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Abstract—Recent works have demonstrated the effectiveness of
machine learning (ML) techniques in detecting anxiety and stress
using physiological signals, but it is unclear whether ML models
are learning physiological features specific to stress. To address
this ambiguity, we evaluated the generalizability of physiological
features that have been shown to be correlated with anxiety
and stress to high-arousal emotions. Specifically, we examine fea-
tures extracted from electrocardiogram (ECG) and electrodermal
(EDA) signals from the following three datasets: Anxiety Phases
Dataset (APD), Wearable Stress and Affect Detection (WESAD),
and the Continuously Annotated Signals of Emotion (CASE)
dataset. We aim to understand whether these features are specific
to anxiety or general to other high-arousal emotions through
a statistical regression analysis, in addition to a within-corpus,
cross-corpus, and leave-one-corpus-out cross-validation across
instances of stress and arousal. We used the following classifiers:
Support Vector Machines, LightGBM, Random Forest, XGBoost,
and an ensemble of the aforementioned models. We found that
models trained on an arousal dataset perform relatively well
on a previously unseen stress dataset, and vice versa. Our
experimental results suggest that the evaluated models may be
identifying emotional arousal instead of stress. This work is
the first cross-corpus evaluation across stress and arousal from
ECG and EDA signals, contributing new findings about the
generalizability of stress detection.

I. INTRODUCTION

Anxiety and stress are common responses to actual or

perceived threats in daily life. While there are negative conno-

tations to anxiety and stress, they are not necessarily harmful

to well-being. Acute anxiety and stress may help us to adapt to

stressors and respond accordingly, but severe, prolonged stress

may give rise to illness. Chronic stress and anxiety can weaken

the immune system and have been linked to many health

issues, including major neurological disorders, heart diseases,

and high blood pressure [1], [2]. Anxiety disorders and chronic

stress are highly prevalent; in the United States alone, with two

in three adults report that they have experienced increased

stress over the course of the COVID-19 pandemic [3], and

rates of moderate to severe anxiety have increased and remain

above pre-pandemic levels [4]. Due to the closely related

emotional experiences of anxiety and stress [5], we refer to

both as ”stress” in this paper.

The growing mental health crisis has inspired an increased

interest in developing computing tools to aid the early detec-

tion of chronic anxiety and stress. However, to the best of

our knowledge, there is less work on generalized methods

for anxiety, stress, and affect detection. In this work, we

perform cross-corpus stress and emotion recognition using

physiological features typically indicative of heightened stress

and anxiety across three datasets of stress and general affect

in order to examine the generalization properties of these

physiological features.

In general, cross-corpus emotion recognition is a more chal-

lenging task due to the different types of stimuli, signal quality,

and emotion models used in annotation [6], [7], [8]. Studies

of the generalization of emotion recognition methods typically

classify emotions as high/low arousal or positive/negative

valence across different datasets, while generalization of stress

detection methods focuses on classifying high/low stress. Few

studies have investigated the generalization of stress detec-

tion methods, and to the best of our knowledge, none have

attempted to evaluate the generalization of emotion and stress

detection methods in a true cross-corpus evaluation, though

prior works have performed leave-one-corpus-out evaluations

and/or train-test analyses with data pooled from multiple

datasets.

Emotions are often described using the axes of arousal and

valence [9], which we describe in greater detail in Section II.

Higher stress is indicative of higher arousal, but higher arousal

does not necessarily indicate higher stress. In this work, we

performed within-corpus, cross-corpus, and leave-one-corpus-

out analyses using three affective datasets of stress and arousal

to test the following hypothesis:

H1: Stress detection models may be learning features that

are general across emotional arousal instead of specific to

stress.

The three datasets we used are APD (stress) [10], WESAD

(stress) [11], and CASE (arousal) [12]. Because stress is one

type of high-arousal emotion, we expect an affect detection

model trained on arousal labels to perform relatively well on

a previously unseen dataset with stress labels. The converse

would verify our hypothesis, i.e., the stress detection models

are not specific to stress and are instead learning features

generalizable to high arousal. This work makes the following

contributions:

1) The first cross-corpus evaluation across stress and

arousal using manually extracted physiological signals



from ECG and EDA signals, contributing new findings

about the generalizability of stress detection.

2) Regression analysis of the features identified to be

indicative of anxiety, stress, and high arousal, comparing

their significance and direction of correlation across

corpora.

II. RELATED WORK

A. Psychophysiology of Emotional Arousal, Anxiety, and

Stress

Among the most commonly used theoretical frameworks

for representing emotions is Russell’s Circumplex Model

of affect [9], which uses the two dimensions of valence

(pleasure-displeasure) and arousal (high-low alertness). This

model, depicted in Figure 1, proposes that emotions can be

represented on perpendicular axes of valence and arousal [13].

Increased emotional arousal is associated with a number of

physiological changes caused by autonomic nervous system

activity, which include increases in heart rate and the skin

conductance response (SCR) amplitude [14] and changes in

cutaneous blood flow, piloerection, and sweating, measured via

electrocardiogram (ECG) and electrodermal activity (EDA).

Fig. 1: A graphical representation of the Circumplex Model

of affect. The horizontal axis represents the valence dimension

and the vertical axis represents the arousal dimension [13].

Under Russell’s Circumplex Model, both anxiety and stress

are described as high-arousal emotional states. Anxiety is

defined as a future-oriented mood state of acute sympathetic

arousal [15] and is characterized by persistent worries, even in

the absence of an external stressor. Stress is closely related to

anxiety but is typically caused by an external trigger that may

be short-term or sustained [16]. Despite this difference, stress

and anxiety exhibit the same physiological features that can

be derived from ECG and EDA signals, e.g., increased heart

rate, decreased heart rate variability, sympathetic dominance

measured using frequency metrics of ECG signals, increased

skin conductance levels, and increased skin conductance re-

sponse rates. We describe each of these in greater detail in

Section IV-A.

The physiological markers of SNS activity related to anx-

iety, stress, and arousal can be measured easily and cost-

effectively with commercially available sensors, and they have

been studied extensively by researchers interested in stress

detection. Commonly used physiological signals include elec-

trocardiogram (ECG) and electrodermal activity (EDA) [17].

Heart rate variability and frequency-domain metrics of ECG

signals have been used as biomarkers to measure ANS activity,

as well as acute and chronic stress levels [17], [18]. Similarly,

phasic and tonic (relatively longer-lasting) components of

EDA are useful biomarkers for measuring SNS activity and

have been used extensively in assessing patients with disorders

such as anxiety and depression [19].

B. Anxiety/Stress Detection Using Physiological Signals

Many past works have focused on binary or multi-class clas-

sification of stress and/or anxiety and emotion classification

using physiological signals from publicly available datasets.

They primarily focus on developing better-performing models

and identifying the most salient feature sets [20], [21], [22].

Previous work on WESAD [20] used statistical features of

ECG, EDA, EMG, and temperature data to perform three-class

and binary classification, achieving up to 84.32% and 93.2%

accuracy, respectively, with an artificial neural network. Sub-

sequent studies tested those approaches on multiple datasets;

Zhu et al. [21] evaluated a stacking ensemble learning model

with EDA, ECG, and PPG signals to examine the accuracy of

each modality; they achieved the highest accuracy using only

EDA features, up to 86.4% with WESAD and 72.3% with the

Cognitive Load, Affect, and Stress Database (CLAS). Artificial

neural network approaches seeking to achieve better perfor-

mance than SVM and tree-based methods were also developed

[22], [23], [24]. [22] used frequency-domain features as input

to a convolutional neural network (CNN) and tested it on

the ASCERTAIN, CLAS, MAUS, and WAUC datasets using

low, mid, and high-level features of a CNN. They observed

accuracy scores of up to 93.58% with ASCERTAIN using a

multimodal, multi-level feature fusion approach.

Existing works in stress detection demonstrate the feasibility

of using physiological signals from wearable devices to detect

stress using SVM, tree-based methods, and artificial neural

networks, but they have not determined any ideal combination

of modalities or classification techniques. Our approach was

guided by previous works that found ML-based classifiers such

as SVM, KNN, LightGBM, and XGBoost and an ensemble of

those models to be effective due to their high performance

and low computational overhead [21]. Previous works found

that multimodal feature-level fusion performed better than uni-

modal features [22]. Following their success, we use multiple

modalities, i.e., high-level and statistical features from ECG

and EDA signals, and perform a feature-level fusion.

C. Cross-Corpus Affect Recognition

Previous research studying cross-corpus affect recognition

primarily focused on general affect recognition using EEG and

audiovisual signals. Rayatdoost and Soleymani [25] explored



cross-corpus binary emotion recognition using EEG signals

and found that model performance decreased when evaluated

across corpora. Zehra et al. [7] performed both within- and

cross-corpus binary speech emotion recognition (high vs. low

valence) using four datasets with different languages. They

found that different classifiers performed better on different

datasets, and an ensemble learning approach with majority

voting generally improved cross-corpus performance. They

achieved an F1-score of 0.63 and accuracy of 63.26% in the

cross-corpus setting, training on the Urdu corpus and testing

on German. Zhang et al. [8] showed that adding unlabeled

speech data to a pooled training set can enhance model

performance in both within- and cross-corpus settings. They

achieved 66.6% accuracy in binary affect recognition (high vs.

low arousal) using a leave-one-corpus-out validation approach

with six different datasets.

To the best of our knowledge, Baird et al. [26] are the

only authors who have reported a cross-corpus study using

physiological signals for stress recognition. Their analysis fo-

cused on predicting sequential saliva-based cortisol measures

from the FAU-TSST, ULM-TSST, and REG-TSST datasets.

However, the biochemical analysis procedure for cortisol ex-

traction varied between datasets, making the derived values not

completely comparable. Rather then training a model on one

dataset and testing on another to evaluate the generalizability

of their approach, they evaluated a joint regression model in

which data were pooled from multiple datasets. They found

that respiration and heart rate were highly predictive of cortisol

levels, and therefore, effective markers of stress. Furthermore,

a review of studies on stress detection using physiological

signals and wearable sensors between 2012 and 2022 by [17]

found no studies attempting to validate a trained model on a

completely new, unseen dataset. To the best of our knowledge,

we contribute the first study using physiological signals from

wearable devices for cross-corpus and cross-label stress and

arousal detection.

TABLE I: List of abbreviations used

Abbreviation Refers to

ECG Electrocardiogram

EDA Electrodermal activity

HF-RR Power in the high-frequency band of
RR intervals

LF-HF ratio Ratio of LF to HF power

LF-RR Power in the low-frequency band of RR
intervals

LGBM LightGBM

RF Random Forest

RMSSD Root mean square of successive differ-
ences between normal heartbeats

SCL Skin conductance level

SCR Skin conductance response

SDNN Standard deviation of the IBI of normal
sinus beats

TSST Trier Social Stress Test

XGB XGBoost

III. DATASETS

A. Overview

We performed stress and affect detection using the Anxiety

Phases Dataset (APD), Wearable Stress and Affect Detection

(WESAD), and the Continuously Annotated Signals of Emo-

tion (CASE) dataset. In our analysis, we focused on ECG and

EDA signals due to their availability across all datasets. Each

of these datasets contains data from various wearable devices

that collect physiological signals and relies on participant self-

reports to generate affective labels. Baseline signals were col-

lected during an initial relaxation phase, and recovery signals

were collected during the ending ”cool-down” phase in each

study. Between each phase of emotion elicitation, subjects

were given a short rest period before the next stimulus.

The datasets differ primarily in the method of emotion

elicitation and type of self-report used. APD targeted bug

phobia and public speaking phobia in two tasks and uses

the Subjective Units of Distress scale (SUDs) [27] and the

Liebowitz Social Anxiety Scale (LSAS) [28]. WESAD used

eleven humorous video clips to elicit amusement and the

Trier Social Stress Test (TSST) [29], which consists of a

public speaking and a mental arithmetic task, to elicit stress.

Self-reports were collected using the Positive and Negative

Affect Schedule (PANAS) [30], six-item State-Trait Anxiety

Inventory (STAI) scored on a four-point Likert scale [31],

Self-Assessment Manikins (SAM) [32], and Short Stress State

Questionnaire (SSSQ) [33]. CASE introduced a new method

of collecting affect self-reports; participants watched video

stimuli and reported their continuous emotional experience

using a joystick [34], where the x-axis measured valence and

the y-axis measured arousal on a scale from 1 to 10. Next, we

describe each dataset in greater detail.

B. Anxiety Phases Dataset

APD consists of electrocardiogram (ECG), electrodermal

activity (EDA), and accelerometer (ACC) signals from 52

participants in lab-controlled settings across different phases

of induced emotions: rest, anticipation, exposure to an anxiety

trigger, recovery, and a spoken reflection of the experience.

ECG signals were recorded at 250 Hz, and EDA signals were

recorded at 50 Hz. Participants wore a Zephyr BioHarness 3.0

on the chest, and a Grove-GSR Sensor on each wrist.

Two anxiety triggers were used: a bug-box task in which

participants were asked to release a fake bug from a small

box, and a speech anxiety task where participants were asked

to rank three topics in order of difficulty, then prepare a 3-

minute speech about the most difficult topic. At the end of the

study, participants reported their anxiety levels using SUDs

and LSAS. Each experiment phase lasted 3 minutes.

C. Wearable Stress and Affect Detection

WESAD is a dataset with stress conditions that includes

ECG, EDA, ACC, electromyography (EMG), respiration, and

temperature signals collected from 15 subjects across rest,

amusement, stress, and two meditation phases. ECG and EDA

signals were both recorded at 700 Hz using the chest-worn



RespiBAN Professional and wrist-worn Empatica E4. We

used signals collected from the chest-worn sensor because

the original paper reported slightly higher accuracies using a

single chest-worn sensor as opposed to the wrist-worn sensor.

Similarly, [35] found that chest device features had higher

importance than wrist-device features in WESAD.

The TSST was used in the stress condition, and a set of 11

humorous video clips was used in the amusement condition.

After each condition, subjects self-reported affect using the

PANAS, STAI, SAM, and SSSQ questionnaires. The baseline

phase was 20 minutes long, the amusement condition was

about 6.5 minutes, the stress condition was 10 minutes, and

each meditation phase was 7 minutes.

D. Continuously Annotated Signals of Emotion

CASE is a multimodal dataset containing data from 30

participants recorded using ECG, blood volume pulse (BVP),

galvanic skin response (GSR, which records the same type of

signal as EDA), respiration (RSP), skin temperature (TEMP),

and electromyography (EMG) sensors. The authors selected

8 videos previously validated in other studies to elicit amuse-

ment, boredom, relaxation, and fear, as well as three additional

videos aimed at eliciting a state of relaxation for baseline

measurements. Each video lasted 2 to 3 minutes.

IV. METHODOLOGY

A. Data Preprocessing, Segmentation, and Feature Extraction

Our preprocessing methods were modeled after those de-

scribed in [11] and [10]. ECG and EDA signals were first

filtered using preprocessing methods from the biosppy [36]

and NeuroKit [37] Python open-source libraries to reduce

noise and remove baseline wander. Then, as recommended by

[38], for each phase in the datasets, we used 60-second sliding

windows with an overlap of 30 seconds to extract the following

ECG and EDA metrics from segments of the denoised signal.

Electrocardiogram (ECG):

• BPM: Heart rate increases in the face of a stressor [39].

BPM was calculated using the biosppy.ecg module.

• RMSSD and SDNN: Decreased HRV is associated with

elevated anxiety [40]. RMSSD reflects the beat-to-beat

variance in HR and is the primary time-domain measure

used to estimate the vagally mediated changes reflected

in HRV [41]. Lower SDNN and RMSSD was reported in

subjects with various anxiety disorders in [42], [43], and

[44]. RMSSD and SDNN were calculated using pyhrv

[45].

• HF-RR and LF-RR: The high-frequency band of HR

oscillations ranges from 0.15–0.4 Hz, and the low-

frequency band of HR oscillations ranges from 0.04-

0.15 Hz [41]. The HF band reflects parasympathetic

influences, and lower HF power is correlated with stress,

panic, anxiety, or worry. Increased LF power is associated

with anxiety [43]. In general, LF power may be generated

by the sympathetic nervous system [41]. The Fast Fourier

Transform was used to calculate HF-RR and LF-RR.

• LF-HF ratio: Higher LF/HF ratio indicates sympathetic

dominance, which occurs during fight-or-flight responses

or decreased parasympathetic activity [41]. In healthy

individuals, acute stress increases the LF/HF ratio and

decreases HF [46]; [40] describes other studies that have

reported the same pattern.

Electrodermal Activity (EDA):

• Mean SCL: The skin conductance level is the tonic

component of EDA. Changes in the SCL are thought

to reflect general changes in autonomic arousal [47],

and increased SCL is associated with anxiety [19]. SCL

was calculated using the NeuroKit Python library, then

averaged over the 60-second window.

• SCR rate: Skin conductance response is the phasic com-

ponent of EDA [19] and a higher skin conductance

response rate has been associated with anxiety, threat

responses, and emotional arousal [48]. SCR rate was also

calculated using NeuroKit.

We also extracted the mean, median, standard deviation, and

variance from filtered ECG and EDA signals.

B. Label Generation

Each dataset used a different method to collect self-reports,

so it was necessary to process those data in a way that allowed

for cross-corpus comparison.

APD: Participants’ self-reported anxiety levels from the SUDs

questionnaire were used to generate binary labels. The version

of SUDs used in APD ranges from 0 to 100, and we used

50 as a fixed threshold of the median score, to differentiate

high from low anxiety. Participant phases with scores 50 and

above were labeled as 1 (high anxiety) and those below 50

were labeled as 0 (low anxiety).

WESAD: Participants’ STAI responses were used to generate

binary labels. The 6-item short form STAI questionnaire [49]

ranges from 6 to 24, and we used the median, 15, as the fixed

threshold to determine high vs. low anxiety.

CASE: Participants’ self-reports of arousal were used to

generate binary labels. Since CASE consists of continuous

self-reports, we averaged the self-reported arousal values for

each phase to be consistent with APD and CASE. The median

value of the joystick range, 5, was used as the fixed threshold.

C. Statistical Analysis and Model Training

We first used a linear mixed effects model from the

statsmodels Python library [50] to examine the effects of the

selected physiological features on stress and emotional arousal

within each dataset. We set the physiological features as fixed

effects and the subject group as random effects.

Next, we conducted experiments in within-corpus, cross-

corpus, and leave-one-corpus-out settings. Our results from

the within-corpus condition are used as baselines for the

cross-corpus and LOCO experiments. Five machine learning

techniques were used to perform binary classification: Support

Vector Machine (SVM), LightGBM (LGBM) [51], Random

Forest (RF), XGBoost (XGB), and an ensemble of the pre-

vious four models. These models were chosen based on the



SOTA performance achieved by SVM, KNN, and tree-based

classifiers in previous affect detection studies, discussed in

Section II. We evaluated both majority voting and equally

weighted average ensembles of models. The equally weighted

ensemble approach performed significantly better, so we omit

the majority voting results.

In each experimental setting, data samples were generated

from the extracted features by segmenting each phase into

2-minute chunks and calculating the mean for each chunk.

Rather than take the mean value over the whole phase, we

chose 2-minute segments, since the shortest phase across

all three datasets was 2 minutes long. This process was

repeated for each feature and phase for each participant. Then,

the features for each phase were concatenated to form the

input feature vector, which was then normalized before model

training. In cases of moderate class imbalance, SMOTE [52]

was used. Model hyperparameters were selected using a simple

grid search algorithm.

In the cross-corpus and leave-one-corpus-out (LOCO) ex-

periments, we used the following definitions of binary clas-

sification: when testing on APD or WESAD, it is defined as

classifying an individual as having either high or low anxiety,

and when testing on CASE, it is defined as classifying an

individual as having either high or low emotional arousal,

regardless of the labels in the training dataset used.

Within-corpus: In the within-corpus case, models were

first trained and tested within datasets, using a 5-fold cross-

validation technique. The participants were split into 5 equally

sized groups, and data instances from each of the phases were

aggregated to form each fold.

Cross-corpus: In the cross-corpus setting, we trained and

tested classifiers across pairs of datasets. One dataset was used

as the training set, while the other was held out as the test set

to evaluate the generalizability of the features and models.

Leave-one-corpus-out: Finally, we conducted a LOCO ex-

periment using SVM, LGBM, RF, XGB, and an ensemble of

the four classifiers. Two datasets were pooled and used as input

to the model, while the remaining dataset was held out as the

test set.

V. RESULTS AND DISCUSSION

A. Regression Analysis

Results from the regression analysis are reported in Table

II. Heart rate (BPM) was significant across all three datasets,

while SCR rate was significant and positively correlated in

both APD and WESAD. We found that half of the features

had the same direction of correlation across all three datasets.

BPM, HF-RR, LF-RR, the median of ECG, and the median

of EDA were positively correlated to a positive label, and

SDNN, the mean and variance of ECG, and the mean of

EDA were negatively correlated. Several of these correlations

are consistent with previous work in psychology and affect

detection: increased heart rate [39] and power in the low-

frequency band [43] have been identified as high-level features

indicative of SNS activity. SDNN is a measure of HRV, and

decreased HRV is known to be correlated with increased

stress [40]. While SCR rate has been found to be positively

correlated with stress and anxiety [48], we find a slightly

positive correlation in WESAD and CASE. This could be due

to the elicitation of amusement in both datasets, which was

found to have a lower skin conductance than fear in [53].

Given that the majority of physiological features exhibited

the same direction of correlation in all three datasets, the

statistical analysis results support the generalizability of these

features across stress and anxiety.

B. Within-Corpus Performance

We use accuracy and AUC metrics to analyze model perfor-

mance in the within-corpus, cross-corpus, and LOCO settings.

Table III presents our results in the within-dataset condition, as

well as the results achieved with a random classifier to serve

as a baseline for the within-dataset experiment. All models

performed significantly better than a random classifier, and we

achieve SOTA performance on WESAD in the within-dataset

setting compared to previous binary classification studies [20],

[21] using an ensemble of models. The ensemble of models

performed the best overall across all datasets. It is important

to note that our goal in the within-dataset case was not

to achieve SOTA performance across all datasets. This step

verifies that our pipeline, from preprocessing to model training

and classification, is a viable method of affect detection for

the APD, WESAD, and CASE datasets. Model performance

is the lowest in APD, which may be attributable to more noise

present in the data. These results verify that our preprocessing,

feature extraction, and classification methods are viable for

detecting stress and arousal.

C. Specificity of Stress Detection: Cross-Corpus and Leave-

One-Corpus-Out Performance

Cross-corpus results are presented in Table IV, and LOCO

results in Table V. We found that model performance in cross-

corpus stress and affect detection was lower than within-corpus

performance, consistent with the findings in [25]. However,

we still achieved better-than-chance accuracy and AUC scores

across all pairs of datasets.

Our goal was to identify whether stress detection models

and the selected physiological features are specific to stress

or generalizable to arousal using cross-corpus analyses across

three datasets. The cross-corpus and LOCO experiments were

designed to evaluate the specificity of stress detection by

testing models with unseen data and different labels (i.e.,

stress vs arousal) from a completely different distribution.

In the case where both training and testing datasets were

labeled with stress (APD/WESAD), we achieved up to 68.3%

accuracy and an AUC score of 0.761 testing on WESAD, and

56.9% accuracy and an AUC score of 0.561 testing on APD.

Some train-test instances were not much better than random

guessing, e.g. testing on APD regardless of the training dataset

in both cross-corpus and LOCO cases. This is unsurprising

given the lower performance for APD in the within-corpus

case; the discrepancy may be due to a higher signal-to-noises

ratio present in APD data.



TABLE II: Correlation coefficients, p-values, and R-squared values (conditional/marginal) obtained from a mixed linear model

fitted to each dataset. An asterisk (*) indicates significance, i.e., a two-tailed p-value of less than 0.1, or equivalently, a one-

tailed p-value of less than 0.05.

APD WESAD CASE

R-squared: 0.688/0.120 R-squared: 0.797/0.556 R-squared: 0.629/0.325

Coef p-value Coef p-value Coef p-value

BPM 0.239 2.32E-12* 0.441 1.01E-79* 0.254 2.47E-07*
RMSSD -0.013 0.771 0.17 1.54E-13* 0.087 0.027*
HF RR 1.048 0.360 0.053 0.486 0.645 0.007*
LF RR -1.286 0.268 0.033 0.689 -0.769 0.002*
SDNN -0.015 0.713 -0.105 3.18E-06* -0.032 0.339
Mean SCL 1.74 0.338 -0.037 0.043* 0.349 9.90E-13*
SCR rate 0.204 0.1* -0.066 3.55E-06* -0.034 0.304
LF/HF ratio 0.055 0.153 0.121 3.20E-06* 0.049 9.64E-08*
ECG mean -1.275 0.037* -0.148 0.558 -1.694 0.144
ECG median 1.295 0.037* 0.134 0.601 1.653 0.154
ECG std -0.075 0.306 0.038 0.688 1.024 2.56E-24*
ECG var -0.041 0.559 -0.157 0.07* -0.936 3.44E-21*
EDA mean -1.82 0.318 -0.03 0.007* -0.594 0.001*
EDA median 0.019 0.894 0.063 0.007* 0.234 0.162
EDA std 0.058 0.246 0.065 0.06* -0.094 0.107
EDA var -0.041 0.406 -0.024 0.419 0.134 0.017*

TABLE III: Within-corpus classification results for stress vs.

non-stress (Acc and AUC score) in APD and WESAD and

high vs low arousal in CASE. We use SVM, LightGBM,

Random Forest, XGBoost, and an ensemble of the previous

models. The best results across all classifiers are bolded.

Model Acc AUC Acc AUC Acc AUC

APD WESAD CASE

Random 0.471 0.467 0.509 0.432 0.471 0.503

SVM 0.549 0.498 0.860 0.720 0.800 0.658
LGBM 0.547 0.529 0.836 0.720 0.788 0.661

RF 0.553 0.540 0.845 0.735 0.792 0.692
XGB 0.561 0.528 0.842 0.775 0.767 0.671

Ensemble 0.645 0.608 0.990 0.969 0.813 0.736

TABLE IV: Cross-corpus classification results using SVM,

LightGBM, Random Forest, XGBoost, and an ensemble of the

previous models (accuracy and AUC score). Random classifier

performance is included as a point of comparison.

Model Acc AUC Acc AUC Acc AUC

APD/WESAD APD/CASE WESAD/CASE

Random 0.509 0.432 0.471 0.503 0.471 0.503

SVM 0.358 0.530 0.458 0.500 0.463 0.510
LGBM 0.434 0.597 0.610 0.611 0.696 0.617

RF 0.260 0.515 0.515 0.564 0.598 0.582
XGB 0.499 0.641 0.569 0.644 0.610 0.626

Ensemble 0.658 0.709 0.708 0.611 0.644 0.600

WESAD/APD CASE/APD CASE/WESAD

Random 0.471 0.467 0.471 0.503 0.509 0.432

SVM 0.552 0.539 0.535 0.522 0.774 0.649

LGBM 0.550 0.542 0.546 0.537 0.680 0.555
RF 0.513 0.527 0.538 0.544 0.559 0.637

XGB 0.503 0.550 0.536 0.529 0.755 0.605

Ensemble 0.569 0.561 0.567 0.551 0.759 0.591

To evaluate our hypothesis, we examine the cross-label

training results, i.e., training on a stress dataset and testing on

an arousal dataset, and vice versa. Since stress is an example

of a high arousal emotion, we expected models trained on

arousal labels to perform relatively well on new instances with

stress labels, and models trained on stress labels to be specific

TABLE V: Leave-one-corpus out classification results using

SVM, LightGBM, Random Forest, XGBoost, and an ensemble

of the previous models (accuracy and AUC score).

Model Acc AUC Acc AUC Acc AUC

Test: APD Test: WESAD Test: CASE

Random 0.471 0.467 0.509 0.432 0.471 0.503

SVM 0.501 0.492 0.707 0.510 0.621 0.546
LGBM 0.505 0.497 0.590 0.475 0.535 0.534

RF 0.515 0.513 0.753 0.536 0.463 0.562

XGB 0.516 0.507 0.182 0.571 0.492 0.541

Ensemble 0.521 0.506 0.712 0.506 0.610 0.552

to stress and therefore perform worse on a dataset labeled

with arousal. Instead, we found that training on APD and

testing on CASE resulted in better performance (accuracies

up to 70.8% and AUC scores up to 0.644) than training on

CASE and testing on APD (accuracies up to 56.7% and AUC

scores up to 0.551). Training on WESAD and testing on CASE

resulted in accuracies up to 69.6% and AUC scores up to

0.617. CASE/APD achieved a maximum accuracy of 77.4%

and AUC score of 0.649.

Therefore, our results are supportive of H1: emotion classi-

fication models trained on stress and tested on arousal labels

can perform nearly as well or better than training on arousal

and testing on stress. In fact, cross-label evaluations resulted

in higher accuracies and AUC scores than training and testing

between stress datasets. It appears that the stress detection

models we tested may be learning features general across

emotional arousal instead of specific to stress. While our early

work in the specificity of stress features is limited in that

we did not perform explainable AI techniques such as the

calculation of Shapley values, our results suggest that this is

an important direction for future work in stress detection.

VI. CONCLUSION

Our work contributes the first study of cross-corpus stress

and affect detection across datasets labeled with stress and



emotional arousal. We extracted physiological features from

ECG and EDA signals and performed stress and arousal de-

tection in within-corpus, cross-corpus, and leave-one-corpus-

out experiments on three affective datasets. Our results show

that stress recognition models are able to recognize emotional

arousal better than stress in difficult cross-corpus settings with

different emotional stimuli, suggesting that such recognition

models may be detecting an emotionally aroused state that

is more general than stress. A limitation of this work is

the relatively small number of datasets and features used.

We aimed to use common high-level features of ECG and

EDA signals that have been found to be indicative of ANS

activity, but deep learning-based features are also highly useful

in detecting stress and anxiety, which can be explored in

future cross-corpus work. We also did not identify a set

of physiological features that are specific to stress/anxiety,

which merits further investigation with metrics and tools such

as Shapley values and feature importances. However, our

results suggest the importance of cross-corpus and cross-label

experiments to verify that features learned by stress detection

model are specific to stress.

This work motivates a deeper evaluation of stress detection

and the development of models that use features specific to

stress to accurately identify only stressful instances. To support

the improvement of stress detection models toward in-the-wild

deployments, more work is needed in cross-corpus settings

using larger datasets and more high-arousal emotions. Future

work may benefit from collecting physiological signals from

a wider variety of stressors and in-the-wild environments to

further explore the generalizability of stress detection across

settings.
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[8] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsupervised
learning in cross-corpus acoustic emotion recognition,” in 2011 IEEE

Workshop on Automatic Speech Recognition & Understanding, 2011,
pp. 523–528.

[9] J. A. Russell, “A circumplex model of affect,” Journal of Personality

and Social Psychology, vol. 39, no. 6, pp. 1161–1178, 1980.

[10] H. Senaratne, L. Kuhlmann, K. Ellis, G. Melvin, and S. Oviatt,
“A multimodal dataset and evaluation for feature estimators
of temporal phases of anxiety.” New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3462244.3479900

[11] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and
K. Van Laerhoven, “Introducing WESAD, a Multimodal Dataset
for Wearable Stress and Affect Detection.” New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3242969.3242985

[12] K. Sharma, C. Castellini, E. L. van den Broek, A. Albu-Schaeffer,
and F. Schwenker, “A dataset of continuous affect annotations and
physiological signals for emotion analysis,” Scientific Data, 2019.

[13] J. Posner, J. A. Russell, and B. S. Peterson, “The circumplex model of
affect: An integrative approach to affective neuroscience, cognitive de-
velopment, and psychopathology,” Development and Psychopathology,
2005.

[14] F. D’Hondt, M. Lassonde, O. Collignon, A.-S. Dubarry, M. Robert,
S. Rigoulot, J. Honore, F. Lepore, and H. Sequeira, “Early brain-body
impact of emotional arousal,” Frontiers in Human Neuroscience, 2010.

[15] J. M. Cisler, B. O. Olatunji, M. T. Feldner, and J. P.
Forsyth, “Emotion regulation and the anxiety disorders:
An integrative review,” Mar 2010. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901125/

[16] M. Alvord and R. Halfond, “What’s the difference
between stress and anxiety?” Oct 2019. [Online]. Available:
https://www.apa.org/topics/stress/anxiety-difference

[17] G. Vos, K. Trinh, Z. Sarnyai, and M. R. Azghadi, “Generalizable
machine learning for stress monitoring from wearable devices:
A systematic literature review,” Feb 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1386505623000436
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