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ABSTRACT: While the excess chemical potential is the key quantity
in determining phase diagrams, its direct computation for high-density
liquids of long polymer chains has posed a significant challenge.
Computationally, the excess chemical potential is calculated using the
Widom insertion method, which involves monitoring the change in
internal energy as one incrementally introduces individual molecules
into the liquid. However, when dealing with dense polymer liquids,
inserting long chains requires generating trial configurations with a
bias that favors those at low energy on a unit-by-unit basis: a
procedure that becomes more challenging as the number of units
increases. Thus, calculating the excess chemical potential of dense
polymer liquids using this method becomes computationally intract-
able as the chain length exceeds N ≥ 30. Here, we adopt a coarse-
grained model derived from the integral equation theory for which inserting long polymer chains becomes feasible. The integral
equation theory of coarse graining (IECG) represents a polymer as a sphere or a collection of blobs interacting through a soft
potential. We employ the IECG approach to compute the excess chemical potential using Widom’s method for polymer chains of
increasing lengths, extending up to N = 720 monomers, and at densities reaching up to ρ = 0.767 g/cm3. From a fundamental
perspective, we demonstrate that the excess chemical potentials remain nearly constant across various levels of coarse graining,
offering valuable insights into the consistency of this type of procedure. Ultimately, we argue that current Monte Carlo algorithms,
originally designed for atomistic simulations, such as configurational bias Monte Carlo (CBMC) methods, can significantly benefit
from the integration of the IECG approach, thereby enhancing their performance in the study of phase diagrams of polymer liquids.

1. INTRODUCTION
To gain a comprehensive understanding of the thermodynamic
stability of polymer melts, it is crucial to precisely determine
their phase diagram by calculating their chemical potential.1

Nevertheless, conducting an experimental investigation to
determine the phase diagram of polymer melts is often
unattainable due to their critical temperature typically
exceeding their degradation temperatures. In essence, the
polymer degrades before its coexistence curve can be
measured. In response, computational modeling has emerged
as a solution to determine polymer coexistence curves,
effectively circumventing the challenges posed by experimental
phase diagram determination.2 The isothermal coexistence of
two phases is defined by equal pressure and equal chemical
potential in the two phases (Pρ(1) = Pρ(2) and μρ(1) = μρ(2)),
making accurate numerical calculations of the pressure and
chemical potential indispensable. Nonetheless, this task can
prove to be nontrivial.

Calculating pressure from the simulation trajectory using the
virial equation is straightforward, but determining the chemical
potential can be challenging. The chemical potential, being a

free energy, is calculated as an excess quantity by taking the
difference from a known reference state, typically the gas
phase. While determining the free energy of a system in its gas
phase is not problematic, the challenging part lies in calculating
the contribution of the excess chemical potential to the free
energy.

The theoretical framework for calculating the excess
chemical potential as an energy difference was first developed
by Ben Widom. In Widom’s method, the chemical potential is
computed by measuring the difference in internal energy when
inserting a “ghost” molecule into the gas or liquid matrix.2−4

This method is computationally straightforward and easily
implemented in the Monte Carlo (MC) simulations of liquids.
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However, the one-step insertion of the molecule becomes
impractical when inserting a sizable molecule, such as a
polymer, into a dense liquid, as it is unlikely to be accepted.

Throughout the years, various sophisticated computational
techniques have been developed to enhance the insertion
probability of polymer chains into a dense matrix. Among
these techniques, the configurational bias Monte Carlo
(CBMC) method by Siepmann has been the most effective.5

In the CBMC method, a polymer chain is gradually inserted
into the polymer matrix, one monomer at a time. After the first
monomer was placed inside the matrix at a random location,
the second monomer is inserted by seeking an unoccupied site
within a spatial region surrounding the first monomer. This
process is repeated, until the entire chain is inserted. The
CBMC method allows the direct calculation of the excess
chemical potential from the chain insertion probability,
following Rosenbluth statistics.6 Originally developed for a
polymer matrix on a lattice, the chain insertion method has
been extended to a continuum by de Pablo and co-workers7

and to extensible chains by Mooij and Frenkel.8 In contrast to
Widom’s simple direct insertion of the entire molecule in one
step,4 the CBMC method offers a higher probability of
successfully inserting the polymer chain. However, as the chain
length increases, finding an available site becomes progressively
more challenging.9 Consequently, polymers with more than 30
monomers can hardly be inserted into dense polymer melts,
leading to limitations in determining the chemical potential for
long polymer chains. For instance, Siepmann and colleagues
investigated the vapor liquid coexistence curves in samples
featuring degrees of polymerization up to N = 16 for both n-
alkanes and perfluorinated alkanes.10,11 More recently, their
research extended to examining head-to-head polypropylene
up to N = 36 monomers, as well as polypropylene with the
same monomer count, alongside poly(ethylene-alt-propylene)
consisting of N = 30 monomers.12

To enhance the capabilities of MC configurational sampling
by chain insertion, several alternative methods have been
proposed, including the pruned-enriched Rosenbluth meth-
od13 and the incremental gauge cell method.14 Building upon
the CBMC method, Kumar and co-workers focused on solving
the incremental chemical potential, which represents the
increase in excess chemical potential with the addition of a
single monomer segment. The intramolecular chemical
potential of the full chain is thus calculated segment-by-
segment. Notably, this potential becomes independent of chain
length for chains longer than 10 segments. Note that the
incremental chemical potential was reported for dilute
solutions of chains with up to 30 monomers, thus for lower
densities and shorter chains than those considered in our
study.15,16

An expanded ensemble method was proposed by Wilding
and Müller, in which a chain is introduced as a “permanent
penetrable chain” that is gradually coupled to or decoupled
from the matrix by tuning an interaction parameter.17 In their
expanded ensemble simulation, polymers were modeled on a
lattice using the bond fluctuation model. For an athermal
polymer system, they simulated chains with length up to N =
80 at a volume fraction of 0.4, significantly lower than the melt
density considered in this study. Additionally, they conducted
simulations of thermal polymer chains with degrees of
polymerization of up to N = 40 at a volume fraction of 0.2.
Later, Escobedo and de Pablo introduced the EVALENCH
method, which combines elements of Müller’s expanded

ensemble, Kumar’s chain increment, and Siepmann’s con-
tinuum configurational bias method. This approach was
applied to calculate the chemical potential for tangent hard
spheres with 4, 8, 16, and 32 monomers at low densities, and
the results aligned with those previously reported by other
methods.18

A number of other sophisticated schemes were proposed by
Theodorou and co-workers to extend particle deletion
methods,19−21 where the excess chemical potential was
decomposed into an energetic contribution and a volume
term related to cavity formation. In the staged particle deletion
method, the excess chemical potential was calculated through a
combination of insertion and deletion moves, chain breaking
and rebuilding, and more. Using the particle deletion method
together with the connectivity-altering end-bridging Monte
Carlo move to make an equilibrated matrix, Theodorou and
co-workers investigated the infinite dilution solubility of
benzene in a matrix of polyethylene chains with the degree
of polymerization N = 44.22 The phase diagram of long chains
with N = 2048 monomers in semidilute solution was calculated
with the pruned-enriched Rosenbluth method for polymer
chains modeled as self-avoiding walks with attractive energy
between each pair of neighboring nonbonded monomers on a
simple cubic lattice with helical boundary conditions.23

A common observation from these studies is that they
involve polymeric systems at low density or in solution.23

Computational investigations involving realistic polymer
structures with all-atom or united atom (UA) resolutions at
high density remain computationally intractable when the
chain length exceeds 30 monomers.12 This absence of
computational research addressing the phase diagram of
high-density liquids containing long polymer chains under-
scores the challenges associated with measuring converging
excess free energies for these systems by using insertion
methods.

An alternative computational method to Widom insertion is
thermodynamic integration, where the free energy is calculated
by integrating the pressure along a trajectory of increasing
density.2 Nevertheless, this approach remains computationally
demanding for polymeric liquids because it is sensitive to the
chosen integration path, and its accuracy hinges on factors
such as sampling frequency, integration point placement, and
the precision of the initial integration state. In the presence of a
phase transition, thermodynamic integration becomes imprac-
tical due to the challenge of defining a reliable integration path
that captures necessary ensemble averages while transitioning
between phases.2

Some methods rely on determining the equation of state
(EOS) from which the chemical potential can be calculated
using standard thermodynamic relations.24 For instance,
methods have been developed using a perturbative expansion
around the hard-sphere EOS. However, such a procedure
becomes challenging for complex systems because it requires a
significant number of adjustable parameters to fit for
accuracy.22,25 Thus, the Widom method could still be the
most promising strategy to solve this problem.

Another theoretical method is self-consistent field theory.
This is a continuum approach that effectively predicts phase
diagrams of complex polymeric systems in the limit of high-
molecular-weight chains (N → ∞) and high-density liquids. In
this context, fluctuations are suppressed, and the specific
monomeric structure of the sample becomes less significant.
Field-theoretical calculations rely on phenomenological inter-
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action parameters and do not directly connect to the atomistic
picture. Compared with mean-field and continuum theories,
particle-based methods hold an advantage by directly
connecting to the local structural information while incorpo-
rating fluctuations.26

Our proposed approach combines Widom’s one-step, one-
molecule insertion technique with a coarse-grained (CG)
representation of polymer liquids based on the integral
equation theory of coarse graining (IECG).27 The IECG
method is an extension of polymer reference interaction site
model (polymer RISM or PRISM) theory, which is itself an
extension of the atomic Ornstein−Zernike (OZ) integral
equation theory.28 Notably, the soft potential inherent to the
IECG method addresses the challenges associated with
insertion, particularly for longer polymer chains, where the
interpolymer potential of IECG becomes softer. This results in
the efficient acceptance of most chain insertions during MC
simulations, facilitating the straightforward computation of the
excess chemical potential.

To calculate the excess chemical potential using the IECG
approach, we integrated our CG potential into an open source
software package called Monte Carlo for Complex Chemical
Systems (MCCCS),5,29 created and maintained by the
Siepmann group, that implements a CBMC algorithm within
the Gibbs ensemble Monte Carlo (GEMC) simulation
method.30 This modified code, herein referred to as
“MCCCS-CG”, allowed direct calculation of the chemical
potential for polymer liquids at atomistic resolutions using the
CBMC approach and was then extended to evaluate the excess
chemical potential of CG polymer chains across various state
points for a range of polymer liquids at high densities. These
thermodynamic conditions ensured the stability of the liquid
phase without spontaneous phase transitions.

To validate the accuracy of our proposed method, we
undertook two distinct procedures. Initially, we assessed the
robustness of the IECG description within MC simulations by
comparing the structural and thermodynamic attributes of
equilibrated polymer liquids with the corresponding atomistic
molecular dynamics (MD) simulations under the same
thermodynamic conditions. This step established the faithful
reproduction of structural features, such as pair distribution
functions, and thermodynamic aspects like pressure, confirm-
ing the fidelity of the MCCCS-CG code in emulating the
properties of atomistic MD simulations.

As a secondary test, we evaluated the MCCCS-CG
simulation data for the excess chemical potential by comparing
them to theoretical predictions for the same quantity. The
IECG method provided a theoretical expression amenable to
numerical solution across any thermodynamic state point and
an analytical solution valid, at the very least, in the high-density
liquid limit. In this way, we confirmed the consistency of the
IECG approach in calculating the excess chemical potential for
high-density polymer liquids. The success of these tests
indicates that the proposed method could be employed to
predict phase diagrams of polymer melts with long chains
because it provides a reliable evaluation of the excess chemical
potential in the high-density regime, where insertion methods
using atomistic polymer resolution do not perform well.

Importantly, we examined the consistency of the chemical
potential for various levels of CG, meaning the representation
of polymer chains as different numbers of CG units, denoted as
nb. We demonstrated that the excess chemical potential is
invariant for the practical values of nb. We stress though that

while both the IECG theory and simulation provide values for
the excess chemical potential, only the CG simulation is able to
provide the molecular details necessary for obtaining atomistic
configuration data through backmapping, if desired. Lastly, we
emphasize the significant computational efficiency of our
approach, which is orders of magnitude faster than atomistic
simulations. In this study, we computed the excess chemical
potential for high-density polyethylene melts encompassing
degrees of polymerization ranging from N = 44 to N = 720.
The agreement between theoretical predictions and simu-
lations consistently proved to be satisfactory across all sample
cases.

The remainder of this article is structured as follows. We first
describe our model system and derive an exact statistical
mechanical expression for the chemical potential following the
Widom approach. Then, we discuss the details of the
intramolecular and intermolecular energies used in the
expression for the chemical potential, including their
connection to the IECG theory. We then summarize the
IECG method of determining elements in these energies by
fitting a few parameters to short-range atomistic simulation
data. Following this, we derive simple forms for the excess
chemical potential that depend only on functions already
established in the IECG theory. Subsequently, we discuss the
ingredients of the associated CG simulation and how it extends
prior simulation codes. We then present and compare the
results obtained from IECG theory and simulation. Lastly, we
provide a summary of the work and discuss the limitations and
advantages of the IECG approach.

2. THEORY
2.1. Model System and Formal Expressions for the

Chemical Potential. Consider a liquid of n polymers in a
volume V and at a temperature T. Each polymer has a degree
of polymerization N, partitioned into a variable number of CG
units or blobs, nb, where each unit contains a number Nb = N/
nb of monomers. The chain number density is then ρch = n/V;
the monomer density is ρ = ρchN; and the density of CG units
is ρb = ρ/Nb.

To calculate the chemical potential, we follow Widom’s
insertion method, where we measure the change in Helmholtz
free energy (F) when we “virtually” add one polymer chain,
identical to the other chains, to the liquid in the canonical
ensemble (constant n, V and T). When this ghost polymer is
inserted into a matrix of n − 1 host polymers, the change in
free energy is the blob−blob chemical potential (μbb)

F
n

k T
Q

Q
ln

V T

nn

n n

bb
bb

,
B

( 1)

b

b

= =
i
k
jjjjj

y
{
zzzzz

(1)

where kB is Boltzmann’s constant, and Q nnb
denotes the

canonical partition function of a liquid of n CG chains, each
containing nb blobs

Q
Z

nnn
n

nn

bb

3b b
=

! (2)

Here, Zn
bb is the blob−blob configurational integral, and

m(2 / )2
b

1/2= is the mean thermal de Broglie wavelength
of the blob, where mb is the mass of a blob, ℏ is Planck’s
constant divided by 2π, and β = 1/(kBT).

The configurational integral in turn is
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Z U UR R Rexp ( ( ) ( ))n n n n
bb

intra
bb

inter
bb= [ + ] (3)

where Rn≡{r11, ..., r1ndb
, ..., rn d1

, ..., rnn db
} denotes a configuration of

the CG site positions of the n chains, with riα the position of
site α on polymer i. As such, R rdn i

n n
i1 1

b
= =

denotes an integration over the entire space of site positions.
Uintra

bb (Rn) and Uinter
bb (Rn) are the total intramolecular and

intermolecular internal energies of the n-chain liquid,
respectively, in configuration Rn.

Incorporating eqs 2 and 3 into eq 1 yields

bb
id
bb

exc
bb= + (4)

Here, μid
bb is the chemical potential needed to insert one chain

into an ideal gas of identical chains and is given by

k T
Z

n
ln nid

bb
B

1
bb

3 b
=

(5)

while μexc
bb , the excess chemical potential, accounts for the

intermolecular interactions between the single inserted chain
and the other polymer chains in the liquid, and the change of
conformation of the single chain when it is inserted into the
liquid, given by

k T
Z

Z Z
ln n

n
exc
bb

B

bb

( 1)
bb

1
bb=

(6)

Note that Z1
bb is the configurational integral over the

coordinates of a single isolated polymer chain in the volume
V. An approximation to eq 6 is derived below.
2.2. Intramolecular and Intermolecular Internal

Energies in the IECG Theory. To determine the partition
function of a polymer liquid in a CG representation, Zn

bb, given
by eq 3, expressions for the intramolecular and intermolecular
energies, Uintra

bb (Rn) and Uinter
bb (Rn), respectively, are needed. To

that end, we utilized the integral equation theory of CG
(IECG). The IECG formalism is based upon the polymer
reference interaction site model (polymer-RISM or PRISM)
theory,31 which itself is a generalization of the atomistic
Ornstein−Zernike (OZ) theory32 to macromolecules.

In the IECG theory, the chain is typically modeled with only
a few blobs, so that for long flexible chains with Nb ≫ 1, the
correlations between blobs can be modeled as Gaussian. The
average square end-to-end distance at melt densities is then
⟨R2⟩ = (nb − 1)l2, where l is the average distance (bond length)
between CG units.

If long-range interactions within a chain can be ignored, say,
due to interchain screening at melt densities, then at the
simplest level, the chain structure is ideal. In this case, the
intramolecular potential, Uintra

bb (Rn), can be represented as a
sum of Edwards Hamiltonians33

U k T l lR( )
3
2

( / )n
i

n n

iEd
bb

B
1 1

1
2

b

=
= = (7)

where liα ≡ |ri,α − ri,α+1| is the distance between neighboring
CG sites, α and α + 1, on chain i. Using this in eq 3, the single
molecule partition function, Z1

bb can be calculated analytically
to be

Z V l(2 /3) n
1
bb 2 3/2( 1)b= (8)

This expression depends on temperature only weakly through
the bond length l, which also depends upon nb since ⟨R2⟩ is
invariant.

In general, though, long-range interactions cannot be
ignored, as they change the chain structure from ideal to
self-avoiding at low (or zero) density, which is the regime in
which Z1

bb is computed. The IECG theory then uses a more
sophisticated form for Uintra

bb (Rn), which we state below. For a
detailed description of these expressions, and also those for
Uinter

bb (Rn), the reader can refer to our previously published
papers.34−38

The IECG form for Uintra
bb (Rn) contains contributions from

bond, angle, and nonbonded long-range interactions. The
dihedral contribution is not relevant in this case because the
CG sites are soft and can overlap. So

U U U Uintra
bb

bond
bb

angle
bb

nb
bb= + + (9)

The intramolecular bond energy

U U v l( )
i

n n

ibond
bb

Ed
bb

1 1

1

rep
bb

b

= +
= = (10)

where the first term is given by eq 7 above, and the pair
potential, vrep

bb (r), provides a short-range repulsion between
nearest neighbor blobs. It is defined below.

The intramolecular angle energy is defined as

U k T Pln ( )/sin( )
i

n n

i iangle
bb

B
1 1

2b

= [ ]
= = (11)

where θiξ is the bond angle between the sites ξ, ξ + 1, and ξ +
2. The angular probability distribution is given for a chain
following a random walk as

P
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with a → −0.25 for long chains.39

The nonbonded, long-range intramolecular energy, Unb
bb, is

represented as a sum of pairwise interactions given by the
effective IECG intermolecular potential, Ueff

bb(r), formally
derived in previous publications,36,38,40 and discussed below.

The intermolecular IECG internal energy, Uinter
bb (Rn), is a

sum of pairwise interactions between CG sites on different
chains

U U rR( ) ( )n
i

n

j i

n n n

i jinter
bb

1

1

1 1
eff
bb

b b

=
= > = = (13)

where riαjγ ≡ |riα − rjγ|.
The effective potential, Ueff

bb(r), is determined by inverting a
physically reasonable closure to the PRISM equation. For
descriptions of molecular liquids at the site level with relatively
short-range interactions, a closure to the PRISM equation31

that accounts for correlations at the molecular level appears to
be necessary.31,41 However, the IECG potential, Ueff

bb(r), is
long-ranged, and an atomic closure that models well long-range
interactions is sufficient. In this case, the hypernetted-chain
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(HNC) closure serves this purpose well. Inverting that closure
yields

U r k T g r h r c r( ) ln( ( )) ( ) ( )eff
bb

B
bb bb bb= [ + ] (14)

and so the CG potential depends on the intermolecular total
correlation function hbb(r) between blobs, where gbb(r) =
hbb(r) + 1, and the blob direct correlation function, cbb(r).

The repulsive pair potential appearing in eq 10 is chosen to
be eq 14, but with the potential of the mean force subtracted

v r U r k T g r k T h r c r( ) ( ) ln( ( )) ( ) ( )rep
bb

eff
bb

B
bb

B
bb bb= + = [ ]

(15)

The second expression is the negative of the HNC medium-
induced potential and so is repulsive at short distances as
required.

The above forms for Ubond
bb and Unb

bb make the CG
intramolecular energy dependent on density and temperature
through hbb(r) and cbb(r). Since this energy is used to compute
the partition functions Zn

bb for any n, in the IECG theory, one
selects the density of the true liquid. In that way, the partition
function of a single isolated chain, Z1

bb, depends on the density
of the liquid in which the chain will be inserted.

An appropriate PRISM equation relates cbb(r) to hbb(r). In
Fourier space, it is

c k h k n k k h k( ) ( )/ ( ) ( ) ( )bb bb
b

bb bb
b

bb= [ [ + ]] (16)

where a caret denotes the Fourier transform of its respective

quantity, with k being the wavevector, and k( )
bb

is the blob−
blob intramolecular structure factor, i.e., Fourier transform of
the intramolecular pair distribution function (pdf). The
effective potential is then uniquely specified knowing hbb(r).

This intermolecular total correlation function between CG
sites, hbb(r), can be computed from the monomer−monomer
correlation function, hmm(r), using an extension to liquids of
multiblob chains of an equation derived by Krakoviack,
Hansen, and Louis (KHL) for polymers in solutions
represented as soft spheres.42 To do this, KHL divides the
sites on the chain into real ones and fictitious ones, the latter in
our case being CG units (blobs). They then adopt a
Chandler−Andersen interpretation of the direct correlation
function, which means that it behaves as an effective potential.
In that way, the direct correlation between a blob and any
other site (monomer or blob) is approximated as zero. The
KHL equation in Fourier space becomes in our case36,38,40

h k k h k k( ) ( ) ( )/ ( )
bb bm 2 mm mm 2= (17)

Since eq 17 relies on the knowledge of hmm(k) at long
wavelengths, it might seem that determining hbb(k) would
necessitate extending simulations over very long times, a
situation best avoided. However, as discussed below, the IECG
theory employs an alternative approach that requires only
short-time information, such as for the pressure.

The intramolecular structure factors in eqs 16 and 17 for a
flexible chain are all appropriately normalized and denoted as
Ω̂(0) = 1.36,38,40 The monomer−monomer structure factor can
be reasonably approximated using the Debye function40
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where qb = q/nb and q = k2⟨R2⟩/6. Further, the blob−
monomer one is similarly found to be
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while the blob−blob one is
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In liquids of long polymer chains, we observe a very high
level of accuracy in the agreement between the numerical and
analytical solutions for these intramolecular structure factors.34

Lastly, the total correlation function for monomer−
monomer interactions in eq 17 is determined by the
monomer−monomer PRISM equation.28 In Fourier space,
this equation can be expressed as

h k k c k k c k( ) ( ) ( )/ 1 ( ) ( ) .
mm mm 2 mm mm mm= [ ] (21)

Here k N k( ) ( )mm mm= , with the latter being defined in eq
18 above. Determining the Fourier transform of the direct
correlation function, c k( )mm , is the final step in completing the
theory.

In previous studies of the IECG theory for long polymer
chains, it has been observed that c k( )mm can be accurately
approximated by just its k = 0 value, c k c( 0)mm

0= = . This can
be attributed to the fact that the CG effective potential exhibits
a significantly longer range than the actual monomer−
monomer interaction potential. Consequently, the direct
correlation functions, which are functions of their potentials,
also follow a similar pattern. Thus, the full IECG potential,
Uinter

bb , which depends on the monomer direct correlation
function through the equations above, is defined after the
fitting of a single adjustable parameter, c0 (for more details,
please refer to the Supporting Information).

Within IECG theory, the value of c0 is, in turn, derived from
the knowledge of the pressure. For high-density systems
comprising long polymer chains, the HNC closure can be
effectively approximated by the Mean Spherical Approximation
(MSA) closure. In this context, eq 14 is replaced with Ueff

bb(r) =
−kBTcbb(r). From this, the pressure in the IECG theory can be
expressed as34,40

P
k T

Nc
1

2ch B

0=
(22)

This CG pressure is subsequently equated with the pressure
of the actual system, thereby determining the value of c0.
Through this parameter, the characteristics of the CG system,
including the energies Uintra

bb and Uinter
bb , are established once the

pressure of the actual system, which is a quantity that rapidly
reaches equilibrium in a simulation, is determined.
2.3. Chemical Potential in the IECG Theory. Let us

begin by considering the ideal contribution to the chemical
potential, as given in eq 5. By substituting eqs 8 into eq 5, we
can observe that μid appears to depend strongly on the degree
of coarse graining through nb. This is the case even when we
take into account that the average bond length l tends to
decrease as nb increases. This behavior is expected to persist
even for more realistic chain models.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c06795
J. Phys. Chem. B 2024, 128, 1275−1288

1279

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.3c06795/suppl_file/jp3c06795_si_001.pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c06795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Note however that in determining phase coexistence, the
chemical potentials of the two phases must be equal.
Therefore, it is the difference between the chemical potentials
of the two phases that matters. To address this, we introduce a
reference single-chain intramolecular energy, designated as U0

bb,
and define the difference between this reference and Uintra

bb for n
= 1 as ΔUintra

bb . With these definitions in place, we can reframe
eq 5 using a Widom-like approach as
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Here, the average (⟨⟩0) is taken with respect to U0
bb, while Z0

denotes the partition function of a single chain in the reference
system. The calculation of this single-chain average was
achieved through simulations. Since Z0 remains (approx-
imately) the same for both phases, it can be set to Vζ, with the
specific value of ζ being disregarded. Consequently, all of the
relevant terms in μid can be determined in a straightforward
manner.

Now, let us turn our attention to the excess chemical
potential, as defined in eq 6. To simplify this equation, we
follow a traditional approach proposed by Hansen et al.43 and
Verlet and Levesque44 for simple liquids. The objective is to
reduce the equation to a form that depends solely on the
quantities defined in Section 2.2 above.

Following the conventional procedure for simple liquids, we
regard the intermolecular energy, Uinter

bb , as a smoothly varying
function of a switching parameter, λ, which characterizes the
coupling of an inserted particle with its surrounding matrix.
When λ = 1, the system consists of n molecules, including the
inserted one, fully interacting, while λ = 0 represents a scenario
where the inserted molecule does not interact with the
remaining n − 1 molecules.45

With this in mind, eq 6 can be expressed as

k T
Z

d
ln ( )n

exc
bb

B
0

1 bb

=
(24)

Let us assume that there is no change in the intramolecular
structure of the inserted CG chain as the interaction parameter
λ is gradually increased. Under this assumption, the excess
potential in the HNC approximation for Ueff

bb(r), as given in eq
14, adopts the form proposed by Hansen et al.43 and Verlet
and Levesque44
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Furthermore, when applying the MSA closure (that can be
derived from the HNC closure by assuming that the pair
distribution function is equal to 1), eq 25 simplifies to

k Tn c r Nk T crd ( )exc
bb

B b b
bb

B 0= (26)

It is important to note that within these approximations both
the pressure and the excess chemical potential remain invariant
in relation to the degree of coarse graining. Note that both eqs
22 and 26 do not depend on the number of blobs, nb. This
property proves to be valuable when employing the IECG
model to construct simulations that encompass multiple scales

for a polymer liquid, as it allows the flexibility to fine-tune the
simulation resolution as needed.

In the context of a CG polymer modeled as a single soft
sphere, where the intramolecular contribution to the excess
chemical potential is null, eqs 25 and 26 are expected to be
very accurate. In a multiblob representation, the excess
chemical potential will also include an intramolecular
contribution, which incorporates the effect of chain structure
change from the ideal to the melt state. For a long polymer
chain partitioned in a small number of soft blobs, the influence
of excluded volume effects is expected to be minimal, so that
intramolecular contribution to μexc

bb can be safely neglected.
However, as we progressively divide the polymer into an
increasing number of CG sites, each representing shorter and
shorter segments, this approximation is expected to become
less reliable.

However, are these expectations correct? That is, if one
computed μexc

bb from a realistic simulation of the CG system,
would it be invariant at least up to a modest number of CG
units, say nb ≤ 6? Also, would its value be well approximated by
eqs 25 or 26? In the following sections, we present evidence to
address these questions.

3. METHODS
3.1. IECG Simulations. In this section, we provide a

comprehensive description of the coarse-grained simulation
methodology employed to validate the theoretical framework.
Siepmann and co-workers have developed an open-source
software package named Monte Carlo for Complex Chemical
Systems (MCCCS) for performing Gibbs Ensemble Monte
Carlo (GEMC) simulations of polymers and other molecular
systems. This software incorporates the gradual chain insertion
technique using the configuration-biased Monte Carlo
(CBMC) algorithm. The code has been further extended
and equipped with a user-friendly interface by Martin in a
version called MCCCS Towhee.29 Initially, we extended the
MCCCS code to compute the excess chemical potential for
polymer liquids in united atom representations, employing the
CBMC methodology. Then, we included the IECG model to
calculate the excess chemical potential of coarse-gained
polymers. We modified an old version of the MCCCS code
from 2010, V2.2.

The modified code, herein referred to as “MCCCS-CG”, is
employed to perform Monte Carlo simulations of the IECG
liquid. It is used to calculate the energy variation and the
corresponding change in chemical potential resulting from the
insertion of a single CG chain.

The MCCCS-CG code differs from the original MCCCS
V2.2 in three minor ways: (1) all pairwise potentials such as
Ueff

bb(r), eq 14, are computed on a grid of points in r and read
from a file. (2) To perform chain insertion, the CBMC
algorithm is not used, but we use a simpler algorithm based
upon the expressions for Uinter

bb and Uintra
bb discussed in Section

2.2 above. In this algorithm, different conformations of
polymer chains are added all at once since the potentials are
soft, the number of blobs is small, and the probability of
insertion of the whole IECG chain in one step is found to be
high, even in high-density melts. Lastly, (3) a simple Widom
expression is used to compute the excess chemical potential.

This Widom expression is merely eq 6, which can be
rewritten as

k T Uln exp( )exc
bb

B inter
bb= (27)
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In this context, ΔUinter
bb represents the interaction energy of

the inserted particle and the existing polymer matrix. The
brackets (⟨⟩) denote an average over the configurations of the
inserted chain and the pre-existing ones. To calculate this
value, a chain is introduced into the polymer matrix and the
change in internal energy resulting from the insertion is
determined. Upon repeated insertions and equilibration of the
polymer matrix itself, the average in eq 27 is then obtained.

In the initial stage, we selected a cubic box with periodic
boundary conditions and prepared an equilibrated polymer
matrix through Monte Carlo simulations. To attain equilibrium
of the IECG multiblob liquid, the MCCCS-CG code
implements three distinct types of moves in each cycle:
rotation of a single-chain around its center-of-mass, linear
translation of the center-of-mass, and translation of individual
CG sites. When representing the polymers as soft spheres, the
only move performed is the translation of the center-of-mass.
Each move is attempted on a randomly selected chain and
repeated a number of times equal to the total number of
polymers within the sample. Translational moves of each IECG
site are attempted 50% of the times, molecule translations are
tried 40% of the times, and molecular rotations are attempted
10% of the times.

Following the completion of an entire equilibration cycle,
the MCCCS-CG code initiated thousands of attempts to insert
complete polymer chains. The code selects a conformation for
insertion from the existing matrix population in a random
manner. As a result of this process, the distribution of the
conformation for the inserted chain statistically complies with
the correct Boltzmann distributions for bonds and angles. The
chain’s conformational statistic adheres to an unperturbed
distribution prior to insertion.

Remarkably, we observe that the convergence of μexc
bb is quite

rapid when one uses the MCCCS-CG code. Convergence is
typically achieved after approximately 105 insertions for soft
spheres and up to 107 insertions for chains represented by ten
blobs. The number of steps required for convergence tends to
increase as the number of monomers within each blob
decreases primarily because the IECG potential exhibits a
sharper profile.

To expedite the computation, we introduced a cutoff
distance for the intermolecular potential and incorporated
the necessary tail corrections when recording the excess
chemical potential, following the approach employed in the
original MCCCS V2.2 code.

4. RESULTS
4.1. Example of MCCCS-CG Calculations: Excess

Chemical Potential as a Function of Density and
Temperature for a Polymer Liquid with a Degree of
Polymerization, N = 44. As an initial illustration of the
method we use in MCCCS-CG simulations, we present
calculations concerning the excess chemical potential for high-
density melts composed of relatively short polymer chains with
N = 44 monomers. This is a scenario where the insertion
procedure rapidly achieves convergence.

The force field input to the MCCCS-CG simulation that
calculates the excess chemical potential is the IECG forcefield
described in Section 2.2 above, which depends on the
monomer−monomer direct correlation function, c0, through
the HNC closure. As mentioned there, c0 is determined by
equating the CG pressure with that of the true system, which,
here, we take to be an atomistic molecular dynamics (MD)

simulation of the same system. The LAMMPS atomistic
simulation software46 was used.

Figure 1 shows the optimized c0 parameter for a series of
simulations at three distinct temperatures and increasing

densities. The optimized parameter traces a seamless curve
that can be conveniently fitted by an empirical equation as a
function of the density and temperature. A similar functional
expression effectively interpolates the c0 data across various
degrees of polymerization (see the Supporting Information for
more details). By extrapolating these empirical equations, we
can calculate the IECG potential for novel state points,
obviating the necessity for new atomistic simulations.
Consequently, the IECG potential proves to be transferable
to diverse polymer liquids operating under different
thermodynamic conditions.

Subsequently, equipped with the solved IECG potential as
input, we executed MCCCS-CG simulations on the CG
polymer liquid. To assess the accuracy of the MCCCS-CG
simulation in establishing a suitably equilibrated liquid matrix
for chain insertion, our initial step involved verifying that the
structural and thermodynamic properties of the IECG melt, as
predicted by the MCCCS-CG code, align with the properties
observed in an equivalent atomistic MD simulation. The
details of the MD simulation are reported in the Supporting
Information.

Figure 2 shows the pressure as a function of density
computed from the MCCCS-CG and atomistic LAMMPS
simulations under various thermodynamic conditions. As can
be seen, results of the two types of simulations are in excellent
agreement, even though the variance in the atomistic
simulation data is much larger than for the CG for the same
run time. This agreement indirectly validates the analytical
approximation to the pressure (eq 22), including the use of the
MSA closure.

It is important to note that Figure 2 selectively presents
pressure data for the highest and lowest temperatures
simulated. This approach is taken to prevent undue clutter,
as including intermediate temperature data could overly

Figure 1. Values of c0 computed from atomistic simulations of
polymer melts of degree N = 44 at increasing density and at different
temperatures. Data are fitted by equations that allow one to
extrapolate the parameters to polymer melts of other densities and
temperatures. A similar functional expression effectively interpolates
the c0 data across various degrees of polymerization (see the
Supporting Information for details).
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complicate the visualization. However, it is worth highlighting
that a comparable level of agreement is observed for the
intermediate temperature as well. The MCCCS-CG and
atomistic LAMMPS simulations were also found to be in
agreement for the pair distribution function, gbb(r), as reported
in the Supporting Information. As mentioned above, in the
atomistic simulation, the pressure equilibrates quickly.
Consequently, the determination of c0 necessitates a relatively
short MD trajectory of only a few nanoseconds (less than 3 ns
even for the longest chains considered in this study, N = 720).

Figure 3 shows the excess chemical potential as a function of
density for three temperatures, T = 473, 503, and 523 K. Data
from the MCCCS-CG simulation, the numerical solution of
the HNC expression, eq 25, and the analytical MSA solution,
eq 26, are shown. As anticipated, the chemical potential
increases with increasing density since inserting the chain
becomes more challenging with greater crowding. Increasing
the temperature though facilitates chain insertion, thereby
reducing μexc

bb, as one would expect. As can also be seen, the
numerical and analytical values are in excellent agreement with
each other and with the simulation data.

Additionally, we subjected the MSA equation governing the
excess chemical potential to testing using the empirical
equation that characterizes the density-dependent behavior of
the direct correlation function, c0 (see Figure 1). Notably, the
resulting dashed line depicted in Figure 3 precisely intersects
the numerical values of the recently computed excess chemical
potential. This agreement highlights that the MSA approx-
imation is capable of offering a dependable initial estimate for
the excess chemical potential within high-density polymer
melts.

Figure 4 confirms this invariance by showing the behavior of
μexc

bb for a longer chain, N = 300. Across different temperatures

and densities, this invariance remains up to a partition of the
chain in nb = 10 CG sites, where each site represents Nb = 30
monomer segments. Again, the simulation data and theory
predictions are in excellent agreement. Throughout both
figures, any notable deviations from the constant trend emerge
under the conditions of the lowest temperature and highest
density, where the insertion of the chain becomes less
favorable.

As anticipated, the invariance in the IECG model is robust,
although it diminishes as the coarse-grained chain is divided
into shorter and shorter segments. Specifically, predictions
with CG sites that include Nb = 30 monomers differ slightly
from those of larger Nb (smaller nb). Under such conditions,

Figure 2. Comparison of the virial pressure measured in the MCCCS-
CG simulation for PE melts with N = 44 and chains represented by
one soft sphere with the virial pressure measured in atomistic MD
simulations performed with the LAMMPS code. The soft sphere
IECG simulations are performed at temperatures of T = 473 K (blue
circles) and T = 523 K (violet circles). The atomistic LAMMPS
simulations are performed at the same temperatures, T = 473 K (blue
squares) and T = 523 K (pink squares). For the atomistic simulations,
we also report the variance of the measured pressure. In contrast, the
variance of the pressure in the CG simulation is smaller than the size
of the symbols. The pressure agreement between the CG MC and the
atomistic MD simulations is quantitative at both temperatures. The
analytical solution of the virial pressure with our model and the mean-
field MSA closure at T = 473 K (green line) and T = 523 K (orange
line) also show quantitative agreement.

Figure 3. Excess chemical potential, μexc
bb, as a function of density, ρ,

for a PE melt with N = 44 for three different temperatures (from the
top to the bottom: T = 473, 503, and 523 K). Theory predictions
using the HNC closure, eq 25, are shown as black squares; predictions
using the MSA closure, eq 26, are shown as solid blue triangles; and
MCCCS-CG simulation data are shown as red circles. The polymers
are modeled as soft spheres, so nb = 1. The black dashed line
corresponds to predictions using the MSA closure with extrapolated
data of c0 shown in Figure 1.

Figure 4. Excess chemical potential for a melt of PE chains of degree
of polymerization, N = 300, at variable temperatures and densities.
From the top to the bottom: blue symbols, T = 503 K and ρ = 797
kg/m3; red symbols, T = 513 K and ρ = 766 kg/m3; cyan symbols T =
503 K and ρ = 766 kg/m3; and green symbols, T = 503 K and ρ = 744
kg/m3. Each chain is CG at variable levels of resolution, with a
number of CG sites nb = 1, 2, 3, 4, 6, and 10. The data from the IECG
simulations (circles) agree with the theoretical solutions of the excess
chemical potential (squares). The horizontal dashed lines are a guide
to the eye and show that the excess chemical potential is mostly
insensitive to the granularity of the IECG model.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c06795
J. Phys. Chem. B 2024, 128, 1275−1288

1282

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.3c06795/suppl_file/jp3c06795_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c06795?fig=fig4&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c06795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the distribution of monomers within the chain starts to deviate
from Gaussian statistics. This invariance stands as a valuable
trait of the IECG model, particularly in the context of
multiscale modeling procedures, ensuring that the granularity
of the CG model can be flexibly adjusted without introducing
undesirable spurious forces.
4.2. Excess Chemical Potential is Independent of the

Granularity of the Model. The analytical solution of the
excess chemical potential under conditions of high density and
low granularity, eq 26, indicates that it remains unaffected by
the degree of coarse graining, nb, in the IECG model. However,
as the conditions required for the application of the MSA
closure cease to be met, the invariance of μexc

bb with nb becomes
questionable. In this section, we explore the steadfastness of
the analytical approximation of μexc

bb by varying the CG
granularity in the chain model.

The accuracy of the IECG theory to estimate the excess
chemical potential at various levels of coarse graining is first
validated by comparing the predictions of eq 25 with MCCCS-
CG simulation data that use eq 27. We examined a polymer
melt with a degree of polymerization of 300 at a density of ρ =
766 kg/m3.

The results from the MCCCS-CG code are given for various
levels of coarse graining in Table 1. This table displays the
calculated values of the excess chemical potential along with
their corresponding tail corrections. It is evident that these tail
corrections are indispensable for ensuring the accuracy of the
chemical potential calculations. Once these tail corrections are
incorporated, the excess chemical potential values from IECG
simulations become nearly independent of the model’s
granularity.

The right side of Table 1 also presents the chemical
potential values derived from IECG theory, demonstrating
excellent agreement with the excess chemical potential
obtained from the MCCCS-CG simulations. Therefore, both
IECG simulations and IECG theory indicate that the excess
chemical potential remains unaffected by the specific CG
model adopted, as long as the IECG polymer coarse-graining
approach is utilized.

It is worth noting that to the best of our knowledge direct
comparisons between the results of the chemical potential for
melts of long polymer chains from the IECG theory or
simulations and atomistic simulations are currently computa-
tionally unfeasible. However, future work will explore the
exciting possibility of combining the IECG method with
advanced MC algorithms at the atomistic level, which could
pave the way for such calculations as discussed later.

Figure 4 confirms this consistency by demonstrating the
independence of the excess chemical potential for IECG chains
with N = 300 monomers across different temperatures and
densities: this consistency remains up to a partition of the
chain in nb = 10 CG sites, where each site represents a Nb = 30
monomer segment. The excess chemical potentials from the
IECG theory and IECG simulations are in remarkable
agreement. Throughout both figures, any notable deviations
from the constant trend emerge under the conditions of the
lowest temperature and highest density, where the insertion of
the chain becomes more challenging.

Figure 5 further illustrates the dependence of the excess
chemical potential, as determined by the IECG simulations, at

various temperatures and densities for the N = 192
polyethylene chain. This dependence is explored in relation
to the number of blobs utilized to partition the chain. Notably,
we observe that the excess chemical potential is independent of
the CG representation, holding true for a number of CG sites
up to nb = 6. For this system, each site corresponds to a
segment comprising Nb = 32 monomers. Other structural and
thermodynamic properties of the IECG melt, as predicted by

Table 1. Comparison of the Values of the Excess Chemical Potential Obtained from the IECG MC Simulations (eq 27: μexc,sim)
and the IECG Theory (eq 25: μexc,theory) for Melts of Polyethylene Chains, with the Degree of Polymerization, N = 300a

nb n lx (Å) rcut (Å) μtail (kcal/mol) μexc,sim (kcal/mol) μexc,theory (kcal/mol)

1 20,258 569.17 210.8 −8.1 89.0 ± 0.5 89.0
2 6211 383.8 127.9 −6.7 88.4 ± 0.7 88.6
3 2610 287.5 95.8 −6.7 87.9 ± 0.9 88.1
4 1416 234.5 78.2 −5.1 87.2 ± 1.1 87.8
6 799 193.7 58.7 −4.1 86.4 ± 1.5 87.2
10 300 139.8 40.9 −2.8 86.2 ± 2.0 86.8

aThe table also reports tail corrections for the calculations of the excess chemical potential from IECG simulations. The density of polymer melt is
ρ = 766 kg/m3, and their temperature is T = 503 K. The systems have variable cut-off distance, rcut, variable box length, lx, and variable number of
molecules, n. Each polymer is modeled with a variable number of blobs, nb. All of the simulations were performed with the MCCCS-CG code. To
the best of our knowledge, it is currently computationally intractable to obtain the excess chemical potential at the atomic resolutions for these
systems.

Figure 5. Excess chemical potential for a melt of PE chains of degree
of polymerization, N = 192, at variable temperatures and densities.
From the top to the bottom: red symbols, T = 513 K and ρ = 766 kg/
m3; blue symbols, T = 503 K and ρ = 766 kg/m3; and green symbols,
T = 503 K and ρ = 744 kg/m3. Each chain is CG at variable levels of
resolution, with a number of CG sites nb = 1, 2, 3, 4, and 6. The data
from the MCCCS-CG simulations (circles) agree with the theoretical
solution of the excess chemical potential (squares). The horizontal
dashed lines are a guide to the eye and show that the excess chemical
potential is mostly insensitive to the granularity of the IECG model.
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our Monte Carlo code, are reported in the Supporting
Information.

As anticipated, the thermodynamic consistency inherent to
the IECG model showcases robustness, although this robust-
ness diminishes as the CG chain is segmented into shorter and
shorter segments. Specifically, CG sites that include Nb = 30
monomers show some degree of inconsistency. Under such
conditions, the distribution of monomers within the chain
starts deviating from Gaussian statistics. Nonetheless, the
consistency of the excess chemical potential remains valid
when the chain is partitioned into a variable number of CG
units. This aspect stands as a valuable trait of the IECG model,
particularly in the context of multiscale modeling procedures,
ensuring that the granularity of the CG model can be flexibly
adjusted without introducing undesirable spurious forces.

In the context of a CG polymer modeled as a single soft
sphere, where the intramolecular contribution to the excess
chemical potential is null, eqs 25 and 26 are expected to be
very accurate. In a multiblob representation, the excess
chemical potential will also include an intramolecular
contribution, which incorporates the effect of chain structure
change from the ideal to melt state. For a long polymer chain
partitioned in a small number of soft blobs, the influence of
excluded volume effects is expected to be minimal, so that
intramolecular corrections to μexc

bb are negligible. However, as
we progressively divide the polymer into an increasing number
of CG sites, each representing shorter chain segments
interacting through sharper repulsive blob potentials, this
approximation is expected to become less reliable.
4.3. Testing the Code Capabilities by Increasing the

Polymer Chain Length. Figure 6 shows the excess chemical
potential in both the soft sphere (nb = 1) and the three-blob
chain (nb = 3) representations for a PE melt. As can be seen,
altering the degree of CG within the IECG model appears to
have no effect, at least within this range of nb. Furthermore,
note that μexc

bb increases with increasing chain length since

inserting a longer chain causes a greater increase in the internal
energy due to the greater number of, predominantly repulsive
at this density,32 intersite interactions. The agreement between
the CG simulation and theory is excellent, with both the HNC
and MSA theory predictions being essentially the same. Note
that the MCCCS-CG code adeptly computes the excess
chemical potential for a PE chain consisting of N = 720
monomers. This is in stark contrast to conventional insertion
methods for atomistic models, which remain constrained to
either shorter chains or lower densities.

In the Supporting Information we report the excess chemical
potential at increasing density and at variable temperature. We
observe that an increase in the density amplifies the relevance
of the repulsive energetic contributions. Consequently, the
slope of the excess chemical potential as a function of the
degree of polymerization becomes more pronounced at higher
densities. A similar effect is observed when the simulation
temperature is decreased, because the insertion of progressively
longer chains results in more pronounced chain superposition,
accompanied by heightened repulsive interactions.
4.4. Chemical Potential of a Single Polymer Chain in

a Vacuum in the CG Representation. In this section, the
computation of the single-chain partition function, Z1

bb, is
further investigated. To that end, it is helpful to examine a
pseudochemical potential, “μintra”, which is the average of the
Boltzmann factor of the intramolecular potential for a single
chain in a vacuum
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where rnb denotes the configurational space of one polymer
chain. In the relative coordinates, the intramolecular energy is
given by the sum of three terms
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with m = (nb − 2)(nb − 3)/2 as the number of nonbonded
interactions. Therefore, in the relative coordinates, eq 28 can
be rewritten as
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where Γ represents the internal molecular coordinates, l, θ, and
r. Considering eqs 28−30 and the Jacobians, one obtains
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where each bolded integration measure is an appropriate
relative coordinate for the particular intramolecular potential

Figure 6. Excess chemical potential for a melt of PE in the CG
representation as a function of chain length at the density of 766 kg/
m3 and temperature T = 503 K. Data from MCCCS-CG simulations
with nb = 1 (red circles), and simulations with nb = 3 (solid blue
triangles) are shown. Theory predictions for nb = 1 from the
numerical solution of the HNC expression, eq 25 (black squares), and
the analytical MSA solution, eq 26 (green circles), are also shown, but
they are obscured by the simulation data points, being essentially
identical in value. The black dashed line is the MSA prediction that
uses the fit for c0 in the short-chain limit, extrapolated to long chains,
as shown in Figure 1.
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and contains all of the internal coordinates for example,
l l l l l lld d d . . . dn n1

2
1 2

2
2 ( 1)

2
( 1)b b

= · · . Each integral in a given
term for the CG polymers of this study will contribute equally
so we can rewrite each term as a single integral to the
appropriate power.
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In the IECG model, the nonbonded potential is bound and
soft. Thus, the change in the intramolecular chemical potential
due to nonbonded blob−blob interactions is small relative to
the bond and angle contributions. As a consequence, we
observe that the intramolecular chemical potential of eq 32
scales linearly with the number of CG units that make up a
chain, nb.

This linear scaling is confirmed by MCCCS-CG simulation
data of μintra for a CG polymer with a degree of polymerization
N = 720, as shown in Figure 7. We calculated μintra by

simulating a single polymer in a vacuum, where the change in
internal energy is measured by insertion of a single chain in the
gas phase at the selected temperature. Note that multiple
insertions of various single chain conformations were
performed to obtain the gas-phase chemical potential of the
single polymer chain at a given level of coarse graining.

The linear scaling was also obtained in calculations of the
chemical potential for a polyethylene chain with N = 300.
Table 2 directly compares μintra measured in simulations using
eq 28 with the theoretical expressions from eq 32 for this
particular sample. Each polymer chain is coarse-grained by nb =

1 up to 10 CG sites. The agreement between theory and
simulations is quite robust, suggesting that the analytical
expression of eq 32 gives a faithful representation of an isolated
CG polymer chain.

We note that a similar linear correlation for the chemical
potential of the isolated chain at atomistic resolution, where
the chemical potential scales linearly with the number of
monomers in the polymer chain, was previously derived from
simulations of zero-density freely jointed hard sphere chains18

and zero density bead-spring chains.15 Thus, the scaling of
μintra with the number of CG units is consistent with the scaling
with its number of monomers as it should, given the definition
of the number of CG units nb = N/Nb, with Nb being the
number of monomers in one chain.

5. DISCUSSION AND CONCLUSIONS
In summary, the integral equation theory of coarse graining
(IECG) was employed to compute the excess chemical
potential of flexible polymer liquids, leading to the derivation
of straightforward expressions. In the IECG approach, polymer
liquids are modeled as collections of coarse-grained (CG)
chains, with each CG site representing a segment of
monomers. It is essential that the size of the chain segment
exceeds the polymer persistence length to adhere to the
Gaussian statistics of monomer pair distributions and meet the
theory’s prerequisites for direct correlation functions.27

A comparison was made between the predictions of the
IECG theory for polyethylene melts and data from the
corresponding simulations that utilized the derived IECG
effective potential. This IECG simulation code was a minor
extension of the atomistic Gibbs ensemble Monte Carlo
software created by Siepmann and co-workers. The study
examined conditions involving varying density, temperature,
chain length (ranging from N = 44 to 720), and the degree of
coarse graining. In all cases, the agreement between theory and
simulation regarding the excess chemical potential was found
to be excellent. Equally significant was the invariance of the
excess chemical potential with respect to the degree of coarse
graining, as predicted by the theory, confirmed by the CG
simulation for practical values of the number of coarse-graining
sites.

Developing a procedure for conveniently computing the
excess free energy and phase diagrams of dense polymer liquids
has long been a goal in polymer physics and engineering.
Particle insertion methods effectively capture the energy
change resulting from the insertion of a single molecule and
perform optimally at low density and for short chains, where

Figure 7. “Intramolecular” chemical potential estimated from
simulations for different levels of CG of an isolated polyethylene
chain with a degree of polymerization N = 720 at a temperature of T
= 503 K (black circles). The trend-line is a linear fit to the data.

Table 2. Theoretical (eq 32) and Simulated (eq 28)
“Intramolecular” Chemical Potential of a Single
Polyethylene Chain CG with the IECG Approacha

nb μintra(sim) (kcal/mol) μintra(theory) (kcal/mol)

1 0 0
2 1.45 1.44
3 3.38 3.38
4 5.35 5.26
6 9.18 9.14
10 16.20 16.81

aEach polymer simulated has a degree of polymerization, N = 300,
and a variable number of CG sites, nb. The samples were at
temperature T = 503 K in a vacuum. The errors for the simulations
are around 0.01 kcal/mol.
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the insertion of a polymer chain is feasible through advanced
methods such as the configuration bias Monte Carlo method
and others.2 In contrast, field theories focus on the universal
behaviors of polymeric systems and are better suited for high-
density liquids composed of very long chains, where the
specific chemical nature of the polymer is not essential, and
fluctuations are minimal. There is a region of study between
these two extremes, where high-density liquids of long polymer
chains are of interest, which needs to be approached by
alternative methods. In this region, fluctuations are essential,
and differences in the chemical structures of the monomers can
result in differences in the chemical potentials and phase
diagrams. Traditional methods have struggled to explore this
region effectively.

Nevertheless, it is possible to compute the excess chemical
potential in a simulation by combining particle-based insertion
methods with CG models featuring soft potentials. A CG
representation in which the entire polymer is depicted as one
soft sphere or a collection of soft spheres ensures that the
attempted insertion of one polymer is readily accepted as no
sharp repulsive interactions exist during the direct insertion of
the soft particle. However, having a CG model with soft
interactions is necessary but not sufficient to perform reliable
calculations of the excess chemical potential.

A second necessary condition for success is that the CG
model accurately predicts the thermodynamic properties of the
polymer liquid. Two well-established CG models of polymers
that represent a chain as a soft sphere are the dissipative
particle dynamics (DPD) approach and the IECG model, the
latter of which is employed here, as mentioned above. Both
methods offer computational convenience because the soft
sphere representation significantly speeds up CG simulations
compared with atomistic simulations. The short-ranged shape
of the DPD potential further enhances computational
efficiency as it does not require large simulation boxes, unlike
IECG. However, the DPD model has been designed to
reproduce the dynamics and hydrodynamics of atomistic
simulations but does not guarantee consistency in thermody-
namic properties, making it unsuitable for calculating polymer
phase diagrams.2

In contrast, the computational efficiency of the IECG
approach primarily arises from the accelerated dynamics
predicted by this model, which aligns with atomistic diffusion
only once it is rescaled using the contributions due to the
potential of mean force and the solution of the memory
function.47 The distinct advantage of the IECG model lies in
its ability to accurately reproduce both the structure and
pressure of the atomistic description, as demonstrated in this
work. Consistent pressure is crucial for accurately predicting
the excess chemical potential since these two quantities are
formally interrelated through the thermodynamics of liquids.

Note that while the analytical solution of the excess chemical
potential has been tested for long homopolymer melts in this
study, the IECG method has broader applicability. It extends
beyond the scope of this particular application because it
builds upon the foundation of atomistic PRISM, which was
previously employed to investigate various polymeric sys-
tems.28 The prior extension of the IECG approach to block
copolymers48 and polymer mixtures35,49,50 opens up the
potential for calculating the chemical potential and phase
transition for these systems. Thus, the algorithms within the
MCCCS-CG code may offer a precise means of predicting the

excess chemical potential for a variety of polymeric systems
with minimal computational demands.

While it is unfeasible to directly compare the IECG model
with atomistic CBMC calculations for these melts of long
chains, the IECG model can be directly parametrized using a
top-down approach. This involves fine-tuning the IECG model
to replicate specific experimental quantities, such as the
system’s solubility for small molecules dispersed in a polymer
matrix. It should be noted that evaluating the solubility, which
is the transfer of a solute between two solvation environments
where one is a polymer liquid and the other is a gas phase,
requires the use of the IECG approach for mixtures we have
previously developed.35,49,50 In this top-down approach, the
IECG methodology ensures that important properties remain
consistent across various levels of granularity while significantly
outperforming conventional atomistic GEMC methods in
terms of speed. These attributes are a vital prerequisite for
accurately calculating the excess chemical potential for long-
chain polymer liquids.

Regarding the potential applications of the IECG method for
atomistic chemical potential calculations, there are several
feasible avenues. In CBMC algorithms,5 trial configurations are
generated with a bias favoring low-energy configurations on a
unit-by-unit basis. However, in dense polymer melts of long
chains, identifying low-energy configurations becomes more
challenging due to the high monomer density, which can result
in highly repulsive interactions that occur over short distances
when inserting a polymer. Building on the insights from this
study, it is conceivable to enhance the existing CBMC
algorithms for relatively large polymer chains by integrating
the CBMC techniques for the united atom models with the
coarse-grained representation of long-chain polymers. This
process involves calculating Rosenbluth weights for growing
the united atom units within a given CG site after the CG
polymer chain. The objective of growing polymer chains in this
way is to enhance the efficiency of CBMC moves, which are
currently limited to dense polymer melts with about 30
monomers or even fewer depending on the monomer density,
using commonly available computational resources. An
exciting avenue for reconstructing atomistic chains from CG
configurations involves the utilization of machine learning
models.51 The implementation of such an algorithm remains a
subject for future research.

In summary, we have demonstrated that the excess chemical
potential remains independent of the level of coarse graining
within the IECG method. This result is contingent on the fact
that the excess chemical potential is primarily influenced by the
intermolecular component of the internal energy, which
remains independent of the chosen level of coarse graining
within the IECG approach.37 In contrast, a linear dependence
on the number of “blobs” is expected in the ideal part of the
chemical potential, which is influenced by intramolecular
internal energy. Nevertheless, the intramolecular chemical
potential of a long chain in the gas phase, unlike the excess
chemical potential in the dense melt, can be computationally
determined at atomistic resolutions when needed.
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