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Unlocking new pathways in chemical synthesis is crucial for advancing drug

discovery and materials science. Here, we have developed a straightforward and

efficient approach for synthesizing alkylated N-cyanamides through a nitrogen-

umpolung strategy. The one-pot two-step process merges a Cu-nitrene transfer
(electrophilic nitrogen) with a Cu-catalyzed N-alkylation (nucleophilic nitrogen).
This synthesis strategy not only promises accessibility to the late stage of complex

natural products and drugs but also establishes an innovative methodology.
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SUMMARY

The cyano group is found in numerous bioactive compounds.
Although cyano groups are easily introduced into target molecules
by the formation of C-CN, the coupling of CN to nitrogen is more
challenging because of the high electronegativity of that element.
We have developed an efficient one-pot two-step method of
preparing alkylated N-acyl cyanamides and cyanoformamides
through a nitrogen-umpolung strategy. The strategy involves a
Cu-nitrene transfer and a Cu-catalyzed N-alkylation, with various
dioxazolones, trimethylsilyl cyanide (TMSCN), and halides. This
transformation exhibits broad substrate scope and excellent func-
tional-group tolerance by a straightforward procedure under mild
conditions. Our reaction can also carry out the late-stage functional-
ization of complex natural products and pharmaceuticals.

INTRODUCTION

Nitriles are found in many bioactive chemicals' and generally exhibit remarkable
biocompatibility.? They often function as hydrogen-bond acceptors, particularly
with amino acids, in protein-small molecule interactions. They are easily converted
into amines, carbonyl groups, and heterocycles.? Nitriles have been traditionally
prepared by the dehydration of amides,” the nucleophilic attack of cyanide ion on
carbon,” or radical cyanation.> However, an alternative way of introducing nitriles
into target molecules is the addition of cyanide ion to electrophilic nitrogen. The re-
sulting cyanamides, particularly N-acyl cyanamides, are versatile building blocks in
organic synthesis.® The two-nitrogen and one-carbon skeleton of N-acyl cyanamides
enables their transformation into a variety of heterocycles (Figure 1A).”~"* Further-
more, they can be incorporated into bioactive molecules as carboxylic acid bio-
isosteres, enhancing the membrane permeability of drug candidates, such as the

ones in Figure 1B."5717

The classical approach to constructing N-aroyl cyanamides involves the reaction of
aryl acid chlorides with sodium cyanamide.?*?? The direct addition of a CN™ to ni-
trogen may be more convenient but will require that the electronegative nitrogen be
made electrophilic—a nitrogen umpolung that may be practical in organic synthe-
sis.”> One possibility is a metal nitrenoid complex because such compounds are
known to have electrophilic reactivity.”* %’

Metal nitrenoid complexes have been used for the construction of amide deriva-

tives,® by processes such as aziridination,*"*? C(sp®)-H bond functionalization,****

sulfimidation,¢37 hy(:lrazid.';1tior1,40 and amidation.*"*3 Traditional precursors for

THE BIGGER PICTURE

N-Acyl cyanamides are versatile
building blocks, easily integrating
into bioactive molecules, which
augment the membrane
permeability of potential drug
candidates. Traditionally, the
approach to constructing N-acyl
cyanamides involved the reaction
of aryl acid chlorides with sodium
cyanamide. However, the use of
an electrophilic nitrogen allows
for the rapid construction of
alkylated N-acyl cyanamides. This
innovative approach entails the
combination of a Cu-catalyzed
nitrene transfer and a Cu-
catalyzed N-alkylation, with
various dioxazolones,
trimethylsilyl cyanide (TMSCN),
and halides. This procedure
enables the late-stage
functionalization of natural
products and pharmaceuticals. In
a broader scientific context, this
one-pot two-step method should
attract significant interest within
the research community.
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Figure 1. Synthetic applications of N-acyl cyanamides and their bioactive molecules
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nitrene complexes have been azides, iminoiodinanes, and hydroxyl-
amines,”* but dioxazolones have recently attracted attention because of their
ease of handling, ready availability, and bench-top stability (Figure 2).*”*° The syn-
thesis of ruthenium nitrene complexes from dioxazolones has been reported by
Bolm (Figure 2A)*’*" and used for the construction of N-acyl sulfoximines and sulfi-
mides. Dioxazolones have also been used for the construction of new C-N bonds, as
in the C-H amidation reactions of Chang and others; either a C-N reductive elimina-
tion or a radical rebound mechanism (Figure 2A) appears to be involved.>7*? Nucle-
ophilic attack on electron-deficient nitrenoid complexes formed from dioxazolones
has been used for intermolecular coupling reactions, as in Chen'’s iridium- or iron-
catalyzed intermolecular N-N coupling with arylamines.”” Mechanistic studies
have established the strong electrophilicity of acyl nitrene complexes, leading to
Rh, Ru, Cu, and Fe-catalyzed S-imidations, P-imidations, and the formation of
N-acyl amidines (Figure 2B).*%¢*%¢ Motivated by these precedents and the avail-
ability of copper, we felt that N-acyl cyanamides might be available by the Cu-cata-
lyzed addition of cyanide to the electrophilic nitrene complexes from various 1,4,2-
dioxazol-5-ones (Figure 2C).

Cu-catalyzed C-N coupling, involving amines and alkyl halides, is another method
for C-N bond formation and has been successfully demonstrated by the Fu, Peters,
Leonori, and Liu groups®’~""; these reactions may occur by an Sy2 mechanism or by
a radical coupling. With copper catalysis, we have achieved the one-pot two-step

synthesis of alkylated N-acyl cyanamide derivatives (Figure 2C). The attack of CN™

"Department of Chemistry, Columbia University,

on the electrophilic nitrene ligand results in the formation of a nucleophilic cyana- 3000 Broadway, New York, NY 10027, USA
mide nitrogen, and the reaction of that nitrogen with alkyl halides yields the desired 2Lead contact

alkylated N-acyl cyanamides, although the low nucleophilicity of such cyanamides *Correspondence: jr11@columbia.edu
does make the reaction difficult. https://doi.org/10.1016/j.chempr.2024.04.020
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Figure 2. Metal nitrene transfer reactions

(A) Metal nitrene transfer reactions.

(B) Nucleophilic attack on an electrophilic nitrogen of metal nitrenoid.

(C) This work: Cu-catalyzed one-pot two-step N-difunctionalization for the synthesis of alkylated
N-acyl cyanamides mediated by a nitrogen umpolung.

RESULTS AND DISCUSSION

Optimization of reaction

We began by treating 3-phenyl-1,4,2-dioxazol-5-one S; with 1.5 equiv of trimethylsilyl
cyanide (TMSCN) in the presence of 5 mol % Cu(MeCN)4PF, in N,N-dimethylacetamide
(DMA) under air (60°C, 6 h), and then added 1.2 equiv of Mel along with 1.2 equiv of
tBuOLi for desilylation of the intermediate A (another 2 h, entry 1 in Figure 3). The result
was a one-pot, two-step synthesis of N-cyano-N-methylbenzamide 1 with an isolated
yield of 95%. Other copper catalysts (entries 2-4), including Cul, CuCN, and CuBr,
proved less effective at the Cu-nitrenoid transfer. The use of Cu(OTf), gave a slight
decrease in yield (to 91%) (entry 5). We then replaced TMSCN with NaCN and
nBusNCN; however, both proved to be worse CN ion sources (entries 6 and 7). The re-
action worked well in N,N-dimethylformamide (DMF) (94% yield, entry 8), the yields were
lower in 1,4-dioxane and 1,2-dichloroethane (DCE) (entries 9 and 10), whereas acetoni-
trile and methanol gave none of the desired product, presumably as a result of their co-
ordination to the copper (entries 11 and 12).%° No improvement in the yield was ob-
tained with other bases, such as K,;CO3; and tBuOK (entries 13 and 14), and no
change in yield was observed when the reaction was conducted under argon (entry
15). Increasing or decreasing the reaction temperature led to lower yields (entries 16
and 17). Carrying out the reaction in a single step (entry 18) led to a dramatically lower
yield of 1 (15%) because of the decomposition of Sy in the presence of a strong base.
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3 CuCN instead of Cu(MeCN);PFg 45

4 CuBr;instead of Cu(MeCN)4PFg 36

5 Cu(OTf); instead of Cu(MeCN)4PFg 91

6 NaCN instead of TMSCN 16

7 nBusNCN instead of TMSCN 63

8 DMF instead of DMA 94

9 1,4-dioxane instead of DMA 68

10 DCE instead of DMA 31

11 MeCN instead of DMA trace

12 MeOH instead of DMA trace

13 K,COj3 instead of tBuOLi 73

14 tBuOK instead of tBuOLi 55

15 Under Ar protection 95

16¢ At40°C,24 h 81

174 At80°C,3h 88

18 One-pot one-step 17

Figure 3. Optimization of the synthesis of alkylated N-acyl cyanamides

2Standard conditions: substrate S4 (0.2 mmol), TMSCN (0.3 mmol), and Cu(MeCN)4PF¢ (5 mol %) in
1 mL DMA were conducted for 6 h at 60°C, then 1.2 equiv of Mel and tBuOLi were added into
reaction solution for another 2 h, unless otherwise noted.

Blsolated yields were calculated.

°Full conversion of Sq at 40°C in 24 h.

9Full conversion of S4 at 80°C in 3 h.

Substrate scope

The reaction of 3-aryl-1,4,2-dioxazol-5-ones with TMSCN in the presence of Mel has
consistently produced N-methyl-N-cyanamides (1-12) in excellent yields, as high as
96%. As shown in Figure 4A, aryl dioxazolones with many functional groups,
including H, Me, tBu, MeO, halides, NO,, and CF3, are compatible with our mild re-
action conditions. Aliphatic dioxazolones also work, as exemplified by the successful
isolation of unprotected N-acyl cyanamides (13-17) in nearly quantitative yields.

The Mel can be replaced by benzyl bromide, giving 18-45 from our one-pot two-
step process. Various alkyls on C3 of the dioxazolones have worked well, giving com-
pounds 19-23, with the yield of 19 slightly lower (65%). Heteroatom-containing (Br,
N, and O) dioxazolones have proven quite compatible, giving compounds 24-29. A
range of dioxazolone substituents are tolerated well, including linear alkyl (30-32),
chloroalkyl 33, cycloalkyl (34-38), alkenyl (39 and 40), and alkynyl (41 and 42). Prod-
ucts 39 and 41, featuring terminal C=C and C=C bonds, have been obtained in
excellent yields. A similar reactivity has been observed with internal C=C,
which gives 40, 42, and the citronellic-acid-derived 44. The dioxazolone from an
N-Phth-protected y-amino-acid precursor has provided the phthalimido product
43 in nearly quantitative yield, whereas the lithocholic acid derivative 45 was ob-
tained in 95% yield.
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Figure 4. Substrate scope of dioxazolones and alkyl halides
2Reaction conditions: substrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PF,in 1 mL DMA at 60°C for 1-6 h under air, then R?X (1.2 equiv)
and tBuOLi (1.2 equiv) were added for another 2 h at 60°C; isolated yields.
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Figure 4. Continued

bLarge scale: substrates (10 mmol), TMSCN (11 mmol), and 5 mol % Cu(MeCN)4PF in 20 mL DMA at 60°C for 5 h under air, then R?X (11 mmol) and tBuOLi
(11 mmol) were added for another 1-2 h at 60°C; isolated yields.

“Substrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PF4in 1 mL DMA at 60°C for 2 h under air, then NH4CI (5 mL, aqueous) was added to
quench the reaction; isolated yields.

9Substrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PF4 in 1 mL DMA at 60°C for 2 h under air, then R?X (1.2 equiv) and tBuOLi (1.2 equiv)
were added for another 1-2 h at room temperature; isolated yields.

We then considered the possibility that other alkyl halides could be employed
with N-acyl cyanamides (Figure 4B). Commercially available 1-iodododecane
proved effective, providing 46 in 81% yield. Primary alkyl bromides (2-bromoethyl
benzene, 1-bromo-4-chlorobutane) gave the corresponding products 47 and 48
in moderate yields. Secondary and cyclic bromides worked well, as demonstrated
by the formation of 49 and 50. Halide substrates bearing C=C bonds (5-bromo-
2-methylpent-2-ene, and bromo allyls) gave 51-54 in good yields, whereas carbonyl
alkyl bromides were converted into alkylated N-acyl cyanamides 55-60 in 64%-81%
yields. Ester and acrylate substituents were tolerated (58-60) as well.

A similar approach gives cyanoformamide derivatives (carbamoyl cyanides) via the
Curtius rearrangement. These compounds have been used in the synthesis of useful

7277% and exist in natural products,”’’® for example, ceratinamine. If

intermediates
we employ our Cu-catalyzed nitrenoid transfer reaction on the substrate S61, with a
secondary alkyl substituent, we obtain 28% of the cyanoformamide 61’ along with
the benzylated N-acyl cyanamide 61 (Figure 5). The 61’ has surely come from an isocy-
anate intermediate, the result of a Curtius rearrangement of the Cu-nitrenoid. When
the Ris replaced with a t-butyl, a 1-adamantyl, or a 1-methylcyclohexyl, only the cya-
noformamides 62'-64’ are observed, as we would expect from the migratory aptitude
of these tertiary substituents.”” This strategy has been successfully applied to the
preparation of pharmaceutically relevant molecules, including gemfibrozil, ibuprofen,
and flurbiprofen derivatives 65'-67'. The cyanoformamide 67’ is formed along with 67.

Mechanism experiments

After the successful development of these transformations, we shifted our attention
to learning their mechanism. First, we began by investigating the mechanism of Cu-
catalyzed nitrene transfer reaction (step 1). In situ nuclear magnetic resonance
(NMR), with DMF-d; as the solvent at 60°C (Figure 6A, details in supplemental infor-
mation), revealed the smooth generation of two isomers, 68 and 69, in a ratio of
2.2:1. The fact that Cu(MeCN)4PF, catalyzes the generation of Cu-nitrenoid interme-
diates from dioxazolones is confirmed by the reaction (Figure 6B) of the dioxazolone
$13 with Cu(MeCN),4PF, in the presence of 1.5 equiv of triphenylphosphine (PPh3);
plainly the Cu(MeCN)4PF¢ is an active catalyst without the need for TMSCN activa-
tion. The formation of N-iminophosphorane 70 (Figure 6B) has been confirmed by
high-resolution mass spectrometry and NMR.

We have investigated the kinetics of the reaction of S4 with TMSCN in the presence
of the Cu catalyst (see Figures 6C and S1-S3; Tables S1-S3). The initial rate A[P]/Atis
linear in [S4] (Figure 6C, left), showing the reaction is first-order in [S1] with k; =
1.24 x 1072 min~" from A[PJ/At = k[S4]. A plot of kop, via fitting the first-order equa-
tion vs. variable [Cu] shows the reaction to be first-order in [Cu] (Figure 6C, middle),
implying a second-order rate constant k, of 2.95 x 1072 M~ sV in d[P)/dt = ky[S4]
[Cul. To our surprise, the reaction rate A[P]/At decreases (Figure 6C, right) with
increasing [TMSCN]. We think that the slow step involves the formation of the acyl
nitrene complex from Cu(l) and substrate, that TMSCN reacts rapidly with that ni-
trene complex, and that TMSCN also coordinates reversibly to the Cu(MeCN)4PF,.
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Figure 5. Synthesis of cyanoformamides

®Reaction conditions: substrate (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PFsin 1 mL
DMA at 60°C for 1-3 h under air, then RX (1.2 equiv) and tBuOLi (1.2 equiv) were added for another
1-2 h at 60°C. The reaction was worked up by the saturated NH,Cl (aq); isolated yields.
PReaction conditions: substrate (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PF,in 1 mL
DMA at 60°C for 2 h under air, then tBuOLi (1.2 equiv) was added for another 0.5 h at 60°C. The
reaction was worked up by the saturated NH4Cl (aq); isolated yields.

We have also examined the mechanism of the Cu-catalyzed N-alkylation of N-acyl
cyanamides with alkyl halides (step 2). Control experiments have revealed that
Cu(MeCN)4PF4 plays an important role in the N-alkylation of N-acyl cyanamide
(Figure 7A); only an 8% yield of 21 is obtained from 13, BnBr and tBuOLi after
12 h in the absence of the Cu catalyst. The addition of 5 mol % Cu(MeCN),PFq
leads to a high yield of 21 (85%) in 1 h. The cyclopropyl-opening product 72
was observed in 11% yield from the reaction of 13-TMS with (bromomethyl)cyclo-
propane (Figure 7B), suggesting a radical mechanism for the Cu-catalyzed N-alkyl-
ation, although (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) failed to trap any
radical species (Figure 7C). The use of enantioenriched 73 gave the racemic prod-
uct 21 (2% ee) along with recovered racemic 73 (27%) (Figure 7D), in agreement
with a radical mechanism. There are also precedents®’-’? for Cu-catalyzed radical
coupling.

Left circle (Cu-nitrene transfer): the first step in our reaction is presumably the decar-
boxylation of the dioxazolone by the copper(l) catalyst, which leads to the formation
of the electrophilic Cu-nitrene I. The intermediate | can then rearrange to the isocy-
anate, which will add the cyanide of TMSCN and make the cyanoformamide (Fig-
ure 8). The rearrangement outcome is dependent on the a substituents of Cu-nitrene
I. Alternatively, the complex | can coordinate the cyano group of TMSCN to its elec-
trophilic nitrogen, thus generating Il, which can give the N-acyl cyanamide via reduc-

40,65 (

tive elimination the cyanide anion may coordinate to the copper (path b) before

it attacks the nitrogen).
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Figure 6. Mechanism experiments of Cu-catalyzed nitrene transfer (step 1)

(A) Study of N-acyl cyanamide isomers via in situ NMR.

(B) Nitrene trapping experiments.

(C) Kinetics of Cu-nitrene transfer. (Left) initial-rate fit; (middle) first-order equation fit; and (right) initial-rate fit.

Right circle (Cu-catalyzed alkylation of the cyanamide): removal of the trimethylsilyl from
the N-acyl cyanamide by the LiOtBu will permit the amide ligand to coordinate to
the copper, giving lll. Electron transfer from the copper(l) of lll to the alkyl halide will
give the Cu(ll) cation IV, X~ and alkyl radical. The alkyl+ will then add to the Cu(ll) or
the N of IV, making the alkylated N-acyl cyanamide and regenerating the Cu(l) catalyst.

Conclusions
We have developed a straightforward and efficient method for synthesizing alky-
lated N-acyl cyanamides through a nitrogen-umpolung strategy. The one-pot
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Figure 7. Mechanism experiments of Cu-catalyzed N-alkylation (step 2)
(A) Control experiments for the study of Cu’s role.

(B) Radical clock experiment.

(C) Radical species trapping experiment.

(D) Racemization of the product 21 and (R)-(1-bromoethyl)benzene 73.
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Figure 8. Proposed mechanism for the synthesis of alkylated N-acyl cyanamides via the combination of Cu-catalyzed nitrene transfer with Cu-

catalyzed N-alkylation

two-step method merges a Cu-nitrenoid transfer (electrophilic nitrogen) with a Cu-
catalyzed N-alkylation (nucleophilic nitrogen). We have also used nitrene transfer to
develop a synthetic method for cyanoformamides. Our catalytic system is versatile,
with broad scope and high functional-group tolerance. We suggest a proposed
mechanism on the basis of nitrene trapping, kinetics experiments, radical clock,
and radical racemization.
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