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Copper-catalyzed C–N cross-coupling
for construction of alkylated N-cyanamide
derivatives via nitrogen umpolung

Yanjun Wan,1 Harriet K. Zhang,1 Jin Qian,1 Muinat A. Aliyu,1 and Jack R. Norton1,2,*
THE BIGGER PICTURE

N-Acyl cyanamides are versatile

building blocks, easily integrating

into bioactive molecules, which

augment the membrane

permeability of potential drug

candidates. Traditionally, the

approach to constructing N-acyl

cyanamides involved the reaction

of aryl acid chlorides with sodium

cyanamide. However, the use of

an electrophilic nitrogen allows

for the rapid construction of

alkylated N-acyl cyanamides. This
SUMMARY

The cyano group is found in numerous bioactive compounds.
Although cyano groups are easily introduced into target molecules
by the formation of C–CN, the coupling of CN to nitrogen is more
challenging because of the high electronegativity of that element.
We have developed an efficient one-pot two-step method of
preparing alkylated N-acyl cyanamides and cyanoformamides
through a nitrogen-umpolung strategy. The strategy involves a
Cu-nitrene transfer and a Cu-catalyzed N-alkylation, with various
dioxazolones, trimethylsilyl cyanide (TMSCN), and halides. This
transformation exhibits broad substrate scope and excellent func-
tional-group tolerance by a straightforward procedure under mild
conditions. Our reaction can also carry out the late-stage functional-
ization of complex natural products and pharmaceuticals.
innovative approach entails the

combination of a Cu-catalyzed

nitrene transfer and a Cu-

catalyzed N-alkylation, with

various dioxazolones,

trimethylsilyl cyanide (TMSCN),

and halides. This procedure

enables the late-stage

functionalization of natural

products and pharmaceuticals. In

a broader scientific context, this

one-pot two-step method should

attract significant interest within

the research community.
INTRODUCTION

Nitriles are found in many bioactive chemicals1 and generally exhibit remarkable

biocompatibility.2 They often function as hydrogen-bond acceptors, particularly

with amino acids, in protein-small molecule interactions. They are easily converted

into amines, carbonyl groups, and heterocycles.3 Nitriles have been traditionally

prepared by the dehydration of amides,4 the nucleophilic attack of cyanide ion on

carbon,5 or radical cyanation.3 However, an alternative way of introducing nitriles

into target molecules is the addition of cyanide ion to electrophilic nitrogen. The re-

sulting cyanamides, particularly N-acyl cyanamides, are versatile building blocks in

organic synthesis.6 The two-nitrogen and one-carbon skeleton ofN-acyl cyanamides

enables their transformation into a variety of heterocycles (Figure 1A).7–14 Further-

more, they can be incorporated into bioactive molecules as carboxylic acid bio-

isosteres, enhancing the membrane permeability of drug candidates, such as the

ones in Figure 1B.15–19

The classical approach to constructing N-aroyl cyanamides involves the reaction of

aryl acid chlorides with sodium cyanamide.20–22 The direct addition of a CN� to ni-

trogen may bemore convenient but will require that the electronegative nitrogen be

made electrophilic—a nitrogen umpolung that may be practical in organic synthe-

sis.23 One possibility is a metal nitrenoid complex because such compounds are

known to have electrophilic reactivity.24–29

Metal nitrenoid complexes have been used for the construction of amide deriva-

tives,30 by processes such as aziridination,31,32 C(sp3)–H bond functionalization,33–35

sulfimidation,36–39 hydrazidation,40 and amidation.41–43 Traditional precursors for
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nitrene complexes have been azides,44–47 iminoiodinanes,26,48 and hydroxyl-

amines,24 but dioxazolones have recently attracted attention because of their

ease of handling, ready availability, and bench-top stability (Figure 2).49,50 The syn-

thesis of ruthenium nitrene complexes from dioxazolones has been reported by

Bolm (Figure 2A)37,51 and used for the construction of N-acyl sulfoximines and sulfi-

mides. Dioxazolones have also been used for the construction of new C–N bonds, as

in the C–H amidation reactions of Chang and others; either a C–N reductive elimina-

tion or a radical rebound mechanism (Figure 2A) appears to be involved.52–63 Nucle-

ophilic attack on electron-deficient nitrenoid complexes formed from dioxazolones

has been used for intermolecular coupling reactions, as in Chen’s iridium- or iron-

catalyzed intermolecular N–N coupling with arylamines.40 Mechanistic studies

have established the strong electrophilicity of acyl nitrene complexes, leading to

Rh, Ru, Cu, and Fe-catalyzed S-imidations, P-imidations, and the formation of

N-acyl amidines (Figure 2B).38,64–66 Motivated by these precedents and the avail-

ability of copper, we felt that N-acyl cyanamides might be available by the Cu-cata-

lyzed addition of cyanide to the electrophilic nitrene complexes from various 1,4,2-

dioxazol-5-ones (Figure 2C).

Cu-catalyzed C–N coupling, involving amines and alkyl halides, is another method

for C–N bond formation and has been successfully demonstrated by the Fu, Peters,

Leonori, and Liu groups67–71; these reactions may occur by an SN2 mechanism or by

a radical coupling. With copper catalysis, we have achieved the one-pot two-step

synthesis of alkylated N-acyl cyanamide derivatives (Figure 2C). The attack of CN�

on the electrophilic nitrene ligand results in the formation of a nucleophilic cyana-

mide nitrogen, and the reaction of that nitrogen with alkyl halides yields the desired

alkylated N-acyl cyanamides, although the low nucleophilicity of such cyanamides

does make the reaction difficult.
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RESULTS AND DISCUSSION

Optimization of reaction

We began by treating 3-phenyl-1,4,2-dioxazol-5-one S1 with 1.5 equiv of trimethylsilyl

cyanide (TMSCN) in the presence of 5 mol % Cu(MeCN)4PF6 inN,N-dimethylacetamide

(DMA) under air (60�C, 6 h), and then added 1.2 equiv of MeI along with 1.2 equiv of

tBuOLi for desilylation of the intermediateA (another 2 h, entry 1 in Figure 3). The result

was a one-pot, two-step synthesis of N-cyano-N-methylbenzamide 1 with an isolated

yield of 95%. Other copper catalysts (entries 2–4), including CuI, CuCN, and CuBr2,

proved less effective at the Cu-nitrenoid transfer. The use of Cu(OTf)2 gave a slight

decrease in yield (to 91%) (entry 5). We then replaced TMSCN with NaCN and

nBu4NCN; however, both proved to be worse CN ion sources (entries 6 and 7). The re-

actionworkedwell inN,N-dimethylformamide (DMF) (94%yield, entry 8), the yieldswere

lower in 1,4-dioxane and 1,2-dichloroethane (DCE) (entries 9 and 10), whereas acetoni-

trile and methanol gave none of the desired product, presumably as a result of their co-

ordination to the copper (entries 11 and 12).66 No improvement in the yield was ob-

tained with other bases, such as K2CO3 and tBuOK (entries 13 and 14), and no

change in yield was observed when the reaction was conducted under argon (entry

15). Increasing or decreasing the reaction temperature led to lower yields (entries 16

and 17). Carrying out the reaction in a single step (entry 18) led to a dramatically lower

yield of 1 (15%) because of the decomposition of S1 in the presence of a strong base.
Chem 10, 1–12, August 8, 2024 3
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Substrate scope

The reaction of 3-aryl-1,4,2-dioxazol-5-ones with TMSCN in the presence of MeI has

consistently produced N-methyl-N-cyanamides (1–12) in excellent yields, as high as

96%. As shown in Figure 4A, aryl dioxazolones with many functional groups,

including H, Me, tBu, MeO, halides, NO2, and CF3, are compatible with our mild re-

action conditions. Aliphatic dioxazolones also work, as exemplified by the successful

isolation of unprotected N-acyl cyanamides (13–17) in nearly quantitative yields.

The MeI can be replaced by benzyl bromide, giving 18–45 from our one-pot two-

step process. Various alkyls on C3 of the dioxazolones have worked well, giving com-

pounds 19–23, with the yield of 19 slightly lower (65%). Heteroatom-containing (Br,

N, and O) dioxazolones have proven quite compatible, giving compounds 24–29. A

range of dioxazolone substituents are tolerated well, including linear alkyl (30–32),

chloroalkyl 33, cycloalkyl (34–38), alkenyl (39 and 40), and alkynyl (41 and 42). Prod-

ucts 39 and 41, featuring terminal C=C and ChC bonds, have been obtained in

excellent yields. A similar reactivity has been observed with internal C=C,

which gives 40, 42, and the citronellic-acid-derived 44. The dioxazolone from an

N-Phth-protected g-amino-acid precursor has provided the phthalimido product

43 in nearly quantitative yield, whereas the lithocholic acid derivative 45 was ob-

tained in 95% yield.
4 Chem 10, 1–12, August 8, 2024
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Figure 4. Continued
bLarge scale: substrates (10 mmol), TMSCN (11 mmol), and 5 mol % Cu(MeCN)4PF6 in 20 mL DMA at 60�C for 5 h under air, then R2X (11 mmol) and tBuOLi

(11 mmol) were added for another 1–2 h at 60�C; isolated yields.
cSubstrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PF6 in 1 mL DMA at 60�C for 2 h under air, then NH4Cl (5 mL, aqueous) was added to

quench the reaction; isolated yields.
dSubstrates (0.2 mmol), TMSCN (0.3 mmol), and 5 mol % Cu(MeCN)4PF6 in 1 mL DMA at 60�C for 2 h under air, then R2X (1.2 equiv) and tBuOLi (1.2 equiv)

were added for another 1–2 h at room temperature; isolated yields.
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We then considered the possibility that other alkyl halides could be employed

with N-acyl cyanamides (Figure 4B). Commercially available 1-iodododecane

proved effective, providing 46 in 81% yield. Primary alkyl bromides (2-bromoethyl

benzene, 1-bromo-4-chlorobutane) gave the corresponding products 47 and 48

in moderate yields. Secondary and cyclic bromides worked well, as demonstrated

by the formation of 49 and 50. Halide substrates bearing C=C bonds (5-bromo-

2-methylpent-2-ene, and bromo allyls) gave 51–54 in good yields, whereas carbonyl

alkyl bromides were converted into alkylated N-acyl cyanamides 55–60 in 64%–81%

yields. Ester and acrylate substituents were tolerated (58–60) as well.

A similar approach gives cyanoformamide derivatives (carbamoyl cyanides) via the

Curtius rearrangement. These compounds have been used in the synthesis of useful

intermediates72–76 and exist in natural products,77,78 for example, ceratinamine. If

we employ our Cu-catalyzed nitrenoid transfer reaction on the substrate S61, with a

secondary alkyl substituent, we obtain 28% of the cyanoformamide 610 along with

the benzylatedN-acyl cyanamide 61 (Figure 5). The 610 has surely come from an isocy-

anate intermediate, the result of a Curtius rearrangement of the Cu-nitrenoid. When

the R is replaced with a t-butyl, a 1-adamantyl, or a 1-methylcyclohexyl, only the cya-

noformamides 620–640 are observed, as we would expect from the migratory aptitude

of these tertiary substituents.79 This strategy has been successfully applied to the

preparation of pharmaceutically relevant molecules, including gemfibrozil, ibuprofen,

and flurbiprofen derivatives 650–670. The cyanoformamide 670 is formed alongwith 67.

Mechanism experiments

After the successful development of these transformations, we shifted our attention

to learning their mechanism. First, we began by investigating the mechanism of Cu-

catalyzed nitrene transfer reaction (step 1). In situ nuclear magnetic resonance

(NMR), with DMF-d7 as the solvent at 60�C (Figure 6A, details in supplemental infor-

mation), revealed the smooth generation of two isomers, 68 and 69, in a ratio of

2.2:1. The fact that Cu(MeCN)4PF6 catalyzes the generation of Cu-nitrenoid interme-

diates from dioxazolones is confirmed by the reaction (Figure 6B) of the dioxazolone

S13 with Cu(MeCN)4PF6 in the presence of 1.5 equiv of triphenylphosphine (PPh3);

plainly the Cu(MeCN)4PF6 is an active catalyst without the need for TMSCN activa-

tion. The formation of N-iminophosphorane 70 (Figure 6B) has been confirmed by

high-resolution mass spectrometry and NMR.

We have investigated the kinetics of the reaction of S1 with TMSCN in the presence

of the Cu catalyst (see Figures 6C and S1–S3; Tables S1–S3). The initial rateD[P]/Dt is

linear in [S1] (Figure 6C, left), showing the reaction is first-order in [S1] with k1 =

1.243 10�2 min�1 from D[P]/Dt = k1[S1]. A plot of kobs via fitting the first-order equa-

tion vs. variable [Cu] shows the reaction to be first-order in [Cu] (Figure 6C, middle),

implying a second-order rate constant k2 of 2.95 3 10�2 M�1 s�1 in d[P]/dt = k2[S1]

[Cu]. To our surprise, the reaction rate D[P]/Dt decreases (Figure 6C, right) with

increasing [TMSCN]. We think that the slow step involves the formation of the acyl

nitrene complex from Cu(I) and substrate, that TMSCN reacts rapidly with that ni-

trene complex, and that TMSCN also coordinates reversibly to the Cu(MeCN)4PF6.
6 Chem 10, 1–12, August 8, 2024
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We have also examined the mechanism of the Cu-catalyzed N-alkylation of N-acyl

cyanamides with alkyl halides (step 2). Control experiments have revealed that

Cu(MeCN)4PF6 plays an important role in the N-alkylation of N-acyl cyanamide

(Figure 7A); only an 8% yield of 21 is obtained from 13, BnBr and tBuOLi after

12 h in the absence of the Cu catalyst. The addition of 5 mol % Cu(MeCN)4PF6
leads to a high yield of 21 (85%) in 1 h. The cyclopropyl-opening product 72

was observed in 11% yield from the reaction of 13-TMS with (bromomethyl)cyclo-

propane (Figure 7B), suggesting a radical mechanism for the Cu-catalyzed N-alkyl-

ation, although (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) failed to trap any

radical species (Figure 7C). The use of enantioenriched 73 gave the racemic prod-

uct 21 (2% ee) along with recovered racemic 73 (27%) (Figure 7D), in agreement

with a radical mechanism. There are also precedents67,70 for Cu-catalyzed radical

coupling.

Left circle (Cu-nitrene transfer): the first step in our reaction is presumably the decar-

boxylation of the dioxazolone by the copper(I) catalyst, which leads to the formation

of the electrophilic Cu-nitrene I. The intermediate I can then rearrange to the isocy-

anate, which will add the cyanide of TMSCN and make the cyanoformamide (Fig-

ure 8). The rearrangement outcome is dependent on the a substituents of Cu-nitrene

I. Alternatively, the complex I can coordinate the cyano group of TMSCN to its elec-

trophilic nitrogen, thus generating II, which can give theN-acyl cyanamide via reduc-

tive elimination40,65 (the cyanide anion may coordinate to the copper (path b) before

it attacks the nitrogen).
Chem 10, 1–12, August 8, 2024 7
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Right circle (Cu-catalyzed alkylation of the cyanamide): removal of the trimethylsilyl from

the N-acyl cyanamide by the LiOtBu will permit the amide ligand to coordinate to

the copper, giving III. Electron transfer from the copper(I) of III to the alkyl halide will

give the Cu(II) cation IV, X� and alkyl radical. The alkyl, will then add to the Cu(II) or

the N of IV, making the alkylatedN-acyl cyanamide and regenerating the Cu(I) catalyst.
Conclusions

We have developed a straightforward and efficient method for synthesizing alky-

lated N-acyl cyanamides through a nitrogen-umpolung strategy. The one-pot
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two-step method merges a Cu-nitrenoid transfer (electrophilic nitrogen) with a Cu-

catalyzed N-alkylation (nucleophilic nitrogen). We have also used nitrene transfer to

develop a synthetic method for cyanoformamides. Our catalytic system is versatile,

with broad scope and high functional-group tolerance. We suggest a proposed

mechanism on the basis of nitrene trapping, kinetics experiments, radical clock,

and radical racemization.
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Rönn, R., and Sandström, A. (2009). Hepatitis C
virus NS3 protease inhibitors: Large, flexible
molecules of peptide origin show satisfactory
permeability across Caco-2 cells. Eur. J. Pharm.
Sci. 38, 556–563. https://doi.org/10.1016/j.ejps.
2009.10.004.

16. Yang, W.C., Li, J., Li, J., Chen, Q., and Yang,
G.F. (2012). Novel synthetic methods for
N-cyano-1H-imidazole-4-carboxamides and
their fungicidal activity. Bioorg. Med. Chem.
Lett. 22, 1455–1458. https://doi.org/10.1016/j.
bmcl.2011.11.115.

17. Yokoo, K., Yamawaki, K., Yoshida, Y.,
Yonezawa, S., Yamano, Y., Tsuji, M., Hori, T.,
Nakamura, R., and Ishikura, K. (2016). Novel
broad-spectrum and long-acting parenteral
cephalosporins having an acyl cyanamide
moiety at the C-3 terminal: Synthesis and
structure-activity relationships. Eur. J. Med.
Chem. 124, 698–712. https://doi.org/10.1016/j.
ejmech.2016.09.015.

18. Malamas, M.S., Farah, S.I., Lamani, M.,
Pelekoudas, D.N., Perry, N.T., Rajarshi, G.,
Miyabe, C.Y., Chandrashekhar, H., West, J.,
Pavlopoulos, S., and Makriyannis, A. (2020).
Design and synthesis of cyanamides as potent
and selective N-acylethanolamine acid
amidase inhibitors. Bioorg. Med. Chem. 28,
115195. https://doi.org/10.1016/j.bmc.2019.
115195.
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