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A B S T R A C T

Reaction–diffusion equations serve as fundamental tools in describing pattern formation in biology. In these
models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are
not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework
based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform
steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate
the stability of the trivial steady-state solutions. We apply the method to two classic reaction–diffusion models:
the Schnakenberg model and the Gray–Scott model. For both models, our approach effectively reveals many
nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also
presented to validate the solution structures for these models.

1. Introduction

A central challenge in developmental biology is unraveling the
mechanisms behind the emergence of spatial and temporal patterns in
living organisms [1–4]. Mathematical modeling plays a pivotal role in
addressing this complex issue, with both individual-based and contin-
uum models being applied across various contexts [5–7]. One widely
employed tool in this field is the use of reaction–diffusion equations to
describe molecular interactions and chemical species in biological sys-
tems. These equations are especially valuable for elucidating stationary
spatial patterns within such systems [8,9].

In reaction–diffusion models featuring multiple species and strongly
nonlinear interactions, the theoretical analysis of steady states becomes
exceedingly challenging. Computational methods often become indis-
pensable for unraveling the structure and stability of these intricate
states. One common approach involves solving the evolutionary system
over an extended duration until the solution stabilizes [10]. Neverthe-
less, it is crucial to acknowledge that this approach does not eliminate
the possibility that the obtained solutions are merely metastable. Al-
ternatively, one can directly solve the steady-state system and employ
techniques like Newton’s method or multigrid methods to tackle the
resulting nonlinear system [11–13]. Recently, a deflation technique
initially designed for solving polynomial equations has been adapted to
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compute multiple solutions and bifurcations of nonlinear partial differ-
ential equations [14]. Moreover, a homotopy continuation framework,
provides accurate approximations for many, if not all, solutions of the
elliptic system without relying on initial guesses [15–17].

Nonetheless, numerical methods can become computationally ex-
pensive when dealing with scenarios involving multiple solutions, and
they may face challenges in extending to the computation of solutions
in three-dimensional domains and large-scale systems. In this paper, we
aim to address a fundamental question: Can non-trivial steady states
bifurcate from trivial steady states? If this is the case, these seemingly
trivial steady-state solutions can provide valuable insights into the
global solution structure, as elucidated by analyzing the bifurcation
diagram. In systems with homogeneous boundary conditions, one or
multiple spatially trivial steady states often exist. Researchers have
expended considerable effort in determining whether such systems
converge to spatially nonuniform steady states when perturbed from
a uniform steady state. A well-known example of this is Turing insta-
bility or diffusion-driven instability, which arises from the interaction
between a rapidly diffusing activator and a slowly diffusing inhibitor,
as explained in [18]. Analyzing this problem typically involves lin-
ear stability analysis around the uniform steady state and identifying
conditions under which unstable modes emerge, as detailed in [19].
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In this paper, we employ bifurcation theory to address pattern for-
mation problems, specifically, by examining whether non-trivial steady
states can bifurcate from seemingly trivial steady states. We also use lin-
ear stability analysis to investigate the stability of trivial steady states.
Based on the bifurcation and stability analysis, we propose a framework
to analyze two-species reaction–diffusion systems. This framework can
also be extended to analyze reaction–diffusion models involving n

species. To illustrate our approach, we examine two classic models
in mathematical biology: the Schnakenberg model, introduced in the
1970s to explain biological pattern formation arising from diffusion-
driven instability [20], and the Gray-Scott model, proposed in the
1980s to describe autocatalytic glycolysis reactions [6].

The structure of this paper is as follows: In Section 2, we apply bifur-
cation theory and linear stability theory to a general reaction–diffusion
system featuring two species and explore the solution structures around
trivial steady states. The numerical simulation techniques used in this
project are also detailed in Section 2. In Sections 3 and 4, we apply
the method to the Schnakenberg model and the Gray-Scott model,
respectively. We provide a discussion of our result in Section 5.

2. Bifurcation and stability analysis

We consider a general reaction–diffusion system for the dynamics of
two chemical species, denoted as u and v. In the case of a 1D domain
x * [0, 1] with no-flux boundary conditions, namely:

)u

)t
= Du

)2u

)x2
+ f (u, v),

)v

)t
= Dv

)2v

)x2
+ g(u, v),

(1)

where Du and Dv are the diffusion coefficients, and f (u, v) and g(u, v)

are smooth functions representing the reaction terms. Without loss of
generality, we let Du = 1 and Dv = d, and the parameter d measures
the relative dispersal speed of the two species.

In the steady-state, the time derivatives are zero, and the equations
reduce to:

0 =
d2u

dx2
+ f (u, v),

0 = d
d2v

dx2
+ g(u, v).

(2)

Solving the aforementioned system using no-flux boundary conditions
leads to steady-state solutions. However, finding explicit solutions for
the ODE system (2) in general can be challenging and often necessitates
the use of numerical methods. To obtain a simple steady-state solution,
we can assume that the concentrations u and v are spatially constant.
This assumption implies finding two constants u∗ and v∗ that satisfy the
following system of nonlinear equations.

f (u∗, v∗) = 0,

g(u∗, v∗) = 0.
(3)

In this work, we will use bifurcation analysis to find other non-trivial
steady-state solutions and reveal the solution structure around the par-
ticular steady-state solution (u∗, v∗). To achieve this goal, we shall use
the Crandall–Rabinowitz theorem. Upon checking the four conditions
in the theorem, we can find values for the bifurcation parameter, at
which non-constant steady-state solutions bifurcate from the trivial
solution.

Theorem 1 (Crandall–Rabinowitz Theorem, [21,22]). Let X, Y be real
Banach spaces and ô (ç, ç) be a Cp, p e 2 map of a neighborhood (�0, 0) in
R×X into Y . Denote by Dxô and D�xô the first- and second-order Fréchet
derivatives, respectively. Assume the following four conditions hold:

(I) ô (�, 0) = 0 for all � in a neighborhood of �0,
(II) KerDxô (�0, 0) is one dimensional space, spanned by x0,
(III) ImDxô (�0, 0) = Y1 has codimension 1,

(IV) D�xô (�0, 0)x0 + Y1,

then (�, x) = (�0, 0) is a bifurcation point of the equation ô (�, x) = 0 in the
following sense: in a neighborhood of (�, x) = (�0, 0), the set of solutions
ô (�, x) = 0 consists of two Cp−2 smooth curves, �1 and �2, which intersect
only at the point (�0, x) = (�0, 0); �1 is the curve x � 0, and �2 can be
parameterized as follows:

�2 ∶ (�(�), x(�)), |�| small, (�(0), x(0)) = (0, �0), x
2(0) = x0.

Remark 2.1. We can shift any constant solution to 0, therefore, the
Crandall–Rabinowitz Theorem is also valid for any constant solution
(see [23]).

2.1. Bifurcation analysis

Different from [23,24], we are now dealing with a system instead
of a single function. Therefore, we define

ô
(
d,

[
u

v

])
=

[
uxx + f (u, v)

dvxx + g(u, v)

]
, (4)

where the parameter d is viewed as the bifurcation parameter. Several
studies have explored the use of the diffusion coefficient as a bifur-
cation parameter [25–28]. Additionally, some works have focused on
using other parameters for bifurcation analysis [29,30].

Since u and v both satisfy no-flux boundary conditions, we consider
the following Banach space

Xl = {�(x) * C l[0, 1], �x(0) = �x(1) = 0}. (5)

It can be easily proved that the set {cos(n�x)}@
n=0

is a basis for the
Banach space Xl for any l e 0. In applying the Crandall–Rabinowitz
Theorem (Theorem 1), we take

X =

[
Xl+2

Xl+2

]
and Y =

[
Xl

Xl

]
. (6)

For any Ė =

[
u

v

]
* X, we consider the infinity vector norm, i.e.,

‖Ė‖X = max{‖u‖Xl+2 , ‖v‖Xl+2}. (7)

It follows from (4) that ô involves at most second-order derivatives,
hence, the operator ô maps R × X into Y . In addition, recalling that
(u, v) = (u∗, v∗) is a constant steady-state solution, we have

ô
(
d,

[
u∗

v∗

])
=

[
0

0

]
for any d > 0.

Therefore, the first condition of the Crandall–Rabinowitz Theorem
(Theorem 1) is satisfied. Moving forward, we will work on the operator
ô and find bifurcation points d at which the other three conditions of
the Crandall–Rabinowitz Theorem (Theorem 1) are met. To this end, we
need the Fréchet derivative of ô , which is computed in the following
lemma.

Lemma 2.1. The Fréchet derivative ô
Ė

(
d,

[
u∗

v∗

])
of the operator ô is given

by

ô
Ė

(
d,

[
u∗

v∗

])[
ℎ

w

]
=

[
ℎxx + fu(u

∗, v∗)ℎ + fv(u
∗, v∗)w

dwxx + gu(u
∗, v∗)ℎ + gv(u

∗, v∗)w

]

=

[
1 0

0 d

] [
ℎ

w

]

xx

+

[
fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) gv(u

∗, v∗)

] [
ℎ

w

]
.

(8)

Proof. Let ℎ,w * Xl+2 and |"| ≪ 1. Using Taylor Series, we have

ô
(
d,

[
u∗

v∗

]
+ "

[
ℎ

w

])
= ô

(
d,

[
u∗ + "ℎ

v∗ + "w

])

=

[
(u∗ + "ℎ)xx + f (u∗ + "ℎ, v∗ + "w)

d(v∗ + "w)xx + g(u∗ + "ℎ, v∗ + "w)

]

= "

[
ℎxx + fu(u

∗, v∗)ℎ + fv(u
∗, v∗)w

dwxx + gu(u
∗, v∗)ℎ + gv(u

∗, v∗)w

]
+

[
A1

A2

]
,

(9)
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where

A1 = "2
(
1

2
fuu(�1, �1)ℎ

2 + fuv(�1, �1)ℎw +
1

2
fvv(�1, �1)w

2
)

=
"2

2

[
ℎ w

] [fuu(�1, �1) fuv(�1, �1)

fuv(�1, �1) fvv(�1, �1)

] [
ℎ

w

]

and

A2 = "2
(
1

2
guu(�2, �2)ℎ

2 + gfuv(�2, �2)ℎw +
1

2
gvv(�2, �2)w

2
)

=
"2

2

[
ℎ w

] [guu(�2, �2) guv(�2, �2)

guv(�2, �2) gvv(�2, �2)

] [
ℎ

w

]

are the remainder terms. In the above two equations, �1, �2 are between
u∗ and u∗ + "ℎ, and �1, �2 lie between v∗ and v∗ + "w.

Since functions f and g are both second-order differentiable, all the
second-order derivative terms in A1 and A2 are bounded. Therefore,

‖A1‖Y = ‖A1‖Xl d C"2(max{‖ℎ‖Xl , ‖w‖Xl})2

d C"2(max{‖ℎ‖Xl+2 , ‖w‖Xl+2})
2 = C"2

‖‖‖‖
[
ℎ

w

] ‖‖‖‖
2

X

,

and so does A2.
Combining the estimates on A1 and A2 with (9), we arrive

‖‖‖‖ô
(
d,

[
u∗

v∗

]
+ "

[
ℎ

w

])
− ô

(
d,

[
u∗

v∗

])
− "

[
(u∗ + "ℎ)xx + f (u∗ + "ℎ, v∗ + "w)

d(v∗ + "w)xx + g(u∗ + "ℎ, v∗ + "w)

]‖‖‖‖Y

"
‖‖‖‖

[
ℎ

w

]‖‖‖‖X

=

‖‖‖‖

[
A1

A2

]‖‖‖‖Y

"
‖‖‖‖

[
ℎ

w

]‖‖‖‖X

=
max{‖A1‖Xl , ‖A2‖Xl }

"
‖‖‖‖

[
ℎ

w

]‖‖‖‖X

d C"
‖‖‖‖

[
ℎ

w

]‖‖‖‖X ³ 0 as " ³ 0,

which concludes (8). ¦

Since the set {cos(n�x)}@
n=0

is a basis for the Banach space Xl+2, for
any ℎ,w * Xl+2, we write

[
ℎ

w

]
=

⎡⎢⎢⎢⎢⎣

@1
n=0

an1 cos(n�x)

@1
n=0

an2 cos(n�x)

⎤⎥⎥⎥⎥⎦
=

@1
n=0

cos(n�x)

(
an1

[
1

0

]
+ an2

[
0

1

])

=

@1
n=0

an2 cos(n�x)

[
bn
1

]
(10)

where bn =
an1
an2
, and an1, an2 are arbitrary constants. We can see that,

for each cos(n�x), there exists a 2-dimensional space.
To analyze the kernel of ô

Ė
, we substitute (10) into (8) to derive

ô
Ė

(
d,

[
u∗

v∗

])[
ℎ

w

]
= ô

Ė

(
d,

[
u∗

v∗

])( @1
n=0

an2 cos(n�x)

[
bn
1

])

=

@1
n=0

an2

(
−n2�2

[
1 0

0 d

]
+

[
fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) gv(u

∗, v∗)

] )
cos(n�x)

[
bn
1

]

=

@1
n=0

an2 cos(n�x)

[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −n2�2d + gv(u

∗, v∗)

] [
bn
1

]
.

In particular,

ô
Ė

(
d,

[
u∗

v∗

])
cos(n�x)

[
bn
1

]

= cos(n�x)

[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −n2�2d + gv(u

∗, v∗)

] [
bn
1

]
.

When
(
−n2�2+fu(u

∗, v∗)
)(

−n2�2d+gv(u
∗, v∗)

)
−fv(u

∗, v∗)gu(u
∗, v∗) = 0,

i.e.,

d = d∗n |

fv(u
∗ ,v∗)gu(u

∗ ,v∗)

n2�2−fu(u
∗ ,v∗)

+ gv(u
∗, v∗)

n2�2
n e 1, (11)

the matrix

[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −n2�2d + gv(u

∗, v∗)

]
is singular and has

a non-trivial element in its nullspace. In order to identity the nullspace,
we derive from[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −n2�2d∗n + gv(u

∗, v∗)

] [
bn
1

]
=

[
0

0

]
(12)

that

bn = b∗n |
fv(u

∗, v∗)

n2�2 − fu(u
∗, v∗)

. (13)

In this case, we have

[
b∗
n

1

]
* ü

([
−n2�2 + fu(u

∗ , v∗) fv(u
∗ , v∗)

gu(u
∗ , v∗) −n2�2d∗

n
+ gv(u

∗ , v∗)

])
,

and cos(n�x)

[
b∗n
1

]
* Ker ô

Ė

(
d∗n ,

[
u∗

v∗

])
. Moreover, it follows from the

expression of (13) that b∗n is decreasing in n. So,

b∗n � b∗m when n � m. (14)

For d∗n , even though the monotonicity in n cannot be proved, it is
usually the case that

d∗n � d∗m when n � m. (15)

If (15) holds, then

Ker ô
Ė

(
d∗n ,

[
u∗

v∗

])
= Span

{
cos(n�x)

[
b∗n
1

]}

is a 1-dimensional space. Hence, the second requirement of the Crandall–
Rabinowitz Theorem (Theorem 1) is satisfied at d = d∗n with n e 1.

In order to check the codimension of Im ô
Ė

(
d∗n ,

[
u∗

v∗

])
in the third

condition of Theorem 1, we recall

ô
Ė

(
d∗n ,

[
u∗

v∗

])[
ℎ

w

]

=

@1
m=0

am2 cos(m�x)

[
−m2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −m2�2d∗n + gv(u

∗, v∗)

] [
bm
1

]
.

If (15) holds, then

det

([
−m2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −m2�2d∗n + gv(u

∗, v∗)

])
� 0,

when m � n. This indicates that for m = 0, 1, 2,ď and m � n, the
matrix is nonsingular, and the 2-dimensional space corresponding to
cos(m�x) remains. On the other hand, when m = n, following our

previous analysis, the subspace spanned by

[
b∗n
1

]
cos(n�x) is in the kernel

of ô
Ė

(
d∗n ,

[
u∗

v∗

])
, hence it is not in the image space of ô

Ė

(
d∗n ,

[
u∗

v∗

])
.

Therefore, only one dimension disappears and Im ô
Ė

(
d∗n ,

[
u∗

v∗

])
has

codimension 1.
Finally, taking d = d∗n , we differentiate both sides of (8) with respect

to d and apply the operator on cos(n�x)

[
b∗n
1

]
. We obtain, with n e 1,

ôdĖ

(
d∗n ,

[
u∗

v∗

])
cos(n�x)

[
b∗n
1

]
=

[
0

−n2�2 cos(n�x)

]
= cos(n�x)

[
0

−n2�2

]
.

We shall prove the last condition of the Crandall–Rabinowitz Theorem
(Theorem 1) by contradiction. We assume that

ôdĖ

(
d∗n ,

[
u∗

v∗

])
cos(n�x)

[
b∗n
1

]
* Im ô

Ė

(
d∗n ,

[
u∗

v∗

])
. (16)

That means there is a nonzero vector Ę =

[
z1
z2

]
* X such that

ô
Ė

(
d∗n ,

[
u∗

v∗

])[
z1
z2

]
= ôdĖ

(
d∗n ,

[
u∗

v∗

])
cos(n�x)

[
b∗n
1

]
= cos(n�x)

[
0

−n2�2

]
.

Using (8), we find that it is equivalent to
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[
1 0

0 d∗n

] [
z1
z2

]

xx

+

[
fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) gv(u

∗, v∗)

] [
z1
z2

]
= cos(n�x)

[
0

−n2�2

]
.

(17)

Since the right-hand side contains only cos(n�x), we use the ansatz:

z1 = a1 cos(n�x) and z2 = a2 cos(n�x).

Upon substituting into (17), we obtain
[
1 0

0 d∗n

] [
−n2�2a1 cos(n�x)

−n2�2a2 cos(n�x)

]
+

[
fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) gv(u

∗, v∗)

] [
a1 cos(n�x)

a2 cos(n�x)

]

= cos(n�x)

[
0

−n2�2

]
, (18)

which is equivalent to solving the linear system
[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −n2�2d∗n + gv(u

∗, v∗)

] [
a1
a2

]
=

[
0

−n2�2

]
. (19)

We first consider the case when a2 = 0. Then the first equation of
the system (19) is reduced to
(
−n2�2 + fu(u

∗, v∗)
)
a1 = 0, (20)

which gives a1 = 0. Here, we exclude the scenario where −n2�2 +

fu(u
∗, v∗) = 0; in our bifurcation diagrams (Figs. 1, 4, and 5), this

condition manifests as asymptotes. Then the second equation of (19)
cannot be satisfied, and we have found a contradiction.

When a2 � 0, we divide both sides of (19) by a2. Alternatively, we
can solve (19) by

[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −n2�2d∗n + gv(u

∗, v∗)

][ a1
a2

1

]
=

[
0

−n2�2

a2

]
. (21)

Comparing (21) with (12), we find that the first equations from the
two systems are the same, so they should admit the same solution,
i.e., a1

a2
= b∗n. However, from the second equation in (12), we have

gu(u
∗, v∗)

a1

a2
+
(
−n2�2d∗n + gv(u

∗, v∗)
)
= 0 � −n2�2

a2
,

when n e 1. So, we have found a contradiction, and the assumption
(16) is not valid.

In conclusion, based on the above analysis, the four conditions of
the Crandall–Rabinowitz Theorem (Theorem 1) are satisfied at d = d∗n
when the condition (15) is met. Therefore, d = d∗n is a bifurcation point
of the system (2), at which a non-constant solution bifurcates from the
trivial steady state (u, v) = (u∗, v∗). We summarize our result into the
following theorem:

Theorem 2.1. If (15) holds, then for each integer n e 1, d = d∗n , where
d∗n is defined in (11), is a bifurcation point to the system (2). In addition,
the bifurcation solution (un(x, "), vn(x, "), dn(")) satisfies

dn(") = d∗n + ", un(x, ") = u∗ + "b∗n cos(n�x) + o("),

vn(x, ") = v∗ + " cos(n�x) + o("),

where b∗n is defined in (13) and |"| ≪ 1.

2.2. Linear stability analysis

To gain a deeper insight into the solution structure, we may conduct
a linear stability analysis focused on constant steady-state solutions.
While both stability and bifurcation are important concepts in a system,
they are not isolated from each other. Stability refers to the ability of
the system to maintain its preferred state, while bifurcation refers to
the tendency of the system to transition into a different state with the
change of a parameter. It is often at the bifurcation points that the
stability of the constant solution changes. As highlighted by Crandall

and Rabinowitz in their seminal work [31], assessing the stability
of a constant solution necessitates the estimation of the eigenvalue
with the minimum modulus from the linearized operator associated
with the bifurcation. In our previous research [24,32–34], we also
found that in many cases (though not all), the change of stability
for the system coincides with the smallest bifurcation point. Studying
these two interconnected concepts will provide us with an in-depth
understanding of the system and its solution structure.

Here we carry out the standard linear stability analysis. Assume that
the initial conditions are perturbed as follows:

u0(x) = u∗ + "ℎ0(x), v0(x) = v∗ + "w0(x).

Substituting

u(x, t) = u∗ + "ℎ(x, t) + O("2), v(x, t) = v∗ + "w(x, t) + O("2)

into (1) and collecting the "-order terms, we obtain the linearized
system of (1) at the constant steady-state solution:

ℎt = ℎxx + fu(u
∗, v∗)ℎ + fv(u

∗, v∗)w,

wt = dwxx + gu(u
∗, v∗)ℎ + gv(u

∗, v∗)w.
(22)

Since both ℎ and w also satisfy no-flux boundary conditions, we seek a
solution of the form

ℎ(x, t) =

@1
n=0

ℎn(t) cos(n�x), w(x, t) =

@1
n=0

wn(t) cos(n�x).

Substituting back into (22), we obtain

ℎ2n(t) = −n2�2ℎn(t) + fu(u
∗, v∗)ℎn(t) + fv(u

∗, v∗)wn(t),

w2
n(t) = −dn2�2wn(t) + gu(u

∗, v∗)ℎn(t) + gv(u
∗, v∗)wn(t),

(23)

which is equivalent to the matrix equation
[
ℎn(t)

wn(t)

]2
=

[
−n2�2 + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −dn2�2 + gv(u

∗, v∗)

] [
ℎn(t)

wn(t)

]
. (24)

We denote Ė =

[
ℎn(t)

wn(t)

]
and A =

[
−n2�2 + fu(u

∗ , v∗) fv(u
∗ , v∗)

gu(u
∗ , v∗) −dn2�2 + gv(u

∗ , v∗)

]
. The

solution to the matrix differential equation (24) is

Ė = c1e
�1tĖĀ + c2e

�2tĖā,

where �1, �2 are the eigenvalues of the matrix A, ĖĀ, Ėā are the
respective eigenvectors, and c1, c2 are constants which are determined
by the initial conditions ℎ0(x), w0(x). It is clear that Ė ³ ÿ if and
only if the two eigenvalues are negative. Therefore, the stability of the
constant steady-state solution depends on the signs of the eigenvalues
of A.

Theorem 2.2. The constant steady-state solution (u∗, v∗) is linearly stable
if and only if

�1 + �2 = tr(A) = −n2�2 + fu(u
∗, v∗) − dn2�2 + gv(u

∗, v∗) < 0, (25)

�1�2 = det(A) =
(
−n2�2+fu(u

∗, v∗)
)(

−dn2�2+gv(u
∗, v∗)

)
−fv(u

∗, v∗)gu(u
∗, v∗) > 0,

(26)

hold for all integers n e 0.

2.3. Numerical homotopy continuation techniques

To numerically approximate the operator ô defined in (4), denoted
as ôℎ where ℎ is the mesh size of numerical discretization, we solve
the following discretized nonlinear system:

ôℎ

(
d,

[
uℎ

vℎ

])
= ÿ.

Here, ôℎ ∶ R × R
2n

³ R
2n and

[
uℎ

vℎ

]
is the numerical approximation of

[
u

v

]
in (4) depending on the parameter d, i.e.,

[
uℎ

vℎ

]
=

[
uℎ(d)

vℎ(d)

]
. Starting
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Fig. 1. The relationship between d∗
n
and � from Equation (28). Dashed curves indicate asymptotes. Curves with different colors represent different bifurcation branches. The number

of bifurcation points is equal to the number of intersections with a vertical line. The constant solution (u∗ , v∗) = (1,
2

3
) is linearly stable within the shaded region. Other parameter

values used are: a =
1

3
and b =

2

3
.

with the linearized solution around a bifurcation point provided by

Theorem 2.1, i.e.,

[
u0
v0

]
=

[
uℎ(d0)

vℎ(d0)

]
, we can employ various homotopy

tracking algorithms, as discussed in previous literature [35–37], to

compute the solution path

[
uℎ(d)

vℎ(d)

]
. The homotopy tracking algorithm

typically consists of a predictor step followed by a corrector step to
solve the parametric problem. The predictor computes the solution at
d1 = d0 + �d by solving

ôℎ

(
d0 + �d,

[
uℎ
0
+ �uℎ

vℎ
0
+ �vℎ

])
= 0

which, in first order, yields an Euler predictor:

ôℎ
x

(
d0,

[
u0
v0

])[
�uℎ

�vℎ

]
= −ôℎ

d

(
d0,

[
u0
v0

])
�d.

Subsequently, a Newton corrector is applied to refine the solution using

an initial guess

[
ũℎ

ṽℎ

]
=

[
u0 + �uℎ

v0 + �vℎ

]
, namely,

ôℎ
x

(
d1,

[
ũℎ

ṽℎ

])[
�uℎ

�vℎ

]
= −ôℎ

(
d1,

[
ũℎ

ṽℎ

])
.

This process iteratively updates

[
ũℎ

ṽℎ

]
until it lies on the path, i.e.,

ôℎ

(
d1,

[
ũℎ

ṽℎ

])
= 0.

3. Application to the Schnakenberg Turing model

In this section, we apply our framework to the Schnakenberg model,
a system whose bifurcation and stability analysis have previously been
explored in [38,39]. The Schnakenberg system is a prototype Turing
model that exhibits Turing pattern formation. The model involves two
variables, u as an activator and v as a substrate. The following equations

can describe the model:

)u

)t
=

)2u

)x2
+ �(a − u + u2v),

)v

)t
= d

)2v

)x2
+ �(b − u2v).

(27)

In this system, both species are produced uniformly in the domain.
The variable u decays linearly, while the conversion of v to u occurs in a
nonlinear and autocatalytic manner. The diffusion rate d differentiates
the relative dispersal speed of the two species, and the parameter �

determines the balance between diffusion and chemical reaction.
Comparing (27) with (1), we have

f (u, v) = �(a − u + u2v),

g(u, v) = �(b − u2v),

and the trivial steady-state solution which satisfies (3) is (u∗, v∗) =(
a + b,

b

(a+b)2

)
. Taking partial derivatives and evaluating at (u∗, v∗), we

obtain

fu(u
∗, v∗) = �(−1 + 2u∗v∗),

fv(u
∗, v∗) = �(u∗)2,

gu(u
∗, v∗) = −2�u∗v∗,

gv(u
∗, v∗) = −�(u∗)2.

On the basis of Theorem 2.1, we find a series of values for the
bifurcation parameter d,

d∗n =
2�u∗v∗

�(u∗)2

�(2u∗v∗−1)−n2�2
− �(u∗)2

n2�2
n e 1. (28)

In the above formula, both the parameters � and d are positive and the
solutions u∗ and v∗ are also positive. We will now proceed to discuss
the number of bifurcation points based on different scenarios.

• Case 1. If 2u∗v∗ − 1 d 0, then �(2u∗v∗ − 1) − n2�2 < 0 for all n e 1.
In this case, the numerator of (28) is negative, and so are all the
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Fig. 2. Steady states of the Schnakenberg model with � = 200. A: Bifurcation diagram of the model. The y-axis represents + u(x) cos(n�x) dx, where u(x) are steady-state solutions.
Solid lines indicate stable solutions, while dashed lines indicate unstable solutions. B: Steady-state solutions with d = 100 for each solution branch depicted in A. Other parameter
values used are: a =

1

3
and b =

2

3
.

points defined by (28). Therefore, there are no bifurcation points
for d > 0.
• Case 2. If 2u∗v∗ − 1 > 0, then � = �∗n | n2�2

2u∗v∗−1
is an asymptote for

d∗n , before which d∗n is negative and after which d∗n is positive.
Since we are focusing on d > 0 only, we further discuss the
scenarios based on the value of �:

– If 0 < � < �∗
1
, there is 0 bifurcation point for d;

– If �∗
1
< � d �∗

2
, there is 1 bifurcation point for d;

– If �∗
2
< � d �∗

3
, there are 2 bifurcation points for d;

– ...
– If �∗

n−1
< � d �∗n , there are n − 1 bifurcation points for d.

When a =
1

3
and b =

2

3
, then u∗ = a + b = 1 and v∗ =

b

(a+b)2
=

2

3
.

Fig. 1 shows the relationship between the bifurcation point d∗n and �, as
described in Eq. (28). Curves with different colors represent different
bifurcation branches. In addition, the number of bifurcation points at
each � value equals the number of intersections with the vertical line
x = �.

As for the stability of the constant steady-state solution (u∗, v∗) =

(1,
2

3
), we use Theorem 2.2 to derive the two conditions required for

the constant solution to be stable:

−n2�2 − dn2�2 + �(2u∗v∗ − 1) − �(u∗)2 = −n2�2 − dn2�2 −
2

3
� < 0, (29)

(
�(2u∗v∗ − 1) − n2�2

)(
−�(u∗)2 − dn2�2

)
+ 2�2(u∗)3v∗

= (
�

3
− n2�2)(−� − dn2�2) +

4�2

3
> 0. (30)

Clearly, (29) is always satisfied for all n e 0, and (30) holds when n = 0,
it then remains to check (30) for different d values and integers n e 1.
Recall that d = d∗n from (28) makes the left-hand side of (30) equal to
0 for each n e 1. We define

d∗(�) = min
ne1

d∗n . (31)

Here, we would like to emphasize that d∗ depends on �. It can be
proved that when d < d∗(�), (30) always holds for all n e 1, thus
(u∗, v∗) is linearly stable (see the shaded region in Fig. 1); however,
when d > d∗(�), there exists an integer n0 such that (30) is violated at
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Fig. 3. Steady states of the Schnakenberg model with � = 700. A: Bifurcation diagram of the model. The y-axis represents + u(x) cos(n�x) dx, where u(x) are steady-state solutions.
Solid lines indicate stable solutions, while dashed lines indicate unstable solutions. B: Steady-state solutions with d = 300 for each solution branch distinguished by different colors.
Other parameter values used are: a =

1

3
and b =

2

3
.

n = n0, thus (u
∗, v∗) is unstable. It indicates that the stability of (u∗, v∗)

changes at the smallest bifurcation point.

We then conduct numerical simulations to explore the steady-state
solutions of the Schnakenberg model (27) in a 1D domain x * [0, 1] with
no-flux boundary conditions. Initially, we set the parameter values to
a =

1

3
, b =

2

3
, and � = 200. From Fig. 1, we know that there should

be 2 bifurcation points, one corresponds to n = 1, and the other one
corresponds to n = 2. Using (28), one can also compute the values
of the two bifurcation points: d∗

1
= 74.8779 and d∗

2
= 44.6227. Since

d∗
2

< d∗
1
, one would expect that the change of stability happens at

d∗ = d∗
2
= 44.6227.

From the simulation results, the bifurcation diagram concerning
the diffusion rate d is presented in Fig. 2A. The bifurcation points
corresponding to n = 1 and n = 2 are observed, with respective values
of d∗

1
H 75 and d∗

2
H 45. Stable solutions are represented by solid lines,

and unstable solutions are depicted with dashed lines. We observe that
before the smallest bifurcation point d∗

2
the constant solution is stable,

whereas after d∗
2
, the constant solution is unstable. To further analyze

the system, we plot the steady-state solutions for d = 100 in Fig. 2B.
The first two steady-state solutions, plotted in blue, are on the n = 1

bifurcation branch, since only one peak and one valley are observed in

the interval [0, 1]. The two green steady-state solutions show either two
valleys and one peak or two peaks and one valley, thus they are on the
n = 2 bifurcation branch. All the simulation results agree well with the
analytical results.

Next, we increase the value of the parameter � to � = 700, which
results in an increase in the number of bifurcations to 4 (namely, n =

1,& , 4). The corresponding bifurcation diagram is shown in Fig. 3A.
Additionally, Fig. 3B displays the steady-state solutions for d = 300 on
each solution branch. We see that the constant steady-state solution
changes stability at the smallest bifurcation point d∗ = d∗

3
H 43.

4. Application to the Gray–Scott model

The Gray-Scott model, first proposed by Gray and Scott [40–42],
is a reaction–diffusion system used to describe autocatalytic reactions.
It models the interaction of two chemicals that react with each other
and diffuse through space, leading to complex patterns such as spirals,
spots, and waves. In 1D, it takes the following form:

)A

)t
= DA

)2A

)x2
+ SA2 − (� + �)A,

)S

)t
= DS

)2S

)x2
− SA2 + �(1 − S).

(32)
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Fig. 4. The relationship between (DS )
1
n
and DA from Eq. (41) with A∗

1
= 3∕5. Dashed

curves indicate asymptotes. Curves with different colors represent different bifurcation
branches. The number of bifurcation points is equal to the number of intersections
with a vertical line. The constant solution (A∗

1
, S∗

1
) = (

3

5
,

1

10
) is linearly stable within

the shaded region. Other parameter values used are: � = 0.02 and � = 0.04.

Here A and S represent the concentration of an activator and a sub-
strate, respectively. The parameters DA and DS are the diffusion rates.
The dynamics of the system correspond to the following reactions,

S + 2A
1
←←←←←←³ 3A, A

�
←←←←←←←³ P ,

where P is a terminal product. In addition, the substrate S is fed into
the system with a constant rate �, and both S and A undergo a linear
decay at the same rate �.

The bifurcation and stability analysis of the Gray-Scott model have
been extensively explored in [43–46]. In this section, we will apply
the same framework to analyze Gray-Scott model. In order to make the
system (32) resemble (1) with Du = 1 and Dv = d, we make a change
of variables. Denote

t̄ = DAt, Ā(x, t̄) = A(x, t), S̄(x, t̄) = S(x, t).

By omitting the bars in the notation, we can rewrite the new system as:

)A

)t
=

)2A

)x2
+

1

DA

(
SA2 − (� + �)A

)
,

)S

)t
= d

)2S

)x2
+

1

DA

(
−SA2 + �(1 − S)

)
,

(33)

where the parameter d =
DS

DA
measures the ratio of two diffusion

coefficients. Using the framework of (1), we have

f (A,S) =
1

DA

(
SA2 − (� + �)A

)
,

g(A,S) =
1

DA

(
−SA2 + �(1 − S)

)
,

and hence

fA(A,S) =
1

DA

(
2AS − (� + �)

)
, (34)

fS (A,S) =
1

DA

A2, (35)

gA(A,S) =
−2

DA

AS, (36)

gS (A,S) =
1

DA

(
−A2 − �

)
. (37)

It is straightforward to see that (A∗, S∗) = (0, 1) is a constant steady-
state solution for the system (33). Evaluating (34)–(37) at this constant

Fig. 5. The relationship between (DS )
2
n
and DA from Eq. (41) with A∗

2
= 1∕15. Dashed

curves indicate asymptotes. Curves with different colors represent different bifurcation
branches. The number of bifurcation points is equal to the number of intersections
with a vertical line. The constant solution (A∗

2
, S∗

2
) = (

1

15
,

9

10
) is always unstable. Other

parameter values used are: � = 0.02 and � = 0.04.

solution, we obtain

fA(0, 1) = −
� + �

DA

, fS (0, 1) = gA(0, 1) = 0, gS (0, 1) = −
�

DA

.

By applying Theorem 2.1, we can determine the values of the bi-
furcation points as d∗n = −

�

DAn
2�2
. Since these values are negative.

Therefore, we conclude that there are no non-constant steady-state
solutions bifurcating from the trivial solution (A∗, S∗) = (0, 1). In fact,
by further employing Theorem 2.2, we can confirm that the constant
solution (A∗, S∗) = (0, 1) is always stable.

In addition to the trivial solution (A∗, S∗) = (0, 1), if �2−4�(�+�)2 >

0, there are two more constant steady states

(A∗
1,2
, S∗

1,2
) =

(� ±√
�2 − 4�(� + �)2

2(� + �)
,
� ∓

√
�2 − 4�(� + �)2

2�

)
, (38)

and in this case, we have

A∗
1,2
S∗
1,2

= � + �. (39)

At these two steady-state solutions, we apply Theorem 2.1 in con-
junction with Eqs. (34)–(37). By also utilizing the property defined by
(39), we can simplify our calculations and derive the formula for the
bifurcation points

d∗n =

2(A∗
1,2

)3S∗
1,2

2A∗
1,2

S∗
1,2

−(�+�)−DAn
2�2

− (A∗
1,2
)2 − �

DAn
2�2

=

2(�+�)(A∗
1,2

)2

(�+�)−DAn
2�2

− (A∗
1,2

)2 − �

DAn
2�2

.

(40)

Recall that d =
DS

DA
is the ratio of the two diffusion rates. If we view

DS as the bifurcation parameter, then bifurcation branches occur at

DS = (DS )
1,2
n =

2(�+�)(A∗
1,2

)2

(�+�)−DAn
2�2

− (A∗
1,2

)2 − �

n2�2
n e 1. (41)

Similar to the analysis in Chapter 3, we shall discuss the number
of bifurcation points based on the values of �, �, and DA. In (41),
(DA)

∗
n =

�+�

n2�2
are the asymptotes, separating positive and negative

values. In addition, for fixed n, (DS )
1,2
n is monotonically increasing in

DA. Therefore, we obtain

• If the values of the bifurcation points defined in (41) stay positive
in DA * (

�+�

(n+1)2�2
,
�+�

n2�2
), then there are n bifurcation points when
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Fig. 6. Steady states of the Gray-Scott model around the constant solution (A∗
1
, S∗

1
) = (

3

5
,

1

10
) with DA = 6 × 10−4, � = 0.02, and � = 0.04. A: Bifurcation diagram of the model.

The y-axis represents + u(x) cos(n�x) dx, where u(x) are steady-state solutions. Solid lines indicate stable solutions, while dashed lines indicate unstable solutions. B: Steady-state
solutions with DS = 0.1 for each solution branch distinguished by different colors.

�+�

(n+1)2�2
d DA <

�+�

n2�2
. There are no bifurcation points when

DA e �+�

�2
. An example of this case is shown in Fig. 4.

• If the values of the bifurcation points defined in (41) change signs
in DA * (

�+�

(n+1)2�2
,
�+�

n2�2
), then there is only one bifurcation point

as long as the value computed by (41) is positive. There are no
bifurcation points when DA e �+�

�2
. An example of this case is

shown in Fig. 5.

Since the value of (DA)
∗
n =

�+�

n2�2
³ 0 as n ³ @, the number of

asymptotes increases as DA ³ 0. Correspondingly, in the first case, the
number of bifurcation points also increases as DA ³ 0.

When � = 0.02 and � = 0.04, we obtain from (38) the other two
constant steady states

(A∗
1
, S∗

1
) =

(
3

5
,
1

10

)
and (A∗

2
, S∗

2
) =

(
1

15
,
9

10

)
.

Figs. 4 and 5 show the relationship between the bifurcation point
(DS )

1,2
n and the activator’s diffusion coefficientDA at these two constant

solutions, respectively. In these two figures, the number of bifurcation
points at each DA value is equal to the number of intersections with
the vertical line x = DA.

We combine Theorem 2.2 with (34)–(37), and also recall (39), to
explore the stability of these two constant solutions. The two conditions
from Theorem 2.2 are equivalent to, for all integers n e 0,

�1 + �2 = −n2�2 + fA(A
∗, S∗) −

DS

DA

n2�2 + gS (A
∗, S∗)

= −n2�2 +
1

DA

(
2A∗S∗ − (� + �)

)
−

DS

DA

n2�2 +
1

DA

(
−(A∗)2 − �

)

= −n2�2 −
DS

DA

n2�2 +
1

DA

(
� − (A∗)2

)
< 0,

(42)

�1�2 =
[
−n2�2 +

1

DA

(
2A∗S∗ − (� + �)

)][
−
DS

DA

n2�2 −
1

DA

(
(A∗)2 + �

)]

+
2

(DA)
2
(A∗)3S∗

=
1

(DA)
2

[ (
−DAn

2�2 + (� + �)
)(

−DSn
2�2 − (A∗)2 − �

)

+ 2(� + �)(A∗)2
]
> 0.

(43)
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Fig. 7. Steady states of the Gray-Scott model with around constant solution (A∗
2
, S∗

2
) = (

1

15
,

9

10
) with � = 0.02 and � = 0.04. Dashed lines indicate unstable solutions. A: Bifurcation

diagram and the nonuniform steady-state solution on the n = 2 bifurcation branch when DA = 1.5 × 10−3. B: Bifurcation diagram and the nonuniform steady-state solution on the
n = 1 bifurcation branch when DA = 6 × 10−3.

Evaluating these two conditions at the steady states (A∗
1
, S∗

1
) and

(A∗
2
, S∗

2
), we obtain

• At (A∗
1
, S∗

1
) = (

3

5
,

1

10
), we notice that � − (A∗

1
)2 = 0.02 − (3∕5)2 < 0

and (�+�)(−(A∗
1
)2−�)+2(�+�)(A∗

1
)2 = (�+�)((A∗

1
)2−�) > 0. Hence,

the condition (42) is always true for all n e 0, and (43) holds when
n = 0. In addition, the bifurcation points (DS )

1
n defined in (41) are

the points that make the left-hand side of (43) equal to 0 for each
integer n e 1. Similar to the analysis of the Schnakenberg model,
we define

D∗
S
(DA) = min

ne1
(DS )

1
n, (44)

i.e., D∗
S
is the smallest bifurcation point. It can be easily proved

that D∗
S
(DA) is the critical value at which the constant solution

(A∗
1
, S∗

1
) changes stability. To be more specific, when DS <

D∗
S
(DA), the solution (A∗

1
, S∗

1
) is linearly stable (see the shaded

region in Fig. 4); whereas when DS > D∗
S
(DA), the solution is

unstable.

• At (A∗
2
, S∗

2
) = (

1

15
,

9

10
), we have � − (A∗

2
)2 = 0.02 − (1∕15)2 > 0. The

first condition (42) is violated when n = 0 since

�1 + �2
|||n=0 =

1

DA

(
� − (A∗

2
)2
)
> 0. (45)

Based on Theorem 2.2, the constant solution (A∗
2
, S∗

2
) is always

unstable.

We then proceed to conduct numerical simulations to investigate
the steady-state solutions of the Gray-Scott model in a 1D domain,
with x ranging from 0 to 1 and subject to no-flux boundary conditions.
Initially, we set the parameter values to DA = 6 × 10−4, � = 0.02,
and � = 0.04, while considering the trivial steady-state values of
(A∗

1
, S∗

1
) = (

3

5
,

1

10
). As illustrated in Fig. 6A, three distinct bifurcation

points corresponding to n = 1, n = 2, and n = 3 are evident. This
observation aligns with the findings in Fig. 4, which also identifies three
bifurcation points for DA = 6× 10−4. Furthermore, solid lines represent
stable solutions, while dashed lines depict unstable ones. Notably, the
steady-state solution (A,S) = (

3

5
,

1

10
) remains stable before reaching the
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first bifurcation point, consistent with Fig. 4. In Fig. 6B, we present the
steady-state solutions with DS = 0.1 for various bifurcation modes.

We further examine the bifurcation solutions near the trivial so-
lution (A∗

2
, S∗

2
) = (

1

15
,

9

10
) with the same values of � and �. Initially,

we set DA = 1.5 × 10−3. As observed in Fig. 5, DA = 1.5 × 10−3

corresponds to a unique intersection with the n = 2 curve, which
indicates a single bifurcation point. The bifurcation diagram from the
numerical simulation is shown in Fig. 7A and the nonuniform steady-
state solutions are plotted when DS = 0.1. It is evident that there is only
one bifurcation point and steady-state solutions in this case resemble
the graph of cos(2�x) in the interval [0, 1]. Subsequently, we consider
the scenario with DA = 6 × 10−3. This time, the unique intersection
observed in Fig. 5 is between the vertical line DA = 6 × 10−3 and the
curve for n = 1. The simulation outcomes shown in Fig. 7B reveal that
the nonuniform steady-state solutions in this case are on the n = 1

bifurcation branch.

5. Discussion

The central challenge in developmental biology is to decipher the
mechanisms that govern the emergence of spatial and temporal patterns
in living organisms. Mathematical modeling is an indispensable tool
in this endeavor. However, the complexity of biological systems often
results in the existence of nonuniform steady states, which pose chal-
lenges for mathematical characterization. In this paper, we investigated
whether nontrivial steady states can bifurcate from trivial ones, con-
tributing to the understanding of these systems’ solution structures. Our
methodology involved applying bifurcation and stability analyses to a
general reaction–diffusion system featuring two species, from which we
derived nontrivial solution branches that bifurcate from the trivial ones.
Utilizing the Crandall–Rabinowitz theorem, we identified bifurcation
points where nonuniform steady-state solutions emerge from the trivial
solution.

The methods developed in this paper can be readily applied to
analyze reaction–diffusion models with n species. Similar results as
Theorems 2.1 and 2.2 can be obtained except that the analysis will
be based on an n × n matrix, and the computation of deriving the
determinant and eigenvalues of the n× n matrix will be more involved.

We applied our methods to two classic models in mathematical bi-
ology: the Schnakenberg Turing model, and the Gray–Scott model. For
both models, our theoretical results are consistent with numerical sim-
ulations. The implications of our findings extend beyond these specific
models. Understanding how nontrivial states emerge from trivial ones is
a fundamental question in biology and mathematics. Our approach not
only contributes to our knowledge of biological pattern formation but
also opens the door to further applications in more complex systems.
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