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Abstract The next generation of searches for neutrinoless
double beta decay (OvBg) are poised to answer deep ques-
tions on the nature of neutrinos and the source of the Uni-
verse’s matter—antimatter asymmetry. They will be looking
for event rates of less than one event per ton of instrumented
isotope per year. To claim discovery, accurate and efficient
simulations of detector events that mimic OvSg is critical.
Traditional Monte Carlo (MC) simulations can be supple-
mented by machine-learning-based generative models. This
work describes the performance of generative models that
we designed for monolithic liquid scintillator detectors like
KamLAND to produce accurate simulation data without a
predefined physics model. We present their current ability
to recover low-level features and perform interpolation. In
the future, the results of these generative models can be used
to improve event classification and background rejection by
providing high-quality abundant generated data.

1 Introduction

Event simulation is critical to modern particle and nuclear
physics and is used in all experimental stages from detec-
tor design to the extraction of the final result with the cor-
responding statistical significance. Traditionally, the simu-
lation of particle detectors starts by modelling the micro-
physics of the particle depositing energy in the detector, and
using Monte Carlo, techniques propagates the signal through
the detector geometry. However, the stochasticity and com-
plexity of these processes makes it difficult to reproduce the
detector response while simultaneously being computation-
ally expensive to produce datasets of sufficient size.
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Rare event searches are a class of experiments that use
highly specialized detectors to search for new processes
that would indicate new physics at an energy-scale beyond
the reach of any modern particle accelerators. Monolithic
kiloton-scale liquid scintillator detectors, like KamLAND-
Zen, are an excellent detector technology for rare event
searches as they provide economical scaling to large vol-
umes. For this reason, they have been the work horse of
neutrino physics for many decades [1-9]. KamLAND is a
spherical detector, which is composed of 1 kiloton of liquid
scintillator (LS) contained in a 13-m-diameter balloon. The
LS-filled balloon is surrounded by mineral oil (acting as a
buffer volume) and is viewed by 1879 photomultiplier tubes
(PMTs). A smaller secondary balloon is currently deployed
at the center of the main balloon and contains LS doped
with 742kg of '3°Xe (XeLS) to search for Ov8B[10]. An
observation of this rare process (current limits greater than
~ 1020 years) would prove that the neutrino is its own antipar-
ticle, also known as a Majorana particle. This is a key ingre-
dient for Leptogenesis [11], which describes the observed
matter—antimatter asymmetry in our universe.

In our previous work, we used deep learning methods to
classify critical backgrounds [12,13], however the power of
deep learning is not limited to background suppression. In
this work, we leverage deep learning to tackle event simu-
lation in spherical liquid scintillator detectors with the goal
of producing simulations that more accurately produce the
detector response while simultaneously reducing the com-
putational burden. While the aspiration is to generate a large
number of events from a limited number of training samples,
achieving so-called few-shot learning, it is crucial to validate
the accuracy of the simulation with extensive data or by ini-
tially training with a large dataset and then fine-tuning with
a smaller set.
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This work benchmarks two models using simulation data:
the main variational auto encoder (VAE) model and an alter-
native generative adversarial network (GAN) model. Thanks
to the data-driven nature of deep learning algorithms, the
generalization to real detector data should be very straightfor-
ward. This paper is structured as follows. We first introduce
the simulation of the liquid scintillator detector data used in
this study in Sect. 2. The robustness of the generative model is
demonstrated by learning from these different datasets. Sec-
tion 3 explains the structure of the VAE model and the GAN
model. The backbone network PointNet is highlighted in this
section, which elucidates the underlying mechanism of infor-
mation extraction in our generative model. Section4 outlines
the application of the generative models and demonstrates the
training results. Finally, Sect. 5 compare the generated events
to real detector events using KamLLAND-Zen reconstruction
algorithm. We evaluate the model by comparing the statisti-
cal properties of the original and generated datasets.

2 Detector data

In this work, we train and evaluate our generative model
on both simulations and real detector data. The simulation
datasetis generated by KLG4sim, a detailed KamL AND sim-
ulation based on the GEANT4 toolkit. This dataset is the stan-
dard KamLAND-Zen 800 detector MC simulation, referred
to as Sim-KLZ800. Sim-KLZ800 consists of events com-
ing from '3Xe OvBB with Q = 2.458 MeV and >'“Bi (8~
decay). All events are uniformly distributed within a 1.98-
meter-radius mini-balloon, contained in a 13-meter-diameter
balloon filled with liquid scintillator, and surrounded by a
2.5-meter-thick mineral oil buffer volume. Photons gener-
ated in each event will propagate through all these layers,
reach the outer boundary of the buffer and trigger simu-
lated KamLAND-Zen PMT. Sim-KLZ800 has been carefully
tuned to replicate the response of the real detector.

Besides Sim-KLZ800, we have also prepared a physics
validation dataset of real KamLLAND-Zen events. To procure
this dataset, we chose to use the neutron capture because
of its high statistics and isotropy in the spherical detector.
Our neutron capture events are from anti-neutrino inverse
beta decay, determined by the delayed-coincidence tagging
method. In this method, we use the criteria that delayed
energy E; > 1.5MeV, space correlation AR < 300cm,
time correlation AT < 2.5ms. This criteria is also applied
to data selection. The energy spectrum of neutron capture
simulation is demonstrated in Fig. 1. Visible energy distribu-
tion from neutron capture has its peak at around 2.225 MeV.
The theoretical energy spectrum of neutron capture is also
shown in the plot for a direct comparison.

Each simulated event results in a collection of triggered
PMTs. When a PMT fires, its position, arrival time (hit time
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Fig. 1 Visible energy distribution of a subset of neutron capture events.
The red line indicates the best-fit curve. And the blue line indicates the
theoretical energy line at 2.225 MeV

t) and registered photoelectron charge (hit charge g) are
recorded as a point in the 5D space defined by the vector
[x, v, z, t, g]. In machine learning language, a collection of
points is called a point cloud. Point cloud data has two main
characteristics:

e Disorder: point-cloud is insensitive to the order of points
within.

e Invariance: point-cloud data is invariant to spatial trans-
formations in Poincaré group.

Therefore, applying translations and rotations to the point
cloud will not affect the training result. To generate the point
clouds for training purpose, some additional corrections are
needed. For the time dimension, two corrections are applied
to calculate the proper hit time ¢ from this raw hit time. T}.4,,
is the raw hit time when the optical photon arrives at the
PMT surface. To produce the proper hit time, the following
correction is executed upon Tygy,:

t=Tuw—TOF — Ty, (D

where TOF is the photon time-of-flight from the event vertex
to PMT position and Ty is the proper start time of the event. By
subtracting T O F from T}, we effectively move the vertex
of each event to the center of the detector. By subtracting T,
we correct for intra-event distortion of the scintillation time
profile by the vertex position. The calculation of Ty is a frac-
tional charge weighted sum of the differences between T}y,
and T O F over all the PMTs. This is calculated as follows:

_ Zi(Triaw - TOFi) X gi
> i di

where g; is the hit charge on the i-th PMT. We use the criteria
that restrict the hit time to the event within +30 ns window,

Ty
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and any hit times recorded outside this interval will not be
considered.

Hit charge is pivotal for reproducing the energy deposition
in liquid scintillator detector. It is obtained by first integrating
the area under the PMT pulse, which is proportional to the
number of optical photons registered at the PMT. The raw
integrated value is then normalized by the the so-called 1
photoelectron (p.e.) peak integration. The 1 p.e. refers to the
pulse profile where exactly one photoelectron is produced
within the PMT. The calculation is displayed below:

g= ffevent(f)df’ 3)
f flp.e.(f)dt

where fevent and fipe. are the PMT pulse and 1 p.e. pulse,
respectively. This normalized value is thus the proper hit
charge that reflects the number of p.e. While a low energy
event creates only a single p.e., a high energy event can cre-
ates more than 1000 p.e. PMTs with charge smaller than 0.3
p.e. are recognized as baseline fluctuations due to noise and
are dropped from the point cloud.

Up to now, we have obtained the corrected 5D point cloud
dataset. However, each event (point cloud) in this dataset con-
tains a varying number of PMT hits (points). The number of
PMT hits, or the NHIT, is a essential attribute of LS detec-
tor event since it is proportional to energy. However, neural
networks can only produce a fixed number of points and,
therefore, cannot handle the event-wise variation of NHIT.
An additional trigger-dimension is introduced to resolve this
problem. In KamLLAND-Zen, there are 1879 PMTs spheri-
cally covering the detector surface, thus the maximal possi-
ble NHIT is 1879. Therefore, the generative model addition-
ally generates 1879 floating point numbers corresponding to
1879 PMTs in KamLLAND-Zen. These floating point num-
bers are then fed to a sigmoid function to constrain their
values between 0 and 1, and subsequently converted to 1879
binaries using the Bernoulli distribution. If the value corre-
sponding to a given PMT reads 1, the PMTs will be consid-
ered as triggered; otherwise that PMTs will be considered as
untriggered.

The trigger-dimension is then used to transform the point
clouds to a concentric double-sphere. If a PMT is marked as
triggered by this dimension, its 5D values [x, y, z, t, q] are
kept at the original position, while the untriggered PMTs are
shifted to the origin in 5D point cloud space, as shown in
Fig.2. As we will discuss in Sect. 3.2, the concentric double-
sphere efficiently ignores the untriggered PMTs while allow-
ing the generative model to produce fix-sized outputs.

Lastly, the variations of charge and time distributions are
scaled to a comparable size before training. Ideally, a robust
model should not be confused by scaling. It should regard
time and charge values equally, however the difference in
sizes of charge and time can mislead the machine. It may
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Fig. 2 The inner sphere is for the untriggered PMTs (blue), and the
outer sphere is for the triggered PMTs (red). The concentric double-
sphere efficiently ignores the untriggered PMTs while allowing the
generative model to produce a fix-sized outputs

only focus on the dimension with a larger scale and ignore
the dimension with a smaller scale. This rescaling method
improves the accuracy by giving a default discrepancy in
spatial information from different categories. It also speeds
up the convergence of the model and prevents the gradient
exploding problem (excessively large gradients that leads to
unstable convergence) during the training.

3 Network design

The power of a generative model emerges from its ability to
probe the underlying low-level physics of the KamLAND-
Zen events. If we define X is the (simulated) detector events
and Y is the type of events. A generative model aims to
describe what an observation X should be when Y is given.
This process requires a likelihood function P(X|Y) and a
probability distribution P(Y), where P(Y) is obtained as
prior knowledge, and P(X|Y) is learned by the training of
generative model. Two most popular generative models —
variational auto-encoder (VAE) and generative adversarial
network (GAN) — are used and compared in this study. VAE
has an explicit latent space that the inference of distribution
P(X]Y) is enforced, while GAN has an implicit latent space
and will not solve inference queries [14].

3.1 PointNet

Typical image data such as photos or portraits can be pro-
jected on aregular pixel grid with uniform data density. How-
ever, the spatial and temporal distribution of liquid scintil-
lator detector data is irregular and uneven and thus cannot
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Fig. 3 Major components in both generative models are shown based
on the PointNet design. The stn and fstn are the spatial transform
networks [15] used to study global information, and feature information,
respectively. Conv stands for Convolutional Layers, FC stands for fully
connected layers, and norm stands for batch normalization. ReLU is the
Rectified Linear Unit activation function

be efficiently projected onto a 2D pixel grid. Therefore, we
treat PMT hits as point clouds and adopt the PointNet model
[16] as the backbone network for the generative models, see
Fig.3. PointNet has the ability to extract both global and
local features at various scales with a multi-layer structure.
In KamLAND-Zen, the coverage of the PMT array is con-
strained by the number of PMTs. In this case, each point in
the point cloud does not represent an exact photon location
on the PMT photocathode; rather, it marks the PMT photo-
cathode area where a hit could occur.

3.2 Variational auto-encoder (VAE)

An autoencoder (or self-encoder) is an unsupervised learn-
ing model. A conventional autoencoder encodes data into
a low-dimensional latent space representation (or vector).
This model contains a encoder network and a decoder net-
work. The encoder network encodes the input data into a
low-dimensional representation containing key information
of the data. The representation is then fed into the decoder
part to create an output data with the same dimensionality.
During training, a reconstruction loss function is defined to
minimize the differences between the output and the input
data. This guarantees that important features from data can
be encoded into the latent space, which can be used to recon-
struct the input. Conventional autoencoders do not place any
constraint upon the latent space. This model can reconstruct
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known events from encoded latent space vector, but lacks the
ability to generate new events.

Conventional autoencoders provide a foundational frame-
work, which variational autoencoders (VAEs) build upon to
introduce event generation capabilities. VAEs regularize the
latent space representation to follow a multivariate normal
distribution. They enhance the basic autoencoder model by
including additional terms in the autoencoder loss function:

L = Lo(x, %) + BDk1(q(z|x) || p(2)),

where Lg(x, x) is the reconstruction loss in the conventional
auto-encoder. Dk, denotes the Kullback—Leibler divergence
[17] computed between the returned distribution g (z|x) of the
latent vector z and the desired distribution p(z) [18]. Instead
of directly extracting z from the encoder network, the VAE
produces two vectors with the same dimension as z, namely u
and o. The z of the VAE is then produced using the following
equation:

=0 -0+ M1

where @ is sampled from a multivariate normal distribu-
tion with the same dimension as p and o. This method is
referred to as a “reparameterization trick”. It allows gradient
to flow through the network. After training, we can repet-
itively sample from the multivariate normal distribution to
simulate new events. Lastly, 8 is the hyperparameter that
controls the strength of the latent space regularization.

The structure of the customized VAE for KamLLAND-Zen
data is displayed in Fig.4. The encoding part is the Point-
Net model we introduced in previous section, and the decod-
ing part is a fully-connected neural network. In this work,
the reconstruction loss L contains two parts. The first part
is the Chamfer distance [20] calculated between the input
and output data. Chamfer distance is defined as the sum of
the minimal distance between each pair of points separately
from two point clouds. As discussed in Sect.2, the untrig-
gered PMTs will be at the origin after the concentric double-
sphere transformation. When calculating the Chamfer dis-
tance, contributions from the untriggered PMTs will be O thus
does not contribute to the network training. Therefore, we are
effectively training on triggered PMTs when minimizing the
Chamfer distance. Furthermore, we use the Binary Cross-
Entropy (BCE) loss to regularize the trigger-dimension. This
loss effectively limits the total number of triggered PMTs in
the output data, compensating for the Chamfer loss’s neglect
of the inconsistent number of hits in the output and input.

3.3 Generative adversarial network (GAN)

The GAN takes a different approach to generate events. The
GAN consists of two networks competing against each other:
the discriminator D(x) is designed to determine the authen-
ticity of data x, and the generator G converts the randomly-
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Fig. 4 Schematic diagram of our generative model based on the VAE
architecture. The encoder transforms the original input X to a latent
vector Z, and the decoder recovers the input X’ from this latent vector.
FC stands for fully connected layers, norm stands for batch normaliza-
tion, and Drop stands for Dropout Layers [19]. ReLU is the Rectified
Linear Unit activation function

sampled noise vector z to a synthetic event G(z). In a well-
trained GAN model, the discriminator and generator will
reach a Nash equilibrium thereby leading to efficient event
generation from random noise z.

The Wasserstein-GAN model [21] is adopted to avoid
the divergence in losses of generators and discriminators.
Wasserstein-distance measures the earth-moving distance
between the distributions of real and fake events, which pro-
vides a valid gradient for the GAN model to train. A gradient
penalty [22] is also implemented to facilitate the training,
which gives a bound on the Lipschitz-norm of the gradient
of the discriminator function D(x) and limits the discrimi-
nator from making dramatic changes when the input sample
only varies slightly.

In this work, we developed the GAN to fulfill the same
event generation task of the VAE. However, the reconstruc-
tion power of GAN turns out to be worse than the VAE model

in Sect. 3.2, as shown in Table 1. The design of GAN is shown
in the Fig. 5.

4 Training results

We used several datasets to train and validate the genera-
tive models. The performance of conventional autoencoder,
VAE and GAN models are shown for Sim-KLZ800 datasets.
We also demonstrate VAE’s capability to conduct few-shot
learning with merely 50 training samples.

4.1 Standard simulation of OvBg decay

To test the performance of generative models on sim-Full, we
train VAE and GAN to simultaneously generate the trigger-
dimension, time and charge for every PMT. The generation
performance is evaluated with Intersection over Union (IoU)
metric, also named as Jaccard index, between the original
(Pp) and the generative distributions (Pg). The IoU ratio is
calculated using the binned distributions of the input and
output data as:

Y i min(Py[k], Pglk])
Y oi_ max(Polk], Pelk])’

where k is the index of histogram bins of both the original and
generated data. The ratio J ranges from O to 1. Two identical
datasets will have J = 1, and any difference in distribution
will result in a decrease in IoU. Meanwhile, we also included
normalized Wasserstein distance to evaluate the generation
accuracy, expressed as:

W(Py, Pg)
max(Dg) — min(Dg)’

where Dy is the input data. Two identical datasets will also
have Z = 0, and any difference in distributions will increase
this value.

The training result is illustrated in Fig. 6, where the distri-
butions of hit times and hit charges of 1000 events are com-
pared. The hit time has J; = 89.04+0.1%, and the charge has
J4 = 91.940.1%. This suggests a strong correlation between
the real and generated events, with the observed discrepan-
cies likely stemming from the subtle yet intrinsic variability

J(PO7Pg):

“

%(P()’Pg):

&)

Table 1 Performance of the VAE and the GAN model. The comparison is performed with three metrics: intersection over Union (IoU), normalized
Wassertein distance (WD), and p-value from KS test. The GAN is trained with 10,000 epochs

Metrics VAE IoU [%] VAE WD [a.u.] p-value [a.u.] GAN IoU [%] GAN WD [a.u.]
Time dist. 89.0 9.32 x 1072 0.997 85.5 0.241

Charge dist. 91.9 0.254 0.861 80.0 0.461

Nhit dist. 81.2 1.96 0.963 76.2 2.98

Tot charge dist. 76.0 5.57 0.861 - -
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Fig. 5 Schematic diagram of our generative model based on the GAN
architecture. Original input X and generated input X’ from random
noise Z are compared and classified. FC stands for fully connected lay-
ers, norm stands for batch normalization, and Drop stands for Dropout
Layers [19]. ReLU is the Rectified Linear Unit activation function

and noise in our data that was not fully captured by our model.
The NHIT and total charge of original events and generated

P-Value: 99.7%
sim-KLZ800 Dataset
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0.05

o
o
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o
o
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events are compared in Fig.7. The NHIT distribution has
Jnv = 89.2 £ 2.0%, and the total charge distribution has
Jo = 76.0 &= 2.0%. We conducted a Kolmogorov-Smirnov
(KS) test on the four previously mentioned distributions to
assess their goodness of fit. In every instance, the p-value was
found to be greater than 85%, indicating good agreements.
We also tested the GAN models on the same dataset, and the
training result is shown in Table 1. The GAN model gives
decent performance, but it underperforms when compared
to the VAE on the four distributions under both evaluation
metrics.

4.2 Few-shot learning

One essential advantage of generative model is its few-shot
learning capability, in that it learn crucial features with an
extremely small number of training events, denoted as few-
shot dataset. To perform few-shot learning, we first pre-
train our generative model using a large >'*Bi dataset from
sim-KLZ800. Pre-training allows the generative model to

P-Value: 86.1%
sim-KLZ800 Dataset
[ VAE-Generated Dataset

o o o o o ©
N w EN ¢ o ~

Normalized Bin Count [arb. units]

o
-

°
=}
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Fig. 6 The averaging time distribution of all triggered hit points is shown on the left, and the averaging charge distribution of all triggered hit

points is shown on the right
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Fig. 7 The NHIT distribution for 1000 '3°Xe OvpB events is shown on the left and the total charge distribution for the same events is shown on

the right. All events are generated by the VAE model
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Fig. 8 Few-shot training result for the time and charge distributions

learn basic features of liquid scintillator events and provide
a good starting point for training. We selected >'“Bi for pre-
training because a pure set of 2'#Bi can be easily selected by
delayed coincidence tagging in KamLAND-Zen. Next, the
pre-trained model is trained with a relatively small collection
of 50 13Xe OvBB events forming the few-shot dataset. The
trained model is used to generate 1000 130Xe OvBS events
and compared to 1000 real 136Xe OvBpB events.

The result of the few-shot training is shown in Fig. 8. With
an extremely small number of few-shot samples, few-shot
learning reproduces the statistical distribution of individ-
ual events where the associated uncertainties for IoU val-
ues are obtained through bootstrapping. the IoU values for
time distribution J; = 83.59 & 0.03% and charge distribu-
tion J; = 83.09 £ 0.03% are approximately equal to normal
learning, while the network without few-shot training gives
gives J; = 2.65£0.05% and J; = 5.0440.06%. We further
assessed our results using the same KS test for goodness-of-
fit as detailed in Sect.4.1, with the p-values presented in
Fig.8. When comparing few-shot learning to high-statistics
training, the p-value for the hit-time distribution decreased
from 99.7 to 70.5%, and for the hit-charge distribution, it
dropped from 86.1 to 38.3%. These findings highlight the
reduced efficiency of few-shot learning, especially in simu-
lating hit charges which need to be improved in future studies.

This outcome suggests that methods combining pre-
training and fine-tuning could serve as a possible way for
improving model performance in scenarios with limited
training data, although the ability to simulate PMT hit charge
needs to be improved. In KamLLAND-Zen 800, we found
an increase in the background rate at the inner balloon bot-
tom, possibly due to the settling of dust particles. However,
an unambiguous identification of the source is impossible
due to limited statistics [10]. In this case, the few-shot data
are the unknown background events with limited statistics.
Leveraging few-shot learning, we will be able to boost the
population of few-shot data using the following steps: we

-2 0 2 4 6 8
Hit Charge [p.e.]

first use tagged >'*Bi data to pre-train the VAE, then use the
collected few-shot data to train the network. “After training,
the generative model will be able to generate as many events
as needed. Those generated events can provide hints of the
origin of low-statistics background events in real data. Note
that the training procedure is based on detector data, therefore
the generated events will accurately include effects coming
from the real detector response.

S Physics validation

To enhance our understanding of generative models’ capa-
bilities, we further conducted a physics validation study
by reconstructing key physics parameters in real detector
datasets. Within the context of liquid scintillator detectors,
the reconstructed energy and position stand out as two key
quantities of each physics event. In the KamLAND-Zen
experiment, these quantities are derived using a three-stage
hierarchical reconstruction algorithm, as detailed in [23]. The
first stage involves the LT Vertex fitter, providing a fast yet
somewhat less precise estimation of event position. Subse-
quently, the output from the LT fitter feeds into the second
stage, the V2 Vertex fitter, which yields a more accurate esti-
mation of the event position. Finally, the output of the V2
vertex fitter acts as input for the energy fitter to reconstruct
event energy.

For this physics validation study, we leveraged the neutron
capture (NC) dataset as described in Sect. 2. Throughout the
KamLAND-Zen 800, a total of 3760 neutron capture events
were tagged and collected. The three aforementioned recon-
struction algorithm was used to reconstruct their energy E
and positions {x, y, z}. We first independently implemented
the reconstruction algorithm of LT position fitter, but imple-
menting the V2 and Energy fitter requires access to both
the KamLAND-Zen source code and its calibration data,
which are not available within the scope of this work. To

@ Springer



651 Page 8 of 10

Eur. Phys. J. C (2024) 84:651

Normalized Bin Count [arb. units]

0.014

x Position Reconstruction Result

LT Position Validation

0.0 y Position Reconstruction Result

°

2z Position Reconstruction Result

0.012

2

0.008

3
s

5
8
g

0.002

P-Value: 100.0%
True Events
[ VAE-Generated Events.

(a)

P-Value: 98.8%
True Events
1 VAE-Generated Events

(b)

0.012

°
s

0.008

8
8

o o
8
4

Normalized Bin Count [arb. units]

o
S

0.012

°
2
s

0.008

8
g

o o
8
g

Normalized Bin Count [arb. units]

0.002

P-Value: 100.0%
True Events
1 VAE-Generated Events

(c)

-200 -150 -100 -50 0 50

x[em]

100 150 200

-200 -150 -100 -50 0 50

ylem]

100 150 200

o

~200

~150

-100 -50 0 50
2lem]

100 150 200

Ridge Regression Output

V2 Position Validation
0.007 Ridge ion Result o. x Position Reconstruction Result o. y Position Reconstruction Result o z Position Reconstruction Result
P-Value: 100.0% PValue: 37.2% PValue: 37.2% PValue: 37.2%
] Ridge Regression Output (d) 50008 True Events (e) 50008 True Events (f) 5 0008 True Events (g)
] 1 Va2 Fitter Output £ 0,007/ [ VAE-Generated Events £ 0,007/ [ VAE-Generated Events E 0,007 [ VAE-Generated Events
5 5 0.006 5 0.006 5 0.006]
5 0.004 5 0.005 5 0.005 5 0.005]
3 3 3 3
8 8 8 8
£ 0003/ £ 0004 £ 0004 £ 0004
K T 0.003 T 0.003 T 0003
2 0.002 2 2 2
g £ 0.002 £ 0002 £ 0002
5 0.001/ 5 s 5
= 0.001 = 0.001 = 0.001 = 0.001
X o 0,000 0
—700 -150 -100 -50 0 50 100 150 200 —200 -150 -100 -50 © 50 100 150 200 —200 -150 -100 -50 © 50 100 150 200 ~200 -150 -100 -50 0 50 100 150 200
x[em] x[em] ylem] Zem]
Energy Validation
s Ridge Regression Result s Energy Reconstruction Result
(h) PValue: 100.0% [0) PValue: 15.3%
True Events

IS

[ Energy Fitter Output

IS

] VAE-Generated Events

~ w

Normalized Bin Count [arb. units]

i
16 18 20

22 24
Energy[MeV)

Normalized Bin Count [arb. units]

w

o

18 20

22 24
Energy(MeV]

Fig. 9 Summary of the physics validation study results. The first row
of histograms (a—c) show the LT Vertex fitter output between true neu-
tron capture events and VAE-Generated events. The second row of his-
tograms (d—g) show the V2 Vertex fitter output between true neutron
capture events and VAE-Generated events. The response of V2 Vertex

mimic the effect of V2 Position and Energy fitters we sub-
sequently divided the NC dataset into two subsets at ran-
dom: NC Subset A, comprising 1000 events, and NC Subset
B, comprising 2760 events. We employed a Ridge regres-
sion algorithm trained on NC Subset A to emulate the V2
Position and Energy fitter algorithms, aiming to replicate
its effect in reconstructing energy and positions. The effi-
ciency of the Ridge Regression algorithm in mimicking the
KamLAND-Zen Reconstruction Algorithm is depicted in
Fig. 9h, demonstrating decent agreement between the Energy
fitter and Ridge Regression. A similar level of agreement
is observed for V2 Position reconstruction, as illustrated in
Fig.9d.

Subsequently, we applied the Ridge Regression algorithm
to both NC Subset B and 10,000 neutron capture events gen-
erated by the PointNet-VAE algorithm, aiming to compare
the distribution of reconstructed energy and the reconstructed
x,y,and z positions between these two datasets. The result of

@ Springer

fitter is reproduced by a Ridge Regression algorithm as shown in (d).
The third row, containing histograms (h,i) show the Energy fitter output
between true neutron capture events and VAE-Generated events. The
response of Energy fitter is reproduced by a Ridge Regression algorithm
as shown in (h)

these comparison is illustrated in Fig. 9 and Table 2. In terms
of energy reconstruction, the energy distribution of actual
events from NC Subset B was found to be 2.27940.123 MeV,
while the VAE-generated neutron capture events exhibited
an energy distribution of 2.234 £+ 0.335 MeV. This compara-
tive analysis of the energy distributions, between real events
and those generated by the VAE, is visually presented in
Fig.9i. The data generated by the VAE are closer to the true
neutron capture energy at 2.225MeV. However, the VAE-
reconstructed events exhibits a worse standard deviation,
indicating an area for potential improvement in generative
model’s performance.

In terms of position reconstruction, we assessed the x, y,
and z coordinates using both the LT Position and V2 Posi-
tion fitters. The outcomes of both fitters were documented in
Table 2, along with the goodness of fit determined via the KS
test. As the detected neutron capture events are anticipated
to be uniformly distributed within the designated region of
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Table 2 Physics validation result of three KamLAND-Zen reconstruc-
tion algorithms: LT Vertex, V2 Vertex, and Energy fitters. Each fit-
ter is applied over two datasets: the NC Subset B containing tagged
2.2MeV neutron capture events, and the VAE-Generated dataset. All

reconstructed quantities are reported with their mean value =+ their stan-
dard deviations over the entire dataset. A goodness of fit metric is cal-
culated by KS test

Reconstruction algorithm  x [cm] p-value [%] y [cm] p-value [%] z[cm] p-value [%] E [MeV] p-value [%]
LT [NC subset B] —3.4436.8 100 0.84+36.9 98.8 0.34+37.1 100 - -

LT [VAE-generated] —4.4434.1 0.54+34.6 2.74+34.1 -

V2 [NC subset B] 0.7+74.6 37.2 0.3+74.6 37.2 2.7+£75.5 37.2 - -

V2 [VAE-generated] —0.4456.1 —4.3462.1 —13.0+63.4 -

Energy [NC subset B] - - -
Energy [VAE-generated] - -

2.279+£0.123 153
- 2.23440.335

interest (r < 157 cm), the reported x, y, and z position dis-
tributions in Table 2 has a large standard deviations. These
comparisons are also visually depicted in Fig. 9e—g, wherein
itbecomes evident that the VAE-generated data tends towards
amore Gaussian-like distribution. This tendency likely stems
from the intrinsic nature of the VAE, whereby event genera-
tion relies on random sampling from a multivariate Gaussian
distribution. An excellent level of agreement is achieved with
the LT Position fitter results, while a comparatively poorer
agreement is observed with the V2 Position fitter results,
suggesting an area for potential enhancement. Nevertheless,
considering that the vertex resolution of KamLAND-Zen is
approximately 17 cm, the discrepancies between the NC Sub-
set B and VAE-generated events for both LT and V2 fitters
fall within this vertex resolution. This implies that the VAE
has the capability to produce data that closely resembles
KamLAND-Zen events within the current detector resolu-
tion.

6 Conclusion and outlook

Traditional simulation is based on inferences from first prin-
ciples, but it depends on the accuracy of the input parame-
ters and often fails to exactly reproduce the detector micro-
physics. In this work, we developed two generative models
to simulate liquid scintillator detector data. The generative
models improve the efficiency of generating data with rea-
sonable reconstruction accuracy. With a standard detector
configuration similar to the current KamLAND-Zen detec-
tor, the variational autoencoder model can accurately sim-
ulate data with J 2 90% and R < 5%. Furthermore, we
examine the possibility of few-shot learning using the given
generative model. With fewer than 50 training events and
an easy-to-collect pre-training dataset, our generative model
is one possible way to significantly boost event population
when obtaining high-statistics data is impossible. Lastly, we
performed a physics validation study to demonstrate that the
events generated by our model aligns with the real detector

events when processed through the KamLAND-Zen recon-
struction algorithm.

This work’s focus is the optimization of the algorithms
to study the statistical properties of raw data and generate
like-real detector events. However, during the course of our
physics validation study, we have identified certain dispar-
ities between the reconstructed position and energy of our
generated events and those observed in real KamLAND-
Zen events. Notably, the energy resolution of generated neu-
tron capture events appears to be compromised compared
to real events. To address these issues and further enhance
the fidelity of our model, we plan to incorporate additional
machine learning technique techniques, potentially incorpo-
rating the Ridge Regression algorithm into the training pro-
cess to “guide” the event generation. This approach could
steer our generative model in the direction of producing
events with more accurately reconstructed energies and posi-
tions. Generative modeling techniques, as cited in LHC
[24], LArTPC Neutrino Experiments [25], as well as other
OvBpB experiments [26]. These models will benefit particle
and nuclear physics by offering a faster and data-driven
method for simulation development, and our findings high-
light the potential of these techniques in Qv experiments.
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