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The utilization of nonlinear differential equations has resulted in remarkable progress across various scientific 
domains, including physics, biology, ecology, and quantum mechanics. Nonetheless, obtaining multiple solutions 
for nonlinear differential equations can pose considerable challenges, particularly when it is difficult to find 
suitable initial guesses. To address this issue, we propose a pioneering approach known as the Companion-
Based Multilevel Finite Element Method (CBMFEM). This novel technique efficiently and accurately generates 
multiple initial guesses for solving nonlinear elliptic semi-linear equations containing polynomial nonlinear terms 
through the use of finite element methods with conforming elements. As a theoretical foundation of CBMFEM, 
we present an appropriate and new concept of the isolated solution to the nonlinear elliptic equations with 
multiple solutions. The newly introduced concept is used to establish the inf-sup condition for the linearized 
equation around the isolated solution. Furthermore, it is crucially used to derive a theoretical error analysis of 
finite element methods for nonlinear elliptic equations with multiple solutions. A number of numerical results 
obtained using CBMFEM are then presented and compared with a traditional method. These not only show 
the CBMFEM’s superiority, but also support our theoretical analysis. Additionally, these results showcase the 
effectiveness and potential of our proposed method in tackling the challenges associated with multiple solutions 
in nonlinear differential equations with different types of boundary conditions.

1. Introduction

Nonlinear differential equations are widely used in various fields, 
and there are many versions of partial differential equations (PDEs) 
and ordinary differential equations (ODEs) available. One such exam-
ple is reaction-diffusion equations, which find applications in physics, 
population dynamics, ecology, and biology. In physics, Simple kinet-
ics, Belousov–Zhabotinskii reactions, and Low-temperature wave mod-
els are examples of applications. In population dynamics and ecology, 
the Prey-predator model and Pollution of the environment are rele-
vant. In biology, reaction-diffusion equations are used to study Cell 
dynamics and Tumor growth [34]. Schrodinger equations [25] and 
Hamiltonian systems [24,33] are also important topics in the field of 
Quantum mechanics. Another important area in the realm of nonlinear 
PDEs is pattern formation, which has numerous applications, such as 
the Schnakenberg model [11], the Swift-Hohenberg equation [26], the 
Gray-Scott model [37], the FitzHugh-Nagumo equation [23], and the 
Monge–Ampère [14,16] equation, which finds various applications.
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To solve these nonlinear PDEs and ODEs, various numerical meth-
ods have been developed, such as Newton’s method and its variants, 
Min-Max method [36], bifurcation methods [45], multi-grid method 
[21,40] or subspace correction method [8] or a class of special two-grid 
methods [6,22,39–42], deflation method [13], mountain pass method 
[5,9], homotopy methods [17–19,35], Spectral methods [15], and us-
ing index-ý saddle points [43,44]. However, finding multiple solutions 
remains a challenging task, primarily due to the difficulty of obtaining 
suitable initial guesses for each solution. Uncertainty often surrounds 
the existence of good numerical initial guesses that can reliably con-
verge to these solutions. Even if such initial guesses exist, the process of 
finding them can be arduous and demanding.

To address this challenge, we introduce a novel approach called 
the Companion-Based Multilevel finite element method (CBMFEM) for 
solving nonlinear PDEs and ODEs using finite element methods with 
conforming elements. Our method is based on the structure of the full 
multigrid scheme [3] designed for the general nonlinear elliptic system. 
Given a coarse level, we compute a solution using a structured compan-
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ion matrix, which is then transferred to the fine level to serve as an 
initial condition for the fine level. We use the Newton method to obtain 
the fine-level solution for each of these initial guesses and repeat this 
process until we obtain a set of solutions that converge to the station-
ary solutions of the PDEs and ODEs. Our approach distinguishes itself 
from existing literature, such as those presented in [5] or [28], where 
additional solutions are sought based on previously found solutions. 
By employing the CBMFEM, our goal is to efficiently and accurately 
identify multiple solutions for the specific class of elliptic semi-linear 
equations with polynomial nonlinear terms. While we focus on polyno-
mial nonlinear terms in this paper, this particular case holds significant 
interest and potential, yet remains relatively unexplored.

The main advantage of our method is that it can generate multi-
ple initial guesses efficiently and accurately, which is crucial for find-
ing multiple solutions for nonlinear PDEs and ODEs. Furthermore, our 
method is robust and can be easily applied to a wide range of elliptic 
semi-linear equations with polynomial nonlinear terms.

As a theoretical foundation of CBMFEM, we present a mathematical 
definition of isolated solutions for elliptic semilinear PDEs and ODEs 
with multiple solutions, which leads to well-posedness of the discrete 
solution and provides a priori error estimates of the finite element solu-
tion using the framework introduced in [39].

We organize the paper as follows: In §2, we introduce the problem 
setup and basic assumptions. In §3, we summarize the error estimate 
of the nonlinear elliptic equation using the FEM method. In §4, we 
introduce the CBMFEM, including the construction of the companion 
matrix and filtering conditions. Finally, in §5, we present numerical re-
sults obtained using CBMFEM, which are consistent with the theoretical 
analysis. Throughout the paper, we use standard notation for Sobolev 
spaces ÿ ý,ý(Ω) and the norm ‖ ⋅ ‖ý,ý. If ý = 0, then ‖ ⋅ ‖0,ý denotes the 
ÿý norm. The symbol ÿý(Ω) denotes the space of functions, whose first 
ý ≥ 0 derivatives are continuous on Ω. Additionally, we denote 

∼
ÿ as the 

vector while 
≈
ÿ is the matrix.

2. Problem setup

We consider the following quasi-linear equation and assume that the 
polygonal (polyhedral) domain Ω is bounded in ℝý with ý = 1, 2, or 3:

−Δÿ+ ÿ (ý, ÿ) = 0, in Ω, (1)

subject to the following general mixed boundary condition:

ÿÿ+ ÿ∇ÿ ⋅ n+ ÿý = 0, on ÿΩ. (2)

Here n is the unit outward normal vector to ÿΩ. The choices of ÿ, ÿ and 
ÿ impose the type of boundary conditions of ÿ at ÿΩ: Dirichlet bound-
ary Γÿ , pure Neumann boundary Γý , mixed Dirichlet and Neumann 
boundary or the Robin boundary Γý, i.e.,

ÿΩ= Γÿ ∪ Γý or ÿΩ= Γý, (3)

with Γÿ , Γý , and Γý being the closure of Γÿ , Γý , and Γý, respectively. 
Specifically,

ÿ|Γÿ = 0, ÿ|Γý = 0, and (ÿÿ)|Γý > 0. (4)

We shall assume that ý is smooth, and in particular when Γý = ÿΩ, 
compatibility conditions will be assumed for the functions ÿ and ý if 
necessary, [27]. For the sake of convenience, we denote Γ1 = Γý or 
Γý throughout this paper and assume that for some ý > 0, a generic 
constant, the followings hold:

ÿ = ÿ and 0 ≤ ÿ

ÿ
≤ ý on Γ1. (5)

We also provide some conditions for the function ÿ , which is generally 
a nonlinear polynomial function in both ý and ÿ. We shall assume that 
ÿ (ý, ÿ) ∶ Ω ×ℝ ↦ℝ is smooth in the second variable. We shall denote 

the ý-th derivative of ÿ with respect to ÿ by ÿ (ý), i.e. ÿ (ý) =
ÿýÿ

ÿÿý
, and 

that there are positive constants ÿ1 and ÿ2 such that

|ÿ (ý, ÿ)| ≤ ÿ1 +ÿ2|ÿ|ÿ , (6)

where ÿ is some real value, such that 1 ≤ ÿ ≤∞ for ý = 1, 1 ≤ ÿ <∞ for 
ý = 2 and 1 ≤ ÿ < 5 for ý = 3. This is sufficient for defining the weak 
formulation (see (8)). To apply the finite element method, we consider 
the weak formulation of Eq. (1) which satisfies the fully elliptic regular-
ity (see [31] and references cited therein), i.e., solution is sufficiently 
smooth. We introduce a space ý defined by:

ý = {ÿ ∈ÿ1(Ω) ∶ ÿ|Γÿ = 0}. (7)

The main problem can then be formulated as follows: Find ÿ ∈ ý such 
that

 (ÿ, ÿ) = ÿ(ÿ, ÿ) + ÿ(ÿ, ÿ) = 0, ∀ÿ ∈ ý , (8)

where ÿ(⋅, ⋅), ÿ(⋅, ⋅) ∶ ý × ý ↦ ℝ are the mappings defined as follows,
respectively:

ÿ(ÿ, ÿ) = ∫
Ω

∇ÿ ⋅∇ÿýý+ ∫
Γ1

ÿ

ÿ
ÿÿýý, ∀ÿ, ÿ ∈ ý (9a)

ÿ(ÿ, ÿ) = ∫
Ω

ÿ (ý, ÿ)ÿýý+ ∫
Γ1

ýÿýý, ∀ÿ, ÿ ∈ ý . (9b)

3. Finite element formulation and a priori error analysis

We will utilize a finite element method to solve (8), specifically a 
conforming finite element of degree ÿ ≥ 1. The triangulation of the do-
main Ω will be denoted by ℎ = {ÿ }ÿ=1,⋯,ýÿ

. As usual, we define

ℎ =maxÿ∈ℎdiam(ÿ ). (10)

Let ýℎ be the subspace of ý that is composed of piecewise globally 
continuous polynomials of degree ÿ ≥ 1. We shall denote the dimension 
of ýℎ by ýℎ and

ýℎ = span{ÿÿ
ℎ
∶ ÿ = 1,⋯ ,ýℎ}, (11)

where ÿÿ
ℎ
is the basis of ýℎ. The discrete weak formulation for (8) is 

given as: Find ÿℎ ∈ ýℎ such that

 (ÿℎ, ÿℎ) = ÿ(ÿℎ, ÿℎ) + ÿ(ÿℎ, ÿℎ) = 0, ∀ÿℎ ∈ ýℎ. (12)

We note that for any ÿℎ ∈ ýℎ, there exists a unique ∼ÿℎ = (ÿ1
ℎ
, ⋯ , ÿýℎ

ℎ
)ÿ ∈

ℝ
ýℎ such that

ÿℎ =

ýℎ∑
ÿ=1

ÿÿ
ℎ
ÿÿ
ℎ
. (13)

To obtain a solution ÿℎ to (12), we need to solve the following system 
of nonlinear equations:

∼
ý
ℎ
(
∼
ÿℎ) =

»¼¼½

ý 1
ℎ
(
∼
ÿℎ)

⋮

ý
ýℎ

ℎ
(
∼
ÿℎ)

¾¿¿À
=

∼
0, (14)

where

ý ÿ
ℎ
(
∼
ÿℎ) ∶= ÿ(ÿℎ, ÿ

ÿ
ℎ
) + ÿ(ÿℎ, ÿ

ÿ
ℎ
) = 0, ∀ÿ = 1,⋯ ,ýℎ. (15)

3.1. A priori error analysis

In this section, we will discuss the convergence order of the finite 
element solutions for solving (8). Throughout this section, we introduce 
a notation for a fixed ÿ > 0:

ýÿ = {ÿ ∈ ý ∶ ‖ÿ− ÿ‖1,2 < ÿ}, (16)
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where ÿ is a solution to the equation (8). We will make the following 
assumption:

Assumption 1. There exists a solution ÿ ∈ÿ 1,∞(Ω) of the problem (8)
such that ‖ÿ‖1,∞ ≤ Γ for some constant Γ. Furthermore, in particular, ÿ
is isolated in the following sense: there exists ÿ = ÿÿ > 0 such that for 
all ý ∈ ý such that 0 ≠ ‖ý‖1,2 < ÿ, there exist ÿÿ > 0 and ÿý ∈ ý , such 
that

|| (ÿ+ý,ÿý)
|| ≥ ÿÿ‖ý‖1,2‖ÿý‖1,2 > 0. (17)

Remark 1. We note that, to the best of our knowledge, this is the first 
time the notion of isolation has been adequately introduced in the liter-
ature. In [7], a similar definition is presented, but it allows ÿ to be any 
function in ý , not necessarily dependent on ý in (17). This can lead 
to several critical issues. To illustrate one of the issues, we consider the 
problem of solving the following equation:

−ÿ′′ − ÿý = 0 in

(
0,

2ÿ√
ý

)
⊂ℝ subject to ÿ(0) = ÿ

(
2ÿ√
ý

)
= 0,

(18)

where ý > 0. The weak form is given by  (ÿ, ÿ) = ∫
Ω
∇ÿ ⋅ ∇ÿýý −

∫
Ω
ÿýÿýý = 0 and ÿ = 0 is an isolated solution in the sense of (17), 

namely, for any ý ∈ ý , we choose ÿý =ý, so that we have

| (ÿ+ ÿý,ý)| =
|||||||
∫
Ω

∇(ÿý) ⋅∇ý− ÿý ∫
Ω

ýý+1

|||||||
≥ ÿÿ‖ÿý‖1,2‖ý‖1,2,

(19)

for some ÿÿ, no matter how ÿ is small, due to the Sobolev embedding, 
i.e., ‖ý‖0,ý+1 ≲ ‖ý‖1,2. On the other hand, if we choose ý = cos(

√
ýý) −

1, 0 < ÿ ≪ 1 and ÿ = sin(
√
ýý), then we have that

 (ÿ+ ÿý,ÿ) = ÿ∫
Ω

∇ý ⋅∇ÿýý− ÿý ∫
Ω

ýýÿýý = −ÿý ∫
Ω

ýýÿýý = 0, (20)

which implies that 0 = | (ÿ+ ÿý,ÿ)| ≥ ÿÿÿ‖ý‖1,2‖ÿ‖1,2 = ÿ(ÿ). This 
does not make sense.

We begin with the following lemma as a consequence of our assump-
tion:

Lemma 1. Under the assumption that ‖ÿ‖0,∞ ≤ Γ, we have

‖ÿ (1)‖0,∞,‖ÿ (2)‖0,∞ < ÿ(Γ), (21)

where ÿ is a constant that depends on Γ.

We shall now consider the linearized problem for a given isolated 
solution ÿ to the equation (8): For ÿ ∈ ý ∗, find ý ∈ ý such that

ý(ÿ;ý,ÿ) ∶= ÿ(ý,ÿ) + ∫
Ω

ÿ (1)(ÿ)ýÿýý = (ÿ, ÿ), ∀ÿ ∈ ý . (22)

We shall now establish the well-posedness of the linearized problem as 
follows.

Lemma 2. ý(ÿ; ⋅, ⋅), defined in Eq. (22), satisfies the inf-sup condition, i.e.,

inf
ý∈ý

sup
ÿ∈ý

ý(ÿ;ÿ,ý)

‖ÿ‖1,2‖ý‖1,2 = inf
ÿ∈ý

sup
ý∈ý

ý(ÿ;ÿ,ý)

‖ÿ‖1,2‖ý‖1,2 ≳ 1. (23)

Proof. Based on [1], we need to prove that

(i) there exists a unique zero solution, ý = 0, to ý(ÿ; ý, ÿ) = 0 for all 
ÿ ∈ ý ;

(ii) ý(ÿ; ⋅, ⋅) satisfies the Garding-type inequality, i.e., there exist 
ÿ0, ÿ1 > 0 such that

|ý(ÿ;ÿ, ÿ)| ≥ ÿ0‖ÿ‖21,2 − ÿ1‖ÿ‖20,2, ∀ÿ ∈ ý ,

For the second condition, the Garding-type inequality holds due to the 
Poincare inequality [12]. Secondly, we will prove the first condition 
using the proof by contradiction. Let us assume that there exists a non-
zero solution ý ∈ ý such that

ý(ÿ;ý,ÿ) = 0, ∀ÿ ∈ ý . (24)

Then, for ÿ sufficiently small, we define ÿÿ = ÿ + ÿý ∈ýÿ(ÿ). Then, by 
Assumption 1, we can choose ÿý ∈ ý , for which the inequality (17)
holds and observe that

 (ÿ+ ÿý,ÿý)

= ÿ(ÿ+ ÿý,ÿý) + ÿ(ÿ+ ÿý,ÿý) = ÿ(ÿ+ ÿý,ÿý)

+∫
Ω

[
ÿ (ÿ) + ÿ (1)(ÿ)(ÿý) +

1

2
ÿ (2)(ÿ)(ÿý)2

]
ÿý ýý− ∫

Γÿ
ý

ýÿý ýý

= ÿ(ÿ, ÿý) + ÿ(ÿ, ÿý) +ý(ÿ, ÿý,ÿý) +
1

2
ÿ2 ∫

Ω

ÿ (2)(ÿ)ý2ÿý ýý

≤ ÿ2

2
‖ÿ (2)‖0,ý1‖ý‖20,2ý2‖ÿý‖0,ý3 ,

where the last inequality used the generalized Hölder inequality with 
ýÿ for ÿ = 1, 2, 3, satisfying the identity 1

ý1
+

1

ý2
+

1

ý3
= 1. Since we can 

choose ÿ to be arbitrarily small, this contradicts Assumption 1. Thus, 
the proof is complete. □

We note that the equation (22) corresponds to the following partial 
differential equation: find ý such that

−Δý+ ÿ (1)(ÿ)ý = ÿ in Ω, (25)

subject to the same type of boundary condition to the equation (8), 
but with ý replaced by zero function in (2). We shall assume that the 
solution to the equation (22) satisfies the full elliptic regularity, i.e.,

‖ý‖2,ý0 ≲ ‖ÿ‖0,2, (26)

with ý0 = 2. The assumption holds true for the convex domain under 
both Dirichlet and pure Neumann boundary conditions. However, for 
the mixed boundary case, it is valid for certain values of ý0 > 4∕3 (see 
[10], Corollary 3.12). Of course, an assumption can be relaxed to ý0 < 2, 
which then, as a result induces a complexity in the presentation.

After establishing the inf-sup condition for the linearized equation 
at the continuous level, we can establish the discrete inf-sup condition 
using the standard techniques such as the ÿ 1,2 stability and ÿ2 norm 
error estimate of Ritz-projection for sufficiently small ℎ (see [4,27]).

Lemma 3. Under the Assumption 1, the following discrete inf-sup condition 
holds if ℎ < ℎ0 for sufficiently small ℎ0. Specifically, there exists ÿ0, which 
is independent of ℎ, such that

inf
ýℎ∈ýℎ

sup
ÿℎ∈ýℎ

ý(ÿ;ÿℎ,ýℎ)

‖ÿℎ‖1,2‖ýℎ‖1,2 = inf
ÿℎ∈ýℎ

sup
ýℎ∈ýℎ

ý(ÿ;ÿℎ,ýℎ)

‖ÿℎ‖1,2‖ýℎ‖1,2 = ÿ0 > 0.

(27)

This finding has implications for the well-posedness of the Newton 
method used to find solutions. For a more in-depth discussion of using 
the Newton method to find multiple solutions, see [29,30,36] and the 
references cited therein. We shall now consider the solution operator for 
ý(ÿ; ⋅, ⋅) and the error estimates. First we define the projection operator 
ÿℎ ∶ ý ↦ ýℎ as
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ý(ÿ;ÿℎý,ÿℎ) =ý(ÿ;ý,ÿℎ), ∀ÿℎ ∈ ýℎ. (28)

Lemma 4. For the projection operator, we have with ÿ ≥ 1,

‖ý−ÿℎý‖0,2 ≲ ℎÿ+1‖ý‖ÿ+1,2 and ‖ý−ÿℎý‖1,2 ≲ ℎÿ‖ý‖ÿ+1,2. (29)

The following inequality shall be needed for the well-posedness and 
error analysis of the discrete solution, which is well-known to be true, 
for the Dirichlet boundary condition case (see Theorem 7.1.11 and §7.5 
in [4]), it is shown to hold:

‖ÿℎÿ‖0,∞ ≲ ‖ÿ‖1,∞, ∀ÿ ∈ÿ 1,∞(Ω), for ℎ < ℎ0, (30)

where ℎ0 is sufficiently small. For the mixed boundary condition, it 
is unclear yet, if such an estimate holds (see [27] for example for a 
special 2D case), which is beyond the scope to deal with in this paper. 
We shall now present the result that the discrete problem (12) admits 
a unique solution ÿℎ that can approximate the fixed isolated solution ÿ
with the desired convergence rate in both ÿ2 and ÿ 1,2 norm, using the 
argument employed in [40].

Theorem 3.1. Suppose the Assumption 1 and (30). Then, for 0 < ℎ < ℎ0, 
with ℎ0 sufficiently small, the finite element equation (12) admits an isolated 
solution ÿℎ satisfying

‖ÿ− ÿℎ‖ý,2 ≲ ℎÿ+1−ý, for ý = 0,1. (31)

Furthermore, ÿℎ is the only solution in ýÿ for some ÿ > 0 such that 
‖ÿℎ‖0,∞ ≤ Γ1 for some generic Γ1.

Proof. We first note that for any ÿ, ÿℎ, ÿ ∈ ý , it holds

 (ÿℎ, ÿ) =  (ÿ,ÿ) +ý(ÿ;ÿℎ − ÿ,ÿ) +ý(ÿ, ÿℎ, ÿ), (32)

where ý(ÿ, ÿℎ, ÿ) = ∫
Ω
[ÿ (ÿℎ) − ÿ (ÿ) − ÿ

(1)(ÿ)(ÿℎ − ÿ)]ÿ ýý. We now de-
fine a nonlinear operator Φ ∶ ýℎ → ýℎ by

ý(ÿ;Φ(ÿℎ), ÿℎ) =ý(ÿ;ÿ, ÿℎ) −ý(ÿ, ÿℎ, ÿℎ), ∀ÿℎ ∈ ýℎ.

Then, from the inf-sup condition, Φ is well-defined. We shall invoke the 
Brower Fixed point theorem for the mapping Φ and thus, we introduce 
a closed ball of the space ýℎ defined as follows:

ý = {ÿ ∈ ýℎ ∶ ‖ÿ− ÿℎÿ‖1,2 ≤ 2ÿ0ℎ
ÿ and ‖ÿ‖0,∞ ≤ Γ0 + 1},

where ÿ0 and Γ0 are generic constants. Using the inverse-type inequal-
ity (see Lemma 4.5.3 in [4]), we can show that the ball ý is closed in 
ý . Furthermore, from the Lemma 1, the mapping Φ is continuous on 
ý. We shall now show that Φ is a mapping from ý to ý. Using the 
mean-value theorem, we observe that the following inequality holds for 
ÿℎ ∈ý and ÿ ∈ ý ,

ý(ÿ;Φ(ÿℎ) − ÿℎÿ,ÿ) =ý(ÿ;ÿ− ÿℎÿ,ÿ) −ý(ÿ, ÿℎ, ÿ)

≲ ‖ÿ− ÿℎÿ‖1,2‖ÿ‖1,2 + ∫
Ω

|ÿ− ÿℎ|2|ÿ|ýý.

By applying the Cauchy-Schwarz inequality and the Sobolev embedding 
theorem, we obtain the following inequality (with 1∕ý + 1∕ÿ = 1),

∫
Ω

(ÿ− ÿℎ)
2|ÿ|ýý ≲

»¼¼½∫Ω
|ÿ− ÿℎ|2ý ýý

¾¿¿À

1∕ý »¼¼½∫Ω
|ÿ|ÿ ýý

¾¿¿À

1∕ÿ

≲ ‖ÿ− ÿℎ‖1+ÿ0,2
‖ÿ‖0,ÿ ≲ ‖ÿ− ÿℎ‖1+ÿ0,2

‖ÿ‖1,2,
for some 0 < ÿ ≤ 1 for ý = 1, 2 or ý = 3. More precisely, for ý = 1, we 
can choose ý = 1 and ÿ = ∞, thus ÿ = 1. On the other hand, for ý = 2

and ý = 3, we can set ÿ = 6 and ý = 6∕5, then ÿ = 2∕3, both by the 
assumption that ‖ÿ‖1,∞ ≤ Γ and that Ω is a bounded domain. By using 
the Garding’s inequality, we obtain the following inequality:

‖ÿ‖2
1,2

− ‖ÿ‖2
0,2
≲ |ý(ÿ;ÿ,ÿ)| ≲ ÿ1ℎ

ÿ‖ÿ‖1,2 + ‖ÿ− ÿℎ‖1+ÿ0,2
‖ÿ‖1,2,

∀ÿ ∈ ý .

Thus, since ‖ÿ‖0,2 ≤ ‖ÿ‖1,2, we have
‖ÿ‖1,2 ≲ ‖ÿ‖0,2 + ‖ÿ− ÿℎ‖1+ÿ0,2

+ÿ1ℎ
ÿ. (33)

Next, we consider the duality argument for the linearized equation that 
for a given ÿ ∈ ý ∗ as follows with ÿ =Φ(ÿℎ) − ÿℎÿ ∈ ýℎ:

(ÿ, ÿ) =ý(ÿ;ÿ,ý) =ý(ÿ;ÿ,ý−Πℎý) +ý(ÿ;ÿ,Πℎý)

≲ ‖ÿ‖1,2‖ý−Πℎý‖1,2 + ‖ÿ− ÿℎ‖1+ÿ0,2
‖Πℎý‖1,2

≲ ℎ‖ÿ‖1,2‖ý‖2,2 + ‖ÿ− ÿℎ‖1+ÿ0,2
‖Πℎý‖1,2

≲ ℎ‖ÿ‖1,2‖ÿ‖0,2 + ‖ÿ− ÿℎ‖1+ÿ0,2
‖ý‖2,2

= (ℎ‖ÿ‖1,2 + ‖ÿ− ÿℎ‖1+ÿ0,2
)‖ÿ‖0,2,

where we used the assumption on the full elliptic regularity (26) and 
property of Scott-Zhang interpolation [32]. By setting ÿ = ÿ , we arrive 
at

‖ÿ‖0,2 ≲ ℎ‖ÿ‖1,2 + ‖ÿ− ÿℎ‖1+ÿ0,2
. (34)

Therefore, we have that

‖ÿ‖1,2 ≲ ℎ‖ÿ‖1,2 + 2‖ÿ− ÿℎ‖1+ÿ0,2
+ÿ1ℎ

ÿ. (35)

On the other hand, we have that

‖ÿ− ÿℎ‖1+ÿ0,2
≤ ‖ÿ− ÿℎÿ‖1+ÿ0,2

+ ‖ÿℎ − ÿℎÿ‖1+ÿ0,2
= ý(1)ℎÿ. (36)

Therefore, for ℎ < ℎ0 sufficiently small, we arrive at for all ÿℎ ∈ý

‖Φ(ÿℎ) − ÿℎÿ‖1,2 ≤ 2ÿ0ℎ
ÿ. (37)

Lastly, we notice that by the inverse inequality (see Theorem 4.5.11 in 
[4]), there exists ÿ > 0 such that

‖Φ(ÿℎ) − ÿℎÿ‖20,∞ ≲ ý(ℎ)‖Φ(ÿℎ) − ÿℎÿ‖21,2 ≤ ý(ℎ)ℎ2ÿ ≲ ℎÿ ,

where ý(ℎ) = 1 for 1ÿ and | logℎ|2 for 2ÿ and ℎ−1 for 3ÿ. Now, we in-
voke the condition (30) to arrive at Φ(ý) ⊂ ý. Thus, the Brouwer’s fixed 
point theorem shows the existence of ÿℎ ∈ ý such that Φ(ÿℎ) = ÿℎ. The 
uniqueness can follow from the inf-sup condition (27) and the conti-
nuity of the isormophic operator as a function of the point where the 
linearization is made, as discussed in [40]. To obtain the ÿ2 estimate, 
we use the fact that ‖ÿ −ÿℎ‖1,2 ≲ ℎÿ resulting from the above argument. 
We then replace ÿℎ by ÿℎ in the inequality (34) and we are led to the 
following inequality:

‖ÿ− ÿℎ‖0,2 ≲ ℎÿ+1 + ‖ÿ− ÿℎ‖1+ÿ0,2
, (38)

where 0 < ÿ ≤ 1. Thus, by the Kick-Back argument, we arrive at the 
conclusion. This completes the proof. □

4. Companion-based multilevel finite element method (CBMFEM)

In this section, we present a companion-based multilevel finite el-
ement method to solve the nonlinear system (14). Solving this system 
directly is challenging due to the presence of multiple solutions. There-
fore, we draw inspiration from the multigrid method discussed in [3]
that is designed for a single solution. We modify the multilevel finite 
element method by introducing a local nonlinear solver that computes 
the eigenvalues of the companion matrix. This enables us to generate 
a set of initial guesses for Newton’s method, which is used to solve the 
nonlinear system on the refined mesh.

We begin by introducing a sequence of nested triangulations, 
namely,

0,1,2,⋯ ,ý , (39)
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Fig. 1. Mesh refinement of CBMFEM in 1D (left) and 2D with edge (right). The 
square dots are the coarse nodes while filled circles are newly introduced fine 
nodes.

where 0 and ý are the coarsest and the finest triangulations of Ω, 
respectively. This leads to the construction of a sequence of nested and 
conforming finite element spaces {ýý}

ý
ý=0

⊂ ý , given as follows:

ý0 ⊂⋯ ⊂ ýý . (40)

The refinement strategy is shown in Fig. 1 for both 1D and 2D cases, 
where we introduce new nodes (the filled circles) based on the coarse 
nodes (the square dots). Specifically, for a given coarse mesh ÿ , we 
obtain the refined mesh ℎ by introducing a new node on ÿ . The 
overall flowchart of CBMFEM is summarized in Fig. 2.

Assuming that a solution ÿÿ ∈ ýÿ on a coarse mesh ÿ has been 
well approximated, namely 

∼
ý
ÿ
(
∼
ÿÿ ) =

∼
0, we can refine the triangula-

tion ÿ to obtain a finer triangulation ℎ. Since ÿ ⊂ ℎ, we can find 
a function ÿ̃ℎ(ý) in ℎ such that we can express ÿÿ (ý) as a linear com-
bination of the basis functions of ℎ:

ÿÿ (ý) = ÿ̃ℎ(ý) =

dimℎ∑
ÿ=1

ÿ̃ÿ
ℎ
ÿÿ
ℎ
(ý), (41)

where dimℎ is the dimension of ℎ and ÿÿℎ(ý) are the basis functions 
of ℎ. In particular, for any point ýÿ ∈ ÿ , we have ÿ̃ÿℎ = ÿÿ (ýÿ). For 
points ýÿ ∈ ℎ∖ÿ , we can calculate ̃ÿÿℎ based on the intrinsic structure 
of the basis functions. In other words, we can interpolate ÿÿ (ý) to ÿℎ(ý)
by using the basis functions on two levels. Specifically, let’s consider 1D 

case and have the relation ÿÿ∕2
ÿ

= ÿ
ÿ∕2

2ℎ
=

ÿÿ−1
ℎ

2
+ ÿÿ

ℎ
+

ÿÿ+1
ℎ

2
, which allows 

us to calculate the coefficients for (41). More precisely, we can write 
ÿÿ (ý) to ÿℎ(ý) as follows:

ÿÿ (ý) =
∑

ýÿ∈ýÿ

ÿ
ÿ∕2

ÿ
ÿ
ÿ∕2

ÿ
(ý) =

∑
ýÿ∈ýÿ

ÿ
ÿ∕2

ÿ

(
ÿÿ−1
ℎ

2
+ÿÿ

ℎ
+
ÿÿ+1
ℎ

2

)

=

dimℎ∑
ÿ=1

ÿ̃ÿ
ℎ
ÿÿ
ℎ
(ý). (42)

We next update the value of ÿÿ
ℎ
for ýÿ ∈ ℎ∖ÿ on the fine mesh. To 

do this, we solve ý ÿ
ℎ
(ÿÿ
ℎ
; (ÿÿ

ℎ
= ÿ̃

ÿ
ℎ
)ÿ≠ÿ) = 0 for ÿÿ

ℎ
by fixing the values of 

other nodes as ̃ÿℎ. Since ÿ (ý, ÿ) is a polynomial, we can rewrite ý
ÿ
ℎ
as a 

single polynomial equation, namely,

ý ÿ
ℎ
(ÿÿ
ℎ
; (ÿ

ÿ
ℎ
= ÿ̃

ÿ
ℎ
)ÿ≠ÿ) = ÿ ÿℎ(ÿ̂ÿℎ) = 0, (43)

where ÿ ÿ
ℎ
(ÿ) =

ÿ∑
ÿ=0

ýÿÿ
ÿ. The companion matrix of ÿ ÿ

ℎ
(ÿ) is defined as

ÿ(ÿ ÿ
ℎ
) =

£¤¤¤¤¤¥

0 0 … 0 −ý0∕ýÿ
1 0 … 0 −ý1∕ýÿ
0 1 … 0 −ý2∕ýÿ
⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 1 −ýÿ−1∕ýÿ

¦§§§§§̈
, (44)

where, except for ý0, the coefficients ýÿ depend only on {ÿ̃
ÿ
ℎ
} that are 

near the point ýÿ ∈ ℎ∖ÿ , making their computation local. By denot-
ing the root of Eq. (43) as ̂ÿÿ

ℎ
, the initial guess for the solutions on ýℎ is 

set as

ÿ̂ℎ =
∑

ÿ̂ÿ
ℎ
ÿÿ
ℎ
where ÿ̂ÿ

ℎ
=

{
ÿÿ
ÿ
, ýÿ ∈ ÿ ,

ÿ̂ÿ
ℎ
by solving (43), ýÿ ∈ ℎ∖ÿ . (45)

Since all the eigenvalues of ÿ(ÿ ÿ
ℎ
) satisfy the equation ÿ ÿ

ℎ
(ÿÿ) = 0, there 

can be up to ÿ|ℎ∖ÿ | possible initial guesses, where |ℎ∖ÿ | denotes 
the number of newly introduced fine nodes on ℎ and ÿ is the degree 
of the polynomial (43). However, computing all of these possibilities is 
computationally expensive, so we apply the filtering conditions below 
to reduce the number of initial guesses and speed up the method:

• Locality condition: we assume the initial guess is near 
∼
ÿ̃ℎ in term 

of the residual, namely,

‖
∼
ý
ℎ
(
∼
ÿ̂ℎ)‖0,2 < ÿ1‖∼

ý
ℎ
(
∼
ÿ̃ℎ)‖0,2; (46)

• Convergence condition:we apply the convergence estimate to the 
initial guess, namely,

‖
∼
ý
ℎ
(
∼
ÿ̂ℎ)‖0,2 < ÿ2ℎ

2; (47)

• Boundness condition: we assume the initial guess is bounded, 
namely,

‖
∼
ÿ̂ℎ ‖0,∞ < ÿ3. (48)

Finally, we summarize the algorithm of CBMFEM in Algorithm 1.

Algorithm 1 CBMFEM for computing multiple solutions.
Given ýℎ, ýÿ , and solution ÿÿ on ýÿ .
Interpolate ÿÿ =

∑
ÿ̃ÿ
ℎ
ÿÿ
ℎ
and compute coefficient ̃ÿÿ

ℎ
.

for ÿ ∈ ýℎ∖ýÿ do
Construct the polynomial equation ÿ ÿ

ℎ
(
∼̂
ÿ
ÿ

ℎ
)

Compute the eigenvalues of the companion matrix, ÿ(ÿ ÿ
ℎ
)

end for
Obtain initial guesses in (45) on ýℎ and apply filtering conditions.
Employ Newton method on ýℎ with the obtained initial guesses to solve 
∼
ý ℎ(∼ÿℎ) = 0

5. Numerical examples

In this section, we present several examples for both 1D and 2D 
to demonstrate the effectivity and robustness of CBMFEM with ÿ = 1

for simplicity. We shall let ÿℎ
ÿ

= ÿℎ − ÿÿ where ÿℎ and ÿÿ are the 
numerical solutions with grid step size ℎ and ÿ , respectively, and ÿ is 
the analytical solution. For error analysis, since most of the examples we 
considered do not have analytical solutions, we used asymptotic error 
analysis to calculate the convergence rate.

5.1. Examples for 1D

5.1.1. Example 1
First, we consider the following boundary value problem

{
−ÿ′′ − (1 + ÿ4) = 0, in (0,1),

ÿ′(0) = ÿ(1) = 0,
(49)

which has analytical solutions [17]. More specifically, by multiplying 
both sides with ÿ′ and integrating with respect to ý, we obtain

(ÿ′(ý))2

2
+ ý (ÿ(ý)) − ý (ÿ0) = 0, (50)

where ý (ÿ) = ÿ + ÿ5

5
and ÿ0 = ÿ(0). Since ÿ

′(0) = 0 and ÿ′′(ý) < 0, then 
we have ÿ′ < 0 for all ý > 0. Moreover, ÿ(ý) < ÿ0 implies ý (ÿ0) > ý (ý)
for all ý > 0. Therefore

ÿ′(ý)√
ý (ÿ0) − ý (ÿ(ý))

= −
√
2. (51)
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Fig. 2. A flowchart of the CBMFEM for solving the nonlinear differential equation. The hierarchical structure of CBMFEM is illustrated on the left, where for each 
level, we obtain a solution on the coarse grid, ýÿ . We then solve local nonlinear equations by constructing companion matrices and generate initial guesses for 
Newton’s method on the finer level ýℎ on the right.

Fig. 3. Numerical solutions of Eq. (49) with ý = 1025 grid points. The unstable 
solution is plotted with dashed lines, while the stable solution is represented 
with solid lines.

By integrating ý from ý to 1, we obtain

1

∫
ý

ÿ′(ý)√
ý (ÿ0) − ý (ÿ(ý))

ýý = −
√
2(1 − ý). (52)

Due to the boundary condition ÿ(1) = 0, we have

ÿ(ý)

∫
0

ýÿ√
ý (ÿ0) − ý (ÿ)

=
√
2(1 − ý). (53)

By choosing ý = 0, we have the following equation for ÿ0,

ÿ0

∫
0

ýÿ√
ý (ÿ0) − ý (ÿ)

=
√
2 (54)

Then for any given ÿ0, the solution of (49) is uniquely determined by 
the initial value problem
{

−ÿ′ = (1 + ÿ4)

ÿ′ = ÿ
with

{
ÿ(0) = 0

ÿ(0) = ÿ0
. (55)

By solving (54) with Newton’s method, we get two solutions ÿ0 ≈ 0.5227

and ÿ0 ≈ 1.3084. Then the numerical error is shown in Table 1 for the 
CBMEFM with Newton’s nonlinear solver. The solutions with ý = 1025

grid points are shown in Fig. 3. The unstable solution is plotted with 
dashed lines, while the stable solution is represented with solid lines. 
We additionally compare our method with the traditional homotopy 
method, as detailed in Table 2. CBMFEM achieves computing times of 
less than 1 second for the coarse grids up to ý = 17, whereas the homo-
topy method can only handle the coarse grids up to ý = 12, requiring 
over 1 hour due to its significant computational overhead [2].

Fig. 4. Numerical solutions of Eq. (56) with ý = 1025 grid points. The unstable 
solution is plotted with dashed lines, while the stable solution is represented 
with solid lines.

5.1.2. Example 2
Next, we consider the following boundary value problem

{
−ÿ′′ + ÿ2 = 0, in (0,1),

ÿ(0) = 0 and ÿ(1) = 1,
(56)

which has two solutions shown in Fig. 4. We start ý = 3 and compute 
the solutions up to ý = 1025 by implementing CBMEFM with a non-
linear solver. We compute the numerical error by using ‖ÿℎ

ÿ
‖0,2 and 

summarize the convergence test and computing time in Table 3. We 
also compare our method with the traditional homotopy method, as de-
tailed in Table 4. CBMFEM is much more efficient than the homotopy 
method on the coarse grids up to ý = 17 [2].

5.1.3. Example 3
Thirdly, we consider the following nonlinear parametric differential 

equation

{
−ÿ′′ − ÿ2(ý− ÿ2) = 0 in (0,1),

ÿ′(0) = ÿ(1) = 0,
(57)

where ý is a parameter. The number of solutions increases as ý gets 
larger [20]. We compute the numerical solutions for ý = 1, 7, and 18 us-
ing CBMEFM with Newton’s solver and show the solutions in Fig. 5. The 
computation time and the number of solutions for different values of ý
and step sizes are summarized in Table 5. As ý increases, the number 
of solutions increases, and hence the computation time becomes longer. 
Numerical error and convergence order are shown in Table 6.

5.1.4. Example 4
We consider the following semi-linear elliptic boundary value prob-

lem
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Table 1
Numerical errors and computing time of CBMEFM with Newton’s nonlinear solver for solving 
Eq. (49).

h
# 1st Solution # 2nd solution CPU(s)

‖ÿℎ‖0,2 Order ‖ÿℎ‖1,2 Order ‖ÿℎ‖0,2 Order ‖ÿℎ‖1,2 Order Newton

2−2 2.6E-04 x 1.7E-01 x 8.3E-03 x 7.0E-02 x 0.10
2−3 6.4E-05 2.01 8.0E-02 1.00 2.0E-03 2.04 4.0E-02 1.01 0.10
2−4 1.6E-05 2.00 4.0E-02 1.00 5.0E-04 2.01 2.0E-02 1.00 0.15
2−5 4.0E-06 2.00 2.0E-02 1.00 1.3E-04 2.00 9.3E-03 1.00 0.16
2−6 1.0E-06 2.00 1.0E-02 1.00 3.1E-05 2.00 4.7E-03 1.00 0.11
2−7 2.5E-07 2.00 5.2E-03 1.00 7.8E-06 2.00 2.3E-03 1.00 0.16
2−8 6.2E-08 2.00 2.6E-03 1.01 1.9E-06 2.00 1.2E-03 1.01 0.25
2−9 1.6E-08 2.00 1.3E-03 1.03 4.9E-07 2.00 0.6E-03 1.04 0.64
2−10 3.9E-09 2.00 5.6E-04 1.16 1.2E-07 2.00 0.3E-03 1.16 3.55

Table 2
Computing time of homotopy method and CBMFEM vs. Number of 
Grid Points, ý on Example 1. Both methods can find two solutions 
for this example. For the homotopy method, Bertini was employed 
for implementation [2]. However, due to the large computational 
cost, computations were not performed for ý ≥ 12 as they were 
estimated to exceed 5 hours. For CBMFEM, computations were con-
ducted for ý = 2ý + 1 where ý = 0, ⋯ , 4.

N

CPU time in sec
Homotopy Method CBMFEM

3 0.008 s 0.03 s
4 0.02 s N/A
5 0.059 s 0.10 s
6 0.295 s N/A
7 1.624 s N/A
8 8.261 s N/A
9 50.278 s 0.10 s
10 231.353 s N/A
11 916.459 s N/A
12 4506.12 s N/A
13 N/A N/A
14 N/A N/A
15 N/A N/A
16 N/A N/A
17 N/A 0.15 s

Fig. 5. Numerical solutions of Eq. (57) with 1025 grid points for ý = 1, ý = 7, 
and ý = 18, respectively. Unstable solutions are plotted with dashed lines, while 
stable solutions are represented with solid lines.

{
−ÿ′′(ý) − ýÿ+2|ý|ÿÿ3(ý) = 0 in (−1,1),

ÿ(−1) = ÿ(1) = 0,
(58)

where ý is the scaling coefficient corresponding to the domain. This ex-
ample is based on a problem considered in [38]. We have re-scaled the 
domain from (−1, 1) to (−ý, ý) and formulated the problem accordingly.

We start with ÿ = 3 and ý = 1 and find 4 non-negative solutions with 
ý = 1025 using CBMEFM. The numerical error and convergence order 
are shown in Table 7. Using the homotopy method with respect to both 
ÿ and ý, we also discover the same number of solutions for ÿ = 3, ý = 10

and ÿ = 12, ý = 1. The numerical solutions with different parameters 
are shown in Fig. 6. Then, we also create a bifurcation diagram for the 
numerical solutions with respect to ÿ by choosing ý = 1 and using 1025
grid points, as shown in Fig. 7. We only display the non-trivial non-
negative solutions on this diagram. When ÿ is small, we have only one 
non-trivial solution. As ÿ increases, the number of non-trivial solutions 
increases and bifurcates to three solutions.

5.1.5. The Schnakenberg model
We consider the steady-state system of the Schnakenberg model in 

1D with no-flux boundary conditions

⎧⎪«⎪¬

−ÿ′′ − ÿ(ÿ− ÿ+ ÿ2ÿ) = 0, in (0,1)

−ýÿ′′ − ÿ(ÿ− ÿ2ÿ) = 0, in (0,1)

ÿ′(0) = ÿ′(1) = ÿ′(0) = ÿ′(1) = 0.

(59)

This model exhibits complex solution patterns for different parameters 
ÿ, ÿ, ÿ, and ý [19]. In [19], the homotopy continuation method was 
used. The results are reproduced using CBMFEM. Since there is only 
one nonlinear term ÿ2ÿ, we rewrite the steady-state system as follows
{

−ÿ′′ − ýÿ′′ − ÿ(ÿ+ ÿ− ÿ) = 0,

−ýÿ′′ − ÿ(ÿ− ÿ2ÿ) = 0.
(60)

In this case, we only have one nonlinear equation in the system (60). 
After discretization, we can solve 

∼
ÿ
ℎ
in terms of 

∼
ÿ
ℎ
using the first equa-

tion and plug it into the second equation. We obtain a single polynomial 
equation of 

∼
ÿ
ℎ
, which allows us to use the companion matrix to solve 

for the roots. Then we use CBMEFM to solve the Schakenberg model in 
1D with the parameters ÿ = 1∕3, ÿ = 2∕3, ý = 50, ÿ = 50 up to ℎ = 2−9. 
There are 3 solutions computed Fig. 8 and we show the computing time 
in Table 8.

5.2. Examples in 2D

In this section, we discuss a couple of two dimensional examples.

5.2.1. Example 1
{

−Δÿ(ý, ÿ) − ÿ2(ý, ÿ) = −ý sin(ÿý) sin(ÿÿ) in Ω,

ÿ(ý, ÿ) = 0, in ÿΩ
(61)

where Ω = (0, 1) × (0, 1) [5]. In [5], the numerical Mountain pass algo-
rithm was used. The results are reproduced using CBMFEM.

In this example, we utilized edge refinement to generate a multi-
level grid and provide multiple initial guesses for the next level, as 
shown in Fig. 9. The number of nodes and triangles on each level is 
summarized in Table 9.

First, we compute the solutions with ý = 1600. We only applied the 
CBMEFM for the first three multi-level grids until ý = 2 due to the ex-
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Table 3
Numerical errors and computing time of CBMEFM with Newton’s solver for solving Eq. (56).

h
# 1st solution # 2nd solution CPUs

‖ÿℎ
ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order Newton

2−2 2.6E-3 x 2.3E-2 x 7.9E-1 x 5.8E-0 x 0.09
2−3 6.8E-4 1.96 1.2E-2 0.90 2.0E-1 2.01 2.9E-0 1.03 0.09
2−4 1.7E-4 1.99 6.3E-3 0.94 4.9E-2 2.00 1.4E-0 1.00 0.09
2−5 4.3E-5 2.00 3.2E-3 0.97 1.2E-2 2.00 7.12E-1 1.00 0.10
2−6 1.1E-5 2.00 1.6E-3 0.98 3.1E-3 2.00 3.6E-1 1.00 0.11
2−7 2.7E-6 2.00 8.2E-4 0.99 7.7E-4 2.00 1.8E-1 1.00 0.14
2−8 6.7E-7 2.00 4.1E-4 1.00 1.9E-4 2.00 8.9E-2 1.00 0.24
2−9 1.7E-7 2.00 2.1E-4 1.00 4.8E-5 2.00 4.5E-2 1.00 0.49
2−10 4.2E-8 2.00 1.0E-4 1.00 1.2E-5 2.00 2.2E-2 1.00 3.35

Fig. 6. Numerical solutions of Eq. (58) with ý = 1025 grid points for different ÿ and ý. We have symmetric solutions so we only concern with one of them. Unstable 
solutions are plotted with dashed lines, while stable solutions are represented with solid lines.

Table 4
Computing time of homotopy method and CBMFEM vs. Number of 
Grid Points, ý on Example 2. Both methods can find two solutions 
for this example.

N

CPU time in sec
Homotopy Method CBMFEM

3 0.005 s 0.006 s
4 0.009 s N/A
5 0.016 s 0.09 s
6 0.029 s N/A
7 0.05 s N/A
8 0.10 s N/A
9 0.25 s 0.09 s
10 0.50 s N/A
11 1.53 s N/A
12 2.84 s N/A
13 6.52 s N/A
14 24.76 s N/A
15 30.78 s N/A
16 73.88 s N/A
17 272.95 s 0.09 s

Table 5
Computing time (in seconds) and the number of solutions of Eq. (57)
for different ý by CBMEFM with Newton’s solver.

h
p=1 p=7 p=18

CPUs # of sols CPUs # of sols CPUs # of sols

2−2 0.17 2 0.15 5 0.29 19
2−3 0.12 2 0.35 9 3.01 37
2−4 0.11 2 0.20 4 28.17 10
2−5 0.11 2 0.11 4 0.38 8
2−6 0.11 2 0.14 4 0.18 8
2−7 0.14 2 0.23 4 0.33 8
2−8 0.26 2 0.35 4 0.66 8
2−9 0.57 2 0.95 4 1.93 8
2−10 3.08 2 5.55 4 11.54 8

tensive computation caused by a large number of solution combinations 
on the higher level. Starting ý = 3, we used Newton refinement with an 
interpolation initial guess from the coarse grid. We found 10 solutions 
and computed them until ℎ = 2−7. Since some solutions are the same up 
to the rotation, we plot only four solutions in Fig. 11. It is worth noting 
that Eq. (61) remains unchanged even when ý is replaced by 1 − ý, and 
similarly for ÿ. Therefore, rotating solutions 3 and 4 from Fig. 10 would 

Fig. 7. Bifurcation diagram of Eq. (58) with respect to ÿ with ý = 1025 grid 
points and ý = 1.

also yield valid solutions. Therefore, although there are 10 solutions in 
total, we only plot the 4 solutions in Fig. 10 up to the rotation. We also 
computed the numerical error and convergence order in both ÿ2 and 
ÿ1 norms for these solutions and summarized them in Table 11, the 
computing time is shown in Table 10.

Finally, we also explored the solution structure with respect to ý
in equation (61). We have used the homotopy continuation method to 
draw bifurcation diagrams. For small values of ý, only two solutions 
are observed. However, as ý increases, the number of solutions also 
increases, as demonstrated in Fig. 11.

5.2.2. The Gray–Scott model in 2D
The last example is the steady-state Gray-Scott model, given by

⎧⎪«⎪¬

−ÿýΔý−ÿý2 + (ÿ + ÿ)ý = 0, in Ω

−ÿÿΔÿ +ÿý2 − ÿ(1 −ÿ) = 0, in Ω
ÿý

ÿn
=
ÿÿ

ÿn
= 0 in ÿΩ

(62)

Ω = (0, 1) × (0, 1) and n is normal vector [19]. The solutions of this 
model depend on the constants ÿý, ÿÿ , ÿ, and ÿ. In this example, we 
choose ÿý = 2.5 ×10−4, ÿÿ = 5 ×10−4, ÿ = 0.04, and ÿ = 0.065. Similar 
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Table 6
Numerical errors only nontrivial solutions for Eq. (57) when ý = 7 by CBMEFM with Newton’s solver.

h
# 1st solution # 2nd solution # 3rd solution

‖ÿℎ
ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order

2−2 1.6E-1 x 1.43 x 1.6E-1 x 9.0E-1 x 2.7E-2 x 1.1E-1 x
2−3 2.4E-1 -0.54 1.22 0.23 3.3E-2 2.30 4.7E-1 0.93 6.8E-3 2.00 5.1E-2 1.08
2−4 4.2E-2 2.52 7.4E-1 0.73 7.4E-3 2.13 2.2E-1 1.07 1.7E-3 2.00 2.5E-2 1.06
2−5 8.4E-3 2.31 3.0E-1 1.28 1.9E-3 2.01 1.1E-1 1.01 4.3E-4 2.00 1.2E-2 1.03
2−6 2.1E-3 2.04 1.4E-1 1.08 4.6E-4 2.00 5.5E-2 1.00 1.1E-4 2.00 5.9E-3 1.02
2−7 5.1E-4 2.01 7.0E-2 1.03 1.2E-4 2.00 2.8E-2 1.00 2.7E-5 2.00 3.0E-3 1.01
2−8 1.3E-4 2.00 3.5E-2 1.02 2.9E-5 2.00 1.4E-2 1.00 6.7E-6 2.00 1.5E-3 1.00
2−9 3.2E-5 2.00 1.7E-2 1.01 7.2E-6 2.00 6.9E-3 1.00 1.7E-6 2.00 7.4E-4 1.00
2−10 8.0E-6 2.00 8.6E-3 1.00 1.8E-6 2.00 3.5E-3 1.00 4.2E-7 2.00 3.7E-4 1.00

Table 7
Numerical errors only nontrivial solutions for Eq. (58) when ÿ = 3, ý = 1 by CBMEFM 
with Newton’s solver.

h
# 1st solution # 2nd solution

‖ÿℎ
ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order

2−3 1.3E-0 x 7.9E-0 x 1.0E-0 x 9.2E-0 x
2−4 3.2E-1 2.04 4.2E-0 0.90 5.7E-1 0.87 5.4E-0 0.76
2−5 8.0E-2 2.03 2.0E-0 1.06 1.1E-1 2.33 2.3E-0 1.22
2−6 2.0E-2 2.03 1.0E-0 1.01 2.7E-2 2.03 1.2E-0 1.02
2−7 4.9E-3 2.01 5.0E-1 1.00 6.7E-3 2.00 5.7E-1 1.00
2−8 1.2E-3 2.00 2.5E-1 1.00 1.7E-3 2.00 2.9E-1 1.00
2−9 3.1E-4 2.00 1.3E-1 1.00 4.2E-4 2.00 1.4E-1 1.00
2−10 7.6E-5 2.00 6.3E-2 1.00 1.0E-4 2.00 7.2E-2 1.00

Fig. 8. 3 different solutions for equation (59) with ý = 1025 grid points. The same colors are paired solutions.

Table 8
Numerical errors and computing time of CBMEFM with 
Newton’s solvers for solving Eq. (59). We have symmet-
ric solutions so we only concern with one of them.

h
# 1st solution CPUs

‖ÿℎ
ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖1,2 Order

2−3 2.9E-2 x 1.9E-1 x 0.58
2−4 6.3E-3 2.20 6.0E-2 1.63 0.42
2−5 1.6E-3 2.02 2.7E-2 1.18 0.55
2−6 3.9E-4 2.00 1.3E-2 1.06 0.84
2−7 9.6E-5 2.00 6.3E-3 1.02 1.96
2−8 2.4E-5 2.00 3.1E-3 1.01 6.14
2−9 6.0E-6 2.00 1.6E-3 1.00 22.14
2−10 1.5E-6 2.00 7.8E-4 1.00 157.88

Fig. 9.Multi-level grid based on the edge refinement with a rectangular domain.

to the example of the Schnakenberg model in 1D (60), we can modify 
the system as follows:

Table 9
The number of nodes and triangles of the multigrid with the edge refinement 
for each level.
Step size 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7

# of Nodes 5 13 41 145 545 2113 8321 33025

# of Triangles 4 16 64 256 1024 4096 16384 65536

Table 10
The numerical performance summary of solving (61)
with ý = 1600. Until the level ý = 2 we used CBMEFM 
and applied Newton’s refinement starting from ý = 3.

Method Step size # of solutions Comp. Time

CBMEFM
20 2 0.2 s
2−1 10 1.4 s
2−2 10 142.7 s

Newton’s 
refinement

2−3 10 7.1 s
2−4 10 20.6 s
2−5 10 76.8 s
2−6 10 540.4 s
2−7 10 5521.3 s

{
−ÿýΔý−ÿÿΔÿ + (ÿ + ÿ)ý− ÿ(1 −ÿ) = 0,

−ÿÿΔÿ +ÿý2 − ÿ(1 −ÿ) = 0.
(63)

As the first equation in the Gray-Scott model is linear, we can solve for 
ý in terms of ÿ and substitute into the second equation to obtain a 
single polynomial equation. When using the companion matrix on the 
coarsest grid (ý = 0) to solve the polynomial equation, we obtain 35
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Fig. 10. Multiple solutions of Eq. (61) with ý = 1600 and a step size of 2−7.

Table 11
Numerical ÿ2 and ÿ1 errors for multiple solutions of Eq. (61) with ý = 1600 shown in 
Fig. 10.

h
# 1st solution # 2nd solution # 3rd solution # 4th solution

‖ÿℎ
ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖0,2 Order ‖ÿℎ

ÿ
‖0,2 Order

2−1 2.1E-0 x 1.2E-0 x x x x x
2−2 5.1E-0 -1.26 2.8E-0 -1.26 2.3E+1 x 5.4E-0 x
2−3 3.9E-0 0.37 0.7E-0 1.94 9.5E-0 1.28 6.9E-0 -0.36
2−4 1.6E-0 1.30 0.2E-0 1.98 3.2E-0 1.56 2.3E-0 1.58
2−5 0.5E-0 1.70 0.5E-1 1.99 0.9E-0 1.85 0.7E-0 1.83
2−6 0.1E-0 1.90 0.1E-1 2.00 0.2E-0 1.95 0.2E-0 1.95
2−7 3.3 E-3 1.97 2.9E-03 2.00 0.6E-1 1.99 0.4E-1 1.99

h ‖ÿℎ
ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖1,2 Order ‖ÿℎ

ÿ
‖1,2 Order

2−1 2.6E+1 x 1.4E+1 x x x x x
2−2 6.8E+1 -1.40 2.7E+1 -0.93 1.9E+2 x 7.2E+1 x
2−3 5.6E+1 0.29 1.5E+1 0.91 9.9E+1 0.92 7.9E+1 -0.13
2−4 3.1E+1 0.86 7.4E-0 0.97 5.2E+1 0.92 4.2E+1 0.92
2−5 1.6E+1 0.97 3.7E-0 0.99 2.6E+1 1.02 2.1E+1 1.01
2−6 7.8E-0 1.00 1.9E-0 1.00 1.3E+1 1.01 1.0E+1 1.01
2−7 3.9E-0 1.00 0.9E-0 1.00 6.3E-0 1.00 5.1E-0 1.00

Fig. 11. Bifurcation diagram of solutions of Eq. (61) with respect to ý.

complex solutions, leading to a large number of possible combinations 
on finer grids. To address this, we applied two approaches. The first 
approach involved keeping the real solutions and real parts of complex 
solutions, and using linear interpolation and Newton’s method to refine 

Fig. 12. We have 24 solutions and plot only ý(ý, ÿ) from (63) with a step size 
of 2−6. The initial guesses were refined by considering both real solutions and 
real parts of complex solutions on the coarsest grid (ý = 0).

them on finer grids. This approach yielded 24 solutions on a step size 
of 2−6, up to rotation shown in Fig. 12. The second approach involved 
keeping only the real solutions, resulting in 1 solution on ý = 0 and 
313 initial guesses on ý = 1. Using interpolation and Newton’s method, 
we obtained 88 solutions on a step size of 2−6, up to rotation shown in 
Fig. 13. If we use more large coefficient for filtering conditions we can 
get 187 solutions.
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Fig. 13. We have 88 solutions and plot only ý(ý, ÿ) from (63) with a step size 
of 2−6. The initial guesses were refined by considering only the real solutions 
on the ý = 1 grid.

6. Conclusion

In this paper, we have presented a novel approach, the Companion-
Based Multilevel finite element method (CBMFEM), which efficiently 
and accurately generates multiple initial guesses for solving nonlinear 
elliptic semi-linear equations with polynomial nonlinear terms together 
with its theoretical foundation. In particular, our numerical results 
demonstrate the consistency of the method with theoretical analysis, 
and we have shown that CBMFEM outperforms existing methods for 
problems with multiple solutions.

CBMFEM has potential applications in more complex PDEs, posed 
both in 2D and 3D, which arise from a variety of scientific and engi-
neering fields. To tackle such cases, we shall need to conduct in-depth 
investigations to identify better filtering condition constants and bet-
ter nonlinear solvers. As an immediate enhancement or extension of 
our method, we shall incorporate the multigrid method to speed up the 
Newton method and attempt to handle PDEs posed on a complicated 
geometry in our future works.
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