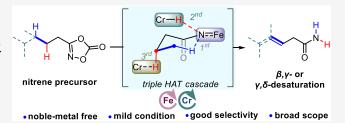


pubs.acs.org/JACS Article

Hydrogen Atom Transfer (HAT)-Mediated Remote Desaturation Enabled by Fe/Cr—H Cooperative Catalysis

Yanjun Wan, Augustine K. Adda, Jin Qian, David A. Vaccaro, Peixian He, Gang Li,* and Jack R. Norton*

Cite This: J. Am. Chem. Soc. 2024, 146, 4795–4802


ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: An iron/chromium system (Fe(OAc)₂, CpCr(CO)₃H) catalyzes the preparation of β , γ - or γ , δ -unsaturated amides from 1,4,2-dioxazol-5-ones. An acyl nitrenoid iron complex seems likely to be responsible for C–H activation. A cascade of three H• transfer steps appears to be involved: (i) the abstraction of H• from a remote C–H bond by the nitrenoid N, (ii) the transfer of H• from Cr to N, and (iii) the abstraction of H• from a radical substituent by the Cr•. The observed kinetic isotope effects are consistent with the proposed mechanism if nitrenoid formation

is the rate-determining step. The Fe/Cr catalysts can also desaturate substituted 1,4,2-dioxazol-5-ones to 3,5-dienamides.

INTRODUCTION

Amides are found widely in biological, pharmaceutical, and natural product molecules. The site-selective modification of amide $C(sp^3)$ —H bonds is an attractive route to many bioactive compounds. The resulting carbon—carbon double bonds permit the chemo- and regioselective installation of many functional groups. Unsaturated amides have been prepared by α,β -desaturation, with a transition-metal-catalyzed redox cascade widely used; it involves the formation of a metal enolate, β -hydrogen elimination, and catalyst reoxidation (Figure 1a). The photoinduced or electrochemically driven α,β -desaturation of amides has become popular in recent years.

The site-selective removal of hydrogen atoms from non-activated γ - or δ -C(sp³)-H bonds in amides has been rarely achieved because of the strength of such bonds. However, hydrogen atom transfer (HAT) has shown an exceptional capability for desaturations. High-energy radicals can not only effectively overcome the thermodynamic obstacles to C-H bond cleavage but also face only a small kinetic barrier. Oxygen, nitrogen, and carbon radicals should be able to remove the remote H•, leaving carbon-centered radicals (Figure 1b). These radicals can be trapped by metal catalysts, resulting in desaturation via β -hydrogen elimination, or they can be oxidized, which leads to the production of olefins via proton transfer.

State-of-the-art amide desaturation methods have often involved photolysis or noble metal catalysts. The sustainability of these methods, however, is often diminished by their reliance on noble metals such as Pd or Ag. Metal nitrenoid complexes offer a robust method for the generation of the initial carbon radicals, via the abstraction of $H \bullet$ from a remote $C(sp^3)-H$ bond (Figure 1c left).²⁷⁻³⁰ However, the transformation of these radicals into carbon–carbon double bonds

has been hampered by the lack of catalysts for that step. To address this challenge, we have turned our attention to the use of transition-metal radicals M• for the second H• abstraction (Figure 1c, right).³¹ C(sp³)-H bonds that adjoin radicals are relatively weak, around 35 kcal/mol,³² whereas metalhydrogen bonds (M-H) range from 55 to 83 kcal/mol,³¹ making H• abstraction by metal radicals M• thermodynamically favorable. In recent years, the combination of photoredox catalysis and biomimetic cobaloxime complexes has emerged as a promising option in this field. 33-35 The Norton group has examined many applications of transition-metal hydrides to unsaturated systems (the kinetics of H. transfer, and hydrogenation, hydrofunctionalization, cyclization, and isomerization reactions).36-43 Our previous report on the epoxide hydrogenation has proven the feasibility of H• abstraction by $CpCr(CO)_3 \bullet \text{ from } C(sp^3) - H \text{ bonds } \alpha \text{ to radicals.}^{44}$

1,4,2-Dioxazol-5-ones, easily made from carboxylic acids, have been used with Ru^{II} porphyrins and copper salts in the synthesis of oxazoles and oxazolines,⁴⁵ and a Ru nitrenoid complex appears to be involved. Chang has identified, by EPR and with calculations, an acyl nitrenoid iron complex from the reaction of PcFe(III)Cl with the dioxazolone S1.²⁸ Arnold has shown that acyl nitrenoid iron complexes are generated in the presence of Fe^{II}.⁴⁶ Bao has trapped acyl nitrenoid iron complexes from dioxazolones with PPh₃.⁴⁷ The iron nitrenoids generated in these ways have been able to remove H● from

Received: November 21, 2023 Revised: January 9, 2024 Accepted: January 10, 2024 Published: February 8, 2024

a) Transition-metal-catalyzed desaturation for α, β -unsaturated amides

PG: protecting group, [M] = Pd, Pt, Cu, Se...

b) Remote desaturation strategies mediated by HAT

c) Nitrenoid-induced and metal hydride-mediated HAT processes

d) Design of Fe/Cr-H co-catalyzed desaturation

readily synthesized

Fe/Cr-H co-catalysis
HAT-mediated desaturation

$$\beta, \gamma$$
- or γ, δ -desaturation

 β, γ - or γ, δ -desaturation

 β, γ - or γ, δ -desaturation

 γ - or γ - or

Figure 1. Strategies for desaturation. (a) Transition-metal-catalyzed α , β -desaturation of amides. (b) Hydrogen atom transfer (HAT)-mediated remote $C(sp^3)$ -H desaturation. (c) Nitrenoid-induced HAT (left) and MHAT (right). (d) An iron/chromium cooperative catalysis for remote $C(sp^3)$ -H desaturation.

remote $C(sp^3)$ -H bonds. The use of an Fe(II)Pc catalyst for remote H \bullet removal has been reported recently by the Li group.⁴⁷

Herein, we report a triple HAT cascade that uses iron and chromium cooperative catalysis for remote $C(sp^3)-H$ desaturations (Figure 1d). An intramolecular 1,5-HAT onto the N of the iron nitrenoid I should release the carbon-centered radical II; the N-atom in II should accept a hydrogen atom from the chromium hydride $CpCr(CO)_3-H$ (BDE(Cr-H) is about 61.5 kcal/mol)⁴⁸ to form intermediate III. The chromium radical $Cr \bullet$ should now abstract an α hydrogen atom from III via the thermodynamically favorable HAT process described above, generating the desaturation product and regenerating the chromium hydride (Cr-H).

■ RESULTS AND DISCUSSION

We have tried several iron/chromium co-catalysts (Table 1). We have found that a combination of iron^{II} acetate, H-CrCp(CO)₃, and acetic acid in 1,4-dioxane gives an optimal yield (entry 1, 85%) of desaturated product 1 from 3-(3-phenylpropyl)-1,4,2-dioxazol-5-one (S1). Other iron catalysts (entries 2–5) proved less effective at desaturation; apparently direct decomposition of some S1 results in the saturated formamide 1' and a Curtius rearrangement byproduct 1" (see Table S1 for more details). Manganese,

Table 1. Optimization of Remote C(sp³)-H Desaturation with Fe/Cr Co-catalysis^a

entry	deviation from standard condition	yield ^b (%)
1 ^c	10 mol % Fe(OAc) ₂ , 10 mol % HCrCp(CO) ₃ , 1.0 equiv. AcOH, 1 mL 1,4-dioxane, rt, Ar, 1 h	85
2	FeCl ₂ instead of Fe(OAc) ₂	45
3	FeBr ₂ instead of Fe(OAc) ₂	32
4	$Fe(OTf)_2$	13
5	$FePc^d$	trace
6	MnCl ₃ /RuCl ₃ /IrCl ₃	trace
7 ^e	$HCrCp^*(CO)_3$ or $HCrCp^\#(CO)_3$	31 or 52
8	NaCrCp(CO) ₃ instead of Cr-H	10
9	w/o AcOH	30
10	0.2 equiv AcOH	55
11	2.0 equiv TFA instead of AcOH	trace
12	THF instead of 1,4-dioxane	35
13	DCE instead of 1,4-dioxane	72
14	60 °C for 0.5 h	78
15	under air	0

^aReaction conditions: substrate (0.1 mmol), catalysts (10 mol %), and acetic acid in 1 mL of solvent, conducted for 1 h at room temperature under an argon atmosphere, unless otherwise noted. ^bYields were determined by ^{1}H NMR using internal standard. c Standard conditions. d Phthalocyanine iron II . e Cp* ($-C_{5}$ Me₅), Cp# ($-C_{5}$ Ph₅).

ruthenium, and iridium catalysts (entry 6), used to generate nitrenoid complexes in previous research, ^{49–51} have proven ineffective at replacing Fe(OAc)₂ in our desaturation chemistry. Variation of the Cp in the chromium hydride cocatalyst (entry 7) shows that the more congested ligands Cp* and Cp# lead to a decrease in yield (to 31% and 52%, respectively), while the [CrCp(CO)₃] anion is even less effective at desaturation (entry 8, 10%). Acetic acid is indispensable when dioxazolones are employed as substrates; when it was omitted, entry 9, or decreased, entry 10, lower yields were obtained. Stronger acids (entry 11) are not tolerated, presumably because they decompose S1. No improvement in the yield was obtained with other solvents, such as tetrahydrofuran or 1,2-dichloroethane (entries 12 and 13). A lower yield was obtained when the reaction was conducted at 60 °C (entry 14), presumably because substrate S1 decomposed slowly at that temperature. The desaturation reaction is so sensitive to air that no product is formed from S1 in the presence of air (entry 15).

With the optimized catalyst system in hand, we investigated the scope of the HAT-mediated $C(sp^3)$ -H desaturation of amide derivatives (Table 2). The reaction tolerates a wide range of electron-donating and electron-withdrawing substituents on the aromatic ring of 3-(3-phenylpropyl)-1,4,2-dioxazol-5-ones (Table 2A), including methoxy (2), methyl (3), isopropyl (4), phenyl (5), halides (6-8), nitro (9), trifluoromethyl (10), and 2,4-dimethoxy (11). In all cases, the

Table 2. Substrate Scope of Cr-H/Fe Co-catalyzed Desaturation

"Reaction conditions: substrates (0.2 mmol), 10 mol % Fe(OAc)₂, 10 mol % HCrCp(CO)₃, and 1.0 equiv acetic acid in 1,4-dioxane (1 mL) at room temperature for 1-3 h under argon; yields were determined by ¹H NMR using 2-nitrobenzaldehyde as internal standard; unless noted, only the E-isomer was obtained. ^bLarge scale: substrate (10 mmol), 5 mol % Fe(OAc)₂, 5 mol % HCrCp(CO)₃, and 1.0 equiv acetic acid in 1,4-dioxane (10 mL) at room temperature for 1 h under argon. ^c30 mol % Fe(OAc)₂, 30 mol % HCrCp(CO)₃ were used. ^d1,2-Dichloroethane as reaction solvent.

a) Evidence for isomerization of radical intermediate

Figure 2. Mechanistic experiments. (a) Evidence for isomerization of allylic radical intermediates. (b) Kinetic isotope effect measurements, (1) intramolecular KIE, (2) intermolecular KIE, (c) Deuterium-labeling experiments for the pathway of byproducts.

yields of β,γ-unsaturated amides were satisfactory (69–91%). Desaturation is not limited to chains with phenyl substituents but works with other aromatic rings, such as naphthyl (12, 68%), thiophenyl (13, 95%), benzofuranyl (14, 91%), and indenyl (15, 64%). The preferential formation of E products (1–14) is ascribed to the exceptionally rapid H \bullet transfer mediated by the chromium complex. Winyl derivatives like 16, which are valuable feedstocks and synthetic intermediates, are available industrially with iron oxide catalysts, but only at extremely high temperatures; 52 our HAT-mediated cooperative desaturation gives the vinylbenzamide 16 in 96% yield.

Methodologies for the preparation of conjugated dienamides have been even less available ^{10,53} than methods for the preparation of but-3-enamides. Our HAT-based desaturation reaction can make 17–43 (Table 2B), which are found in various natural products and their metabolites. ^{54–57} The substrates required for dienamide synthesis (17–43) are

readily obtained from aldehydes or ketones via Wittig reactions. Compatible functional groups are the electrondonating ones in 18-22, the bromines in 23 and 24, the electron-withdrawing ones in 25-29, and the sterically hindered ones in 20 and 27. In general, conjugated dienamides are obtained in good to excellent yields (55-88%) with good E,E selectivity, although some E,Z-isomers were observed, attributed to weak coordination of the initial double bond to the iron (Figure 2a, eq 3). Particularly good yields have been obtained for 2,2-difluoro-1,3-dioxole (30) and furanyl (31)substituted and 6,6-disubstituted (32-35) products, and for dienamides (38-41) containing alkyl substituents in distal positions. Terminal dienes like 42 and 43 are available in moderate yields, and cyclic structures like 36 and 37 are available in lower yields, presumably as a result of steric hindrance.

44', 56%

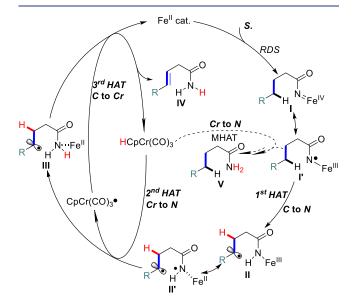
We have tested our desaturation reaction on nonactivated aliphatic substrates like S44–S50, with $C(sp^3)$ –H bonds ranging from 96 to 101 kcal/mol. S8 Disappointingly, with 30 mol % of the catalysts little γ , δ -desaturated amide 44 was formed, along with 56% of the byproduct 44′ (Table 2C). An additional methyl substituent, which makes the C–H bonds in substrates S45–S47 tertiary, gives appreciably better yields of the γ , δ -unsaturated products 45–47. Cycloalkyl substrates are selectively desaturated at their δ C–H bonds, giving γ , δ -desaturated derivatives (48, 49) with useful regioselectivities (up to 4.8:1). The yields of 45 and 50 are much higher in 1,2-dichloroethane than in 1,4-dioxane.

Carbon—carbon double bonds are easily transformed into many other functional groups, ^{59,60} and the late-stage desaturation of pharmaceutics may prove useful. Our iron/chromium cooperative catalysts easily convert the citronellal derivative S51 to S1 in 63% yield (Table 2D), although the reaction is accompanied by some formation of the isomeric dienamide S1' (20%). We have also been able to convert dioxazolone S52, derived from lithocholic acid, to unsaturated steroid derivative S2.

Scheme 1. Synthetic Utility of Unsaturated Amides^a

^aReaction conditions: ^b**1** (0.2 mmol), benzaldehyde (0.2 mmol) in polyphosphate ester (1 mL) at 10 °C under argon for overnight; ^c**1** (0.2 mmol), TsCl (0.2 mmol) and NaH (0.4 mmol) in THF (1 mL) at 40 °C for 5 h; ^dfor 55, see ref 62.

Our iron/chromium co-catalyst is effective on a large scale. With 5 mol % of each catalyst we can convert 10 mmol of $\bf S1$ to $\bf 1$ in 87% yield, eventually allowing the highly stereocontrolled, efficient preparation of the 5,6-dihydro-2(1H) pyridinone $\bf 53$ in 49% yield $\bf 61$ and of the 3-pyrrolin-2-one $\bf 55^{62}$ in 78% yield (Scheme 1). Compounds $\bf 53$ and $\bf 55$ model the core structures of many natural products, drugs, and agrochemicals. $\bf 63,64$


Radical mechanisms have been established by earlier work on the H \bullet transfer chemistry of oxo and nitrene iron complexes. 65-67 Evidence in the present case is offered by the configuration of the gray double bond in diene 17 (Figure 2a). An E configuration in substrate S17 gives 17 that retains the E configuration of the gray double bond (Figure 2a, eq 1); S17', with a mixture of the E and E configurations, gives 17 with entirely an E configuration for the gray double bond (Figure 2a, eq 2). Both E configurations are consistent with the E isomerization of an allyl radical intermediate.

Additional evidence is offered by the formation of double-bond isomers 39', 40', 56', and 57' along with the expected dienamides 39 and 40 (Table 2B), 56, and 57 (Figure 2a, eqs 3 and 4). The positions of the double bonds in 39', 40', 56', and 57' are consistent with the isomerization of allyl radical intermediates. (The structure of 56' has been confirmed (details in the SI) by X-ray crystallography.) The dienamide

originally expected, 56, does not isomerize to 56' under the reaction conditions (Figure 2a, eq 3).

Kinetic isotope effect (KIE) experiments (Figure 2b) have suggested the rate-determining steps in these desaturation reactions. An intramolecular competition experiment on S1- $2,3-d_2$, with each carbon bearing a deuterium, gave a KIE of 2.3 for C3 and a KIE of 1.5 for C2. In contrast, no KIE was observed for the intermolecular competition between S1 and S1-3,3- d_2 . These results show that C-H bond cleavage is *irreversible*, consistent with the formation of a nitrenoid in the rate-determining step (Figure 2b, eq 2).

Finally, we wanted to explore the extent of $H \bullet$ transfer from Cr to the *reactive* radicals II formed from *unweakened* C–H bonds, for example, the radical formed from S44 in Figure 2c. The use of $CpCr(CO)_3D$ and AcOD *did not* give any deuterium incorporation into 44′ (no 44′-d was detected by HRMS or 1H NMR), which means *pathway a* (Figure 2c) can be ruled out for the generation of 44′. Presumably the $D \bullet$ is transferred instead to the nitrenoid N (*pathway b*) and exchanged during workup in the presence of excess acid. The same result—lack of D incorporation into 44′—confirms that cleavage of C–H bonds is *irreversible*, which is consistent with our conclusion from the KIE experiments.

Figure 3. Proposed mechanism for desaturation enabled by Fe/Cr–H cooperative catalysis.

On the basis of these experiments and previous reports, 28,47,70,71 we propose the catalytic cycle in Figure 3 for the remote $C(sp^3)$ —H desaturation of amides. There are good precedents for the decarboxylation of dioxazolones by Fe^{II} to Fe^{IV} nitrenoid intermediates like I. By intramolecular 1,5-HAT from the γ carbon to the nitrenoid nitrogen, these intermediates generate carbon-centered radicals II, which have β -C—H bonds of only 35 kcal/mol. (Another possibility is an intermolecular MHAT between Cr—H and the nitrenoid I, which—after removal of the N from the Fe—would explain the observed byproduct V.) The transfer of a $H \bullet$ from Cr to the N of II, releasing \bullet CrCp(CO)₃, gives intermediate III. Removal of the β hydrogen from III by \bullet CrCp(CO)₃, and protic cleavage of the ligand from the iron complex, gives the unsaturated product IV, and the iron catalyst is regenerated.

CONCLUSION

We have demonstrated the remote β , γ - or γ , δ -desaturation of amides by iron and chromium hydride cooperative catalysis. The reaction seems likely to involve a triple HAT process: (i) a 1,5-HAT from a remote C-H bond to an iron nitrenoid (C to N); (ii) a chromium-hydride-mediated HAT to the N-center (Cr to N); (iii) the abstraction of a second H \bullet from the C-H bond close to the radical by the chromium radical Cr \bullet (C to Cr). Most tertiary C-H bonds and activated secondary C-H bonds are subject to the desaturation reaction. Because the substrates are readily available, the metal catalysts are cheap, and the conditions are mild, we hope that our reaction can be applied to the manufacture of pharmaceuticals.

ASSOCIATED CONTENT

5 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c13085.

Experimental details, materials and methods, characterization data, NMR spectra for all compounds (PDF)

Accession Codes

CCDC 2288241 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Jack R. Norton — Department of Chemistry, Columbia University, New York, New York 10027, United States; orcid.org/0000-0003-1563-9555; Email: jrn11@columbia.edu

Gang Li — Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States; orcid.org/0000-0001-6680-961X; Email: gang.li@usu.edu

Authors

Yanjun Wan – Department of Chemistry, Columbia University, New York, New York 10027, United States; Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States

Augustine K. Adda – Department of Chemistry, Columbia University, New York, New York 10027, United States

Jin Qian – Department of Chemistry, Columbia University, New York, New York 10027, United States

David A. Vaccaro – Department of Chemistry, Columbia University, New York, New York 10027, United States

Peixian He – Department of Chemistry, Columbia University, New York, New York 10027, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c13085

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. Gerard Parkin (Columbia University) for the use of X-ray equipment. We thank Dr. F. Zandkarimi for the

high-resolution mass spectrometry analysis. At Columbia this work was supported by funds from the National Science Foundation under Grant CHE-2100514. G.L. acknowledges Utah State University for start-up funding.

REFERENCES

- (1) Pattabiraman, V. R.; Bode, J. W. Rethinking amide bond synthesis. *Nature* **2011**, *480*, 471–479.
- (2) Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. *J. Med. Chem.* **2020**, *63*, 12290–12358.
- (3) Brown, D. G.; Bostrom, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? *J. Med. Chem.* **2016**, *59*, 4443–4458.
- (4) Kaspar, A. A.; Reichert, J. M. Future directions for peptide therapeutics development. *Drug Discovery Today* **2013**, *18*, 807–817.
- (5) de Figueiredo, R. M.; Suppo, J. S.; Campagne, J. M. Nonclassical Routes for Amide Bond Formation. *Chem. Rev.* **2016**, *116*, 12029–12122.
- (6) Zhang, Q.; Shi, B.-F. Site-selective functionalization of remote aliphatic C-H bonds via C-H metallation. *Chem. Sci.* **2021**, *12*, 841–852
- (7) Monge, D.; Jiang, H.; Alvarez-Casao, Y. Masked unsaturated esters/amides in asymmetric organocatalysis. *Chem.—Eur. J.* **2015**, *21*, 4494–4504.
- (8) Jeon, J.; Lee, C.; Park, I.; Hong, S. Regio-and Stereoselective Functionalization Enabled by Bidentate Directing Groups. *Chem. Rec.* **2021**, *21*, 3613–3627.
- (9) Gnaim, S.; Vantourout, J. C.; Serpier, F.; Echeverria, P. G.; Baran, P. S. Carbonyl Desaturation: Where Does Catalysis Stand? *ACS Catal.* **2021**, *11*, 883–892.
- (10) Wang, Z.; He, Z.; Zhang, L.; Huang, Y. Iridium-Catalyzed Aerobic α,β -Dehydrogenation of γ,δ -Unsaturated Amides and Acids: Activation of Both α and β -C-H bonds through an Allyl-Iridium Intermediate. *I. Am. Chem. Soc.* **2018**, *140*, 735–740.
- (11) Chen, Y.; Turlik, A.; Newhouse, T. R. Amide α,β -Dehydrogenation Using Allyl-Palladium Catalysis and a Hindered Monodentate Anilide. *J. Am. Chem. Soc.* **2016**, *138*, 1166–1169.
- (12) Chen, M.; Dong, G. Direct Catalytic Desaturation of Lactams Enabled by Soft Enolization. *J. Am. Chem. Soc.* **2017**, 139, 7757–7760.
- (13) Chen, M.; Rago, A. J.; Dong, G. Platinum-Catalyzed Desaturation of Lactams, Ketones, and Lactones. *Angew. Chem., Int. Ed.* **2018**, *57*, 16205–16209.
- (14) Chen, M.; Dong, G. Copper-Catalyzed Desaturation of Lactones, Lactams, and Ketones under pH-Neutral Conditions. *J. Am. Chem. Soc.* **2019**, *141*, 14889–14897.
- (15) Yang, S.; Fan, H.; Xie, L.; Dong, G.; Chen, M. Photoinduced Desaturation of Amides by Palladium Catalysis. *Org. Lett.* **2022**, *24*, 6460–6465.
- (16) Zhou, M.-J.; Zhang, L.; Liu, G.; Xu, C.; Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. *J. Am. Chem. Soc.* **2021**, *143*, 16470–16485.
- (17) Gnaim, S.; Takahira, Y.; Wilke, H. R.; Yao, Z.; Li, J. J.; Delbrayelle, D.; Echeverria, P. G.; Vantourout, J. C.; Baran, P. S. Electrochemically driven desaturation of carbonyl compounds. *Nat. Chem.* **2021**, *13*, 367.
- (18) Yu, W. L.; Ren, Z. G.; Ma, K. X.; Yang, H. Q.; Yang, J. J.; Zheng, H. X.; Wu, W. S.; Xu, P. F. Cobalt-catalyzed chemoselective dehydrogenation through radical translocation under visible light. *Chem. Sci.* **2022**, *13*, 7947–7954.
- (19) Herbort, J. H.; Bednar, T. N.; Chen, A. D.; RajanBabu, T. V.; Nagib, D. A. γ C-H Functionalization of Amines via Triple H-Atom Transfer of a Vinyl Sulfonyl Radical Chaperone. *J. Am. Chem. Soc.* **2022**, *144*, 13366–13373.

- (20) Stateman, L. M.; Dare, R. M.; Paneque, A. N.; Nagib, D. A. Aza-Heterocycles via Copper-Catalyzed, Remote C-H Desaturation of Amines. *Chem.* **2022**, *8*, 210–224.
- (21) Chuentragool, P.; Parasram, M.; Shi, Y.; Gevorgyan, V. General, Mild, and Selective Method for Desaturation of Aliphatic Amines. *J. Am. Chem. Soc.* **2018**, *140*, 2465–2468.
- (22) Parasram, M.; Chuentragool, P.; Wang, Y.; Shi, Y.; Gevorgyan, V. General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols. *J. Am. Chem. Soc.* **2017**, *139*, 14857–14860.
- (23) Voica, A. F.; Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. Guided desaturation of unactivated aliphatics. *Nat. Chem.* **2012**, *4*, 629–635.
- (24) Cekovic, Z.; Green, M. M. Formation of Remote Double-Bonds by Ferrous Sulfate Cupric Acetate Promoted Decomposition of Alkyl Hydroperoxides. *J. Am. Chem. Soc.* **1974**, *96*, 3000–3002.
- (25) Xia, Y.; Jana, K.; Studer, A. Remote Radical Desaturation of Unactivated C-H Bonds in Amides. *Chem.—Eur. J.* **2021**, 27, 16621–16625.
- (26) Breslow, R.; Baldwin, S.; Flechtne, T.; Kalicky, P.; Liu, S.; Washburn, W. Remote Oxidation of Steroids by Photolysis of Attached Benzophenone Groups. *J. Am. Chem. Soc.* **1973**, 95, 3251–3262.
- (27) Yang, Y.; Cho, I.; Qi, X.; Liu, P.; Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary $C(sp^3)$ -H bonds. *Nat. Chem.* **2019**, *11*, 987–993.
- (28) Kweon, J.; Chang, S. Highly Robust Iron Catalyst System for Intramolecular $C(sp^3)$ -H Amidation Leading to γ -Lactams. *Angew. Chem., Int. Ed.* **2021**, *60*, 2909–2914.
- (29) Ye, C.-X.; Shen, X.; Chen, S.; Meggers, E. Stereocontrolled 1, 3-nitrogen migration to access chiral α -amino acids. *Nat. Chem.* **2022**, 14, 566–573.
- (30) Ye, C.-X.; Dansby, D. R.; Chen, S.; Meggers, E. Expedited synthesis of α -amino acids by single-step enantioselective α -amination of carboxylic acids. *Nat. Synth.* **2023**, *2*, 645–652.
- (31) Hu, Y.; Shaw, A. P.; Estes, D. P.; Norton, J. R. Transition-Metal Hydride Radical Cations. *Chem. Rev.* **2016**, *116*, 8427–8462.
- (32) Blanksby, S. J.; Ellison, G. B. Bond dissociation energies of organic molecules. *Acc. Chem. Res.* **2003**, *36*, 255–263.
- (33) West, J. G.; Huang, D.; Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. *Nat. Commun.* **2015**, *6*, DOI: 10.1038/ncomms10093.
- (34) Bam, R.; Pollatos, A. S.; Moser, A. J.; West, J. G. Mild olefin formation bio-inspired vitamin B photocatalysis. *Chem. Sci.* **2021**, *12*, 1736–1744.
- (35) Zhao, H.; McMillan, A. J.; Constantin, T.; Mykura, R. C.; Juliá, F.; Leonori, D. Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route toward contra-Thermodynamic Olefins. *J. Am. Chem. Soc.* **2021**, *143*, 14806–14813.
- (36) Estes, D. P.; Norton, J. R.; Jockusch, S.; Sattler, W. Mechanisms by which alkynes react with CpCr(CO)₃H. Application to radical cyclization. *J. Am. Chem. Soc.* **2012**, *134*, 15512–15518.
- (37) Kuo, J. L.; Hartung, J.; Han, A.; Norton, J. R. Direct Generation of Oxygen-Stabilized Radicals by H● Transfer from Transition Metal Hydrides. *J. Am. Chem. Soc.* **2015**, *137*, 1036−1039.
- (38) Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton, J. R.; Palmer, J. H. Radical Isomerization and Cycloisomerization Initiated by H● Transfer. *J. Am. Chem. Soc.* **2016**, *138*, 7698−7704.
- (39) Kuo, J. L.; Lorenc, C.; Abuyuan, J. M.; Norton, J. R. Catalysis of Radical Cyclizations from Alkyl Iodides under H₂: Evidence for Electron Transfer from [CpV(CO)₃H]⁻. *J. Am. Chem. Soc.* **2018**, *140*, 4512–4516.
- (40) Shi, S.; Salahi, F.; Vibbert, H. B.; Rahman, M.; Snyder, S. A.; Norton, J. R. Generation of α-Boryl Radicals by H• Transfer and their Use in Cycloisomerizations. *Angew. Chem., Int. Ed.* **2021**, *60*, 22678−22682.

- (41) Shi, S.; Kuo, J. L.; Chen, T.; Norton, J. R. Catalytic Cycloisomerization onto a Carbonyl Oxygen. *Org. Lett.* **2020**, 22, 6171–6176.
- (42) Norton, J. R.; Spataru, T.; Camaioni, D. M.; Lee, S.-J.; Li, G.; Choi, J.; Franz, J. A. Kinetics and Mechanism of the Hydrogenation of the CpCr(CO)₃●/[CpCr(CO)₃]₂ Equilibrium to CpCr(CO)₃H. *Organometallics* **2014**, 33, 2496–2502.
- (43) Lorenc, C.; Vibbert, H. B.; Yao, C.; Norton, J. R.; Rauch, M. H. Transfer-Initiated Synthesis of γ -Lactams: Interpretation of Cycloisomerization and Hydrogenation Ratios. *ACS Catal.* **2019**, *9*, 10294–10298
- (44) Yao, C.; Dahmen, T.; Gansäuer, A.; Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. *Science* **2019**, *364*, 764–767.
- (45) Zhong, C. L.; Tang, B. Y.; Yin, P.; Chen, Y.; He, L. Synthesis of 2,5-Disubstituted Oxazoles and Oxazolines Catalyzed by Ruthenium-(II) Porphyrin and Simple Copper Salts. *J. Org. Chem.* **2012**, 77, 4271–4277.
- (46) Athavale, S. V.; Gao, S. L.; Liu, Z.; Mallojjala, S. C.; Hirschi, J. S.; Arnold, F. H. Biocatalytic, Intermolecular C-H Bond Functionalization for the Synthesis of Enantioenriched Amides. *Angew. Chem., Int. Ed.* **2021**, *60*, 24864–24869.
- (47) Wan, Y.; Ramírez, E.; Ford, A.; Bustamante, V.; Li, G. Fe-Catalyzed $C(sp^3)$ -H Diversification toward γ -Functionalized Amides via Iron Nitrenoid: Mechanistic Insights and Applications. *ACS Catal.* **2023**, *13*, 14023–14030.
- (48) Tang, L.; Papish, E. T.; Abramo, G. P.; Norton, J. R.; Baik, M. H.; Friesner, R. A.; Rappe, A. Kinetics and thermodynamics of H. transfer from $(\eta^5\text{-}C_5R_5)\text{Cr}(\text{CO})_3\text{H}$ (R = Ph, Me, H) to methyl methacrylate and styrene. *J. Am. Chem. Soc.* **2003**, *125*, 10093–10102.
- (49) Paradine, S. M.; Griffin, J. R.; Zhao, J.; Petronico, A. L.; Miller, S. M.; Christina White, M. A manganese catalyst for highly reactive yet chemoselective intramolecular $C(sp^3)$ -H amination. *Nat. Chem.* **2015**, *7*, 987–994.
- (50) Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M. H.; Chang, S. Selective formation of γ -lactams via C-H amidation enabled by tailored iridium catalysts. *Science* **2018**, *359*, 1016–1021.
- (51) Ye, C.-X.; Meggers, E. Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations. *Acc. Chem. Res.* **2023**, *56*, 1128–1141.
- (52) Lee, E. H. Iron Oxide Catalysts for Dehydrogenation of Ethylbenzene in the Presence of Steam. Catal. Rev. 1974, 8, 285–305.
- (53) Meng, G.; Hu, L.; Chan, H. S. S.; Qiao, J. X.; Yu, J.-Q. Synthesis of 1,3-Dienes via Ligand-Enabled Sequential Dehydrogenation of Aliphatic Acids. *J. Am. Chem. Soc.* **2023**, *145*, 13003–13007.
- (54) Soengas, R. G.; Rodriguez-Solla, H. Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. *Molecules* **2021**, 26, 249.
- (55) Kudanga, T.; Nemadziva, B.; Le Roes-Hill, M. Laccase catalysis for the synthesis of bioactive compounds. *Appl. Microbiol. Biotechnol.* **2017**, *101*, 13–33.
- (56) Schoffmann, A.; Wimmer, L.; Goldmann, D.; Khom, S.; Hintersteiner, J.; Baburin, I.; Schwarz, T.; Hintersteininger, M.; Pakfeifer, P.; Oufir, M.; et al. Efficient modulation of γ -aminobutyric acid type A receptors by piperine derivatives. *J. Med. Chem.* **2014**, *57*, 5602–5619.
- (57) Zhang, Y. L.; Li, Y. F.; Yu, B.; Shan, L. H.; Liu, H. M. Recent Progress on the Synthesis and Bioactivity of Marine Naturally Occurring Dienamides and Related Derivatives. *Synth. Commun.* **2015**, 45, 2159–2180.
- (58) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press, 2007.
- (59) Crossley, S. W.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. *Chem. Rev.* **2016**, *116*, 8912–9000.
- (60) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. *Chem. Rev.* **2011**, *111*, 2981–3019.

- (61) Marson, C. M.; Grabowska, U.; Fallah, A.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W. Stereoselective syntheses of substituted 5, 6-dihydro-2(1H)-pyridinones in polyphosphate media. *J. Org. Chem.* 1994, 59, 291–296.
- (62) Bajracharya, G. B.; Koranne, P. S.; Nadaf, R. N.; Gabr, R. K.; Takenaka, K.; Takizawa, S.; Sasai, H. Pd-catalyzed 5-endo-trig-type cyclization of β , γ -unsaturated carbonyl compounds: an efficient ring closing reaction to give γ -butenolides and 3-pyrrolin-2-ones. Chem. Commun. 2010, 46, 9064–9066.
- (63) Bellina, F.; Rossi, R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. *Tetrahedron* **2006**, *62*, 7213–7256.
- (64) Lin, S.; Liu, C.; Zhao, X.; Han, X.; Li, X.; Ye, Y.; Li, Z. Recent Advances of Pyridinone in Medicinal Chemistry. *Front. Chem.* **2022**, *10*, 869860.
- (65) Huang, X. Y.; Groves, J. T. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. *Chem. Rev.* 2018, 118, 2491–2553.
- (66) Yang, Y.; Arnold, F. H. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. *Acc. Chem. Res.* **2021**, *54*, 1209–1225.
- (67) Plietker, B.; Roske, A. Recent advances in Fe-catalyzed C-H aminations using azides as nitrene precursors. *Catal. Sci. Technol.* **2019**, *9*, 4188–4197.
- (68) Tan, Y.; Chen, S.; Zhou, Z.; Hong, Y.; Ivlev, S.; Houk, K. N.; Meggers, E. Intramolecular $C(sp^3)$ -H Bond Oxygenation by Transition-Metal Acylnitrenoids. *Angew. Chem., Int. Ed.* **2020**, 59, 21706–21710.
- (69) Simmons, E. M.; Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C-H bond functionalizations by transition-metal complexes. *Angew. Chem., Int. Ed.* **2012**, *51*, 3066–3072.
- (70) Tang, J. J.; Yu, X. Q.; Wang, Y.; Yamamoto, Y.; Bao, M. Interweaving Visible-Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. *Angew. Chem., Int. Ed.* **2021**, 60, 16426–16435.
- (71) Wang, H.; Jung, H.; Song, F. F.; Zhu, S. Y.; Bai, Z. Q.; Chen, D. Y.; He, G.; Chang, S.; Chen, G. Nitrene-mediated intermolecular N-N coupling for efficient synthesis of hydrazides. *Nat. Chem.* **2021**, *13*, 378–385.