Computers and Mathematics with Applications 168 (2024) 162-173

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Check for

Companion-based multi-level finite element method for computing R
multiple solutions of nonlinear differential equations

Wenrui Hao?, Sun Lee?, Young Ju Lee b

4 Department of Mathematics, Penn State, 16802 PA, State College, USA
Y Department of Mathematics, Texas State, 78666 TX, San Marcos, USA

ARTICLE INFO ABSTRACT

Keywords:

Elliptic semilinear PDEs
Nonlinear ODEs

Finite element method
Multiple solutions
Boundary conditions

The utilization of nonlinear differential equations has resulted in remarkable progress across various scientific
domains, including physics, biology, ecology, and quantum mechanics. Nonetheless, obtaining multiple solutions
for nonlinear differential equations can pose considerable challenges, particularly when it is difficult to find
suitable initial guesses. To address this issue, we propose a pioneering approach known as the Companion-
Based Multilevel Finite Element Method (CBMFEM). This novel technique efficiently and accurately generates
multiple initial guesses for solving nonlinear elliptic semi-linear equations containing polynomial nonlinear terms
through the use of finite element methods with conforming elements. As a theoretical foundation of CBMFEM,
we present an appropriate and new concept of the isolated solution to the nonlinear elliptic equations with
multiple solutions. The newly introduced concept is used to establish the inf-sup condition for the linearized
equation around the isolated solution. Furthermore, it is crucially used to derive a theoretical error analysis of
finite element methods for nonlinear elliptic equations with multiple solutions. A number of numerical results
obtained using CBMFEM are then presented and compared with a traditional method. These not only show
the CBMFEM'’s superiority, but also support our theoretical analysis. Additionally, these results showcase the
effectiveness and potential of our proposed method in tackling the challenges associated with multiple solutions
in nonlinear differential equations with different types of boundary conditions.

1. Introduction

Nonlinear differential equations are widely used in various fields,
and there are many versions of partial differential equations (PDEs)
and ordinary differential equations (ODEs) available. One such exam-
ple is reaction-diffusion equations, which find applications in physics,
population dynamics, ecology, and biology. In physics, Simple kinet-
ics, Belousov—Zhabotinskii reactions, and Low-temperature wave mod-
els are examples of applications. In population dynamics and ecology,
the Prey-predator model and Pollution of the environment are rele-
vant. In biology, reaction-diffusion equations are used to study Cell
dynamics and Tumor growth [34]. Schrodinger equations [25] and
Hamiltonian systems [24,33] are also important topics in the field of
Quantum mechanics. Another important area in the realm of nonlinear
PDEs is pattern formation, which has numerous applications, such as
the Schnakenberg model [11], the Swift-Hohenberg equation [26], the
Gray-Scott model [37], the FitzHugh-Nagumo equation [23], and the
Monge-Ampére [14,16] equation, which finds various applications.

* Corresponding author.

To solve these nonlinear PDEs and ODEs, various numerical meth-
ods have been developed, such as Newton’s method and its variants,
Min-Max method [36], bifurcation methods [45], multi-grid method
[21,40] or subspace correction method [8] or a class of special two-grid
methods [6,22,39-42], deflation method [13], mountain pass method
[5,9]1, homotopy methods [17-19,35], Spectral methods [15], and us-
ing index-k saddle points [43,44]. However, finding multiple solutions
remains a challenging task, primarily due to the difficulty of obtaining
suitable initial guesses for each solution. Uncertainty often surrounds
the existence of good numerical initial guesses that can reliably con-
verge to these solutions. Even if such initial guesses exist, the process of
finding them can be arduous and demanding.

To address this challenge, we introduce a novel approach called
the Companion-Based Multilevel finite element method (CBMFEM) for
solving nonlinear PDEs and ODEs using finite element methods with
conforming elements. Our method is based on the structure of the full
multigrid scheme [3] designed for the general nonlinear elliptic system.
Given a coarse level, we compute a solution using a structured compan-
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ion matrix, which is then transferred to the fine level to serve as an
initial condition for the fine level. We use the Newton method to obtain
the fine-level solution for each of these initial guesses and repeat this
process until we obtain a set of solutions that converge to the station-
ary solutions of the PDEs and ODEs. Our approach distinguishes itself
from existing literature, such as those presented in [5] or [28], where
additional solutions are sought based on previously found solutions.
By employing the CBMFEM, our goal is to efficiently and accurately
identify multiple solutions for the specific class of elliptic semi-linear
equations with polynomial nonlinear terms. While we focus on polyno-
mial nonlinear terms in this paper, this particular case holds significant
interest and potential, yet remains relatively unexplored.

The main advantage of our method is that it can generate multi-
ple initial guesses efficiently and accurately, which is crucial for find-
ing multiple solutions for nonlinear PDEs and ODEs. Furthermore, our
method is robust and can be easily applied to a wide range of elliptic
semi-linear equations with polynomial nonlinear terms.

As a theoretical foundation of CBMFEM, we present a mathematical
definition of isolated solutions for elliptic semilinear PDEs and ODEs
with multiple solutions, which leads to well-posedness of the discrete
solution and provides a priori error estimates of the finite element solu-
tion using the framework introduced in [39].

We organize the paper as follows: In §2, we introduce the problem
setup and basic assumptions. In §3, we summarize the error estimate
of the nonlinear elliptic equation using the FEM method. In §4, we
introduce the CBMFEM, including the construction of the companion
matrix and filtering conditions. Finally, in §5, we present numerical re-
sults obtained using CBMFEM, which are consistent with the theoretical
analysis. Throughout the paper, we use standard notation for Sobolev
spaces W*?(Q) and the norm || - Il p- If k=0, then || - [|o , denotes the
L? norm. The symbol C¥(Q) denotes the space of functions, whose first
k > 0 derivatives are continuous on Q. Additionally, we denote v as the
vector while v is the matrix.

2. Problem setup

We consider the following quasi-linear equation and assume that the
polygonal (polyhedral) domain Q is bounded in R¢ with d = 1,2, or 3:

—Au+ f(x,u)=0, inQ, (@))
subject to the following general mixed boundary condition:
au+ fVu-n+yg=0, onoQ. 2

Here n is the unit outward normal vector to Q. The choices of «, # and
y impose the type of boundary conditions of u at 0Q: Dirichlet bound-
ary I'p, pure Neumann boundary I'y, mixed Dirichlet and Neumann
boundary or the Robin boundary I'g, i.e.,

0Q=TpUly or 0Q=Ty,

3
with Ty, Ty, and I being the closure of I'jy, I'y, and I'g, respectively.
Specifically,

(C))

Blr, =0, alr, =0, and (ap)lr, >0.

We shall assume that g is smooth, and in particular when I:N =0Q,
compatibility conditions will be assumed for the functions f and g if
necessary, [27]. For the sake of convenience, we denote I'y =Ty or
I'y throughout this paper and assume that for some ¢ > 0, a generic
constant, the followings hold:

f=y and OS%SC on TI7. 5)
We also provide some conditions for the function f, which is generally
a nonlinear polynomial function in both x and u. We shall assume that

fx,u) QxR R is smooth in the second variable. We shall denote
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ok f

the k-th derivative of f with respect to u by f®, ie. f® = > and
that there are positive constants C; and C, such that
[f (6wl < Cy + Cylulf, Q)

where ¢ is some real value, such that | <g<ooford =1, 1 < g < oo for
d=2and 1 <gq<5 for d =3. This is sufficient for defining the weak
formulation (see (8)). To apply the finite element method, we consider
the weak formulation of Eq. (1) which satisfies the fully elliptic regular-
ity (see [31] and references cited therein), i.e., solution is sufficiently
smooth. We introduce a space V defined by:

7

The main problem can then be formulated as follows: Find u € V' such
that

V={ve H'(Q):vl, =0}

F(u,v)=a(u,v)+ bu,v)=0, YveV, 8

where a(-,-),b(:,:) : V XV — R are the mappings defined as follows,
respectively:

a(u,v):/Vu~Vvdx+/%uvds, Yu,veV (9a)
Q I,

b(u,v):/f(x,u)vdx+/guds, Yu,vevV. (9b)
Q

3
3. Finite element formulation and a priori error analysis

We will utilize a finite element method to solve (8), specifically a
conforming finite element of degree r > 1. The triangulation of the do-
main Q will be denoted by 7), = {T'},_; ... ,- As usual, we define

h = maxyc7, diam(T). 10)

Let V;, be the subspace of V' that is composed of piecewise globally
continuous polynomials of degree r > 1. We shall denote the dimension
of V,, by N, and

Vy=span{e}, :i=1, Ny}, 11)

where ¢;’ is the basis of V},. The discrete weak formulation for (8) is
given as: Find u;, € V), such that

F(uy,vp) = auy,vy) + b(uy,,v,) =0, Vv, €V). 12)

. . N
We note that for any u;, € V), there exists a unique u;, = (u;, - ,u, )" €
RNr such that

Nh

uy = Z uy, -

i=1

13)

To obtain a solution u;, to (12), we need to solve the following system
of nonlinear equations:

Flwy)

F, = N' =0, 14
F, ()

where

F;i,(klh) 1= a(uh,qﬁil) + b(uh,q.’:;l) =0, Vi=1,-,N. (15)

3.1. A priori error analysis

In this section, we will discuss the convergence order of the finite
element solutions for solving (8). Throughout this section, we introduce
a notation for a fixed 6 > 0:

Ns={veV :|lu-vl, <8}, (16)
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where u is a solution to the equation (8). We will make the following
assumption:

Assumption 1. There exists a solution u € W 1*(Q) of the problem (8)
such that ||u||; ,, <T for some constant I'. Furthermore, in particular, u
is isolated in the following sense: there exists 6 = §, > 0 such that for
all w € V such that 0 # ||wl]|; , < 8, there exist 7, >0 and v, € V, such
that

|P(u+w’uw)| Zr]u”w“l,leuwlll,2>0' (17)
Remark 1. We note that, to the best of our knowledge, this is the first
time the notion of isolation has been adequately introduced in the liter-
ature. In [7], a similar definition is presented, but it allows v to be any
function in V, not necessarily dependent on w in (17). This can lead
to several critical issues. To illustrate one of the issues, we consider the
problem of solving the following equation:

=0 in [0,2Z)cR subjectto u®=ul 2 )=0,
Vp VP
(18)

where p > 0. The weak form is given by F(u,v) = fQ Vu - Vodx —
/Q wPvdx =0 and u = 0 is an isolated solution in the sense of (17),
namely, for any w € V', we choose v,, = w, so that we have

Pt ewwl=| [ ew - w=er [wrtt | n el el
Q Q
(19)
for some 7, no matter how ¢ is small, due to the Sobolev embedding,
i.e, [lwllp pt1 S llewll; 2. On the other hand, if we choose w = cos(\/ﬁx)—
l,0<e<landv= sin(\/ix), then we have that

F(u+ew,v)=£/Vw-Vvdx—s"/w"vdx:—e"/w"vdx:O, (20)
Q

which implies that 0 = |F(u+ew,v)| > nellw|l; zllvll; , = O(e). This
does not make sense.

Q Q

We begin with the following lemma as a consequence of our assump-
tion:

Lemma 1. Under the assumption that ||ul|, ., <T, we have

1/ P05 1F P00 < CD),

where C is a constant that depends on T".

(21)

We shall now consider the linearized problem for a given isolated
solution u to the equation (8): For g € V*, find w € V such that

A w,v) 1= a(w,v) + / FOwwvdx =(q,v), YveV. (22)
Q

We shall now establish the well-posedness of the linearized problem as
follows.

Lemma 2. A(u;-,-), defined in Eq. (22), satisfies the inf-sup condition, i.e.,
Au; v, A(u; v,

inf sup AWELW) _Awvw) 23)

weV pey |[ollipllwlliy  veVwer vl 2llwll »

Proof. Based on [1], we need to prove that

(i) there exists a unique zero solution, w =0, to A(u; w,v) =0 for all
veV;
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(ii) A(u;-,-) satisfies the Garding-type inequality, i.e., there exist
7071 > 0 such that

. 2 2
|A(u,v, U)l ZJ/()”U”LZ_}/I ”Ullo’zs VUEVv

For the second condition, the Garding-type inequality holds due to the
Poincare inequality [12]. Secondly, we will prove the first condition
using the proof by contradiction. Let us assume that there exists a non-
zero solution w € V' such that

A, w,v)=0, YveV. 24

Then, for e sufficiently small, we define u, = u + ew € Ng4(u). Then, by
Assumption 1, we can choose v,, € V, for which the inequality (17)
holds and observe that

Fu+ew,v,)
=a(u+ew,v,)+bu+ew,v,)=au+ew,v,)

+ / [ 7@+ FDuyew) + % f<2>(5)(ew)2] v,y dx — / gv,, ds
Q Ip,
=a(u,v,,)+ bu,v,)+ Alu,ew,v,,) + %6‘2 / f(z)(rf)wsz dx

Q
2

2 2
< S Pllop, 111G 5, 100 l0,5,-

S

where the last inequality used the generalized Holder inequality with
p; for i =1,2,3, satisfying the identity i + é + é = 1. Since we can
choose € to be arbitrarily small, this contradicts Assumption 1. Thus,
the proof is complete. []

We note that the equation (22) corresponds to the following partial
differential equation: find w such that
in Q,

—Aw+ fPww=gq (25)

subject to the same type of boundary condition to the equation (8),
but with g replaced by zero function in (2). We shall assume that the
solution to the equation (22) satisfies the full elliptic regularity, i.e.,

lwllz,p, S lallo (26)

with p, = 2. The assumption holds true for the convex domain under
both Dirichlet and pure Neumann boundary conditions. However, for
the mixed boundary case, it is valid for certain values of p, > 4/3 (see
[10], Corollary 3.12). Of course, an assumption can be relaxed to p; < 2,
which then, as a result induces a complexity in the presentation.

After establishing the inf-sup condition for the linearized equation
at the continuous level, we can establish the discrete inf-sup condition
using the standard techniques such as the W12 stability and L? norm
error estimate of Ritz-projection for sufficiently small £ (see [4,27]).

Lemma 3. Under the Assumption 1, the following discrete inf-sup condition
holds if h < hy for sufficiently small h,. Specifically, there exists &, which
is independent of h, such that

Au; vy, wp) A(u; vy, wp)

inf T TR sup — 2R — >0,
wp€Vi opevy, lopllipllwplliy  on€Vh wyev, loplliallwslli 2

(27)

This finding has implications for the well-posedness of the Newton
method used to find solutions. For a more in-depth discussion of using
the Newton method to find multiple solutions, see [29,30,36] and the
references cited therein. We shall now consider the solution operator for
A(u;-,-) and the error estimates. First we define the projection operator
7w, VeV, as
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A(us mpw,vp) = Au; w,vy), Yo, €V (28)

Lemma 4. For the projection operator, we have with r > 1,

||w—7rhw||0’2 S nt! ||w||r+1!2 and ||W—7fhw||1,2 s hr||w||r+1,2~ (29)

The following inequality shall be needed for the well-posedness and
error analysis of the discrete solution, which is well-known to be true,
for the Dirichlet boundary condition case (see Theorem 7.1.11 and §7.5

in [4]), it is shown to hold:

[lzpvllp,c0 SVl 0» YU E wheQ), forh< hg, (30)

where A is sufficiently small. For the mixed boundary condition, it
is unclear yet, if such an estimate holds (see [27] for example for a
special 2D case), which is beyond the scope to deal with in this paper.
We shall now present the result that the discrete problem (12) admits
a unique solution u,, that can approximate the fixed isolated solution u
with the desired convergence rate in both L2 and W' norm, using the
argument employed in [40].

Theorem 3.1. Suppose the Assumption 1 and (30). Then, for 0 < h < hy,
with h sufficiently small, the finite element equation (12) admits an isolated
solution uy, satisfying

||u_”h||k,25hr+l_k, fork=0,1. (31)

Furthermore, uy, is the only solution in Ny for some 6 > 0 such that
[lupllg.c0 STy for some generic T'.

Proof. We first note that for any v, v, y €V, it holds

Fop, x) =F (v, p) + A(v; 0, — 0, x) + R(v,0p, 1), (32)

where R(v,v,, 1) = [o[f (0,) = f () = D), — v)] ¥ dx. We now de-
fine a nonlinear operator @ : V;, = V}, by

A(u; D(vp), vp) = A(usu, vy) — R(u, v, vy), Vv, €V,

Then, from the inf-sup condition, @ is well-defined. We shall invoke the
Brower Fixed point theorem for the mapping ® and thus, we introduce
a closed ball of the space V}, defined as follows:

B={veV,: |lv-rmul, £2Ch" and ||vllge <Ty+ 1},

where C and I';) are generic constants. Using the inverse-type inequal-
ity (see Lemma 4.5.3 in [4]), we can show that the ball B is closed in
V. Furthermore, from the Lemma 1, the mapping ® is continuous on
B. We shall now show that @ is a mapping from B to B. Using the
mean-value theorem, we observe that the following inequality holds for
v,€Band y eV,

Au; ©(vy) — mpu, x) = A(u;u — mpu, y) — R, vy, )

2
snu—nhunl,znxnl,ﬁ/|u—uh| ¢l dx.
Q

By applying the Cauchy-Schwarz inequality and the Sobolev embedding
theorem, we obtain the following inequality (with 1/p+1/g =1),

1/p 1/
/(u—vh>2|x|dxs /|u—vh|2de /de
Q Q Q

I+e
0,2

q

I+e

Sl —=vpllg5 M xllog S M= vpllgy Ml 20

for some 0 < e <1 for d = 1,2 or d = 3. More precisely, for d =1, we
can choose p=1 and g = oo, thus ¢ = 1. On the other hand, for d =2
and d =3, we can set ¢ =6 and p =6/5, then ¢ =2/3, both by the
assumption that ||u|; ,, <T and that Q is a bounded domain. By using
the Garding’s inequality, we obtain the following inequality:
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2 2 . :
WXl , = 1205, S1AGs 2,201 S LAl 2 + llu = vyl s

Vyev.

||)(||1,2,

Thus, since || xllo, < | xIl1 2, we have

1+¢

lxllia S Mxlloa + llu=vhllgh* +CiA" (33

Next, we consider the duality argument for the linearized equation that
for a given g € V'* as follows with y = ®(v,) —mu €V

-9) = A y,w) = A(u; y,w —T,w) + A(u; y,IT,w)

1
< ||)(||1’2||w - HhW”Lz + llu—vy, ||OE€||H;,W||1,2
l+e
Shllxllallwlay + llu— Uh||036||th||1,2
1
s h||)(||1,2||4||0,2 + |lu— Uh”OEf”W”z,z

lte
= (hllxll 2+ = vall 5l gllo,

where we used the assumption on the full elliptic regularity (26) and
property of Scott-Zhang interpolation [32]. By setting ¢ = y, we arrive
at

I+e

xlloz S Al 2l + e = v, 5. 34)
Therefore, we have that

el S Allxll +2llu = vyllght +Cyh" (35)
On the other hand, we have that

lle = vallgh" < llu = mpull gt + oy, = mpullght = o(A'. 36)
Therefore, for h < hy, sufficiently small, we arrive at for all v, € B
|(vy) — zpull o 2Ch" 37)

Lastly, we notice that by the inverse inequality (see Theorem 4.5.11 in
[4]), there exists ¢ > 0 such that

D) = mhull§ o, S EMID(0y) = mpull; , < E(RY SR,

1.2 =

where #(h) = 1 for 1D and |log h|? for 2D and h~! for 3D. Now, we in-
voke the condition (30) to arrive at ®(B) C B. Thus, the Brouwer’s fixed
point theorem shows the existence of u;, € B such that ®(u;) =u;,. The
uniqueness can follow from the inf-sup condition (27) and the conti-
nuity of the isormophic operator as a function of the point where the
linearization is made, as discussed in [40]. To obtain the L? estimate,
we use the fact that |[u —u,||; , S A" resulting from the above argument.
We then replace v, by u,, in the inequality (34) and we are led to the
following inequality:

1+e

02° (38)

1
lu—upllp S Rl — |

where 0 < ¢ < 1. Thus, by the Kick-Back argument, we arrive at the
conclusion. This completes the proof. []

4. Companion-based multilevel finite element method (CBMFEM)

In this section, we present a companion-based multilevel finite el-
ement method to solve the nonlinear system (14). Solving this system
directly is challenging due to the presence of multiple solutions. There-
fore, we draw inspiration from the multigrid method discussed in [3]
that is designed for a single solution. We modify the multilevel finite
element method by introducing a local nonlinear solver that computes
the eigenvalues of the companion matrix. This enables us to generate
a set of initial guesses for Newton’s method, which is used to solve the
nonlinear system on the refined mesh.

We begin by introducing a sequence of nested triangulations,
namely,

To.T1>Tos = T (39
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Fig. 1. Mesh refinement of CBMFEM in 1D (left) and 2D with edge (right). The
square dots are the coarse nodes while filled circles are newly introduced fine
nodes.

where 7 and T are the coarsest and the finest triangulations of €,
respectively. This leads to the construction of a sequence of nested and
conforming finite element spaces {V, }1;:0 CV, given as follows:

Vy C - C Vy. (40)

The refinement strategy is shown in Fig. 1 for both 1D and 2D cases,
where we introduce new nodes (the filled circles) based on the coarse
nodes (the square dots). Specifically, for a given coarse mesh 7, we
obtain the refined mesh 7, by introducing a new node on Vy. The
overall flowchart of CBMFEM is summarized in Fig. 2.

Assuming that a solution uy € V; on a coarse mesh 7 has been
well approximated, namely F, (uy) =0, we can refine the triangula-
tion 7y to obtain a finer triangulation 7j,. Since Vi C V;,, we can find
a function i, (x) in V;, such that we can express u(x) as a linear com-
bination of the basis functions of V,:

dimV,

ug (x) =1u,(x) = Z i, ), (%),

i=1

(41)

where dim V), is the dimension of V), and d);l(x) are the basis functions
of V. In particular, for any point x; € Vi, we have fih =uy(x;). For
points x; € V;,\Vy, we can calculate #, based on the intrinsic structure
of the basis functions. In other words, we can interpolate u (x) to u;(x)
by using the basis functions on two levels. Specifically, let’s consider 1D

. . i—1 ) i+1
case and have the relation qS'F/[z = ¢12/hz = ¢"T + &, + ¢"T, which allows
us to calculate the coefficients for (41). More precisely, we can write

ug(x) to uy(x) as follows:

) ) ) ¢i—1 ) i+1
2 2 2
0= 3 o= T (Ut
x;€Vy X €Vy
dim v,

= Y @) (42)
i=1
We next update the value of u;l for x; € V;,\Vy on the fine mesh. To
do this, we solve F;;(u;l; (uil = 7};) i) =0 for u’h by fixing the Valqes of
other nodes as uj,. Since f(x,u) is a polynomial, we can rewrite F ;l asa
single polynomial equation, namely,

Fi(uh (), =), = Pi(@) =0, (43)
m
where P;;(a) = Z c,a". The companion matrix of P;;(a) is defined as
n=0
00 0 —co/cpy
1 0 ... 0 —c/cy,
cp=[0 1 ... 0 -cfe, | (44)
00 ... 1 —cpy/cy

where, except for ¢, the coefficients ¢, depend only on {ﬁ;l} that are
near the point x; € V,\ Vg, making their computation local. By denot-
ing the root of Eq. (43) as il\;l, the initial guess for the solutions on V, is
set as

166

Computers and Mathematics with Applications 168 (2024) 162-173

0, =Y ¢, whereitl = M’H % € Vi, (45)
A WP h =\ @, by solving (43), x; € V,\Vy.

Since all the eigenvalues of C(P;;) satisfy the equation P;;(yi) =0, there
can be up to m!Va\Vu! possible initial guesses, where |V,\ V| denotes
the number of newly introduced fine nodes on V,, and m is the degree
of the polynomial (43). However, computing all of these possibilities is
computationally expensive, so we apply the filtering conditions below
to reduce the number of initial guesses and speed up the method:

+ Locality condition: we assume the initial guess is near &, in term
of the residual, namely,

||fh(i4:h)||o,2 < CilIEF ), (ap)lloas (46)

« Convergence condition: we apply the convergence estimate to the
initial guess, namely,
IF 4 (@llo, < Coh%; “47)

» Boundness condition: we assume the initial guess is bounded,
namely,
| gh llo,c0 < Cs. (48)

Finally, we summarize the algorithm of CBMFEM in Algorithm 1.

Algorithm 1 CBMFEM for computing multiple solutions.

Given V,,,V};, and solution uy on V.
Interpolate uy = Y, ¢, and compute coefficient .
for i e V,\Vy do
Construct the polynomial equation P;; @;)
Compute the eigenvalues of the companion matrix, C(Py)
end for
Obtain initial guesses in (45) on V), and apply filtering conditions.
Employ Newton method on V), with the obtained initial guesses to solve
F ) =0

5. Numerical examples

In this section, we present several examples for both 1D and 2D
to demonstrate the effectivity and robustness of CBMFEM with r =1
for simplicity. We shall let e’;l =uy, —uy where u;, and uy are the
numerical solutions with grid step size 7 and H, respectively, and u is
the analytical solution. For error analysis, since most of the examples we
considered do not have analytical solutions, we used asymptotic error
analysis to calculate the convergence rate.

5.1. Examples for 1D

5.1.1. Example 1
First, we consider the following boundary value problem

which has analytical solutions [17]. More specifically, by multiplying
both sides with «’ and integrating with respect to x, we obtain

W' (x))?
2

—u" - (1+u*)=0,
W' (0)=u(1)=0,

in (0,1), 49)

+ F(u(x)) — F(up) =0, (50)

where F(u) =u + g and u, = u(0). Since «’(0) =0 and u”’(x) <0, then

we have ' <0 for all x > 0. Moreover, u(x) < u, implies F(ug) > F(x)

for all x > 0. Therefore
' (x)

vV F(ug) — F(u(x))

(51)
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Fig. 2. A flowchart of the CBMFEM for solving the nonlinear differential equation. The hierarchical structure of CBMFEM is illustrated on the left, where for each
level, we obtain a solution on the coarse grid, V;;. We then solve local nonlinear equations by constructing companion matrices and generate initial guesses for

Newton’s method on the finer level V), on the right.
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1.0

0.8

u(x)

0.6

0.4

0.2 4

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 3. Numerical solutions of Eq. (49) with N = 1025 grid points. The unstable
solution is plotted with dashed lines, while the stable solution is represented
with solid lines.

By integrating x from s to 1, we obtain

1

/
M e V2 —), (52)

N Fup) = Fux)
Due to the boundary condition u(1) = 0, we have

u(s)
/ 4w -y, (53)
) v/ F(uy) — F(u)
By choosing s = 0, we have the following equation for u,

U
/ 4w _\h (54)
) \Flug) = Fu)

Then for any given u,, the solution of (49) is uniquely determined by
the initial value problem

=0 4
{/U (1 +4 with{
u =v

By solving (54) with Newton’s method, we get two solutions u, = 0.5227
and uy = 1.3084. Then the numerical error is shown in Table 1 for the
CBMEFM with Newton’s nonlinear solver. The solutions with N = 1025
grid points are shown in Fig. 3. The unstable solution is plotted with
dashed lines, while the stable solution is represented with solid lines.
We additionally compare our method with the traditional homotopy
method, as detailed in Table 2. CBMFEM achieves computing times of
less than 1 second for the coarse grids up to N = 17, whereas the homo-
topy method can only handle the coarse grids up to N = 12, requiring
over 1 hour due to its significant computational overhead [2].

v(0)=0

u(0) = u, (55)
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-2 1 \ /

—4 \ /

u(x)

-6 \ ’

0.0 0.2 0.8 1.0

Fig. 4. Numerical solutions of Eq. (56) with N = 1025 grid points. The unstable

solution is plotted with dashed lines, while the stable solution is represented
with solid lines.

5.1.2. Example 2
Next, we consider the following boundary value problem

- +u2=0, in (0,1),
u(0)=0and u(1)=1,

which has two solutions shown in Fig. 4. We start N =3 and compute
the solutions up to N = 1025 by implementing CBMEFM with a non-
linear solver. We compute the numerical error by using ||e’1‘{||0!2 and
summarize the convergence test and computing time in Table 3. We
also compare our method with the traditional homotopy method, as de-
tailed in Table 4. CBMFEM is much more efficient than the homotopy
method on the coarse grids up to N =17 [2].

(56)

5.1.3. Example 3
Thirdly, we consider the following nonlinear parametric differential
equation

{

where p is a parameter. The number of solutions increases as p gets
larger [20]. We compute the numerical solutions for p=1,7, and 18 us-
ing CBMEFM with Newton’s solver and show the solutions in Fig. 5. The
computation time and the number of solutions for different values of p
and step sizes are summarized in Table 5. As p increases, the number
of solutions increases, and hence the computation time becomes longer.
Numerical error and convergence order are shown in Table 6.

- —i2(p-u*)=0 in (0,1),

(57)
W' (0)=u(1)=0,

5.1.4. Example 4
We consider the following semi-linear elliptic boundary value prob-
lem
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Table 2

Table 1

Numerical errors and computing time of CBMEFM with Newton’s nonlinear solver for solving

Eq. (49).
h # 1st Solution # 2nd solution CPU(s)

llenlloo Order llenlli o Order llenllon Order llenlli Order Newton

22 2.6E-04 X 1.7E-01 X 8.3E-03 X 7.0E-02 X 0.10
273 6.4E-05 2.01 8.0E-02 1.00 2.0E-03 2.04 4.0E-02 1.01 0.10
274 1.6E-05 2.00 4.0E-02 1.00 5.0E-04 2.01 2.0E-02 1.00 0.15
23 4.0E-06 2.00 2.0E-02 1.00 1.3E-04 2.00 9.3E-03 1.00 0.16
2-6 1.0E-06 2.00 1.0E-02 1.00 3.1E-05 2.00 4.7E-03 1.00 0.11
277 2.5E-07 2.00 5.2E-03 1.00 7.8E-06 2.00 2.3E-03 1.00 0.16
28 6.2E-08 2.00 2.6E-03 1.01 1.9E-06 2.00 1.2E-03 1.01 0.25
29 1.6E-08 2.00 1.3E-03 1.03 4.9E-07 2.00 0.6E-03 1.04 0.64
271 39E-09 2.00 5.6E-04  1.16 1.2E-07  2.00 0.3E-03  1.16 3.55

Computing time of homotopy method and CBMFEM vs. Number of
Grid Points, N on Example 1. Both methods can find two solutions
for this example. For the homotopy method, Bertini was employed
for implementation [2]. However, due to the large computational
cost, computations were not performed for N > 12 as they were
estimated to exceed 5 hours. For CBMFEM, computations were con-
ducted for N =27 + 1 where £ =0, --- ,4.

N CPU time in sec Homotopy Method ~ CBMFEM
3 0.008 s 0.03s
4 0.02s N/A
5 0.059 s 0.10s
6 0.295 s N/A
7 1.624 s N/A
8 8.261 s N/A
9 50.278 s 0.10s
10 231.353s N/A
11 916.459 s N/A
12 4506.12's N/A
13 N/A N/A
14 N/A N/A
15 N/A N/A
16 N/A N/A
17 N/A 0.15s
p=1 p=7
0.0
2
0.5
™ < 0 =
5 109 =1 e
-1.5 A =21 il
0A60 0125 OAVSO OAI75 LIOO 0.60 O.‘ZS 0.'50 0.'75 1.60
X X
2.5
< 00
S 25
—5.0
000 025 050 075 100
X

Fig. 5. Numerical solutions of Eq. (57) with 1025 grid points for p=1, p=7,
and p = 18, respectively. Unstable solutions are plotted with dashed lines, while

stable solutions are represented with solid lines.

—"(x) —d™2|x|"uP(x)=0 in (=1,1),

u(=1)=u(l)=0,

(58)

where d is the scaling coefficient corresponding to the domain. This ex-
ample is based on a problem considered in [38]. We have re-scaled the
domain from (-1, 1) to (—d, d) and formulated the problem accordingly.
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We start with » =3 and d = 1 and find 4 non-negative solutions with
N = 1025 using CBMEFM. The numerical error and convergence order
are shown in Table 7. Using the homotopy method with respect to both
r and d, we also discover the same number of solutions for r =3,d = 10
and r = 12,d = 1. The numerical solutions with different parameters
are shown in Fig. 6. Then, we also create a bifurcation diagram for the
numerical solutions with respect to r by choosing d = 1 and using 1025
grid points, as shown in Fig. 7. We only display the non-trivial non-
negative solutions on this diagram. When r is small, we have only one
non-trivial solution. As r increases, the number of non-trivial solutions
increases and bifurcates to three solutions.

5.1.5. The Schnakenberg model
We consider the steady-state system of the Schnakenberg model in
1D with no-flux boundary conditions

—u" —npa—u+uPv)=0, in (0,1)

—dU”—I’](b—MZU)=O, in (0,1)
dO0)=u'(1)=0v'0)=0'(1)=0.

(59)

This model exhibits complex solution patterns for different parameters
n,a,b, and d [19]. In [19], the homotopy continuation method was
used. The results are reproduced using CBMFEM. Since there is only
one nonlinear term u2v, we rewrite the steady-state system as follows

—u" —dv" —nla+b—u)=0,

60
—dv" —n(b - u*v)=0. ©0

In this case, we only have one nonlinear equation in the system (60).
After discretization, we can solve p, in terms of 4, using the first equa-
tion and plug it into the second equation. We obtain a single polynomial
equation of y,, which allows us to use the companion matrix to solve
for the roots. Then we use CBMEFM to solve the Schakenberg model in
1D with the parameters a =1/3,b=2/3,d =50, =50 up to h = 279,
There are 3 solutions computed Fig. 8 and we show the computing time
in Table 8.

5.2. Examples in 2D
In this section, we discuss a couple of two dimensional examples.

5.2.1. Example 1

—Au(x,y) — u*(x,y) = —ssin(zx)sin(zry) in Q,

(61)
in 0Q

u(x,y) =0,
where Q =(0,1) x (0, 1) [5]. In [5], the numerical Mountain pass algo-
rithm was used. The results are reproduced using CBMFEM.

In this example, we utilized edge refinement to generate a multi-
level grid and provide multiple initial guesses for the next level, as
shown in Fig. 9. The number of nodes and triangles on each level is
summarized in Table 9.

First, we compute the solutions with s = 1600. We only applied the
CBMEFM for the first three multi-level grids until # =2 due to the ex-
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Table 3
Numerical errors and computing time of CBMEFM with Newton’s solver for solving Eq. (56).
h # 1st solution # 2nd solution CPUs
||e;'i llo.2 Order ”621 Il Order ||e;’i llo2 Order ||e’t’l Il Order  Newton
272 2.6E-3 X 2.3E-2 X 7.9E-1 X 5.8E-0 X 0.09
273 6.8E-4 1.96 1.2E-2 0.90 2.0E-1 2.01 2.9E-0 1.03 0.09
274 1.7E-4 1.99 6.3E-3 0.94 4.9E-2 2.00 1.4E-0 1.00 0.09
25 4.3E-5 2.00 3.2E-3 0.97 1.2E-2 2.00 7.12E-1 1.00 0.10
2-6 1.1E-5 2.00 1.6E-3 0.98 3.1E-3 2.00 3.6E-1 1.00 0.11
277 2.7E-6 2.00 8.2E-4 0.99 7.7E-4 2.00 1.8E-1 1.00 0.14
28 6.7E-7 2.00 4.1E-4 1.00 1.9E-4 2.00 8.9E-2 1.00 0.24
2-9 1.7E-7 2.00 2.1E-4 1.00 4.8E-5 2.00 4.5E-2 1.00 0.49
2710 42E-8 2.00 1.0E-4 1.00 1.2E-5 2.00 2.2E-2 1.00 3.35
r=3, d=1 r=3, d=10 r=12, d=1
N e e < || rnem———— P S oTTT
61 b ,/’7 AN 00201 SN ’7\\\\\\ 201 g \\‘\
— / ’ W 00154 // 5 W\ — | 5l 4
= i Y 5 00101 i 4 S 109 s \
P % 00051 J,/ % il \
4 \ 24 \ |- \
01! - - - : 0.000 1 & - - - d 04¢ - - - !
0.00 025 050 075 100 0.00 025 050 075 100 000 025 050 075 100
X X X

Fig. 6. Numerical solutions of Eq. (58) with N = 1025 grid points for different r and d. We have symmetric solutions so we only concern with one of them. Unstable
solutions are plotted with dashed lines, while stable solutions are represented with solid lines.

Bifurcation when d=1

Table 4
Computing time of homotopy method and CBMFEM vs. Number of 7
Grid Points, N on Example 2. Both methods can find two solutions
for this example. 6
N CPU time in sec Homotopy Method ~ CBMFEM 5
3 0.005 s 0.006 s o
4 0.009 s N/A c 4
5 0.016 s 0.09 s
6 0.029 s N/A 3
7 0.05s N/A
8 0.10s N/A 2
9 0.25s 0.09s
10 0.50 s N/A
11 1.53s N/A 11, . : . . . .
12 9845 N/A 0.0 05 10 15 20 25 30
13 6.52's N/A d
14 24.76 s N/A
15 30.78 s N/A Fig. 7. Bifurcation diagram of Eq. (58) with respect to r with N = 1025 grid
16 73.88's N/A points and d = 1.
17 27295 s 0.09 s
Table 5 also yield valid solutions. Therefore, although there are 10 solutions in
able

Computing time (in seconds) and the number of solutions of Eq. (57)
for different p by CBMEFM with Newton’s solver.

h p=1 p=7 p=18
CPUs # of sols CPUs # of sols CPUs # of sols

272 0.17 2 0.15 5 0.29 19
273 0.12 2 0.35 9 3.01 37
274 0.11 2 0.20 4 28.17 10
23 0.11 2 0.11 4 0.38 8
276 0.11 2 0.14 4 0.18 8
277 0.14 2 0.23 4 0.33 8
28 0.26 2 0.35 4 0.66 8
29 0.57 2 0.95 4 1.93 8
2-10 3,08 2 5.55 4 11.54 8

tensive computation caused by a large number of solution combinations
on the higher level. Starting £ = 3, we used Newton refinement with an
interpolation initial guess from the coarse grid. We found 10 solutions
and computed them until 2 =2~7. Since some solutions are the same up
to the rotation, we plot only four solutions in Fig. 11. It is worth noting
that Eq. (61) remains unchanged even when x is replaced by 1 — x, and
similarly for y. Therefore, rotating solutions 3 and 4 from Fig. 10 would
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total, we only plot the 4 solutions in Fig. 10 up to the rotation. We also
computed the numerical error and convergence order in both L2 and
H'! norms for these solutions and summarized them in Table 11, the
computing time is shown in Table 10.

Finally, we also explored the solution structure with respect to s
in equation (61). We have used the homotopy continuation method to
draw bifurcation diagrams. For small values of s, only two solutions
are observed. However, as s increases, the number of solutions also
increases, as demonstrated in Fig. 11.

5.2.2. The Gray-Scott model in 2D
The last example is the steady-state Gray-Scott model, given by

~D,AA—SA*+(u+p)A=0, in Q

—DgAS +SA?—p(1-85)=0, in Q (62)
9A_95 _ in a0

on  on

Q=(0,1) X (0,1) and n is normal vector [19]. The solutions of this
model depend on the constants D4, Dg, p, and p. In this example, we
choose D, =2.5x107%, Dg=5% 1074, p=0.04, and y = 0.065. Similar
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Table 6

Numerical errors only nontrivial solutions for Eq. (57) when p =7 by CBMEFM with Newton’s solver.
h # 1st solution # 2nd solution # 3rd solution

||ei;., ”(),2 Order ||e’;, Il Order ||ei;., ”(),2 Order ||e};, Il Order ||el;., ”(),2 Order ||e},’_, Ili2 Order
22 1.6E-1 X 1.43 X 1.6E-1 X 9.0E-1 X 2.7E-2 X 1.1E-1 X
273 2.4E-1 -0.54 1.22 0.23 3.3E-2 2.30 4.7E-1 0.93 6.8E-3 2.00 5.1E-2 1.08
24 4.2E-2 2.52 7.4E-1 0.73 7.4E-3 213 2.2E-1 1.07 1.7E-3 2.00 2.5E-2 1.06
273 8.4E-3 2.31 3.0E-1 1.28 1.9E-3 2.01 1.1E-1 1.01 4.3E-4 2.00 1.2E-2 1.03
276 2.1E-3 2.04 1.4E-1 1.08 4.6E-4 2.00 5.5E-2 1.00 1.1E-4 2.00 5.9E-3 1.02
277 5.1E-4 2.01 7.0E-2 1.03 1.2E-4 2.00 2.8E-2 1.00 2.7E-5 2.00 3.0E-3 1.01
2-8 1.3E-4 2.00 3.5E-2 1.02 2.9E-5 2.00 1.4E-2 1.00 6.7E-6 2.00 1.5E-3 1.00
29 3.2E-5 2.00 1.7E-2 1.01 7.2E-6 2.00 6.9E-3 1.00 1.7E-6 2.00 7.4E-4 1.00
2710 8.0E-6 2.00 8.6E-3 1.00 1.8E-6 2.00 3.5E-3 1.00 4.2E-7 2.00 3.7E-4 1.00
Table 7

Table 8

Numerical errors only nontrivial solutions for Eq. (58) when r=3,d =1 by CBMEFM
with Newton’s solver.

# 1st solution

# 2nd solution

h
||e’;,||02 Order ||eﬁ,||l'2 Order ||e’;,||02 Order ||eﬁ,||l'2 Order
273 1.3E-0 X 7.9E-0 X 1.0E-0 X 9.2E-0 X
274 3.2E-1 2.04 4.2E-0 0.90 5.7E-1 0.87 5.4E-0 0.76
23 8.0E-2 2.03 2.0E-0 1.06 1.1E-1 2.33 2.3E-0 1.22
2-6 2.0E-2 2.03 1.0E-0 1.01 2.7E-2 2.03 1.2E-0 1.02
277 4.9E-3 2.01 5.0E-1 1.00 6.7E-3 2.00 5.7E-1 1.00
2-8 1.2E-3 2.00 2.5E-1 1.00 1.7E-3 2.00 2.9E-1 1.00
29 3.1E-4 2.00 1.3E-1 1.00 4.2E-4 2.00 1.4E-1 1.00
2-10 7.6E-5 2.00 6.3E-2 1.00 1.0E-4 2.00 7.2E-2 1.00
0.68
0.67 1
< 066
Y
0.65
0.64
OjO 0;2 0:4 0.‘6 0:8 1:0
X

Numerical errors and computing time of CBMEFM with
Newton’s solvers for solving Eq. (59). We have symmet-
ric solutions so we only concern with one of them.

h # 1st solution CPUs
lle? llo,  Order  |le#|l;,  Order

273 2.9E-2 X 1.9E-1 X 0.58
24 6.3E-3 2.20 6.0E-2 1.63 0.42
23 1.6E-3 2.02 2.7E-2 1.18 0.55
276 3.9E-4 2.00 1.3E-2 1.06 0.84
277 9.6E-5 2.00 6.3E-3 1.02 1.96
2-8 2.4E-5 2.00 3.1E-3 1.01 6.14
279 6.0E-6 2.00 1.6E-3 1.00 22.14
2710 1.5E-6 2.00 7.8E-4 1.00 157.88

Fig. 9. Multi-level grid based on the edge refinement with a rectangular domain.

to the example of the Schnakenberg model in 1D (60), we can modify

the system as follows:

170

Table 9

Fig. 8. 3 different solutions for equation (59) with N = 1025 grid points. The same colors are paired solutions.

The number of nodes and triangles of the multigrid with the edge refinement

for each level.

Step size 20 27t 272 273 g 273 276 277
# of Nodes 5 13 41 145 545 2113 8321 33025
# of Triangles 4 16 64 256 1024 4096 16384 65536
Table 10
The numerical performance summary of solving (61)
with s = 1600. Until the level # =2 we used CBMEFM
and applied Newton’s refinement starting from ¢ = 3.
Method Step size ~ # of solutions ~ Comp. Time
20 2 0.2s
CBMEFM 27! 10 14s
272 10 142.7 s
273 10 7.1s
Newton’s 4 10 20.6 s
refinement - 10 7685
276 10 540.4 s
277 10 5521.3 s
—D,AA-DgAS +(u+p)A—p(1-3S5)=0, 63)

—DgAS +SA? - p(1 - 5)=0.

As the first equation in the Gray-Scott model is linear, we can solve for
A in terms of S and substitute into the second equation to obtain a
single polynomial equation. When using the companion matrix on the
coarsest grid (£ = 0) to solve the polynomial equation, we obtain 3°
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Fig. 10. Multiple solutions of Eq. (61) with s = 1600 and a step size of 277.

Table 11
Numerical L? and H' errors for multiple solutions of Eq. (61) with s = 1600 shown in
Fig. 10.
h # 1st solution # 2nd solution # 3rd solution # 4th solution
||eZ lo2 Order ||eZ o2 Order ||eZ llo2 Order ||eZ llo2 Order
27! 21E-0 X 1.2E-0 X X b b X
22 5.1E-0 -1.26 2.8E-0 -1.26 2.3E+1 X 5.4E-0 X
273 3.9E-0 0.37 0.7E-0 1.94 9.5E-0 1.28 6.9E-0 -0.36
274 1.6E-0 1.30 0.2E-0 1.98 3.2E-0 1.56 2.3E-0 1.58
23 0.5E-0 1.70 0.5E-1 1.99 0.9E-0 1.85 0.7E-0 1.83
26 0.1E-0 1.90 0.1E-1 2.00 0.2E-0 1.95 0.2E-0 1.95
277 3.3E-3 1.97 2.9E-03 2.00 0.6E-1 1.99 0.4E-1 1.99
h lle® ll,,  Order |le"ll;, Order |le®|,, Order |le®|l,,  Order
2-! 2.6E+1 x 1.4E+1 X x x x X
272 6.8E+1 -1.40 2.7E+1 -0.93 1.9E+2 X 7.2E+1 X
273 5.6E+1 0.29 1.5E+1 0.91 9.9E+1 0.92 7.9E+1 -0.13
274 3.1E+1 0.86 7.4E-0 0.97 5.2E+1 0.92 4.2E+1 0.92
25 1.6E+1 0.97 3.7E-0 0.99 2.6E+1 1.02 2.1E+1 1.01
2-6 7.8E-0 1.00 1.9E-0 1.00 1.3E+1 1.01 1.0E+1 1.01
277 3.9E-0 1.00 0.9E-0 1.00 6.3E-0 1.00 5.1E-0 1.00
100 : : - - . . ; .
§
% 20
B 200000 ]
ot 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
20k Fig. 12. We have 24 solutions and plot only A(x,y) from (63) with a step size
of 27°. The initial guesses were refined by considering both real solutions and
40 . . . . . . . . real parts of complex solutions on the coarsest grid (¢ = 0).
-200 0 200 400 600 800 1000 1200 1400 1600

Fig. 11. Bifurcation diagram of solutions of Eq. (61) with respect to s.

complex solutions, leading to a large number of possible combinations
on finer grids. To address this, we applied two approaches. The first
approach involved keeping the real solutions and real parts of complex
solutions, and using linear interpolation and Newton’s method to refine
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them on finer grids. This approach yielded 24 solutions on a step size
of 27°, up to rotation shown in Fig. 12. The second approach involved
keeping only the real solutions, resulting in 1 solution on # =0 and
313 initial guesses on # = 1. Using interpolation and Newton’s method,
we obtained 88 solutions on a step size of 27°, up to rotation shown in
Fig. 13. If we use more large coefficient for filtering conditions we can
get 187 solutions.
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Fig. 13. We have 88 solutions and plot only A(x,y) from (63) with a step size
of 279, The initial guesses were refined by considering only the real solutions
on the Z =1 grid.

6. Conclusion

In this paper, we have presented a novel approach, the Companion-
Based Multilevel finite element method (CBMFEM), which efficiently
and accurately generates multiple initial guesses for solving nonlinear
elliptic semi-linear equations with polynomial nonlinear terms together
with its theoretical foundation. In particular, our numerical results
demonstrate the consistency of the method with theoretical analysis,
and we have shown that CBMFEM outperforms existing methods for
problems with multiple solutions.

CBMFEM has potential applications in more complex PDEs, posed
both in 2D and 3D, which arise from a variety of scientific and engi-
neering fields. To tackle such cases, we shall need to conduct in-depth
investigations to identify better filtering condition constants and bet-
ter nonlinear solvers. As an immediate enhancement or extension of
our method, we shall incorporate the multigrid method to speed up the
Newton method and attempt to handle PDEs posed on a complicated
geometry in our future works.
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