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ABSTRACT: Unsaturated amides represent common functional
groups found in natural products and bioactive molecules and serve
as versatile synthetic building blocks. Here, we report an iron(II)/
cobalt(II) dual catalytic system for the syntheses of distally
unsaturated amide derivatives. The transformation proceeds
through an iron nitrenoid-mediated 1,5-hydrogen atom transfer
(1,5-HAT) mechanism. Subsequently, the radical intermediate
undergoes hydrogen atom abstraction from vicinal methylene by a
cobaloxime catalyst, efficiently yielding β,γ- or γ,δ-unsaturated
amide derivatives under mild conditions. The efficiency of Co-
mediated HAT can be tuned by varying different auxiliaries,
highlighting the generality of this protocol. Remarkably, this
desaturation protocol is also amenable to practical scalability,
enabling the synthesis of unsaturated carbamates and ureas, which can be readily converted into various valuable molecules.

■ INTRODUCTION
Carbon−carbon double bonds are ubiquitous in natural
products and functional materials,1−3 while olefins stand out
as versatile functional groups with significant synthetic
utility.4−8 Classical methods for olefin synthesis,9−16 such as
halide or alcohol elimination,9 the Wittig reaction,16,17 etc.,
usually rely on prefunctionalized starting materials. The direct
conversion of feedstock aliphatic molecules into privileged
alkenyl structures could offer a more practical and appealing
approach18,19 despite the inherent challenge associated with
the controlling of selectivity in those transformations.20 To
date, transition metal-catalyzed oxidative desaturation of α-
carbonyl alkanes at weak acidic C(sp3)−H bonds has witnessed
much progress.21−25 In sharp contrast, the remote desaturation
of carbonyl aliphatics involving strong C(sp3)−H bonds
remains scarcely investigated.26,27 Among the rare examples
of remote and catalytic desaturation, the hydrogen atom
transfer (HAT) process, instigated by radicals generated in situ
from either the oxidized or reduced precursors, is particularly
notable (Figure 1a).26,28−34 The seminal biomimetic desatura-
tion of steroids via intramolecular HAT-enabled C(sp3)−H
activation was first reported by Breslow and co-workers,35

which convincingly demonstrated the potential of such a
strategy for the late-stage remote desaturation of natural or
bioactive molecules. Collectively, the precursors of radicals can
be strategically chosen to access radicals centered on oxygen
(via O−O bond),28 nitrogen (via N−F or N−O bonds),29,32

and carbon (via Ar−N3R, Ar−I, SiCH2I, or C�C) (Figure
1a).26,27,30,31,33 Utilizing the HAT strategy, Čekovic ́ and Green
showcased direct remote desaturation of alkyl hydroperoxides

based on oxygen-centered radicals.28 Following these pioneer-
ing studies, nitrogen- and carbon-centered radical-initiated
HAT processes for desaturation have also been employed to
overcome the thermodynamic obstacle of C(sp3)−H abstrac-
tion by forming a stronger N−H or C−H bond.
Photochemistry has evolved as a valuable technique for

achieving milder reaction conditions and facilitating trans-
formations of double bonds.36 The cutting-edge approach in
metallaphotoredox catalysis has garnered significant attention
in desaturation reactions. Notably, photoredox catalysis in
conjunction with biomimetic cobaloxime complexes has
emerged as a distinctive and promising option in this field
(Figure 1b).37−45 A photoredox catalyst mediates an oxidative
process to form a carbon-centered radical, while the
cobaloxime complex functions as a proton reduction catalyst.
Recently, our group reported remote γ-C(sp3)−H bond

functionalization of 1,4,2-dioxazol-5-one substrates. The
reaction was initiated by an iron nitrenoid via a 1,5-HAT
process,46 which offers a facile route to rapidly access carbon-
centered radicals that enables further functionalization.
Inspired by the efficient radical generation through metal
nitrenoid systems,46−57 along with the recent advancements in
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direct desaturation of aliphatics through cobaloxime-based
photoredox catalysis, we envision that the carbon radical
generated in this manner could, in principle, be integrated with
the hydrogen atom abstraction reactivity of cobaloximes to
achieve remote desaturation of amide derivatives.58−60 Very
recently, Chang's group reported Ir-catalyzed desaturation of
electron-rich 1,4,2-dioxazol-5-ones via an Ir nitrenoid inter-
mediate. However, that reaction proceeded via a hydride
transfer process mediated by an iridium nitrenoind followed by
E1 elimination.61 Here, we present iron/cobalt-cocatalyzed
remote desaturation for the syntheses of unsaturated amide
derivatives (Figure 1c). A simple iron salt reacts with the
nitrene precursor (N-acyloxy amide) to form an iron nitrenoid
species. This iron nitrenoid species abstracts a remote
hydrogen atom (H•) via the 1,5-HAT process to yield the
crucial carbon-centered radical. A cobaloxime catalyst [L2Co-
(dmgBF2)2] can subsequently abstract a second H• from the
adjacent C(sp3)−H bond to provide the desaturated amide
derivatives (Figure 1c).

■ RESULTS AND DISCUSSION
To assess the viability of the proposed strategy, our
investigation commenced with the desaturation of 5-phenyl-
N-(pivaloyloxy)pentanamide S1 bearing challenging non-

activated γ-C(sp3)−H bonds (Table 1). Our evaluation
revealed that the combination of 10 mol % iron(II) acetate

and 5 mol % (PPh3)Co(dmgBF2)2 catalyst (Co1)60 in 1,4-
dixoane was optimal for the production of the desaturation
product 1 (82%, rr 3.1:1). Variations in iron catalysts
highlighted the significant impact of electronic effects on the
yield of desaturation product 1 (Table 1, entries 1−4). Either
the electron-deficient catalyst Fe(OTf)2 or electron-rich
catalyst FePc (iron phthalocyanine) resulted in a drastic
decrease in yields (<5%). We next investigated the effect of the
cobaloxime catalysts (Table 1, entries 5−7). Both
(MeCN)2Co(dpg BF2)2 (Co2) and (PPh3)Co(dpgBF2)2
(Co3) proved to be less effective in the desaturation process.
In addition, the more electron-deficient catalyst (Py)Co-

Figure 1. HAT strategy for desaturation. (a) HAT-mediated remote
desaturation. (b) Photoredox/cobaloxime-catalyzed desaturation. (c)
This work: Fe/Co enabled the remote desaturation of amide
derivatives.

Table 1. Optimization of Iron/Cobalt-Cocatalyzed Remote
Desaturationa

arr is the regioselectivity ratio; reaction conditions: substrate (0.1
mmol), Fe catalyst (10 mol %), and Co catalyst (5 mol %) in solvent
(1 mL) at room temperature under argon overnight. bNMR yields
with an internal standard (4-bromobenzaldehyde).
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(dmgH)2Cl (Co4) was ineffective in replacing Co1 in the
desaturation process, indicating that electron-rich ligands can
enhance the reactivity of cobaloxime in abstracting H•.60 The
yield was not improved in the presence of 2.0 equiv of acetic
acid (Table 1, entry 8). Some other commonly used nitrene
precursors, including N-acyloxy amides (B and C) and
dioxazolone D, were also investigated (Table 1, entry 9).
However, all three precursors provided the desaturation
products in lower yields (38−51%). No further improvement
in yield was achieved upon changing the solvent (Table 1,
entries 10 and 11). Moreover, air is proven deleterious to the
desaturation protocol (Table 1, entry 12; see Tables S1 and S2
in the Supporting Information for full data of reaction
optimization).
Under the optimized condition, we evaluated the scope of

this Fe/Co-cocatalyzed desaturation of amide derivatives
(Table 2). Simple linear aliphatic substrates were tested first
and found to be compatible with the current conditions,
yielding more preferable γ,δ-desaturated products than β,γ-

desaturated ones in good to excellent yields (1−15) due to the
weaker electronic effect on the δ position (Table 2A). Various
substituents (chloride, phenyl, alkyls, etc.) on the carbon chain
were well tolerated, although an α-methyl-substituted substrate
gave desaturated 8 in 25% yield, which can be attributed to the
Curtius rearrangement. Similarly, various cycloalkyl substrates
provide the majority of γ,δ-desaturated products (10−12 and
14) in good regioselectivities (up to rr 7:1). If a bulky
cyclohexyl group is present at the δ position, the formation of
γ,δ-desaturated products will be rendered and a much higher
yield of β,γ-desaturated product is obtained instead (13, 90%,
rr 1:2.3). Olefin substrates, which can undergo late-stage
diversifications in drug discovery,62 are usually vulnerable due
to the electron-rich C�C bonds. However, they are well
tolerated in this reaction. A citronellic acid derivative was
successfully desaturated under optimal conditions in excellent
total yield with three isomers (15, 94%).
Benzylic substrates are next examined under the optimal

condition. We were delightful to discover that a diverse range

Table 2. Substrate Scope of Fe/Co-Cocatalyzed Desaturationa

aReaction conditions: substrates (0.2 mmol), 10 mol % Fe(OAc)2, and 5 mol % Co catalyst in 1,4-dioxane (1 mL) under argon at room
temperature overnight; yields were determined by 1H NMR. bUsing 5 mol % PPh3Co(dmgBF2)2 (Co1).

cUsing 5 mol % (MeCN)2Co(dpgBF2)2
(Co2). dUsing 10 mol % Fe(OTf)2, 10 mol % Co2, and 20 mol % sodium iodide (NaI) as an additive.
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of substrates (S16−S30) encompassing various aryl sub-
stituents exhibit excellent susceptibility to the Fe/Co-
cocatalyzed desaturation reaction, resulting in consistently
high yields of desaturated products (up to 96%) predominantly
favoring the E-configuration (Table 2B). This reactivity
extends across a broad scope of substrates with diverse
electronic properties and proves compatible with commonly
encountered organic functional groups, including electron-rich
arenes (17−20 and 26), aryl halides (21−23), and nitro- (24)
and CF3-substituated (25) phenyls as well as naphthyl (27)
and heteroaryls (29 and 30). It is noted that the desaturation
of substrates featuring strong electron-donating groups (17,
85%, E/Z = 11; 25, 78%, E/Z = 12) was conducted under
slightly modified conditions where Fe(OTf)2 was used as the
catalyst and NaI was used as an additive to enhance the
desaturation process. It is worth noting that highly valuable
vinyl derivatives vinylbenzamides (31 and 32), which are
typically produced using iron oxide catalysts under extremely
high temperatures in industry,63 can be obtained through our
Fe/Co-cocatalyzed desaturation protocol in nearly quantitative
yields under mild conditions.
In stark contrast to alkene formation, methods for

synthesizing conjugated diene or enyne derivatives via
hydrogen atom transfer remain significantly underex-
plored.27,64 Our system presents a mild process for generating
the corresponding 1,3-conjugated dienes and enynes with
excellent yields (33−45) (Table 2C). The functionalized
dienes bearing electron-rich aryls (34−36 and 42) and
electron-withdrawing aryls (37−41) can all be successfully
synthesized in high to excellent yields (73−98%). Moreover, a
terminal diene (43) was also obtained in 70% yield. It is worth
mentioning that substrates with an alkynyl group interestingly
give the thermodynamically unfavorable Z-configuration
enynes as major products (44, 87%, E/Z = 0.24; 45, 70%,
E/Z = 0.3), which can be attributed to the coordination
between the iron and carbon−carbon triple bonds that poses a
more accessible H atom on a cis C(sp3)−H bond for the
cobaloxime to abstract.
Due to its mild conditions and exceptional functional group

compatibility, this Fe/Co-cooperatively catalyzed method
shows promise for the concise and efficient synthesis of
desaturated carbamates and carbamides (Table 3). To our
delight, this Fe/Co cocatalytic system proves effective in the

desaturation of carbamides when N-(benzoyloxy)amide is
employed as the iron nitrenoid precursor. The corresponding
products (46−50) are obtained in good yields. Particularly, the
tert-butyl substrate exhibits robust tolerance under the
conditions, yielding the desaturated carbamate derivative 50
in 65% yield (E/Z 2.4:1). Likewise, the desaturation of
carbamides occurs at 80 °C in just 1 h to rapidly deliver 51
(77%, E/Z 12:1) and N-unprotected carbamide 52 in 45%
yield. These results demonstrated the potential application of
this Fe/Co cocatalytic system in the efficient synthesis of
diverse desaturated carbamates and carbamides.
To gain insight into the mechanism of this dual metal-

catalyzed desaturation process, various mechanistic studies
were conducted. Kinetic isotope effect (KIE) experiments were
employed to investigate the rate-determining step (RDS)
(Figure 2a). In an intramolecular competition experiment
involving S16-d1 with 2,3-dideuterium, KIE values of 2.5 and
1.3 were determined (Figure 2a, eq 1). In sharp contrast, no
KIE was observed in an intermolecular competition or in two
parallel reactions between S16 and S16-d2 (Figure 2a, eqs 2
and 3). These results can be attributed to the fact that
irreversible binding between the substrate and the catalyst is
not involved in the cleavage of the C−H bond.46,65 In other
words, C−H bond cleavage is an irreversible process and
occurs after RDS. Consequently, we infer that the rate-
determining step is the formation of the iron nitrenoid
species.46

To experimentally explore the generation of CoIII−H
species, we carried out deuterium-labeling and crossover
experiments starting with a mixture of S16-d1 and S29 in the
presence of deuterated acetic acid (AcOD, 0.1 mL) (Figure
2b). Notably, no intermolecular H/D exchange product 29-D
was detected. The absence of H/D exchange suggests that
both the iron nitrenoid-initiated 1,5-HAT process and
hydrogen abstraction process by cobaloxime are irreversible,
aligning with the conclusions drawn from the KIE experiments.
These findings further support the notion that the Co-
mediated β-H abstraction involves a radical pathway rather
than concerted β-H elimination.40 Furthermore, a concerted β-
H elimination pathway requires a vacant coordination site cis
to the alkyl group.66 The hypothetical [L2Co(dmgBF2)2] alkyl
complex evidently fails to meet this criterion, as four equatorial
coordination sites cis to the alkyl are already occupied by two
coplanar (dmgBF2) anion ligands.67

We endeavored to elucidate the catalytic cycles involving a
CoIII hydride and intermediate III (Figures 1c and 2c). The
protonation of CoIII−H can result in the release of dihydrogen
(Figure 1b). Nevertheless, no H2 evolution was detected by
using gas chromatography in our reaction. This result suggests
another possibility where a CoIII−H species may undergo
proton transfer to result a CoI(H+) species with an
exchangeable proton (pKa = 13.4 in MeCN).68−72 Accord-
ingly, a mechanistic outline is depicted in Figure 2c. The
intermediate III is protonated to give the desaturated product
and PivOFeIII(OAc)2 (Figure 2c, eq 1). The CoI(H+) species,
which is more acidic than many carboxylic acids in MecN,73

can be deprotonated by PivO− (PT) to provide a highly
reducing anionic CoI species (Ered[CoII/CoI] = −0.28 V versus
SCE in MeCN).68,69 The CoI species subsequently undergoes
single-electron transfer (ET) with the FeIII species (Ered[FeIII/
FeII] = 0.53 V versus SCE),74 thus simultaneously facilitating
turnover in both the iron and cobalt cycles via the proton-
coupled electron transfer (PCET) (Figure 2c, eq 2). A similar

Table 3. Fe/Co-Cocatalyzed Desaturation for the Synthesis
of Unsaturated Carbamates and Carbamidesa

aSubstrates (0.2 mmol), Fe(OAc)2 (10 mol %), and Co2 (5 mol %)
in 1,4-dioxane (1 mL) under argon for overnight. bAt 80 °C for 1 h;
yields were determined by 1H NMR.
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PCET process was reported by Lin et al. in a Ti/Co cocatalytic
system.75

Based on these experiments and precedents, a plausible
mechanism for Fe/Co-cocatalyzed remote desaturation is
outlined in Figure 3. The iron catalyst first reacts with the
nitrene precursor to form iron nitrenoid intermediate I. The
highly active metal nitrenoid can readily and selectively
abstract a hydrogen atom via the 1,5-HAT process, leading
to the formation of the carbon-centered radical intermediate II.
Subsequently, in the second HAT step catalyzed by the
cobaloxime catalyst, a second hydrogen atom is abstracted to
generate desaturated intermediate III and a CoIII−H species.
This CoIII−H species can tautomerize to form a CoI complex
and an exchangeable proton. Simultaneously, intermediate III
can be protonated to release an FeIII intermediate along with
the desired desaturated products. The generated CoI complex
can then reduce FeIII to FeII, thus facilitating regeneration of
the cobaloxime catalyst.

Figure 2. Mechanistic experiments. (a) Kinetic isotope effect experiments. (b) Deuterium-labeling and D/H exchange experiments. (c) Possible
catalytic cycle for the CoIII−H and FeIII intermediate. pKa was measured in MeCN.

Figure 3. Proposed mechanism for Fe/Co-cocatalyzed desaturation of
amide derivatives.
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■ CONCLUSIONS
In conclusion, we successfully demonstrated remote desatura-
tion of diversely functionalized aliphatics via iron and cobalt
cooperative catalysis. Commercially available carboxylic acids
can be readily converted to the necessary nitrenoid precursors
for desaturation. Mechanistic studies have revealed that
desaturation occurs via two hydrogen atom transfer (HAT)
processes. In conjunction with investigations into the substrate
scope and the catalytic process, particularly the metal nitrenoid
species, valuable insights were gained into the desaturation
process. The reaction uses simple earth-abundant metal
complexes as catalysts and encompasses a broad substrate
scope under mild conditions. We anticipate broader
applications of this protocol in site-selective desaturation,
particularly in drug derivatives and biologically relevant
compounds, showcasing the potential synthetic applications
of this protocol.
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