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disease drivers, predicting natural history, and ultimately, 
assessing the effects of theoretical interventions on 
biomarkers and clinical outcomes. The purpose of this 
study was to explore the feasibility of personalizing a 
time-dependent causal model of AD progression with 
longitudinal biomarker data. As a proof of concept, 
we chose the AD Biomarker Cascade (ADBC) model, a 
widely referenced hypothetical model of AD, based on 
the amyloid cascade hypothesis. The model integrates 
four key biomarkers of AD progression: pathologic 
hallmark biomarkers beta-amyloid and tau, neuronal 
loss biomarkers, and cognitive impairment biomarkers 
(2, 3). It has recently been formulated mathematically 
and implemented computationally to generate 
intuitively sound predictions of biomarker trajectories 
over time (4). In this study, we build upon these results 
by parameterizing and testing personalized models in 
over 800 subjects with serial biomarker data from the 
Alzheimer Disease Neuroimaging Initiative (ADNI), a 
multicenter, prospective, naturalistic study that includes 
genetic, clinical, body fluid, and imaging data (https://
adni.loni.usc.edu).   

Methods

The ADBC Model

The ADBC model has been described in detail by 
Jack et al. (2, 3), and its mathematical formulation by 
Petrella et al. (4). Briefly, the ADBC model postulates 
that AD is caused by a cascade of pathophysiological 
changes, characterized by time-dependent alterations in 
four key biomarkers of AD progression described above 
(Figure 1). The cascade is initiated by over-production, 
and/or under- clearance of amyloid protein from the 
brain. The buildup of the amyloid pool leads to the 
initiation of a tau protein cascade, and subsequently, 
a neurodegeneration cascade, resulting in progressive 
cognitive decline. Other, suspected non-AD-related 
pathologies (SNAP), such as cerebrovascular disease, 
age- related changes, and non-AD tauopathies, may also 
contribute to the neurodegenerative cascade and, in turn, 
to cognitive decline. The onset and rate of cognitive 
decline are modulated by genetic risk, as well as factors 
that influence cognitive reserve capacities, such as 
education or other contributors to cognitive resilience. 
Potential therapies, such as anti-amyloid treatments, 
which increase the clearance of the amyloid pool, have 
previously been added to the model to simulate optimize 
therapeutic effects on biomarkers while minimizing side 
effects (5).

The mathematical formulation of the ADBC model 
consists of an interdependent system of ordinary 
differential equations characterizing the rates of change 
and initial conditions of each of the biomarker pools, 

where Aβ represents amyloid pathology, τρ represents 
amyloid-related tau pathology (p-tau), τ

o
 represents 
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0
 defines the initial Aβ level.

Data Sourcing and Selection

Individual longitudinal subject data for model 
personalization was sourced from ADNI, a multinational 
study that has provided new insights into the timeline 
of the evolution of AD biomarkers (6, 7). ADNI began 
in 2004 and comprises four sequential studies4ADNI-
1, ADNI-GO, ADNI-2, and ADNI- 34which followed 
subjects up to 15 years. Two overlapping cohort subsets 
of the ADNI dataset, as described below, were used 
to carry out the personalization and validation of the 
individual subject models. One included all 819 subjects 
in the ADNI-1 cohort, including those classified as having 
mild AD (N=192), late mild cognitive impairment (MCI, 
N=398), and normal cognition (N=229). The demographic 
distribution of subjects are displayed in the training sub-
table in Table 1. The second cohort, used for validation, 
included the subset of subjects in ADNI-1 with at least 
one future follow-up full biomarker dataset in ADNI-GO 
or ADNI-2 (N = 59) and is displayed in the testing sub-
table in Table 1.

Data Preparation

Serial scalar measures of cerebrospinal fluid (CSF) 
levels of amyloid-beta 42, phosphorylated tau 181, and 
total-tau were used as surrogates for amyloid, p-tau, 
and total tau pathology respectively. These measures 
were obtained through serial spinal taps on subjects over 
approximately two-year intervals. Of note, amyloid beta 
in the CSF goes down, and total and phosphorylated tau 
go up as the disease progresses. Hippocampal volume, 
based on MRI volumetrics at approximately one-year 
intervals, was used as a surrogate for neurodegeneration 
(8). It goes down as the disease progresses. Finally, 
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the thirteen-item Alzheimer Disease Assessment Scale 
(ADAS-13), measured at 6-month intervals, was used 
as a surrogate for cognitive decline. This measures 
function in several cognitive domains affected by AD, 
including memory, language, and praxis, and is the de 
facto primary outcome measure in AD clinical trials. 
It goes up as the disease progresses. Each biomarker 
measurement was scaled such that the middle 90% (7) 
of measurements fell into a fixed range between 0 and 1, 
which represent the theoretical minimum and maximum 
biomarker abnormality levels. This was done by setting 
X

max
 equal to the 95th percentile threshold of values and 

X
min

 equal to the 5th percentile threshold such that 

where X represents the original value and X
scaled

 the 
scaled value. Because amyloid beta in the CSF and 
hippocampal volume go down as the disease progresses, 
the scaled values for both were subtracted from 1. In this 
way, all biomarker values would increase as the disease 
progresses. 

Parameter Estimation

The system of differential equations was solved for 
each subject in the cohort using all available biomarker 
time points in the ADNI-1 dataset. The system of ODEs 
can be expressed as

where u= (Aβ, τρ, τ, N, C)T represents the biomarker 
vector and p denotes the parameter vector on the right-
hand side of the model. Then we can estimate the 
parameter p by solving the optimization problem given 
below:

where ũ (t
i
) is the clinical data of a specific patient for 

given age t
i
 and u(t

i
;p) is the biomarker solution of the 

AD model. This objective function is to minimize the 
L2 loss on given clinical patient data points and also 
incorporate the constraint of u(100, p)=1 by the penalty 
term. The highly non-convex nature of the optimization 
makes parameter estimation quite challenging. Therefore, 
we employed an optimization approach based on 
the <equation-by-equation= (EBE) algorithm (9). This 
approach involves fitting the amyloid biomarker first, 
followed by tau, neurodegeneration, and cognitive 
impairment. We used the fmin bfgs routine in Python, 
along with the EBE algorithm, and defined separate 
loss functions for each biomarker. For example, the 
optimization problem of the amyloid equation is defined 
as follows: 

where we incorporate the constraint of Aβ (100)=1 
by using the penalty term with λ=100 and during 
each iteration ODE solutions are determined by 
SciPy9s ODE solver solve ivp. The parameter bounds 
were established for each biomarker through trial and 
error, and the parameter initialization was fixed for all 
biomarkers except for tau. The parameter estimation for 
tau was completed using the trust-region algorithm for 
constrained optimization, while the Broyden3Fletcher3
Goldfarb3Shanno (BFGS) algorithm was used for all other 
biomarkers (10, 11). Therefore, for optimization, varying 
initial values for tau between its parameter bounds were 
used. After an initial optimization of parameters for 
each biomarker, multiple iterations of the optimization 
process were repeated on randomized initial parameter 
values obtained from a broader parameter space (between 
80% and 120% of the initial optimization). The final 
personalized parameters were determined from the 
solutions to the ODE system with minimal loss. Fits were 
performed on all subjects. In the event a subject did not 
have any values for a particular biomarker, the missing 
parameters were substituted using the average parameter 
of the entire population of subjects as the initial value of 
the parameter.

Statistical Analysis

Summary statistics on demographics were calculated 
for the full ADNI-1 cohort, as well as the subset 
of subjects with at least one full biomarker follow-up 
dataset. Differences among diagnostic groups were tested 
using an ANOVA with posthoc testing, for continuous 
variables, and a Chi-square test for independence for 
categorical variables.

Summary statistics on the fourteen model parameters 
were calculated and stratified by diagnostic group. 
Subsequent statistical tests were performed directly on 
the derived model parameters, based on the assumption 
that the within-subject variance of the parameter 
estimates would be small with respect to the between-
subject variance, as well as homoscedastic, that is, 
relatively equal across subjects (Figure S8). 

Differences among the groups were tested for each of 
the parameters using an analysis of variance (ANOVA) 
with posthoc testing using a Bonferroni correction. The 
relationship of model parameters with risk factors, such 
as Apolipoprotein E4 carrier genetic status and years of 
prior education, was also evaluated, using a two-sample 
t-test and linear regression, respectively.

Personalized model fits were assessed by evaluating 
the error distribution across the entire training set. To 
evaluate the prediction error of the models, a subset of 
ADNI-1 subjects with at least one follow-up test datapoint 
in ADNIGO/ADNI- 2 for each of the biomarkers was 
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on a two-tailed paired student’s t-test (p = 0.126). The 

biomarker training set (N=53), a scatterplot of predicted 

KNN cluster analysis (N=3) of model parameters 

Three overlapping clusters emerged (Silhouette score = 

label was taken as ground truth (Rand score = 0.50). 

Example biomarker trajectories for nine di昀؀erent subjects from ADNI-1 cohort. The rows represent ADNI-1 entry diagnostic groups (CN – cognitively normal, MCI – mild 
cognitive impairment, AD – mild Alzheimer’s disease. The color lines denote the individual biomarker trajectory 昀؀ts over the lifespan (Red – amyloid, Blue - total tau, 

high total tau levels early in life; however the timing of amyloid and neurodegeneration is di昀؀erent. The middle AD subject in the 昀؀gure is driven by early life amyloid 
deposition and neurodegeneration; whereas the 昀؀rst shows mid-life amyloid and the last late life amyloid deposition, both with late neurodegeneration. Similarly, MCI 
subjects show variable tau levels early in life. The 昀؀rst two MCI subjects show low tau levels early in life with acceleration after the appearance of amyloid in late-middle 
age; whereas the third MCI subject shows high total tau levels early in life, age in onset of cognitive impairment in 70’s. These results rea٠恩rm the biological heterogeneity 



neurodegeneration, λ , the rate of cognitive decline, λ
and the rate of  phosphorylated  tau  accumulation, λτρ

the effect of τ  and τρ on neurodegeneration, λNτo and λNτρ

in ADNI-2/GO (n=53). ADNI-1 datapoints were used to generate the predicted biomarker for ADNI-2/GO using the ODE model, which was then compared with the actual 
value. ICC-Intraclass Correlation Coe٠恩cient.
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of subjects with data on all four biomarkers in at least 
one test set, performance was high on the test sets, with 
a mean RMSE of 0.15 (SD 0.117), with 80% of subjects 
demonstrating an RMSE < 0.2 in the estimation of future 
biomarker points.  These results support the feasibility 
of personalizing mechanistic models based on individual 
biomarker trajectories. 

The performance of the mechanistic ODE model 
was not a significant improvement over simple linear 
models of single biomarker trajectories. This may be 
due to the sparse nature of the mechanistic model and 
does not diminish the importance of establishing the 
feasibility of the personalized causal modeling approach. 
Empiric predictive models may often outperform 
causal/explanatory models but do not have the same 
advantages in terms of discovering underlying disease 
drivers and predicting therapeutic responses. As our 
understanding of AD increases and further complexity 
becomes incorporated, the integrative, mechanistic nature 
of a more refined ADBC model might have less bias, and 
therefore ultimately better performance, compared to 
simpler empiric approaches.

The performance of the model improved when there 
was at least one complete biomarker training time point, 
with diminishing returns in subjects with more time 
points available. After two complete training datasets, 
prediction error appeared to level off as revealed by the 
better fit of an exponential, as opposed to linear, function 
to the data in Figure S7. This may have to do with the 
fact that the mechanistic model imposed fixed initial 
conditions and constraints creating additional anchor 
points for establishing biomarker trajectory. For example, 
one constraint specified in the ADBC model was that 
biomarkers levels reached their maximum by age 100. 
This was imposed in the ADBC model to operationalize 
the description of the biomarker cascade hypothesis in 
which biomarker slopes generally accelerate in older 
age (2).  The requirement for only one-time point of 
biomarker training data would make clinical applications 
of the model more feasible in patients for whom only one-
time point9s worth of biomarker data may be available 
before decisions must be made regarding clinical trial 
selection or therapy.

Cluster analysis of parameters revealed up to three 
clusters, without significant correspondence to clinical 
labels, as evidenced by a Rand score near 0.5. Among 
the three clusters, one distinct biomarker endophenotype 
emerged. Cluster 2 appears to represent a cognitively 
healthier endophenotype, with more favorable atrophy 
and CSF biomarker profile, compared to the other two 
clusters, and less cognitive decline over time (Table 
S2). This endophenotype was represented by a higher 
weighting of principal component 1, representing 
in the model lower rates of neurodegeneration, 
cognitive decline, and tau accumulation, and a longer 
latency between the onset of tau pathology and 
neurodegeneration (Figure S9). This separation of 

endophenotype, based on model parameters, suggests 
that modeling of biomarkers based on a mechanistic 
analysis of biomarker trajectories may be useful 
for reclassifying subjects on the AD spectrum. This is 
particularly important for subjects that fall into the 
heterogenous MCI clinical diagnostic category, where 
subjects may progress to AD, remain stable, or even revert 
to a cognitively normal state (13). Previous evidence using 
cluster analysis on longitudinal biomarker data in MCI 
subjects also suggests two distinct clusters, consisting of 
rapid and slow decliners (14). Figure 2 shows example 
biomarker trajectories for three subjects in each of the 
ADNI-1 entry diagnostic groups. Note how biomarker 
profiles are heterogenous both within and between 
groups defined by clinical diagnosis alone.

Previous work in mathematical modeling of AD 
progression, with a focus on mechanistic models, has 
recently been the subject of a scoping review (15). Of the 
previous 17 mechanistic mathematical models described, 
only four were validated against patient data with 
none of those four studying personalized models and 
underlying disease trajectories in individual patients 
(16-19). The majority of work used ordinary or partial 
differential equations and modeled AD at the cellular 
scale and on a short time scale, such as minutes to hours. 
Few considered more than two factors, such as amyloid-
beta and tau, as factors in the model (4, 16-18, 20-24). 
Though not yet validated with patient data, the ADBC 
model (4) was the only mechanistic model reviewed 
that included clinically available biomarkers, including 
measures of cognition and neurodegeneration, and 
modeled over the lifespan. The current work, using 
available serial biomarker data in over 800 subjects across 
the cognitive spectrum, helps validate the ADBC model 
as a useful starting point for mechanistic modeling of 
clinically available AD biomarkers. The resulting model 
parameters and biomarker trajectories may yield more 
nuanced information in individual patients compared to 
single or serial biomarker levels.

This work has a number of limitations. Attempting 
to predict long-term disease trajectory over decades 
from short- term data, usually within one decade, is 
difficult and sensitive to noise in the data, particularly 
for estimating the rate constants of the biomarkers which 
require accurate estimation of slope. Having constraints 
that anchored the biomarkers at time = 0 and time = 100 
(years) helped reduce this sensitivity. Nevertheless, the 
extent to which this assumption is incorrect will bias 
the model, and future versions of the model may have 
to be restricted to one or two decades. Identifiability 
analysis (25) may be of value in determining how well the 
ADBC model personalized parameters can be determined 
by the sparse individual longitudinal data in ADNI. 
To improve identifiability, sensitivity analysis may aid 
in creating a more parsimonious model by setting low 
variance parameters to a constant. Previous groups have 
attempted to address recovering long-term disease trends 
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from short-term data using a semiparametric model to 
estimate the temporal ordering of biomarkers and long-
term growth curves (26, 27). However, these approaches 
have used empirical functions to fit the data, rather than 
a mechanistic model of disease, which is the focus of 
our current approach. Other groups have used a disease 
progression score to replace time as the independent 
variable to incorporate cross-sectional data in formulating 
a population-based disease progression model. This was 
accomplished by shifting and scaling individual subject 
data, based on different ages of onset and progression 
rates of disease (28, 29). Because the aim of this research 
is to create personalized models of disease, such work 
would only apply here to using population-derived 
parameters as initial values prior to personalization. 
Another limitation related to short-term data is the short 
follow-up duration in the test data derived from the 
follow-on studies ADNI-GO and ADNI-2. The mean 
follow-up time was 1-2 years, which could be considered 
short in terms of the lifespan, nevertheless is a clinically 
relevant follow-up interval, often used in Alzheimer9s 
disease clinical trials (30). Lastly, the data used to 
parameterize the ADBC model was obtained from a 
single data source, ADNI, which represents a convenience 
sample over-represented by an educated, predominantly 
Caucasian population (https://www.adni-info.org/). 
Thus, the generalization of the parameters calculated in 
this model to a community setting with subjects across 
the cognitive spectrum will be limited.

In summary, we have shown the feasibility of 
personalizing a causal model of AD progression, the 
ADBC model, an integrative biomarker model based 
on the amyloid cascade hypothesis. Personalization 
of this model with longitudinal biomarker data from 
over 800 subjects across the AD cognitive spectrum 
yielded fourteen personalized parameters reflecting 
physiologically meaningful characteristics. Model fits 
were robust and performance on unseen test data was 
moderate to high, with 80% of subjects demonstrating 
prediction error within 20% with only a single complete 
biomarker training set, suggesting that this model 
may be useful for cases when longitudinal data is not 
available, for example, in clinical trial or patient care 
settings. Cluster analysis of parameters revealed distinct 
endophenotypic clusters, suggesting that the model may 
be useful for reclassifying subjects on the AD spectrum. 
Future studies are warranted to refine the current 
personalized model as a tool for discovering individual 
disease drivers, predicting natural history, and ultimately, 
simulating the effects of therapeutic interventions.
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