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Abstract

BACKGROUND: Mathematical models of complex diseases,
such as Alzheimer’s disease, have the potential to play a
significant role in personalized medicine. Specifically, models
can be personalized by fitting parameters with individual data
for the purpose of discovering primary underlying disease
drivers, predicting natural history, and assessing the effects of
theoretical interventions. Previous work in causal/mechanistic
modeling of Alzheimer’s Disease progression has modeled
the disease at the cellular level and on a short time scale, such
as minutes to hours. No previous studies have addressed
mechanistic modeling on a personalized level using clinically
validated biomarkers in individual subjects.

OBJECTIVES: This study aimed to investigate the feasibility
of personalizing a causal model of Alzheimer’s Disease
progression using longitudinal biomarker data.
DESIGN/SETTING /PARTICIPANTS/MEASUREMENTS: We
chose the Alzheimer Disease Biomarker Cascade model, a
widely-referenced hypothetical model of Alzheimer’s Disease
based on the amyloid cascade hypothesis, which we had
previously implemented mathematically as a mechanistic
model. We used available longitudinal demographic and
serial biomarker data in over 800 subjects across the cognitive
spectrum from the Alzheimer’s Disease Neuroimaging
Initiative. The data included participants that were cognitively
normal, had mild cognitive impairment, or were diagnosed with
dementia (probable Alzheimer’s Disease). The model consisted
of a sparse system of differential equations involving four
measurable biomarkers based on cerebrospinal fluid proteins,
imaging, and cognitive testing data.

RESULTS: Personalization of the Alzheimer Disease Biomarker
Cascade model with individual serial biomarker data yielded
fourteen personalized parameters in each subject reflecting
physiologically meaningful characteristics. These included
growth rates, latency values, and carrying capacities of the
various biomarkers, most of which demonstrated significant
differences across clinical diagnostic groups. The model fits to
training data across the entire cohort had a root mean squared
error (RMSE) of 0.09 (SD 0.081) on a variable scale between zero
and one, and were robust, with over 90% of subjects showing an
RMSE of < 0.2. Similarly, in a subset of subjects with data on all
four biomarkers in at least one test set, performance was high
on the test sets, with a mean RMSE of 0.15 (SD 0.117), with 80%
of subjects demonstrating an RMSE < 0.2 in the estimation of
future biomarker points. Cluster analysis of parameters revealed
two distinct endophenotypic groups, with distinct biomarker
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profiles and disease trajectories.

CONCLUSION: Results support the feasibility of personalizing
mechanistic models based on individual biomarker
trajectories and suggest that this approach may be useful for
reclassifying subjects on the Alzheimer’s clinical spectrum.
This computational modeling approach is not limited to the
Alzheimer Disease Biomarker Cascade hypothesis, and can be
applied to any mechanistic hypothesis of disease progression
in the Alzheimer’s field that can be monitored with biomarkers.
Thus, it offers a computational platform to compare and
validate various disease hypotheses, personalize individual
biomarker trajectories and predict individual response to
theoretical prevention and therapeutic intervention strategies.

Key words: Mathematical modeling, dementia, Alzheimer’s disease,
disease.

Introduction

Izheimer’s disease (AD) progression, from
Apresymptomatic to late-stage disease, can
be tracked in individual patients through

several validated biomarkers of amyloid, tau and
neurodegenerative pathology. Most studies of AD
biomarkers have been correlational, using statistical
models to find associations among individual biomarkers
or between individual biomarkers and other disease
risk factors such as genetics or cardiovascular disease,
for example. Such models are limited, however, in their
ability to treat biomarkers interdependently or make
causal inferences about disease mechanisms and
therapeutic responses. Causal or explanatory disease
models, on the other hand, are a class of models that
relate experimental data to a biological process
underlying the phenomenon under investigation (1).
Such models integrate prior knowledge, help elucidate
underlying mechanisms, and allow predictions about
the response to therapy. Theoretically, such models can
be personalized by fitting parameters with individual
data with the purpose of discovering primary underlying
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disease drivers, predicting natural history, and ultimately,
assessing the effects of theoretical interventions on
biomarkers and clinical outcomes. The purpose of this
study was to explore the feasibility of personalizing a
time-dependent causal model of AD progression with
longitudinal biomarker data. As a proof of concept,
we chose the AD Biomarker Cascade (ADBC) model, a
widely referenced hypothetical model of AD, based on
the amyloid cascade hypothesis. The model integrates
four key biomarkers of AD progression: pathologic
hallmark biomarkers beta-amyloid and tau, neuronal
loss biomarkers, and cognitive impairment biomarkers
(2, 3). It has recently been formulated mathematically
and implemented computationally to generate
intuitively sound predictions of biomarker trajectories
over time (4). In this study, we build upon these results
by parameterizing and testing personalized models in
over 800 subjects with serial biomarker data from the
Alzheimer Disease Neuroimaging Initiative (ADNI), a
multicenter, prospective, naturalistic study that includes
genetic, clinical, body fluid, and imaging data (https://
adni.loni.usc.edu).

Methods

The ADBC Model

The ADBC model has been described in detail by
Jack et al. (2, 3), and its mathematical formulation by
Petrella et al. (4). Briefly, the ADBC model postulates
that AD is caused by a cascade of pathophysiological
changes, characterized by time-dependent alterations in
four key biomarkers of AD progression described above
(Figure 1). The cascade is initiated by over-production,
and/or under- clearance of amyloid protein from the
brain. The buildup of the amyloid pool leads to the
initiation of a tau protein cascade, and subsequently,
a neurodegeneration cascade, resulting in progressive
cognitive decline. Other, suspected non-AD-related
pathologies (SNAP), such as cerebrovascular disease,
age- related changes, and non-AD tauopathies, may also
contribute to the neurodegenerative cascade and, in turn,
to cognitive decline. The onset and rate of cognitive
decline are modulated by genetic risk, as well as factors
that influence cognitive reserve capacities, such as
education or other contributors to cognitive resilience.
Potential therapies, such as anti-amyloid treatments,
which increase the clearance of the amyloid pool, have
previously been added to the model to simulate optimize
therapeutic effects on biomarkers while minimizing side
effects (5).

The mathematical formulation of the ADBC model
consists of an interdependent system of ordinary
differential equations characterizing the rates of change
and initial conditions of each of the biomarker pools,
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where A, represents amyloid pathology, T, represents
amyloid-related tau pathology (p-tau), 7, represents
age-related and/or nonAD-related tau pathology, N
represents neuronal dysfunction/loss, and C represents
cognitive impairment. We define total tau pathology, 1, as
the sum of 7 and 1 0, namely, © = 7 + 7. A defines 9 rate
constants. A, A_, A, and A reflect the logistic growth
rates of the various blomarker cascades. The remaining
constants reflect linear growth rates of the biomarkers and
determine the influence of various factors on the time-of-
onset of the subsequent biomarker cascades. K defines the
four biomarker carrying capacities K " Kw’ K,, and K,
and A, defines the initial A, level.

Data Sourcing and Selection

Individual longitudinal subject data for model
personalization was sourced from ADNI, a multinational
study that has provided new insights into the timeline
of the evolution of AD biomarkers (6, 7). ADNI began
in 2004 and comprises four sequential studies—ADNI-
1, ADNI-GO, ADNI-2, and ADNI- 3—which followed
subjects up to 15 years. Two overlapping cohort subsets
of the ADNI dataset, as described below, were used
to carry out the personalization and validation of the
individual subject models. One included all 819 subjects
in the ADNI-1 cohort, including those classified as having
mild AD (N=192), late mild cognitive impairment (MCI,
N=398), and normal cognition (N=229). The demographic
distribution of subjects are displayed in the training sub-
table in Table 1. The second cohort, used for validation,
included the subset of subjects in ADNI-1 with at least
one future follow-up full biomarker dataset in ADNI-GO
or ADNI-2 (N = 59) and is displayed in the testing sub-
table in Table 1.

Data Preparation

Serial scalar measures of cerebrospinal fluid (CSF)
levels of amyloid-beta 42, phosphorylated tau 181, and
total-tau were used as surrogates for amyloid, p-tau,
and total tau pathology respectively. These measures
were obtained through serial spinal taps on subjects over
approximately two-year intervals. Of note, amyloid beta
in the CSF goes down, and total and phosphorylated tau
go up as the disease progresses. Hippocampal volume,
based on MRI volumetrics at approximately one-year
intervals, was used as a surrogate for neurodegeneration
(8). It goes down as the disease progresses. Finally,
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the thirteen-item Alzheimer Disease Assessment Scale
(ADAS-13), measured at 6-month intervals, was used
as a surrogate for cognitive decline. This measures
function in several cognitive domains affected by AD,
including memory, language, and praxis, and is the de
facto primary outcome measure in AD clinical trials.
It goes up as the disease progresses. Each biomarker
measurement was scaled such that the middle 90% (7)
of measurements fell into a fixed range between 0 and 1,
which represent the theoretical minimum and maximum
biomarker abnormality levels. This was done by setting
X, .. equal to the 95th percentile threshold of values and
X . equal to the 5th percentile threshold such that

Xscaled = 5———
Xma.x - Xmin

where X represents the original value and X, the
scaled value. Because amyloid beta in the CSF and
hippocampal volume go down as the disease progresses,
the scaled values for both were subtracted from 1. In this
way, all biomarker values would increase as the disease
progresses.

Parameter Estimation

The system of differential equations was solved for
each subject in the cohort using all available biomarker
time points in the ADNI-1 dataset. The system of ODEs
can be expressed as

d
S =fap

where u= (Aﬁ, T, T N, C)T represents the biomarker
vector and p denotes the parameter vector on the right-
hand side of the model. Then we can estimate the
parameter p by solving the optimization problem given
below:
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where i (t) is the clinical data of a specific patient for
given age t, and u(t;p) is the biomarker solution of the
AD model. This objective function is to minimize the
L2 loss on given clinical patient data points and also
incorporate the constraint of u(100, p)=1 by the penalty
term. The highly non-convex nature of the optimization
makes parameter estimation quite challenging. Therefore,
we employed an optimization approach based on
the “equation-by-equation” (EBE) algorithm (9). This
approach involves fitting the amyloid biomarker first,
followed by tau, neurodegeneration, and cognitive
impairment. We used the fmin bfgs routine in Python,
along with the EBE algorithm, and defined separate
loss functions for each biomarker. For example, the
optimization problem of the amyloid equation is defined
as follows:
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where we incorporate the constraint of A, (100)=1
by using the penalty term with A=100 and during
each iteration ODE solutions are determined by
SciPy’s ODE solver solve ivp. The parameter bounds
were established for each biomarker through trial and
error, and the parameter initialization was fixed for all
biomarkers except for tau. The parameter estimation for
tau was completed using the trust-region algorithm for
constrained optimization, while the Broyden—Fletcher—
Goldfarb-Shanno (BFGS) algorithm was used for all other
biomarkers (10, 11). Therefore, for optimization, varying
initial values for tau between its parameter bounds were
used. After an initial optimization of parameters for
each biomarker, multiple iterations of the optimization
process were repeated on randomized initial parameter
values obtained from a broader parameter space (between
80% and 120% of the initial optimization). The final
personalized parameters were determined from the
solutions to the ODE system with minimal loss. Fits were
performed on all subjects. In the event a subject did not
have any values for a particular biomarker, the missing
parameters were substituted using the average parameter
of the entire population of subjects as the initial value of
the parameter.

Statistical Analysis

Summary statistics on demographics were calculated
for the full ADNI-1 cohort, as well as the subset
of subjects with at least one full biomarker follow-up
dataset. Differences among diagnostic groups were tested
using an ANOVA with posthoc testing, for continuous
variables, and a Chi-square test for independence for
categorical variables.

Summary statistics on the fourteen model parameters
were calculated and stratified by diagnostic group.
Subsequent statistical tests were performed directly on
the derived model parameters, based on the assumption
that the within-subject variance of the parameter
estimates would be small with respect to the between-
subject variance, as well as homoscedastic, that is,
relatively equal across subjects (Figure S8).

Differences among the groups were tested for each of
the parameters using an analysis of variance (ANOVA)
with posthoc testing using a Bonferroni correction. The
relationship of model parameters with risk factors, such
as Apolipoprotein E4 carrier genetic status and years of
prior education, was also evaluated, using a two-sample
t-test and linear regression, respectively.

Personalized model fits were assessed by evaluating
the error distribution across the entire training set. To
evaluate the prediction error of the models, a subset of
ADNI-1 subjects with at least one follow-up test datapoint
in ADNIGO/ADNI- 2 for each of the biomarkers was

437



Table 1. Subject demographics of subjects

CAUSAL MODELING OF AD BIOMARKER CASCADE

Training
CN MCI

# Subjects 229 402
Age (years) 75.9(5.0) 74.8(7.4)
MMSE 29(0.99) 27(1.8)
Testing

CN
# Subjects 32
Age (years) 74.8(5.7)
MMSE 29.1(1.1)
Gender 16 F, 16M
Education (years) 16.2(3.0)

AD p-value
188 -
75.2(7.5) (0.043,0.323,0.448)
23(2.0) (<0.001,<0.001,<0.001)
MCI p-value
27 -
73.0(5.8) 0.249
27.4(1.8) <0.001
8 F, 19M 0.187
16.7(2.7) 0.524

Top: Subject demographics given as their mean (SD) in full cohort of 819 training subjects from ADNI-1. Group designations are those at entry into ADNI-1. MMSE-Mini
Mental State Examination; CN-Cognitively Normal; MCI-Mild Cognitive Impairment; AD- Alzheimer’s Disease; NS-not significant; Age and Education are in units of
years. All values are mean (SD). Pairwise t-tests were only performed if the omnibus p-value was significant (p < 0.05, Bonferroni corrected). P-values are displayed
pair-wise as (CN-MCI, CN-AD, MCI-AD). Bottom: Subject demographics on 59 training subjects from the ADNI-1 cohort with at least one complete ADNI-GO/2 dataset
for testing. Data is taken from the date of entry to the ADNI-1 study. MMSE- Mini Mental State Examination; CN-Cognitively Normal; MCI-Mild Cognitive Impairment;

AD-Alzheimer’s Disease; NS-not significant; Age and Education are in units of years.

used. Subjects were trained on all available ADNI-1
biomarker data and tested on the first available time-
point in follow-up. All data preparation steps performed
on the training data were performed on the test set,
including scaling to the training data. Model performance
was assessed using root mean squared error (RMSE) and
intraclass correlation (ICC) (one-way random effects)
between the predicted and actual biomarker values for
the four biomarker test points in each subject. Model
bias was assessed using Bland-Altman plots. For a
performance benchmark, empirical linear fits on single
biomarker training data were performed and prediction
error between the explanatory and empirical models was
compared. Prediction error as a function of the number of
available complete biomarker training datasets was also
evaluated using both linear and exponential fits.

To assess whether model parameters would yield
distinct endophenotypes, we performed a cluster analysis
of the parameters across the entire population of 819
subjects using K-nearest-neighbors (KNN) (n=3) after
dimension reduction with principal components analysis.
Cluster number n=3 was chosen to match the number of
clinical phenotypes in the sample (CN, MCI, and AD).
Silhouette and Rand'’s scores were used to evaluate the
quality of the clusters created and the degree to which
they matched the known clinical phenotypes established
at study’s outset. Biomarker characteristics were then
compared across the clusters using an ANOVA with
posthoc analysis.

Results

Demographics

Summary statistics are given for the entire ADNI-1
cohort at the beginning of the study (Table 1, top). As
expected, there was a significant difference with respect to
MMSE distribution among diagnostic groups. In addition,
there was a bias toward the male gender for the MCI
group, and there were fewer years of education in the
AD group compared to the other two groups. There were
no significant differences among groups with respect
to age. Summary statistics are also given for the subset
of subjects from ADNI-1 with at least one full test set
from ADNI-GO/ADNI-2 (Table 1, bottom). There was a
significant difference in MMSE among the two diagnostic
groups represented, CN and MCI, as expected, but no
significance for age, gender, or education.

Parameter Evaluation

Mean values of the fourteen model parameters are
displayed in Table 2, separated by parameter type
and stratified by initial diagnosis in ADNI-1. Seven of
fourteen parameters showed an overall significant effect
on the diagnostic group (p < 0.05) by ANOVA, including
all four neurodegeneration parameters, and two of the
three cognitive decline parameters. Figure S1 displays box
and whisker plots stratified by diagnostic group. Table
S1 shows the relationship between genetic and education
status with the model parameters. At least one parameter
from each of the four biomarker equations showed a
significant relationship with APOE4 carrier status. Only
one parameter, At , showed a significant relationship with
years of education.
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Table 2. Model parameter summary table

Equation 1 Biomarker Parameter CN

A, KA, 1.4(0.96)
AA, 0.18(0.094)
A, 0.021(0.03)

T Kz, 1.03(1.81)
AT A 9E-3(0.015)
At, 0.48(0.24)
At AS 5E-3(1E-3)

N K, 1.19(0.5)
ANT 0.013(0.04)
Ay 0.20(0.16)
ANT, 3E-3(7E-3)

C K. 1.82(2.6)
Ac 0.21(0.17)
Ay 0.025(0.03)

MCI AD Pairwise p-val
1.2(0.81) 1.2(0.71) (0.033, 0.012, 0.477)
0.2(0.11) 0.21(0.11) (0.002, 0.004, 0.635)

0.03(0.04) 0.03(0.04) (0.041, 0.023, 0.523)
0.91(1.9) 0.75(1.73) (0.439, 0.110, 0.311)
9E-3(0.012) 8E-3(0.011) (0.815, 0.337, 0.342)
0.51(0.23) 0.54(0.22) (0.093, 0.0072, 0.155)
5E-3(2E-3) 6E-3(2E-3) (<0.001, <0.001, 0.0028)
1.07(0.3) 1.02(0.11) (<0.001, <0.001, 0.012)
5E-3(0.02) 1E-3(6E-3) (<0.001, <0.001, 0.0029)
0.25(0.15) 0.31(0.15) (<0.001, <0.001, <0.001)
1E-3(5E-3) 1E-3(5E-3) (0.0053, <0.001, 0.145)
1.1(0.7) 0.96(0.14) (<0.001,< 0.001,< 0.001)
0.27(0.17) 0.37(0.15) (<0.001,< 0.001,< 0.001)
0.02(0.03) 0.02(0.03) (0.93, 0.0043, 0.0014)

Model parameter summary statistics - Mean (SD); CN-Cognitively Normal; MCI-Mild Cognitive Impairment; AD- Alzheimer’s Disease. Pairwise tests were only
performed if the omnibus p-value was significant (p < 0.05, Bonferroni corrected). P-values are displayed pairwise as (CN-MCI, CN-AD, MCI-AD).

Figure 1. The Alzheimer disease biomarker cascade model
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Diagram depicting dynamic causal modeling implementation of the biomarker cascade model in Alzheimer’s disease (Adapted from (3)). Blue circles represent biomarker
quantities. A; represents amyloid beta pathology. Its initial value A, determines when during the lifespan the amyloid cascade begins. 7, represents phosphor-tau (p-tau) or
amyloid-related tau pathology. 7, represents age-related and /or suspected non- Alzheimer pathology (SNAP)-related tauopathy. N represents neuronal dysfunction/loss.

C represents cognitive impairment. A values are growth rate constants.

Model Performance

Examples of personalized biomarker trajectories for
nine different subjects from the ADNI-1 cohort are shown
in Figure 2. The distribution of model training error in the
ADNI-1 data set across all subjects is shown in Figure S2.
Over all biomarkers, within-subject variance was small
relative to the between-subject variance. We chose the root
mean squared error (RMSE) as a measure of performance
for each subject because it is in the same scale as the
scaled biomarker variables between 0 and 1. We also
report mean absolute percentage error (MAPE) as a scale
free measure in the Supplementary Material (Figures S3
and S6).

Across all subjects, the mean RMSE for training error
was 0.09 (SD 0.081), with 745 of 819 (91%) subjects
showing RMSE < 0.2. To evaluate the prediction error of
the model, we used a subset of 59 subjects in ADNI-1, all
of whom had at least one complete biomarker test set in
the follow-up studies ADNI-2 or ADNI-GO. Predicted
biomarker trajectories along with plots of training and
test points for this subset are shown in Figure S4. The
mean time between the last ADNI-1 training timepoint
and the first ADNI2/GO test timepoint was 427 (SD
151.4) days. Prediction error distribution is shown for
the ODE model in Figure S5. The mean RSME for the
ODE model was 0.15 (SD 0.117). Approximately 80%
(47 of 59) of subjects had an RMSE less than 0.2. For the
reference linear model RMSE was 0.16 (SD 0.121). There
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Figure 2. Biomarker trajectories across diagnostic groups

CAUSAL MODELING OF AD BIOMARKER CASCADE

Example biomarker trajectories for nine different subjects from ADNI-1 cohort. The rows represent ADNI-1 entry diagnostic groups (CN - cognitively normal, MCI - mild
cognitive impairment, AD — mild Alzheimer’s disease. The color lines denote the individual biomarker trajectory fits over the lifespan (Red — amyloid, Blue - total tau,
Yellow — neurodegeneration, Green — cognitive decline). Crosses in the graph represent the training data from ADNI-1 for the model in each case, whereas solid dots
represent the testing data in ADNI-2/GO if it exists. Note the variability of biomarker trajectories across traditional clinical phenotypes. All AD subjects, for example, show
high total tau levels early in life; however the timing of amyloid and neurodegeneration is different. The middle AD subject in the figure is driven by early life amyloid
deposition and neurodegeneration; whereas the first shows mid-life amyloid and the last late life amyloid deposition, both with late neurodegeneration. Similarly, MCI
subjects show variable tau levels early in life. The first two MCI subjects show low tau levels early in life with acceleration after the appearance of amyloid in late-middle
age; whereas the third MCI subject shows high total tau levels early in life, age in onset of cognitive impairment in 70’s. These results reaffirm the biological heterogeneity
within diagnostic labels and support the idea of multiple disease drivers contributing to cognitive phenotype.

was no statistically significant difference between the
prediction error between the ODE and linear models
on a two-tailed paired student’s t-test (p = 0.126). The
prediction error for the ADNI-2/GO test timepoint as a
function of the number of complete datasets in ADNI-1
is shown in Figure S7. Prediction error (RMSE) dropped
to below 0.2 with one or more complete training datasets
per subject. For these subjects with at least one complete
biomarker training set (N=53), a scatterplot of predicted
vs. actual values of the ODE model is shown in Figure 3
for all four biomarkers along with their ICC values. The
overall ICC value for all four biomarkers combined was
0.90, compared to 0.88 for the comparison linear model
(Figure S10). Of the four biomarkers, neurodegeneration,
as determined by hippocampal volume, showed the
highest correlation between predicted and actual values
with an ICC value of 0.95. No significant under- or over-
estimation prediction bias was demonstrated for any of
the four biomarkers. Bland-Altman plots are given in
Figure S8.

Cluster Analysis

KNN cluster analysis (N=3) of model parameters
is shown graphically in Figure S9 using the first two
principal components of the fourteen model parameters.
Three overlapping clusters emerged (Silhouette score =
0.43). The Silhouette score, which ranges between -1 and
+1, suggested that clustering was only fair for the three
clusters. Moreover, there was no significant similarity to
the three diagnostic groups when the diagnostic group
label was taken as ground truth (Rand score = 0.50).
The Rand score of 0.5 was indicative of random cluster
assignment with respect to the three diagnostic group
labels.

However, significant differences were present with
respect to biomarkers and cognitive indices among at
least two of the clusters suggesting the existence
of at least two distinct endophenotypic groups (Table
S2). Cluster number 2 showed a significantly higher
proportion of cognitively normal phenotypes, higher
hippocampal volumes, MMSE scores, and CSF  a-beta
levels, and significantly lower ADAS13 and CDR-SOB
scores, and CSF tau and p-tau protein levels. In addition,
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Figure 3. Scatterplots of predicted vs. actual biomarker values
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in ADNI-2/GO (n=53). ADNI-1 datapoints were used to generate the predicted biomarker for ADNI-2/ GO using the ODE model, which was then compared with the actual

value. ICC-Intraclass Correlation Coefficient.

over time, fewer CN and MCI subjects converted to AD
in this group, 12% compared to 30% and 34% in clusters
1 and 0, respectively. Moreover, ADAS13 and CDR-SOB
scores increased the least in cluster 2, less than 20% of
that of the other two clusters. Cluster 2 demonstrated a
higher weighting of principal component number 1. The
weightings of the principal components are given in the
legend to Figure S9. In general, component 1 negatively
weighted downstream parameters related to the rate of
neurodegeneration, A, the rate of cognitive decline, Ao
and the rate of phosphorylated tau accumulation, At,
while positively weighting latency parameters related to
the effect of t and T, on neurodegeneration, A, and A,
respectively.

Discussion

In this study, we analyzed the feasibility of
personalizing a time-dependent causal model of AD
progression with longitudinal biomarker data from
subjects across the AD cognitive spectrum. As a proof-
of-concept, we chose a widely- referenced hypothetical

model of AD, based on the amyloid cascade hypothesis,
which we had previously implemented mathematically
as a mechanistic model. This integrative model, the
ADBC model, consists of a sparse system of differential
equations involving four measurable biomarkers based
on CSF, imaging, and cognitive data. Personalization
of the ADBC model in over 800 subjects from ADNI
with serial biomarker data yielded fourteen personalized
parameters reflecting physiologically meaningful
characteristics including growth rates, latency values, and
carrying capacities of the various biomarkers, many of
which demonstrated significant differences across clinical
diagnostic groups. Moreover, several of the parameters
showed significant relationships with factors known to
modify AD risk, namely APOE carrier status, and to a
lesser extent, education status, consistent with the idea
that genetics has a greater effect compared to education
on the biology of the disease (12).

The model fits to training data across the entire cohort
had an RMSE of 0.09 (SD 0.081) on a variable scale
between zero and one, and were robust, with over 90% of
subjects showing an RMSE of < 0.2. Similarly, in a subset
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of subjects with data on all four biomarkers in at least
one test set, performance was high on the test sets, with
a mean RMSE of 0.15 (SD 0.117), with 80% of subjects
demonstrating an RMSE < 0.2 in the estimation of future
biomarker points. These results support the feasibility
of personalizing mechanistic models based on individual
biomarker trajectories.

The performance of the mechanistic ODE model
was not a significant improvement over simple linear
models of single biomarker trajectories. This may be
due to the sparse nature of the mechanistic model and
does not diminish the importance of establishing the
feasibility of the personalized causal modeling approach.
Empiric predictive models may often outperform
causal/explanatory models but do not have the same
advantages in terms of discovering underlying disease
drivers and predicting therapeutic responses. As our
understanding of AD increases and further complexity
becomes incorporated, the integrative, mechanistic nature
of a more refined ADBC model might have less bias, and
therefore ultimately better performance, compared to
simpler empiric approaches.

The performance of the model improved when there
was at least one complete biomarker training time point,
with diminishing returns in subjects with more time
points available. After two complete training datasets,
prediction error appeared to level off as revealed by the
better fit of an exponential, as opposed to linear, function
to the data in Figure S7. This may have to do with the
fact that the mechanistic model imposed fixed initial
conditions and constraints creating additional anchor
points for establishing biomarker trajectory. For example,
one constraint specified in the ADBC model was that
biomarkers levels reached their maximum by age 100.
This was imposed in the ADBC model to operationalize
the description of the biomarker cascade hypothesis in
which biomarker slopes generally accelerate in older
age (2). The requirement for only one-time point of
biomarker training data would make clinical applications
of the model more feasible in patients for whom only one-
time point’s worth of biomarker data may be available
before decisions must be made regarding clinical trial
selection or therapy.

Cluster analysis of parameters revealed up to three
clusters, without significant correspondence to clinical
labels, as evidenced by a Rand score near 0.5. Among
the three clusters, one distinct biomarker endophenotype
emerged. Cluster 2 appears to represent a cognitively
healthier endophenotype, with more favorable atrophy
and CSF biomarker profile, compared to the other two
clusters, and less cognitive decline over time (Table
S2). This endophenotype was represented by a higher
weighting of principal component 1, representing
in the model lower rates of neurodegeneration,
cognitive decline, and tau accumulation, and a longer
latency between the onset of tau pathology and
neurodegeneration (Figure S9). This separation of
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endophenotype, based on model parameters, suggests
that modeling of biomarkers based on a mechanistic
analysis of biomarker trajectories may be useful
for reclassifying subjects on the AD spectrum. This is
particularly important for subjects that fall into the
heterogenous MCI clinical diagnostic category, where
subjects may progress to AD, remain stable, or even revert
to a cognitively normal state (13). Previous evidence using
cluster analysis on longitudinal biomarker data in MCI
subjects also suggests two distinct clusters, consisting of
rapid and slow decliners (14). Figure 2 shows example
biomarker trajectories for three subjects in each of the
ADNI-1 entry diagnostic groups. Note how biomarker
profiles are heterogenous both within and between
groups defined by clinical diagnosis alone.

Previous work in mathematical modeling of AD
progression, with a focus on mechanistic models, has
recently been the subject of a scoping review (15). Of the
previous 17 mechanistic mathematical models described,
only four were validated against patient data with
none of those four studying personalized models and
underlying disease trajectories in individual patients
(16-19). The majority of work used ordinary or partial
differential equations and modeled AD at the cellular
scale and on a short time scale, such as minutes to hours.
Few considered more than two factors, such as amyloid-
beta and tau, as factors in the model (4, 16-18, 20-24).
Though not yet validated with patient data, the ADBC
model (4) was the only mechanistic model reviewed
that included clinically available biomarkers, including
measures of cognition and neurodegeneration, and
modeled over the lifespan. The current work, using
available serial biomarker data in over 800 subjects across
the cognitive spectrum, helps validate the ADBC model
as a useful starting point for mechanistic modeling of
clinically available AD biomarkers. The resulting model
parameters and biomarker trajectories may yield more
nuanced information in individual patients compared to
single or serial biomarker levels.

This work has a number of limitations. Attempting
to predict long-term disease trajectory over decades
from short- term data, usually within one decade, is
difficult and sensitive to noise in the data, particularly
for estimating the rate constants of the biomarkers which
require accurate estimation of slope. Having constraints
that anchored the biomarkers at time = 0 and time = 100
(years) helped reduce this sensitivity. Nevertheless, the
extent to which this assumption is incorrect will bias
the model, and future versions of the model may have
to be restricted to one or two decades. Identifiability
analysis (25) may be of value in determining how well the
ADBC model personalized parameters can be determined
by the sparse individual longitudinal data in ADNIL
To improve identifiability, sensitivity analysis may aid
in creating a more parsimonious model by setting low
variance parameters to a constant. Previous groups have
attempted to address recovering long-term disease trends
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from short-term data using a semiparametric model to
estimate the temporal ordering of biomarkers and long-
term growth curves (26, 27). However, these approaches
have used empirical functions to fit the data, rather than
a mechanistic model of disease, which is the focus of
our current approach. Other groups have used a disease
progression score to replace time as the independent
variable to incorporate cross-sectional data in formulating
a population-based disease progression model. This was
accomplished by shifting and scaling individual subject
data, based on different ages of onset and progression
rates of disease (28, 29). Because the aim of this research
is to create personalized models of disease, such work
would only apply here to using population-derived
parameters as initial values prior to personalization.
Another limitation related to short-term data is the short
follow-up duration in the test data derived from the
follow-on studies ADNI-GO and ADNI-2. The mean
follow-up time was 1-2 years, which could be considered
short in terms of the lifespan, nevertheless is a clinically
relevant follow-up interval, often used in Alzheimer’s
disease clinical trials (30). Lastly, the data used to
parameterize the ADBC model was obtained from a
single data source, ADNI, which represents a convenience
sample over-represented by an educated, predominantly
Caucasian population (https:/ /www.adni-info.org/).
Thus, the generalization of the parameters calculated in
this model to a community setting with subjects across
the cognitive spectrum will be limited.

In summary, we have shown the feasibility of
personalizing a causal model of AD progression, the
ADBC model, an integrative biomarker model based
on the amyloid cascade hypothesis. Personalization
of this model with longitudinal biomarker data from
over 800 subjects across the AD cognitive spectrum
yielded fourteen personalized parameters reflecting
physiologically meaningful characteristics. Model fits
were robust and performance on unseen test data was
moderate to high, with 80% of subjects demonstrating
prediction error within 20% with only a single complete
biomarker training set, suggesting that this model
may be useful for cases when longitudinal data is not
available, for example, in clinical trial or patient care
settings. Cluster analysis of parameters revealed distinct
endophenotypic clusters, suggesting that the model may
be useful for reclassifying subjects on the AD spectrum.
Future studies are warranted to refine the current
personalized model as a tool for discovering individual
disease drivers, predicting natural history, and ultimately,
simulating the effects of therapeutic interventions.
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