focused on larger muscles
in the legs, future considerations should consider other MTJ locations,
where expression of key proteins and overall load bearing are different
from the MTJs found in the limbs. Created with BioRender.com and
licensed Adobe® Stock Photos.
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which are critical for M'T] development and homeosta-
sis, healing cascade initiation, and tissue integration.
Combining these materials with cellularized compo-
nents, such as cell-laden hydrogels, would promote early
repair via exogenous and endogenous cell communica-
tion and provide structural and molecular cues for tissue
restoration and improved function.

As this field continues to move forward, evaluating the
long-term biological response and functional outcomes
of tissue-engineering M'TJ constructs is limited by the
lack of validated preclinical M'T] injury models. Studies
by Perucca Orfei et al. [107] that laid the groundwork
for recent efforts by Yamamoto et al. [108] to use
collagenase to develop an iz vivo M'T] injury model in
mice are the first steps in this direction. Yamamoto et al.
made significant contributions to our understanding of
MT]J injuries and the repair process through histological
and morphological evaluation in mice. However, in the
model development and validation, Yamamoto et al. did
not evaluate or address functional outcomes. Under-
standing how these morphological changes translate into
functional recovery is crucial for developing and vali-
dating future rehabilitation strategies within a
collagenase-based injury model. It is necessary to un-
derstand if a regenerative therapy can move toward
restoration of the intricate muscle to tendon load
transfer and movement. Additionally, variability of the
injury and therapeutic response due to species-specific
healing mechanisms, degree and location injury, and
selection of evaluation timepoints warrants the need for
the validation and standardization of a preclinical MT]
injury model to evaluate and compare tissue-engineered
M'TT] therapies. More specifically, longitudinal studies
with emphasis on the postinjury cascade to probe the
dynamic cellular interactions and structural composition
throughout healing will provide insights for in-
terventions to target specific stages of the reparative and
rehabilitation process.

Future work should investigate engineering MTJs for
applications beyond the traditional areas of interest
within the upper and lower extremities [109]. While
these areas are prone to sports-related injury, many pa-
tients suffer from complications at the muscle—tendon
interface due to non—sports related activities, such as
genetic disease or complications related to childbirth
(Figure 3). For example, engineered MT] 7z vitro models
can contribute significantly to understanding and
treating women’s health conditions, particularly related
to childbirth and pelvic floor injuries [110—114].
Building engineered tissue models of pelvic floor MT]Js
or MTTJs in cervical tissues could be leveraged to un-
derstand the impact of mechanical loading as a simulate
for exercise or physical therapy, on the repair of the
tissue following childbirth, other traumatic injuries, or
fluctuations in hormone levels from menopause [68],
endometriosis, or  polycystic ovary  syndrome.
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Alternatively, development of healthy and dystrophic
MTY] in vitro models [40] could aid in understanding the
cascade of symptoms and muscle weakness in patients
with muscular dystrophy. Furthermore, M'TJs in the jaw
region, connecting facial muscles to the temporoman-
dibular joint, and ocular MTJs attaching extraocular
muscles to the sclera [39,113—117], are other essential
areas where overuse and strain often lead to injury and
reduced quality of life for patients. Engineered MT]
models can replicate overuse or injury of these tissues
and aid in understanding the relationship between the
mechanical load and pathophysiology. Furthermore,
an z vitro M'T] model can be utilized to evaluate and
validate treatments, thus advancing the craniofacial and
ocular tissue engineering fields. In conclusion, the
future of MTJ tissue engineering, whether to repair and
rehabilitate or model the complex interactions at the
interface, is promising with broad biomedical
implications.
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