

Article

Copper-catalyzed C–N cross-coupling for construction of alkylated *N*-cyanamide derivatives via nitrogen umpolung

Unlocking new pathways in chemical synthesis is crucial for advancing drug discovery and materials science. Here, we have developed a straightforward and efficient approach for synthesizing alkylated *N*-cyanamides through a nitrogenumpolung strategy. The one-pot two-step process merges a Cu-nitrene transfer (electrophilic nitrogen) with a Cu-catalyzed *N*-alkylation (nucleophilic nitrogen). This synthesis strategy not only promises accessibility to the late stage of complex natural products and drugs but also establishes an innovative methodology.

Yanjun Wan, Harriet K. Zhang, Jin Qian, Muinat A. Aliyu, Jack R. Norton

jrn11@columbia.edu

Highlights

Cu-catalyzed one-pot two-step synthesis of *N*-cyanamides via nitrogen umpolung

Cu-nitrene transfer and Cucatalyzed radical alkylation

Late-stage functionalization of natural products and pharmaceuticals

Wan et al., Chem 10, 1–12 August 8, 2024 © 2024 Published by Elsevier

https://doi.org/10.1016/j.chempr.2024.04.020

Chem

Article

Copper-catalyzed C–N cross-coupling for construction of alkylated *N*-cyanamide derivatives via nitrogen umpolung

Yanjun Wan,¹ Harriet K. Zhang,¹ Jin Qian,¹ Muinat A. Aliyu,¹ and Jack R. Norton^{1,2,*}

SUMMARY

The cyano group is found in numerous bioactive compounds. Although cyano groups are easily introduced into target molecules by the formation of C–CN, the coupling of CN to nitrogen is more challenging because of the high electronegativity of that element. We have developed an efficient one-pot two-step method of preparing alkylated *N*-acyl cyanamides and cyanoformamides through a nitrogen-umpolung strategy. The strategy involves a Cu-nitrene transfer and a Cu-catalyzed *N*-alkylation, with various dioxazolones, trimethylsilyl cyanide (TMSCN), and halides. This transformation exhibits broad substrate scope and excellent functional-group tolerance by a straightforward procedure under mild conditions. Our reaction can also carry out the late-stage functionalization of complex natural products and pharmaceuticals.

INTRODUCTION

Nitriles are found in many bioactive chemicals¹ and generally exhibit remarkable biocompatibility.² They often function as hydrogen-bond acceptors, particularly with amino acids, in protein-small molecule interactions. They are easily converted into amines, carbonyl groups, and heterocycles.³ Nitriles have been traditionally prepared by the dehydration of amides, ⁴ the nucleophilic attack of cyanide ion on carbon, ⁵ or radical cyanation.³ However, an alternative way of introducing nitriles into target molecules is the addition of cyanide ion to electrophilic nitrogen. The resulting cyanamides, particularly *N*-acyl cyanamides, are versatile building blocks in organic synthesis.⁶ The two-nitrogen and one-carbon skeleton of *N*-acyl cyanamides enables their transformation into a variety of heterocycles (Figure 1A).^{7–14} Furthermore, they can be incorporated into bioactive molecules as carboxylic acid bioisosteres, enhancing the membrane permeability of drug candidates, such as the ones in Figure 1B.^{15–19}

The classical approach to constructing *N*-aroyl cyanamides involves the reaction of aryl acid chlorides with sodium cyanamide. ^{20–22} The direct addition of a CN⁻ to nitrogen may be more convenient but will require that the electronegative nitrogen be made electrophilic—a nitrogen umpolung that may be practical in organic synthesis. ²³ One possibility is a metal nitrenoid complex because such compounds are known to have electrophilic reactivity. ^{24–29}

Metal nitrenoid complexes have been used for the construction of amide derivatives, ³⁰ by processes such as aziridination, ^{31,32} C(sp³)–H bond functionalization, ^{33–35} sulfimidation, ^{36–39} hydrazidation, ⁴⁰ and amidation. ^{41–43} Traditional precursors for

THE BIGGER PICTURE

N-Acyl cyanamides are versatile building blocks, easily integrating into bioactive molecules, which augment the membrane permeability of potential drug candidates. Traditionally, the approach to constructing N-acyl cyanamides involved the reaction of aryl acid chlorides with sodium cyanamide. However, the use of an electrophilic nitrogen allows for the rapid construction of alkylated N-acyl cyanamides. This innovative approach entails the combination of a Cu-catalyzed nitrene transfer and a Cucatalyzed N-alkylation, with various dioxazolones, trimethylsilyl cyanide (TMSCN), and halides. This procedure enables the late-stage functionalization of natural products and pharmaceuticals. In a broader scientific context, this one-pot two-step method should attract significant interest within the research community.

ceratinamine

first natural product with cyanoformamide

A Synthetic applications of N-acyl cyanamides

pesticidal activity

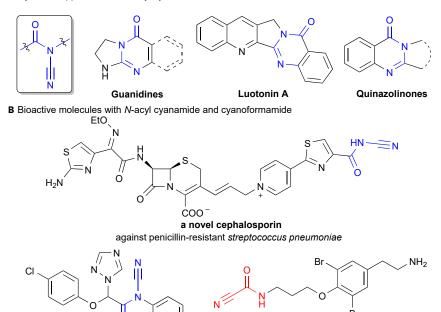
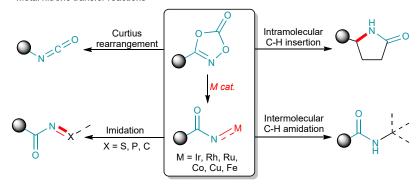


Figure 1. Synthetic applications of N-acyl cyanamides and their bioactive molecules

nitrene complexes have been azides, 44-47 iminoiodinanes, 26,48 and hydroxylamines, 24 but dioxazolones have recently attracted attention because of their ease of handling, ready availability, and bench-top stability (Figure 2). 49,50 The synthesis of ruthenium nitrene complexes from dioxazolones has been reported by Bolm (Figure 2A)^{37,51} and used for the construction of N-acyl sulfoximines and sulfimides. Dioxazolones have also been used for the construction of new C-N bonds, as in the C-H amidation reactions of Chang and others; either a C-N reductive elimination or a radical rebound mechanism (Figure 2A) appears to be involved. 52-63 Nucleophilic attack on electron-deficient nitrenoid complexes formed from dioxazolones has been used for intermolecular coupling reactions, as in Chen's iridium- or ironcatalyzed intermolecular N-N coupling with arylamines.⁴⁰ Mechanistic studies have established the strong electrophilicity of acyl nitrene complexes, leading to Rh, Ru, Cu, and Fe-catalyzed S-imidations, P-imidations, and the formation of N-acyl amidines (Figure 2B). 38,64-66 Motivated by these precedents and the availability of copper, we felt that N-acyl cyanamides might be available by the Cu-catalyzed addition of cyanide to the electrophilic nitrene complexes from various 1,4,2dioxazol-5-ones (Figure 2C).

Cu-catalyzed C–N coupling, involving amines and alkyl halides, is another method for C–N bond formation and has been successfully demonstrated by the Fu, Peters, Leonori, and Liu groups $^{67-71}$; these reactions may occur by an S_N2 mechanism or by a radical coupling. With copper catalysis, we have achieved the one-pot two-step synthesis of alkylated *N*-acyl cyanamide derivatives (Figure 2C). The attack of CN⁻ on the electrophilic nitrene ligand results in the formation of a nucleophilic cyanamide nitrogen, and the reaction of that nitrogen with alkyl halides yields the desired alkylated *N*-acyl cyanamides, although the low nucleophilicity of such cyanamides does make the reaction difficult.

¹Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA


²Lead contact

^{*}Correspondence: jrn11@columbia.edu https://doi.org/10.1016/j.chempr.2024.04.020

A Metal nitrene transfer reactions

B Nucleophilic attack reactions on electron-deficient metal-nitrenoids

C This work: Cu-catalyzed nitrene transfer and N-alkylation (one-pot two-step)

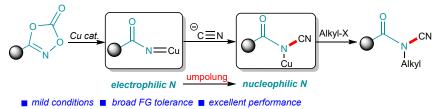


Figure 2. Metal nitrene transfer reactions

- (A) Metal nitrene transfer reactions.
- (B) Nucleophilic attack on an electrophilic nitrogen of metal nitrenoid.
- (C) This work: Cu-catalyzed one-pot two-step N-difunctionalization for the synthesis of alkylated N-acyl cyanamides mediated by a nitrogen umpolung.

RESULTS AND DISCUSSION

Optimization of reaction

We began by treating 3-phenyl-1,4,2-dioxazol-5-one S₁ with 1.5 equiv of trimethylsilyl cyanide (TMSCN) in the presence of 5 mol % Cu(MeCN)₄PF₆ in N,N-dimethylacetamide (DMA) under air (60°C, 6 h), and then added 1.2 equiv of Mel along with 1.2 equiv of tBuOLi for desilylation of the intermediate A (another 2 h, entry 1 in Figure 3). The result was a one-pot, two-step synthesis of N-cyano-N-methylbenzamide 1 with an isolated yield of 95%. Other copper catalysts (entries 2-4), including CuI, CuCN, and CuBr₂, proved less effective at the Cu-nitrenoid transfer. The use of Cu(OTf)2 gave a slight decrease in yield (to 91%) (entry 5). We then replaced TMSCN with NaCN and nBu₄NCN; however, both proved to be worse CN ion sources (entries 6 and 7). The reaction worked well in N,N-dimethylformamide (DMF) (94% yield, entry 8), the yields were lower in 1,4-dioxane and 1,2-dichloroethane (DCE) (entries 9 and 10), whereas acetonitrile and methanol gave none of the desired product, presumably as a result of their coordination to the copper (entries 11 and 12).66 No improvement in the yield was obtained with other bases, such as K2CO3 and tBuOK (entries 13 and 14), and no change in yield was observed when the reaction was conducted under argon (entry 15). Increasing or decreasing the reaction temperature led to lower yields (entries 16 and 17). Carrying out the reaction in a single step (entry 18) led to a dramatically lower yield of 1 (15%) because of the decomposition of S_1 in the presence of a strong base.

Entry	Deviation from standard conditions ^a	Yield ^b of 1 (%)
1	None	95
2	Cul instead of Cu(MeCN) ₄ PF ₆	53
3	CuCN instead of Cu(MeCN) ₄ PF ₆	45
4	CuBr ₂ instead of Cu(MeCN) ₄ PF ₆	36
5	Cu(OTf) ₂ instead of Cu(MeCN) ₄ PF ₆	91
6	NaCN instead of TMSCN	16
7	nBu₄NCN instead of TMSCN	63
8	DMF instead of DMA	94
9	1,4-dioxane instead of DMA	68
10	DCE instead of DMA	31
11	MeCN instead of DMA	trace
12	MeOH instead of DMA	trace
13	K₂CO₃ instead of tBuOLi	73
14	tBuOK instead of tBuOLi	55
15	Under Ar protection	95
16 ^c	At 40 °C, 24 h	81
17 ^d	At 80 °C, 3 h	88
18	One-pot one-step	17

Figure 3. Optimization of the synthesis of alkylated N-acyl cyanamides

Substrate scope

The reaction of 3-aryl-1,4,2-dioxazol-5-ones with TMSCN in the presence of MeI has consistently produced N-methyl-N-cyanamides (1–12) in excellent yields, as high as 96%. As shown in Figure 4A, aryl dioxazolones with many functional groups, including H, Me, tBu, MeO, halides, NO_2 , and CF_3 , are compatible with our mild reaction conditions. Aliphatic dioxazolones also work, as exemplified by the successful isolation of unprotected N-acyl cyanamides (13–17) in nearly quantitative yields.

The Mel can be replaced by benzyl bromide, giving 18–45 from our one-pot two-step process. Various alkyls on C3 of the dioxazolones have worked well, giving compounds 19–23, with the yield of 19 slightly lower (65%). Heteroatom-containing (Br, N, and O) dioxazolones have proven quite compatible, giving compounds 24–29. A range of dioxazolone substituents are tolerated well, including linear alkyl (30–32), chloroalkyl 33, cycloalkyl (34–38), alkenyl (39 and 40), and alkynyl (41 and 42). Products 39 and 41, featuring terminal C=C and C=C bonds, have been obtained in excellent yields. A similar reactivity has been observed with internal C=C, which gives 40, 42, and the citronellic-acid-derived 44. The dioxazolone from an N-Phth-protected γ -amino-acid precursor has provided the phthalimido product 43 in nearly quantitative yield, whereas the lithocholic acid derivative 45 was obtained in 95% yield.

 $^{^{}a}$ Standard conditions: substrate S_1 (0.2 mmol), TMSCN (0.3 mmol), and Cu(MeCN)₄PF₆ (5 mol %) in 1 mL DMA were conducted for 6 h at 60°C, then 1.2 equiv of MeI and tBuOLi were added into reaction solution for another 2 h, unless otherwise noted.

^bIsolated yields were calculated.

^cFull conversion of **S**₁ at 40°C in 24 h.

dFull conversion of S₁ at 80°C in 3 h.

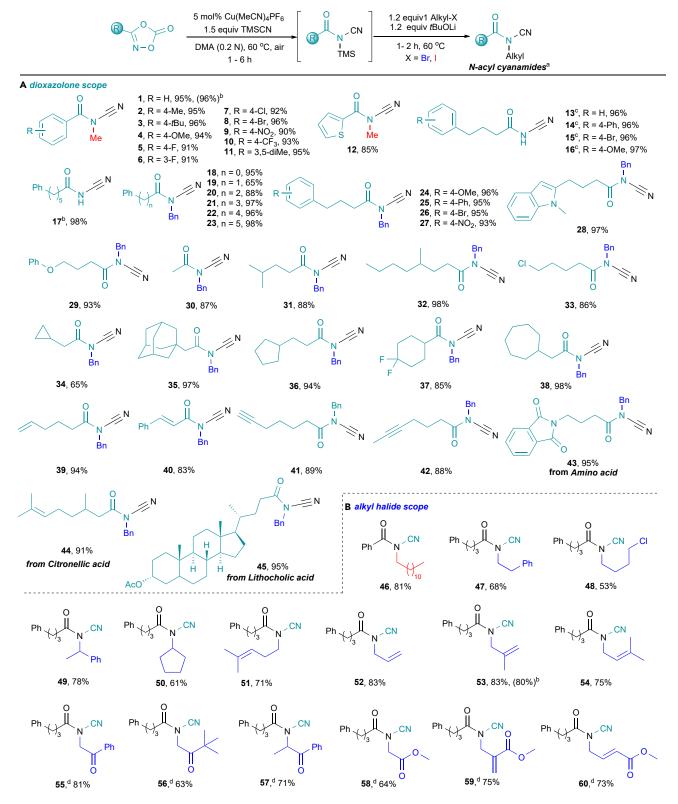


Figure 4. Substrate scope of dioxazolones and alkyl halides

^aReaction conditions: substrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)₄PF₆ in 1 mL DMA at 60° C for 1–6 h under air, then R^2 X (1.2 equiv) and tBuOLi (1.2 equiv) were added for another 2 h at 60° C; isolated yields.

Please cite this article in press as: Wan et al., Copper-catalyzed C-N cross-coupling for construction of alkylated *N*-cyanamide derivatives via nitrogen umpolung, Chem (2024), https://doi.org/10.1016/j.chempr.2024.04.020

Figure 4. Continued

 b Large scale: substrates (10 mmol), TMSCN (11 mmol), and 5 mol % Cu(MeCN) $_{4}$ PF $_{6}$ in 20 mL DMA at 60°C for 5 h under air, then $R^{2}X$ (11 mmol) and tBuOLi (11 mmol) were added for another 1–2 h at 60°C; isolated yields.

 $^{\circ}$ Substrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol $^{\circ}$ Cu(MeCN) $_{4}$ PF $_{6}$ in 1 mL DMA at 60 $^{\circ}$ C for 2 h under air, then NH $_{4}$ Cl (5 mL, aqueous) was added to quench the reaction; isolated yields.

 $^{
m d}$ Substrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)₄PF₆ in 1 mL DMA at 60°C for 2 h under air, then R^2 X (1.2 equiv) and tBuOLi (1.2 equiv) were added for another 1–2 h at room temperature; isolated yields.

We then considered the possibility that other alkyl halides could be employed with *N*-acyl cyanamides (Figure 4B). Commercially available 1-iodododecane proved effective, providing 46 in 81% yield. Primary alkyl bromides (2-bromoethyl benzene, 1-bromo-4-chlorobutane) gave the corresponding products 47 and 48 in moderate yields. Secondary and cyclic bromides worked well, as demonstrated by the formation of 49 and 50. Halide substrates bearing C=C bonds (5-bromo-2-methylpent-2-ene, and bromo allyls) gave 51–54 in good yields, whereas carbonyl alkyl bromides were converted into alkylated *N*-acyl cyanamides 55–60 in 64%–81% yields. Ester and acrylate substituents were tolerated (58–60) as well.

A similar approach gives cyanoformamide derivatives (carbamoyl cyanides) via the Curtius rearrangement. These compounds have been used in the synthesis of useful intermediates ^{72–76} and exist in natural products, ^{77,78} for example, ceratinamine. If we employ our Cu-catalyzed nitrenoid transfer reaction on the substrate S61, with a secondary alkyl substituent, we obtain 28% of the cyanoformamide 61' along with the benzylated *N*-acyl cyanamide 61 (Figure 5). The 61' has surely come from an isocyanate intermediate, the result of a Curtius rearrangement of the Cu-nitrenoid. When the R is replaced with a t-butyl, a 1-adamantyl, or a 1-methylcyclohexyl, only the cyanoformamides 62'–64' are observed, as we would expect from the migratory aptitude of these tertiary substituents. ⁷⁹ This strategy has been successfully applied to the preparation of pharmaceutically relevant molecules, including gemfibrozil, ibuprofen, and flurbiprofen derivatives 65'–67'. The cyanoformamide 67' is formed along with 67.

Mechanism experiments

After the successful development of these transformations, we shifted our attention to learning their mechanism. First, we began by investigating the mechanism of Cucatalyzed nitrene transfer reaction (step 1). In situ nuclear magnetic resonance (NMR), with DMF- d_7 as the solvent at 60°C (Figure 6A, details in supplemental information), revealed the smooth generation of two isomers, 68 and 69, in a ratio of 2.2:1. The fact that Cu(MeCN) $_4$ PF $_6$ catalyzes the generation of Cu-nitrenoid intermediates from dioxazolones is confirmed by the reaction (Figure 6B) of the dioxazolone S13 with Cu(MeCN) $_4$ PF $_6$ in the presence of 1.5 equiv of triphenylphosphine (PPh $_3$); plainly the Cu(MeCN) $_4$ PF $_6$ is an active catalyst without the need for TMSCN activation. The formation of N-iminophosphorane 70 (Figure 6B) has been confirmed by high-resolution mass spectrometry and NMR.

We have investigated the kinetics of the reaction of S_1 with TMSCN in the presence of the Cu catalyst (see Figures 6C and S_1 – S_3 ; Tables S_1 – S_3). The initial rate $\Delta[P]/\Delta t$ is linear in $[S_1]$ (Figure 6C, left), showing the reaction is first-order in $[S_1]$ with $k_1 = 1.24 \times 10^{-2} \, \text{min}^{-1}$ from $\Delta[P]/\Delta t = k_1[S_1]$. A plot of k_{obs} via fitting the first-order equation vs. variable [Cu] shows the reaction to be first-order in [Cu] (Figure 6C, middle), implying a second-order rate constant k_2 of $2.95 \times 10^{-2} \, \text{M}^{-1} \, \text{s}^{-1}$ in $d[P]/dt = k_2[S_1]$ [Cu]. To our surprise, the reaction rate $\Delta[P]/\Delta t$ decreases (Figure 6C, right) with increasing [TMSCN]. We think that the slow step involves the formation of the acyl nitrene complex from Cu(I) and substrate, that TMSCN reacts rapidly with that nitrene complex, and that TMSCN also coordinates reversibly to the Cu(MeCN) $_4$ PF $_6$.

Figure 5. Synthesis of cyanoformamides

^aReaction conditions: substrate (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)₄PF₆ in 1 mL DMA at 60°C for 1–3 h under air, then RX (1.2 equiv) and tBuOLi (1.2 equiv) were added for another 1–2 h at 60°C. The reaction was worked up by the saturated NH₄Cl (aq); isolated yields. ^bReaction conditions: substrate (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)₄PF₆ in 1 mL DMA at 60°C for 2 h under air, then tBuOLi (1.2 equiv) was added for another 0.5 h at 60°C. The reaction was worked up by the saturated NH₄Cl (aq); isolated yields.

We have also examined the mechanism of the Cu-catalyzed *N*-alkylation of *N*-acyl cyanamides with alkyl halides (step 2). Control experiments have revealed that Cu(MeCN)₄PF₆ plays an important role in the *N*-alkylation of *N*-acyl cyanamide (Figure 7A); only an 8% yield of 21 is obtained from 13, BnBr and tBuOLi after 12 h in the absence of the Cu catalyst. The addition of 5 mol % Cu(MeCN)₄PF₆ leads to a high yield of 21 (85%) in 1 h. The cyclopropyl-opening product 72 was observed in 11% yield from the reaction of 13-TMS with (bromomethyl)cyclopropane (Figure 7B), suggesting a radical mechanism for the Cu-catalyzed *N*-alkylation, although (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) failed to trap any radical species (Figure 7C). The use of enantioenriched 73 gave the racemic product 21 (2% ee) along with recovered racemic 73 (27%) (Figure 7D), in agreement with a radical mechanism. There are also precedents^{67,70} for Cu-catalyzed radical coupling.

Left circle (Cu-nitrene transfer): the first step in our reaction is presumably the decarboxylation of the dioxazolone by the copper(I) catalyst, which leads to the formation of the electrophilic Cu-nitrene I. The intermediate I can then rearrange to the isocyanate, which will add the cyanide of TMSCN and make the cyanoformamide (Figure 8). The rearrangement outcome is dependent on the α substituents of Cu-nitrene I. Alternatively, the complex I can coordinate the cyano group of TMSCN to its electrophilic nitrogen, thus generating II, which can give the N-acyl cyanamide via reductive elimination 40,65 (the cyanide anion may coordinate to the copper ($path\ b$) before it attacks the nitrogen).

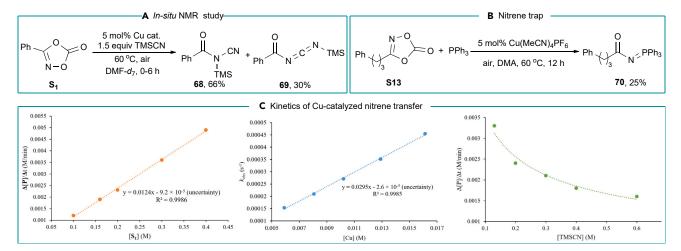


Figure 6. Mechanism experiments of Cu-catalyzed nitrene transfer (step 1)

- (A) Study of N-acyl cyanamide isomers via in situ NMR.
- (B) Nitrene trapping experiments.
- (C) Kinetics of Cu-nitrene transfer. (Left) initial-rate fit; (middle) first-order equation fit; and (right) initial-rate fit.

Right circle (Cu-catalyzed alkylation of the cyanamide): removal of the trimethylsilyl from the N-acyl cyanamide by the LiOtBu will permit the amide ligand to coordinate to the copper, giving III. Electron transfer from the copper(I) of III to the alkyl halide will give the Cu(II) cation IV, X^- and alkyl radical. The alkyl• will then add to the Cu(II) or the N of IV, making the alkylated N-acyl cyanamide and regenerating the Cu(I) catalyst.

Conclusions

We have developed a straightforward and efficient method for synthesizing alkylated N-acyl cyanamides through a nitrogen-umpolung strategy. The one-pot

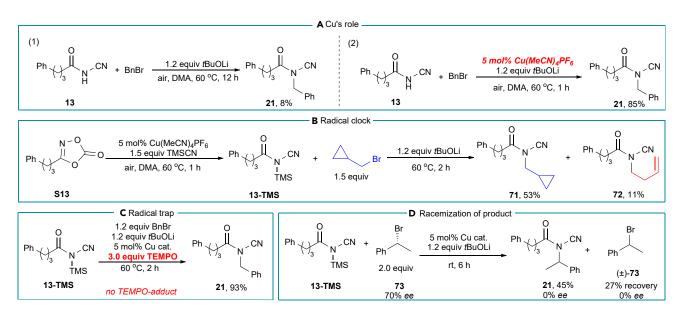


Figure 7. Mechanism experiments of Cu-catalyzed N-alkylation (step 2)

- (A) Control experiments for the study of Cu's role.
- (B) Radical clock experiment.
- (C) Radical species trapping experiment.
- (D) Racemization of the product 21 and (R)-(1-bromoethyl)benzene 73.

Figure 8. Proposed mechanism for the synthesis of alkylated N-acyl cyanamides via the combination of Cu-catalyzed nitrene transfer with Cu-catalyzed N-alkylation

two-step method merges a Cu-nitrenoid transfer (electrophilic nitrogen) with a Cu-catalyzed N-alkylation (nucleophilic nitrogen). We have also used nitrene transfer to develop a synthetic method for cyanoformamides. Our catalytic system is versatile, with broad scope and high functional-group tolerance. We suggest a proposed mechanism on the basis of nitrene trapping, kinetics experiments, radical clock, and radical racemization.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jack R. Norton (jrn11@columbia.edu).

Materials availability

All materials generated in this study are available from the lead contact without restriction.

Data and code availability

This study did not generate any datasets.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.chempr. 2024.04.020.

ACKNOWLEDGMENTS

We thank Dr. F. Zandkarimi for the high-resolution mass spectrometry analysis. This work was supported by the National Science Foundation under grant CHE-2100514 (J.R.N.).

AUTHOR CONTRIBUTIONS

J.R.N. and Y.W. conceived the project. J.R.N. directed the research. Y.W. designed, carried out, and analyzed most of the experiments of the main manuscript. H.K.Z. and J.Q. carried out some experiments and purified products. M.A.A. analyzed computational insight. J.R.N. and Y.W. composed the manuscript and the supplemental experimental procedures. All authors commented on the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 27, 2024 Revised: March 27, 2024 Accepted: April 25, 2024 Published: May 21, 2024

REFERENCES

- Fleming, F.F., Yao, L.H., Ravikumar, P.C., Funk, L., and Shook, B.C. (2010). Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J. Med. Chem. 53, 7902–7917. https://doi.org/10.1021/ jm100762r.
- Fleming, F.F. (1999). Nitrile-containing natural products. Nat. Prod. Rep. 16, 597–606. https:// doi.org/10.1039/a804370a.
- 3. Wang, F., Chen, P., and Liu, G. (2022). Coppercatalysed asymmetric radical cyanation. Nat. Synth. 1, 107–116. https://doi.org/10.1038/s44160-021-00016-x.
- Ganesan, M., and Nagaraaj, P. (2020). Recent developments in dehydration of primary amides to nitriles. Org. Chem. Front. 7, 3792– 3814. https://doi.org/10.1039/d0qo00843e.
- Pimparkar, S., Koodan, A., Maiti, S., Ahmed, N.S., Mostafa, M.M.M., and Maiti, D. (2021). C-CN bond formation: an overview of diverse strategies. Chem. Commun. (Camb) 57, 2210– 2232. https://doi.org/10.1039/d0cc07783f.
- Phakhodee, W., Yamano, D., and Pattarawarapan, M. (2020). Ultrasound-Assisted Synthesis of N-Acylcyanamides and N-Acyl-Substituted Imidazolones from Carboxylic Acids by Using Trichloroisocyanuric Acid/Triphenylphosphine. Synlett 31, 703–707. https://doi.org/10.1055/s-0039-1691583.
- Larraufie, M.H., Ollivier, C., Fensterbank, L., Malacria, M., and Lacôte, E. (2010). Radical Synthesis of Guanidines from N-Acyl Cyanamides. Angew. Chem. Int. Ed. 49, 2178– 2181. https://doi.org/10.1002/anie.200907237.
- Maestri, G., Larraufie, M.H., Ollivier, C., Malacria, M., Fensterbank, L., and Lacôte, E. (2012). Rearrangements of N-Acyl Isothioureas. Alternate access to acylguanidines from cyanamides. Org. Lett. 14, 5538–5541. https:// doi.org/10.1021/ol3026439.
- Servais, A., Azzouz, M., Lopes, D., Courillon, C., and Malacria, M. (2007). Radical Cyclization of N-Acylcyanamides: Total Synthesis of Luotonin A. Angew. Chem. Int. Ed. Engl. 46, 576–579. https://doi.org/10.1002/anie.200602940.

- Salvant, J.M., Edwards, A.V., Kurek, D.Z., and Looper, R.E. (2017). Regioselective Base-Mediated Cyclizations of Mono-Nacylpropargylguanidines. J. Org. Chem. 82, 6958–6967. https://doi.org/10.1021/acs.joc. 7b00639.
- Ziedan, N.I., Stefanelli, F., Fogli, S., and Westwell, A.D. (2010). Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem. 45, 4523–4530. https://doi.org/10.1016/j.ejmech.2010.07.012.
- Shestakov, A.S., Gusakova, N.V., Shikhaliev, K.S., and Zagoruiko, A.V. (2006). Reaction of cyanamides with N,N-binucleophiles. Russ. J. Gen. Chem. 76, 1647–1652. https://doi.org/10. 1134/S1070343206410032
- Jiang, S., Tian, X.-J., Feng, S.-Y., Li, J.-S., Li, Z.-W., Lu, C.-H., Li, C.-J., and Liu, W.-D. (2021). Visible-Light Photoredox Catalyzed Double C-H Functionalization: Radical Cascade Cyclization of Ethers with Benzimidazole-Based Cyanamides. Org. Lett. 23, 692–696. https://doi.org/10.1021/acs.orglett.0c03853.
- Larraufie, M.-H., Courillon, C., Ollivier, C., Lacôte, E., Malacria, M., and Fensterbank, L. (2010). Radical Migration of Substituents of Aryl Groups on Quinazolinones Derived from N-Acyl Cyanamides. J. Am. Chem. Soc. 132, 4381–4387. https://doi.org/10.1021/ja910653k.
- Bergström, C.A.S., Bolin, S., Artursson, P., Rönn, R., and Sandström, A. (2009). Hepatitis C virus NS3 protease inhibitors: Large, flexible molecules of peptide origin show satisfactory permeability across Caco-2 cells. Eur. J. Pharm. Sci. 38, 556–563. https://doi.org/10.1016/j.ejps. 2009.10.004.
- Yang, W.C., Li, J., Li, J., Chen, Q., and Yang, G.F. (2012). Novel synthetic methods for N-cyano-1H-imidazole-4-carboxamides and their fungicidal activity. Bioorg. Med. Chem. Lett. 22, 1455–1458. https://doi.org/10.1016/j. bmcl.2011.11.115.
- 17. Yokoo, K., Yamawaki, K., Yoshida, Y., Yonezawa, S., Yamano, Y., Tsuji, M., Hori, T., Nakamura, R., and Ishikura, K. (2016). Novel broad-spectrum and long-acting parenteral cephalosporins having an acyl cyanamide moiety at the C-3 terminal: Synthesis and

- structure-activity relationships. Eur. J. Med. Chem. 124, 698–712. https://doi.org/10.1016/j.eimech.2016.09.015.
- Malamas, M.S., Farah, S.I., Lamani, M., Pelekoudas, D.N., Perry, N.T., Rajarshi, G., Miyabe, C.Y., Chandrashekhar, H., West, J., Pavlopoulos, S., and Makriyannis, A. (2020). Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors. Bioorg. Med. Chem. 28, 115195. https://doi.org/10.1016/j.bmc.2019. 115195
- Rönn, R., Gossas, T., Sabnis, Y.A., Daoud, H., Kerblom, E., Danielson, U.H., and Sandström, A. (2007). Evaluation of a diverse set of potential P1 carboxylic acid bioisosteres in hepatitis C virus NS3 protease inhibitors. Bioorg. Med. Chem. 15, 4057–4068. https:// doi.org/10.1016/j.bmc.2007.03.089.
- Götz, N., and Zeeh, B. (1976). Eine einfache Synthese des 1,2,4-Oxadiazol-Systems durch N-O-Verknüpfung. Synthesis 1976, 268–270. https://doi.org/10.1055/s-1976-24016.
- Vesci, L., Milazzo, F.M., Stasi, M.A., Pace, S., Manera, F., Tallarico, C., Cini, E., Petricci, E., Manetti, F., De Santis, R., and Giannini, G. (2018). Hedgehog pathway inhibitors of the acylthiourea and acylguanidine class show antitumor activity on colon cancer in vitro and in vivo. Eur. J. Med. Chem. 157, 368–379. https://doi.org/10.1016/j.ejmech.2018.07.053.
- Howard, J.C., and Youngblood, F.E. (1966). Amino-N-cyanocarboxamides. I. m- and p.N,N-Dimethylamino-N-cyanobenzamide. J. Org. Chem. 31, 959–961. https://doi.org/10.1021/ jo01341a508.
- Seebach, D. (1979). Methods of Reactivity Umpolung. Angew. Chem. Int. Ed. Engl. 18, 239–258. https://doi.org/10.1002/anie. 197902393.
- Luo, Y., Zhang, X., and Xia, Y. (2024). Recent advances in transition-metal catalyzed nitrene transfer reactions with carbamates. Chin. Chem. Lett. 35, 108778. https://doi.org/10. 1016/j.cclet.2023.108778.
- 25. Park, Y., Kim, Y., and Chang, S. (2017). Transition Metal-Catalyzed C–H

Chem Article

- Amination: Scope, Mechanism, and Applications. Chem. Rev. 117, 9247–9301. https://doi.org/10.1021/acs.chemrev.6b00644.
- Roizen, J.L., Harvey, M.E., and Du Bois, J. (2012). Metal-Catalyzed Nitrogen-Atom Transfer Methods for the Oxidation of Aliphatic C-H Bonds. Acc. Chem. Res. 45, 911–922. https://doi.org/10.1021/ar200318q.
- Dequirez, G., Pons, V., and Dauban, P. (2012). Nitrene Chemistry in Organic Synthesis: Still in Its Infancy? Angew. Chem. Int. Ed. Engl. 51, 7384–7395. https://doi.org/10.1002/anie. 201201945.
- Davies, H.M.L., and Manning, J.R. (2008). Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417-424. https://doi.org/10.1038/nature06485.
- Gao, Y., Li, H.X., Zhao, Y.P., and Hu, X.Q. (2023). Nitrene transfer reaction with hydroxylamine derivatives. Chem. Commun. (Camb) 59, 1889– 1906. https://doi.org/10.1039/d2cc06318b.
- van Vliet, K.M., and de Bruin, B. (2020). Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal. 10, 4751–4769. https://doi.org/10.1021/ acscatal.0c00961.
- Hayes, C.J., Beavis, P.W., and Humphries, L.A. (2006). Rh(II)-catalysed room temperature aziridination of homoallyl-carbamates. Chem. Commun. (Camb) 43, 4501–4502. https://doi. org/10.1039/b611662k.
- Lebel, H., Spitz, C., Leogane, O., Trudel, C., and Parmentier, M. (2011). Stereoselective Rhodium-Catalyzed Amination of Alkenes. Org. Lett. 13, 5460-5463. https://doi.org/10. 1021/ol2021516.
- Wan, Y.J., Ramírez, E., Ford, A., Bustamante, V., and Li, G. (2023). Fe-Catalyzed C(sp3)-H Diversification toward y-Functionalized Amides via Iron Nitrenoid: Mechanistic Insights and Applications. ACS Catal. 13, 14023–14030. https://doi.org/10.1021/acscatal.3c03679.
- 34. Wan, Y.J., Adda, A.K., Qian, J., Vaccaro, D.A., He, P.X., Li, G., and Norton, J.R. (2024). Hydrogen Atom Transfer (HAT)-Mediated Remote Desaturation Enabled by Fe/Cr-H Cooperative Catalysis. J. Am. Chem. Soc. 146, 4795–4802. https://doi.org/10.1021/jacs. 3c13085.
- Wan, Y.J., Ramírez, E., Ford, A., Zhang, H.K., Norton, J.R., and Li, G. (2024). Cooperative Fe/ Co-Catalyzed Remote Desaturation for the Synthesis of Unsaturated Amide Derivatives. J. Am. Chem. Soc. 146, 4985–4992. https://doi. org/10.1021/jacs.3c14481.
- Tang, J.J., Yu, X., Wang, Y., Yamamoto, Y., and Bao, M. (2021). Interweaving Visible-Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angew. Chem. Int. Ed. Engl. 60, 16426–16435. https:// doi.org/10.1002/anie.202016234.
- Bizet, V., Buglioni, L., and Bolm, C. (2014). Light-induced ruthenium-catalyzed nitrene transfer reactions: a photochemical approach towards N-acyl sulfimides and sulfoximines. Angew. Chem. Int. Ed. Engl. 53, 5639–5642. https://doi.org/10.1002/anie.201310790.
- 38. Zhang, X., Lin, B., Chen, J., Chen, J., Luo, Y., and Xia, Y. (2021). Synthesis of Sulfimides and

- N-Allyl-N-(thio)amides by Ru(II)-Catalyzed Nitrene Transfer Reactions of N-Acyloxyamides. Org. Lett. 23, 819–825. https:// doi.org/10.1021/acs.orglett.0c04043.
- Bizet, V., Hendriks, C.M.M., and Bolm, C. (2015). Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 44, 3378– 3390. https://doi.org/10.1039/c5cs00208q.
- Wang, H., Jung, H., Song, F.F., Zhu, S.Y., Bai, Z.Q., Chen, D.Y., He, G., Chang, S., and Chen, G. (2021). Nitrene-mediated intermolecular N-N coupling for efficient synthesis of hydrazides. Nat. Chem. 13, 378–385. https:// doi.org/10.1038/s41557-021-00650-0.
- Tan, Y., Chen, S., Zhou, Z., Hong, Y., Ivlev, S., Houk, K.N., and Meggers, E. (2020). Intramolecular C(sp³)-H Bond Oxygenation by Transition-Metal Acylnitrenoids. Angew. Chem. Int. Ed. Engl. 59, 21706–21710. https:// doi.org/10.1002/anie.202009335.
- Ju, M., Zerull, E.E., Roberts, J.M., Huang, M., Guzei, I.A., and Schomaker, J.M. (2020). Silver-Catalyzed Enantioselective Propargylic C–H Bond Amination through Rational Ligand Design. J. Am. Chem. Soc. 142, 12930–12936. https://doi.org/10.1021/jacs.0c05726.
- Ju, M., Huang, M., Vine, L.E., Dehghany, M., Roberts, J.M., and Schomaker, J.M. (2019). Tunable catalyst-controlled syntheses of β- and γ-amino alcohols enabled by silver-catalysed nitrene transfer. Nat. Catal. 2, 899–908. https:// doi.org/10.1038/s41929-019-0339-y.
- Bräse, S., Gil, C., Knepper, K., and Zimmermann, V. (2005). Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. Engl. 44, 5188–5240. https://doi.org/10.1002/anie. 200400657.
- Ryu, J., Kwak, J., Shin, K., Lee, D., and Chang, S. (2013). Ir(III)-Catalyzed Mild C-H Amidation of Arenes and Alkenes: An Efficient Usage of Acyl Azides as the Nitrogen Source. J. Am. Chem. Soc. 135, 12861–12868. https://doi.org/10. 1021/ja406383h.
- Shin, K., Kim, H., and Chang, S. (2015). Transition-Metal-Catalyzed C–N Bond Forming Reactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild and Versatile C–H Amination. Acc. Chem. Res. 48, 1040–1052. https://doi.org/10.1021/acs. accounts.5b00020.
- Cenini, S., Gallo, E., Caselli, A., Ragaini, F., Fantauzzi, S., and Piangiolino, C. (2006). Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes. Coord. Chem. Rev. 250, 1234–1253. https://doi.org/10.1016/j.ccr.2005. 10.002.
- Chang, J.W.W., Ton, T.M.U., and Chan, P.W.H. (2011). Transition-metal-catalyzed aminations and aziridinations of C-H and C=C bonds with iminoiodinanes. Chem. Rec. 11, 331–357. https://doi.org/10.1002/tcr.201100018.
- Shimbayashi, T., Sasakura, K., Eguchi, A., Okamoto, K., and Ohe, K. (2019). Recent Progress on Cyclic Nitrenoid Precursors Transition-Metal-Catalyzed Nitrene-Transfer Reactions. Chemistry 25, 3156–3180. https:// doi.org/10.1002/chem.201803716.

- Dubé, P., Nathel, N.F.F., Vetelino, M., Couturier, M., Aboussafy, C.L., Pichette, S., Jorgensen, M.L., and Hardink, M. (2009). Carbonyldiimidazole-Mediated Lossen Rearrangement. Org. Lett. 11, 5622–5625. https://doi.org/10.1021/ol9023387.
- Bizet, V., and Bolm, C. (2015). Sulfur Imidations by Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions. Eur. J. Org. Chem. 2015, 2854–2860. https://doi.org/10.1002/ejoc. 201500220.
- Hermann, G.N., and Bolm, C. (2017).
 Mechanochemical Rhodium(III)-Catalyzed C-H Bond Amidation of Arenes with Dioxazolones under Solventless Conditions in a Ball Mill. ACS Catal. 7, 4592–4596. https://doi.org/10.1021/ acscatal.7b00582.
- Park, J., and Chang, S. (2015). Comparative Catalytic Activity of Group 9 [Cp*M(III)] Complexes: Cobalt-Catalyzed C-H Amidation of Arenes with Dioxazolones as Amidating Reagents. Angew. Chem. Int. Ed. Engl. 54, 14103–14107. https://doi.org/10.1002/anie. 201505820.
- Park, Y., Park, K.T., Kim, J.G., and Chang, S. (2015). Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading to Robust C-H Amination with a New Type of Amidating Reagent. J. Am. Chem. Soc. 137, 4534-4542. https://doi.org/10.1021/jacs. 5b01324.
- 55. Wang, H., Li, Z., Chen, X., Wong, J.J., Bi, T., Tong, X., Xu, Z., Zhen, M., Wan, Y., Tang, L., et al. (2023). Multicomponent coupling and macrocyclization enabled by Rh(III)-catalyzed dual C–H activation: Macrocyclic oxime inhibitor of influenza H1N1. Chem 9, 607–623. https://doi.org/10.1016/j.chempr.2022.10.019.
- Maity, S., Potter, T.J., and Ellman, J.A. (2019). α-Branched amines by catalytic 1,1-addition of C–H bonds and aminating agents to terminal alkenes. Nat. Catal. 2, 756–762. https://doi. org/10.1038/s41929-019-0330-7.
- Fukagawa, S., Kojima, M., Yoshino, T., and Matsunaga, S. (2019). Catalytic Enantioselective Methylene C(sp(3))-H Amidation of 8-Alkylquinolines Using a Cp*Rh(III) /Chiral Carboxylic Acid System. Angew. Chem. Int. Ed. Engl. 58, 18154–18158. https://doi.org/10.1002/anie.201911268.
- Scamp, R.J., DeRamon, E., Paulson, E.K., Miller, S.J., and Ellman, J.A. (2020). Cobalt(III)-Catalyzed C-H Amidation of Dehydroalanine for the Site-Selective Structural Diversification of Thiostrepton. Angew. Chem. Int. Ed. Engl. 59, 890–895. https://doi.org/10.1002/anie. 2010111884
- Knecht, T., Mondal, S., Ye, J.H., Das, M., and Glorius, F. (2019). Intermolecular, Branch-Selective, and Redox-Neutral Cp*Ir(III) -Catalyzed Allylic C-H Amidation. Angew. Chem. Int. Ed. Engl. 58, 7117–7121. https://doi. org/10.1002/anie.201901733.
- Hong, S.Y., Park, Y., Hwang, Y., Kim, Y.B., Baik, M.H., and Chang, S. (2018). Selective formation of gamma-lactams via C-H amidation enabled by tailored iridium catalysts. Science 359, 1016– 1021. https://doi.org/10.1126/science. aap/503.

- Kweon, J., and Chang, S. (2021). Highly Robust Iron Catalyst System for Intramolecular C(sp(3))-H Amidation Leading to gamma-Lactams. Angew. Chem. Int. Ed. Engl. 60, 2909–2914. https://doi.org/10.1002/anie.202013499.
- Park, J., Lee, J., Buckley, C., and Chang, S. (2017). Iterative C-H Functionalization Leading to Multiple Amidations of Anilides. Angew. Chem. Int. Ed. Engl. 56, 4256–4260. https://doi. org/10.1002/anie.201701138.
- Jeon, B., Yeon, U., Son, J.-Y., and Lee, P.H. (2016). Selective Rhodium-Catalyzed C–H Amidation of Azobenzenes with Dioxazolones under Mild Conditions. Org. Lett. 18, 4610– 4613. https://doi.org/10.1021/acs.orglett. 6h02250
- 64. Lin, S., Lin, B., Zhang, Z., Chen, J., Luo, Y., and Xia, Y. (2022). Construction of N-Acyliminophosphoranes via Iron(II)-Catalyzed Imidization of Phosphines with N-Acyloxyamides. Org. Lett. 24, 3302–3306. https://doi.org/10.1021/acs.orglett.2c01238.
- 65. Bai, Z., Zhu, S., Hu, Y., Yang, P., Chu, X., He, G., Wang, H., and Chen, G. (2022). Synthesis of N-acyl sulfenamides via copper catalysis and their use as S-sulfenylating reagents of thiols. Nat. Commun. 13, 6445. https://doi.org/10. 1038/s41467-022-34223-7.
- 66. van Vliet, K.M., Polak, L.H., Siegler, M.A., van der Vlugt, J.I., Guerra, C.F., and de Bruin, B. (2019). Efficient Copper-Catalyzed Multicomponent Synthesis of N-Acyl Amidines via Acyl Nitrenes. J. Am. Chem. Soc. 141, 15240–15249. https://doi.org/10.1021/jacs.9b07140.
- Zhang, Y.F., Dong, X.Y., Cheng, J.T., Yang, N.Y., Wang, L.L., Wang, F.L., Luan, C., Liu, J., Li, Z.L., Gu, Q.S., and Liu, X.Y. (2021).

- Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. J. Am. Chem. Soc. 143, 15413–15419. https://doi.org/10.1021/jacs.1c07726.
- Górski, B., Barthelemy, A.L., Douglas, J.J., Juliá, F., and Leonori, D. (2021). Coppercatalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat. Catal. 4, 623–630. https://doi.org/10.1038/s41929-021-00652-8.
- Kainz, Q.M., Matier, C.D., Bartoszewicz, A., Zultanski, S.L., Peters, J.C., and Fu, G.C. (2016). Asymmetric copper-catalyzed C-N crosscouplings induced by visible light. Science 351, 681–684. https://doi.org/10.1126/science. aad8313
- Do, H.Q., Bachman, S., Bissember, A.C., Peters, J.C., and Fu, G.C. (2014). Photoinduced, Copper-Catalyzed Alkylation of Amides with Unactivated Secondary Alkyl Halides at Room Temperature. J. Am. Chem. Soc. 136, 2162– 2167. https://doi.org/10.1021/ja4126609.
- Bartoszewicz, A., Matier, C.D., and Fu, G.C. (2019). Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles. J. Am. Chem. Soc. 141, 14864–14869. https://doi.org/10.1021/jacs.9b07875.
- Hirata, Y., Yada, A., Morita, E., Nakao, Y., Hiyama, T., Ohashi, M., and Ogoshi, S. (2010). Nickel/Lewis Acid-Catalyzed Cyanoesterification and Cyanocarbamoylation of Alkynes. J. Am. Chem. Soc. 132, 10070– 10077. https://doi.org/10.1021/ja102346v.
- Dreis, A.M., Otte, S.C., Eastwood, M.S., Alonzi, E.R., Brethorst, J.T., and Douglas, C.J. (2017). Diastereoselective Intramolecular

- Cyanoamidation with Alkenes. European. J. Org. Chem. 2017, 45–48. https://doi.org/10.1002/ejoc.201601283.
- Fu, X., Chen, J., Li, G., and Liu, Y. (2009). Diverse reactivity of zirconacyclocumulenes derived from coupling of benzynezirconocenes with 1,3-butadiynes towards acyl cyanides: synthesis of indeno[2,1b]pyrroles or [3]cumulenones. Angew. Chem. Int. Ed. Engl. 48, 5500–5504. https://doi.org/ 10.1002/anie.200900951.
- Kobayashi, Y., Kamisaki, H., Yanada, R., and Takemoto, Y. (2006). Palladium-Catalyzed Intramolecular Cyanoamidation of Alkynyl and Alkenyl Cyanoformamides. Org. Lett. 8, 2711– 2713. https://doi.org/10.1021/ol060733+.
- Liu, B., Wang, Y., Chen, Y., Wu, Q., Zhao, J., and Sun, J. (2018). Stereoselective Synthesis of Fully-Substituted Acrylonitriles via Formal Acylcyanation of Electron-Rich Alkynes. Org. Lett. 20, 3465–3468. https://doi.org/10.1021/ acs.orglett.8b01180.
- Lacy, C., and Scheuer, P.J. (2000). New Moloka'iamine Derivatives from an Undescribed Verongid Sponge. J. Nat. Prod. 63, 119–121. https://doi.org/10.1021/ np9902643.
- Tsukamoto, S., Kato, H., Hirota, H., and Fusetani, N. (1996). Ceratinamine: An Unprecedented Antifouling Cyanoformamide from the Marine Sponge Pseudoceratina purpurea. J. Org. Chem. 61, 2936–2937. https://doi.org/10.1021/jo9602884.
- L'abbe, G. (1969). Decomposition and Addition Reactions of Organic Azides. Chem. Rev. 69, 345–363. https://doi.org/10.1021/cr60259a004.