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Uniform Sobolev estimates on compact manifolds
involving singular potentials

Matthew D. Blair, Xiaoqi Huang, Yannick Sire and Christopher D. Sogge

Abstract. We obtain generalizations of the uniform Sobolev inequalities of Kenig,
Ruiz and the fourth author (1986) for Euclidean spaces and Dos Santos Ferreira,
Kenig and Salo (2014) for compact Riemannian manifolds involving critically singu-
lar potentials V € L"/2_ We also obtain the analogous improved quasimode estimates
of the first, third and fourth author (2021), Hassell and Tacy (2015), the first and
fourth author (2019), and Hickman (2020), as well as analogues of the improved uni-
form Sobolev estimates of Bourgain, Shao, the fourth author and Yao (2015), and
Hickman (2020), involving such potentials. Additionally, on S”, we obtain sharp
uniform Sobolev inequalities involving such potentials for the optimal range of expo-
nents, which extend the results of S. Huang and the fourth author (2014). For general
Riemannian manifolds, we improve the earlier results in of the first, third and fourth
authors (2021) by obtaining quasimode estimates for a larger (and optimal) range of
exponents under the weaker assumption that V' € Ln/2,

1. Introduction and main results

The main purpose of this paper is to extend the uniform Sobolev inequalities on compact
Riemannian manifolds (M, g) of [9], [10] and [24] to include Schrodinger operators,

(1.1) Hy = —A, + V(x),

with critically singular potentials V', which are always assumed to be real-valued. For the
most part, we shall merely assume that

(1.2) Ve L"*(M).

In an earlier work of three of the authors [3], in addition to (1.2), it was assumed that
V e X, where X is the Kato class (see Section 2). The spaces L"/2 and X have the same
scaling properties, and both obey the scaling law of the Laplacian, which accounts for
their criticality. As was shown in [3], the condition that V' is a Kato potential is necessary
to obtain quasimode estimates for ¢ = oco. On the other hand, for the exponents arising
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in uniform Sobolev assumptions we merely need to assume (1.2). There is also recent
related work of the second and fourth author [16] and Frank and Sabin [11] involving
the Weyl counting problem for Kato potentials. Using the uniform Sobolev estimates that
we shall prove, we shall easily be able to obtain L9 quasimode estimates for the optimal
range of exponents (1.9), and if we assume, in addition to (1.2), that V_ = max{0, —V'}
is in the Kato space K (M), we shall also be able to prove quasimode estimates for larger
exponents. In an earlier work, the stronger assumption that V' € K (M) was used to obtain
results for large exponents.

As we shall show in the appendix, if we assume (1.2), then Hy is essentially self-
adjoint and bounded from below with discrete spectrum, Spec Hy . After adding a constant
to V, we may, without loss of generality assume, as we shall throughout, that

(1.3) 0 € Spec Hy and Spec Hy C R4 = [0, 00).

In order to prove these uniform Sobolev estimates, we shall use the following gener-
alized second resolvent formula, which holds for all n > 3 if V satisfies (1.2):

14 (A +V =0T = (=2 =07

= (V1" (=8 =) o V(=2 +V =0)7']. ImE #0,
along with quasimode estimates and uniform Sobolev estimates for the unperturbed oper-
ator Hy = —Ag from [9], [10], [24] and [27]. Here V''/2 = (sgn V)|V |'/2, and [ -] denotes
the (unique) bounded extension to the whole space. The resolvent formula (1.4) also holds
for a more general class of potentials; see, e.g., [19] and [21] for more details.

We shall also mention that, for n > 5, we have the following simpler form of the
second resolvent formula:

(15)  (Ag+ V-0 = (-2 =)' ==(-2g =)' V(=Ag +V -0)",

since, as we shall show in the appendix, for these dimensions, the operator domains of
Hy — ¢ and —Ag — ¢ coincide if Im ¢ # 0.

The universal uniform Sobolev estimates and quasimode estimates that we can obtain
are the following.

Theorem 1.1. Let n > 3 and suppose that

. 2(n+1) 1 1
(1.6) min(q. p(¢)") = =57 and 55—

2,

Then if V € L"2(M) satisfies (1.3) and § > 0 is fixed, we have the uniform bounds
(1.7) lullg = Cvi(Hy —Dullpg) if ¢ € Q.

where

(18) Qs ={¢eC: (Im¢)? > §|Re | if Rel > 1, and dist({,Ry) > 8 if Rel < 1}.
Also, suppose that

(1.9) 2<q=<2Lifn=5 or 2<g<oo ifn=34
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Then if u € Dom(Hy ), we have

(1.10) lullyg SATDOY(Hy =22 +iMull, if A= 1,
where
1 1 1 2(n+1)
niz —,)—3 s 9z ==
(1.11) o(q) = { _21 a’ 2 e
G- 2sq<

Here, Dom(Hy ) denotes the domain of Hy . Also, r’ denotes the conjugate exponent
for r, i.e., the one satisfying 1/r + 1/r" = 1. Additionally, we are using the notation
A < B, which means that A is bounded from above by a constant times B. The implicit
constant might depend on the parameters involved, such as (M, g), g and V in (1.10).

The range of exponents in (1.6) for the uniform Sobolev estimates (1.7) is more
restrictive than the corresponding estimates for R” in [20], since we require certain L? —
L" quasimode estimates from [27] for both r = ¢ and r = p(g)’, which are only valid
when the first part of (1.6) holds. Succinctly put, our proof of (1.7) requires that we use the
manifold version of the Stein—Tomas extension theorem [34], which is only valid when
this condition holds (see [29] for more details).

The condition in the uniform Sobolev inequalities for R” in [20] is to replace (1.6)
with the weaker requirement that

i / 2n 1 1_ 2
(1.12) min(g, p(q)") > ;27 and o5 — o =2,

which was shown to be sharp in [20]. The gap condition in (1.6) and (1.12), that is,
1/p(g) — 1/q = 2/n, follows from scaling considerations, while the necessity of the
first part of (1.12) is related to the fact that the Fourier transform of the surface measure
on the sphere in R” is notin LZ(R") if g < nle

Even though the range of exponents for the uniform Sobolev estimates above might
be non-optimal, the ones in (1.9) for the quasimode estimates (1.10) are best possible. For
n > 4, this is due to a counterexample for the case V = 0 in [30] (see also [31]), and for
n = 3, it follows from a counterexample in Section 1 of [3], involving a nontrivial L"/2
potential. It was a bit surprising to us that, even though the range of exponents for the
uniform Sobolev estimates (1.7) might be a bit restrictive, we can use them along with
their proof to obtain quasimode bounds as in (1.10) for the optimal range of exponents.

In an earlier work [3], bounds of the form (1.10) were only obtained for the smaller
range where g < n2—n3 . Moreover, the bounds (1.10) also improve the earlier ones, since we
are only assuming that V € L™/2(M) and not that V is a Kato potential, i.e., V € K (M).

As we mentioned before, if in addition to (1.2), we also assume that the negative part
of V satisfies V_ € JK (M), then we can also obtain the (modified) quasimode estimates
in (1.10) and the related spectral projection estimates for larger exponents. See the end of
Section 2.

We would also like to note that, by using the quasimode estimates (1.10) in The-
orem 1.1, we can obtain, as a corollary, Sobolev estimates for Hy in higher dimensions,
which appear to be new since they only involve the assumption V € L"2(M) under
which favorable heat kernel estimates need not be valid (see Aizenman and Simon [1] and
Simon [25]).
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Corollary 1.2. Let (M, g) be a compact Riemannian manifold of dimension n > 5 and
assume that Hy is as above with V. € L™2(M). Then

(1.13) I(Hy + D72 flLaan S 1S e,
provided that
(1.14) n(———)—a and o <p<2<q=<7y

The proof is simple. Since we are assuming (1.3), we obtain from the spectral theorem
and the special case of (1.10) with A = 1 that (Hy + 1)~1: L2(M) — L3 (M), and,
by duality, it also maps Lits (M) — L*(M). By applying Stein’s interpolation theorem,
the spectral theorem and the trivial L? bounds, we deduce that (Hy + 1)~ L2 (M) —
LI(M) for2 < g < 2%, with o = n(1/2 — 1/q), and also (Hy + 1)"%/2: L?(M) —
L*(M) for =% 2” < p <2,witha =n(1/p — 1/2). Since these two facts yield the desired
L?(M) — L‘I (M) bounds for (Hy + 1)7*/2, the proof is complete.

As in [9], in certain geometries, we can obtain improved uniform Sobolev estimates
and quasimode estimates using improved bounds for the unperturbed operator Hy.

First, if we use the improved spectral projection estimates of Hassell and Tacy [12]
and two of us [4], we can obtain the following.

Theorem 1.3. Let n > 3 and suppose that

(1.15) min(g, p(q)’) > 2("+1) and ﬁ -

1_2
q  n’

Assume also that (M, g) has nonpositive sectional curvatures, V € L™ 2 (M) satisfies (1.3)
and that § > 0 is fixed. Then we have

(1.16) lully = CI(Hy = Dullpq) i § € Qe

where

(1.17) Qes = {¢: (Im)? = 8(e(1)* [Re | if Red > 1,
and dist(¢, R1) > § if Re¢ < 1},

with

(1.18) e(A) = (log(2 + 1)L

Also, suppose that

(1.19) 4D cg< 2 jfp>5 or 2D g <00 ifn =34

Then, ifo(q) is asin (1.11) and u € Dom(Hy),

(1.20) lully s (Vo)A@ (Hy =22 + iz Dula i A= 1.
Finally, ifg = q. = %, we have for some 8, > 0 depending on the dimension,

(1.21) ltllge S 274 )T (Hy — (A + i) ull2
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The quasimode estimates (1.20) improve those in [3] in several ways. First, as noted
before, we are not assuming that V' is a Kato potential, only (1.2). Moreover, unlike [3],
we also do not have to assume that ¥ has small L"/?-norm. We also obtain the bounds
in (1.20) for the optimal range of exponents given by (1.9), and the bounds (1.21) for the
critical exponent ¢ = ¢, are new. We have only stated the bounds of the form (1.21) for
g = q.; however, if one interpolates with the trivial L? estimate, one sees that bounds of
the form (1.21) also hold for all g € (2, q.) if §, is replaced with the appropriate §, 4 > 0.

As we noted after Theorem 1.1, we also can obtain quasimode bounds for exponents
larger than the ones in (1.20) if we assume that V_ € K (M), and in this case too, we can
drop the smallness assumption that was used in [3].

By results in [31], the bounds in (1.20) are equivalent to the following spectral projec-
tion bounds

(1.22) < (logA)~V22°0@ >,

” X&,/\-I-(]og)\)*l] “LZ(M)»L‘I(M)

for g asin (1.19), where )(ﬁ, A+(10g 2+2)~1] denotes the spectral projection operator which
projects onto the part of the spectrum of +/Hy in the corresponding shrinking intervals
A, A+ (2+ log )L)_l]. If, in addition to (1.2), we also assume that V' is in the Kato class,
then we also have (1.22), as in the case V' = 0 in Hassell and Tacy [12] for all p > %
The bounds in (1.21) extend the log-improvements of two of us [4] to include singular
potentials as above. Just as was the case for (1.22), the quasimode estimates in (1.21)

yield the equivalent log-improved spectral projection estimates

3 A7) (log(2 + A) || £ 2.

v
(1.23) H XA, 2+ (log(2+A)~1] S

Additionally, in Section 5, we shall obtain quasimode estimates of the form (1.20) and
(1.21) when n = 2; however, as in [3] (which handled small potentials), in this case we
shall have to assume that VV € L1(M) N K (M). We improve the corresponding results
in [3], though, by dropping the smallness assumption on V.

As was shown in Hickman [13] in higher dimensions, and in Bourgain, Shao, Sogge
and Yao [9] for n = 3, one can use the decoupling theorem of Bourgain and Demeter [6] to
obtain substantial improvements of (1.22) when M = T" is the torus, which correspond
to taking e(1) = A~1/3%¢ for all ¢ > 0. Using these improved quasimode estimates, we
can prove the corresponding stronger version of Theorem 1.3 for tori.

q

Theorem 1.4. Let n > 3 and assume that p(q) and q are as in (1.12). Then, for V €
L"2(T") satisfying (1.3), and § > 0 and co > 0 fixed, we have

(1.24) lullLacrny < CI(Hy = Dullpr@rny i § € Qegs,

where Q5 is as in (1.17), with

n—2’

(1.25)

’

S0 = {A—ﬂl(%P(q)/)"‘CO, n2Tnl <q< 2
n

A B +eo 2 <g< 2

w

n—

Sor certain B1(n,r) > 0 and p(q) such that 1/ p(q)’ + 1/ p(q) = 1. Also, suppose that

e(2) = {A_ﬂ(n’qmo’ 200D < g < 2

n—2’

AT 2 < g < 2ifn =5, or 2 <q <ooifn =34,
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where

—mi (n—-D2q—2(n—1)(n+1)
ﬂ(}’l, q) - mln{ﬁl (l’l, P(CI)/)» (nil)(ngl)qu(n+nl)2+8 }
Then we have the analogue of (1.20) on T" for q satisfying (1.19),
-1 - . .
(1.26)  Nullzacrny S (Ve@)) ™ 27PN (Hy =A% + ieQ) Dullaeony if 2 = 1.

Additionally, for the critical point g, = z(nnfﬁl) suppose that e(\) = A~P1@-r(@c))+eo
which satisfies (1.25), or more explicitly

(1.27) eA) = A7V5F0 rn >4 and e(M) = AT316FC0 i =3,

we have, for u € Dom(Hy),

(1.28) [lullLae rny S A% (e(X))~ 20 A2l || (Hy A+ie()?)ullLzrn, A= 1.

We shall give the explicit definition of B (n, g) later in (4.59). As we shall see, 81 (n,q)
is a number that decreases from 1/3 to 0 when ¢ increases from 2"2 ZT"S Similarly, by
an explicit calculatlon B(n, q) is a number that increases from 0 to 1/3 when ¢ increases
from 2(’;’+11) to =5 2, in particular, when g = ;= 2, Bi(n,q) = B(n,q) = 1/3. As a res-
ult, (1.24) generalizes the uniform resolvent estimates of Hickman [13] to the setting of
Schrodinger operators with V' € L™/2(T™), which also gives us certain uniform resolvent
estimates on the torus for general pairs of exponents (p, q) satisfying (1.12). On the other

hand, when g = nZTnz’ if we take u in (1.26) to be XK% AJrs()k)]f, we have

”X&a)“i'p)]f”Ln 2 opmy = (p)&)l/2||f||Lz(Tn) forall 8§y > 0, p > A~1/3+%,

which generalizes the spectral projection estimates in [13] (and [9] for the n = 3 case) to
the setting of Schrodinger operators.

Theorems 1.3 and 1.4 represent an improvement in terms of the £(4) defining €2, s
as well as the parameter occurring in the quasimode estimates (1.22) over Theorem 1.1,
which corresponds to (1) = 1.

For the sphere, no such improvement over the case €(A) ~ 1 is possible, since one
cannot have ¢(A) — 0 as A — 400 in this case (see [14] and [26]). Notwithstanding,
for S, we can get an improvement over Theorems 1.3 and 1.4 for the uniform Sobolev
estimates by obtaining bounds for the optimal range of exponents satisfying (1.12). This
improvement is possible due to the fact that when M = S", uniform Sobolev estimates
for Hy are known for this range of exponents (see [14]).

Theorem 1.5. Consider the standard sphere S™ for n > 3 and assume that V € L"/2(S™).
If (1.12) is valid, we have

(1.29) lullg = ClI(Hy = Oullpqy i € s,

where Qg is as in (1.8). Also, for q satisfying (1.9), if o(q) is as in (1.11) and u €
Dom(Hy),

(1.30) lully S ATDOY(Hy — A2 +id)ull, ifA> 1.
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It would be interesting to see if the uniform Sobolev bounds (1.29) are universally true
or hold for generic Riemannian manifolds.

The study of Schrédinger operators can be found in a vast amount of papers in the
literature, especially in the Euclidean case, see, e.g., [17], [18], [23]. In a companion
paper [15], the second and fourth author will obtain related uniform Sobolev estimates
for R” which improve those in [3] and provide natural generalizations of those in [20].

2. Universal Sobolev inequalities on compact manifolds:
Abstract universal bounds

The purpose of this section is to prove simple abstract theorems that will allow us to prove
Theorems 1.1-1.5, and to also improve the quasimode estimates of [3] for the operat-
ors Hy, provided that we have the analogous improved estimates (quasimode and uniform
Sobolev) for the unperturbed operators Hy = —A,. Throughout this section we shall
assume that n > 3, since we shall be using uniform Sobolev estimates for —A, which
break down in two-dimensions. We shall obtain improved quasimode estimates compared
to those in [3] later by adapting the arguments here.

In this section we shall consider a pair of exponents (p, g) which are among those in
the sharp range of exponents in the uniform Sobolev estimates in [20] for the Euclidean
case, ie., | < p <2 < ¢ < oo, and, moreover,

@2.1)

2 . 2
=2, min(q, p’) > ;2.

S1ES
Q=

For later use, observe that if the pair (p, ¢) is as in (2.1), then so is (¢’, p). We also note
that if (p,q) is as in (2.1), then 2% < g < 2.
For both of the exponents in (2.1), we shall assume that we have improvements of the

classical quasimode estimates of the fourth author [27] of the form

(2.2) full, < CSA, ) AT W) H(=Ag — A2 +ie(M) M) ul,

for r = g, p’ and A > 1, where o(r) is as in (1.11). The §(A, r) and (1) are assumed
to be continuous functions of A € [1, 00). In practice they are nonpositive powers of A
orlog(2 + A).

In order to have improvements over the results in [27], for e(A) = 1, we shall assume
that

(2.3) eM) N\, and e()e[l/A, 1], A>1.

We make the assumption that (1) > 1/, since on compact manifolds it is unreasonable
to expect meaningful bounds of the form (2.2) when &(A) is smaller than the associ-
ated wavelength 1/A with A large. The estimates in [27] and the spectral theorem imply
that (2.2) is valid when §(A, r) = 1, and so we shall also assume that

(2.4) (eANY2 <8(A,r)<1 and SA,r)\,, A>1.

We assume that §(1, r) > (¢(1))'/2, since, by (5.1.12) and (5.1.13) in [29], (2.2) cannot
hold if (e(A))Y/2/8(A, r) — oo as A — +o0.
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Note that (1.20) corresponds to the “critical case”, where 8(A,r) = (¢(1))'/2 for e()
as in (1.18) in the case of manifolds of nonpositive curvature, as do the results of [9] for
n = 3 and [13] for n > 4 with a more favorable numerology on tori.

Although a bit more cryptic at first, it is also natural to assume that

(2.5) lim sup A°@ T2 ((1))72 §(X,q) §(A, p’) = 0.

A—00

This condition arises naturally in the proofs, and one can check that, for the exponents
in (2.1), it holds for the special case where (1) = §(A,q) = 8(A, p’) = 1, which will be a
useful observation when we prove certain estimates on S”. Also, by the first part of (2.4),
we have (2.5) if

(2.6) lim sup AC@ P2 (5(1))72 = 0,

A—00

which is a bit more palatable.
In addition to these quasimode estimates, we shall assume that we have the related
uniform Sobolev estimates for the unperturbed operators:

2.7 lullg < Cs,ll(—Ag A2+ ipe(A)A))ull, whenA > 1and |u| > 8o,

if 89 > 0. Here and in what follows, ;& € R. Similar to the remark after (2.1), observe that
if (p, q) are exponents for which (2.7) is valid, then, by duality, this is also true for the

pair (¢'. p').
The abstract theorem that will allow us to prove Theorems 1.1-1.5 is the following.

Theorem 2.1. Assume (M, g) is a compact Riemannian manifold of dimension n > 3.
Assume further that (p, q) is a pair of exponents satisfying (2.1). Suppose also that (2.2),
(2.5) and (2.7) are valid, with (L) and §(A, r), satisfying (2.3) and (2.4), respectively,
with r = p’, q in the latter. Then, if V € L”/Z(M), we have

(2.8) lullg < Cll(—=Ag +V = A* +ipne) Dull, if|ul = 1and A = A,
assuming that A = AN(M, q, V) > 1 sufficiently large.

The assumption that A in (2.8) is large arises for technical reasons from the fact that
since we only are assuming that V € L"/2, we only know via (A.7) in the appendix that
ueliI(M)forg < nZTnz if u € Dom(Hy ). On the other hand, after proving Theorem 2.1,
we can use its proof to establish the following much more favorable results.

Corollary 2.2. Assume the hypotheses in Theorem 2.1. Then, for u € Dom Hy,

(2.9) lullr < Cvr A1) AT ) T I(—Ag + V = A2 +ie(D) D ul

if A >1landr = qorr = p'. Additionally,

210) fully < sy ll(—Ag + V =22 + ipe)A)ulls when 2 = 1and || = So.

if 8o > 0 and (r.s) = (q. p) or (p'. q").

To prove these results we shall appeal to the following simple lemma.
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Lemma 2.3. Assume thatn > 3. Let (p,q) be as in (2.1)and W € L™(M). Then, if (2.7)

is valid,

21D “ [W(_Ag - A% - ipe(d) A)_l]* ||L17(M)—>Lq(M) < Cs, W llLn a1y
with 1/p = 1/p — 1/n, and, if (2.2) is valid for r = ',

(2.12) IW(=Ag — A% —ipne) )" 1" | Lsar)>22000)

< CIW llLranyd A, sH A7) ()7,
with 1/s = 1/s — 1/n. Finally, if (2.2) is valid forr = q and if W € L*(M),
(2.13) I[W(—Ag — A% — i) D)™ L2 ar)— Laar)

< C|WllLeandt, @) A% D (g(1)) .

Proof. Note that, since we are assuming # > 3, the operators in (2.11)—(2.13) are bounded
on L2(M), by duality, Holder’s inequality and Sobolev estimates.
Also, by duality, (2.11) is a consequence of the following:

(2.14) IW(=Ag =A% —ipe) D) hll Loy ary < CoollW lran Ikl o (ary-
To prove this, we first observe that
1/(p) =1-1/p=1—-1/p+1/n=1/p + 1/n.
Thus, by Holder’s inequality and the dual version of (2.7), we have
IW(=Ag =22 —=ipe() ) Al Loy ary < IW llnan | (—Ag =22 =ipe() D) Al Lo ar)
=Cso [Wllran Pl La ary-

as desired.

This argument also yields (2.12). One obtains the dual version of (2.12) by apply-
ing (2.2) and Holder’s inequality.

Similarly, (2.13) is equivalent to

IW(=Ag =22 —ipeM) D) Al L2ar) < CIW Lo a8, @) AP ) ™ 1Al o (ar)-

This follows immediately from the dual version of (2.2). ]

Proof of Theorem 2.1. Let us first note that proving (2.8) is equivalent to showing that
I(Hy = 2> +ipe()A) " lLomre S 1 ifA > Aand || > 1,

with A sufficiently large and (p, g) as in (2.1). By duality, it suffices prove this inequality
when

(2.15) 2 g < 2
Thus, our task is to show that
(2.16)  [(Hy =A% +ineM)AN)™" fllLaamy < Clf ey ifA > Aand [p] > 1,

with (p, q) satisfying (2.1) and (2.15). As in Theorem 2.1, we are also assuming that (2.2)
and (2.7) are valid for this pair of exponents.
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We are assuming (2.15), since, by (A.7) in the appendix, we have
ueli(M), 2<q=<2% if(Hy -2 +ine()Mue L’
Thus, for g as in (2.15),
(2.17) [(Hy — 2% +ipe) )" fllLaan < oo if f € LA(M).

In proving (2.16), since L? is dense in L?, we may and shall assume that f € L?(M) to
be able to use (2.17) to justify a bootstrapping argument that follows.
The bootstrapping argument shall also exploit the simple fact that if we let

(2.18) Ven (x) = {(I)/ ) ﬂ:{;ﬂﬂf N

then, of course,

(2.19) [V<nllLe < N,

and, if Vo (x) = V(x) — Ven (x),

(2.20) IVonllpnzan < 8(N), withd(N) \yOas N — oo,

since we are assuming that V € L"/2(M).
To exploit this, we use the second resolvent formula (1.4) to write

(221) (Hy =A% 4ipeM)A) 1 f = (=Ag — A2 +ine(M)N) L f
—[Vami V2 (=Ag = A2 —ipne) V) (V2 (Hy = 2% + ipe() D)7 f)
— [Vami V2 (=Ag = A2 —ipne) ) ((Vany) V2 - (Hy — A% + ipe() V)7 f)
— [Vam |2 (=8¢ = 22 —ipe) )7 ] ((Van) V2 - (Hy = 22 + ipe()2)7' f)
=1-1I-1I-1V.
Here and for the remainder of the proof of Theorem 2.1, we are assuming that

| > 1.

We shall not appeal to our assumption that A is large until the end of the proof.
By the uniform Sobolev estimates (2.7) for the unperturbed operator, we have

(2.22) ITllg = CIILAp-
Also, by (2.11) and Holder’s inequality
IMTllg < CUVan, V2 lILn V2 (Hy = A% + ine) D)7 f 5
< CWVerill o IV I - I (Hy =32 + ipeG) )7 £ Lo,
since 1/p = 1/p — 1/n. By (2.20), we can fix N; large enough so that

1/2 1/2
ClIVam i VIS, < &

yielding the bounds
(2.23) llg < gI(Hy =A% +ine) )" flg-
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Similarly,

Ty < C Ve 122 1 (Vo) /2 - (Hy = 32 + ine) D)™ f |1

< CIVINZ, WVan )i, - I(Hy — A% + e A) 7 e

By (2.20), we can fix N, large enough so that C||V||2/,32 . ||V>N2||£/,32 < 1/6, which
implies

(2.24) IMlly < gll(Hy =A% +ipne) )" fllq-
It remains to estimate the norm of IV in (2.21). We first note that, by (2.13),
(2.25) |[IV]ly < CN28(A.q) A7 @1 (e(1)) !

X | (Van) V2 - (Hy — A% +ipe() ) f |2
< CN}PN 28, ) A7 D7 (M) [(Hy — A2 + ipne()A) 7! f ]2

We can estimate the last factor by appealing to the second resolvent formula one more
time. Here there is no need to split the potential, and, instead, we write

(226) (Hy =A% +ineM)A) 7 f = (—Ag — A2 +ipe(M) 1)1 f
— VI (=Ag = A2 —ipe V)TV (Hy = 27 + ine() )7 f)
= A—-B.

By the dual version of (2.2) with r = p’, we have
(227) l4ll2 < €S pHATPI AN T £ -
Also, if 1/p = 1/p — 1/n, then, by (2.12) and Holder’s inequality,

(2.28) [|Bll2 < C8(, p) AT @I )TV I IV 2 (Hy =22 +ine() V)7 f1I5
<C8(A, pYATPI ) T IV w2 l(Hy — A% + ipe) M) £ lq.
If we combine (2.26), (2.27) and (2.28), and use (2.25), we conclude that
(2.29) I1V]ly < CNJ2N, 2 A0 @+e D=2 (6(1)) 7252, q)5(X. p')
X (1flp + 1V Izl (Hy = 2%+ ine()A) ™ £ )
<Cllfllp+ LHy =22 +ineN) " f g

by (2.5),if A > A, with A sufficiently large, since N; and N, have been fixed.
If we combine (2.22), (2.23), (2.24) and (2.29), we conclude that for A > A, we have

I(Hy =A% +ipneM)A) " fllLaany < C I f e+ 31 (Hy =22 +ipne() )" f llLan-

By (2.17), this leads to (2.16), since we are assuming, as we may, that ' € L2(M). |
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Remark. Indimensions n > 5, the arguments can be simplified a little bit, since, in these
cases, we may appeal to the more straightforward second resolvent formula (1.5) instead
of relying on (1.4) (as we must do for n = 3, 4). If we do so for n > 5, then we may
replace (2.21) with a simpler variant

(Hy — 2% +ipeW) 7 f = (=Ag =22 +ipe(V) 7' f
—[(=Ag =22 +ipe)1(Van - (Hy — A% + ipe(d)) f)
—[(—Ag =2 +ipne)N(Van - (Hy — A* + ipe(1)) f).

Then the arguments that were used to control II and III in (2.21) can easily be adapted
to control the second and third terms, respectively, in the right-hand side of the above
identity. As we alluded to earlier, we need to use the more complicated second resolvent
formula (1.4) when n = 3, 4, due to the fact that the form domains (but not operator
domains) of Hy and Hy coincide in this case, while for n > 5, we may use (1.6), since,
in these cases, the operator domains coincide.

Proof of Corollary 2.2. Let us first prove the quasimode estimates (2.9). To be able to
use the uniform Sobolev estimates in Theorem 2.1, we shall initially assume that A > A,
where A = A(M, g, V) > 1is as in this theorem.

Proving the quasimode estimate is equivalent to showing that for g as in (2.9), we have

I(Hy =A% +ieM)A) " 2mre < CSRL QAP M) ™, A = A,
or, by duality, for A > A,
230)  [[(Hy =22 + i)V fllzny < CSA. QAT DT Q)M o ary-
To prove this we note that (2.2) and duality yield
@231 [(=Ag =27 +ieM) D) lpwp2 < CEA.OA P @) A= 1,
while, (2.8) yields
(2.32) I(Hy =22 +ieQ)N) o pr <€, A2 A,

since, as remarked after (2.1), if (p, ¢) is as in (2.1), then so is (¢’, p’).

If we use the decomposition (2.26) again with i = 1, then, by (2.31), we can estimate
the first term in the right-hand side of this equality as follows:

(2.33) A2 < C8A.q) A7 P ) I £ Nl Lo ary-
Since 1/q’ — 1/ p’ = 2/n, by (2.12) and Holder’s inequality, we also obtain
I1Bll2 < CSA.q) A"~ ) VI VY2 (Hy =22 +ie) V)7 £z

< CV w28, ) AP () [ Hy — 2% +ie() D) £,

if the pair (¢/, p’) isasin (2.1)and 1/’ = 1/q' — 1/n.

'We are grateful to one of the referees for pointing this out to us.
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By (2.8),
I(Hy =22 +ie)V) " fllp < Cpylfllg. A=A,

and since V € L™/?, we conclude that || B||, is also dominated by the right-hand side
of (2.30) for A as above.

To obtain the quasimode estimate (2.10) in the corollary, we need to see that the bounds
in (2.30) are also valid when 1 <A < A, with A = A(M,q, V) > 1 being the fixed constant
in Theorem 2.1. This just follows from the fact that §(4, ¢) and £(A) are assumed to be
nonzero and continuous, and also by the spectral theorem,

234)  |I(Hy =2 +ieQ)N)" fllzon = Cl(Hy =22 +ie(M)A) ! fllL2n)

if 1 <A <A.
Let us finish the proof of the corollary by proving (2.10), which is equivalent to show-
ing that for (p, ¢) as in (2.1), we have

(2.35) I(Hy =A% +ineM)A) " fllg < Cs gl fllp ifA>1and|u| > 8.
As before, we may assume that g € nzT”I, nzTnz] to justify the bootstrap argument.

Since, similar to (2.34), by the spectral theorem, we have
(236) [[(Hy =A% +ipeM)AN) ™" fllzan) = Csol(Hy — A2 +ie)N) 7" fllz2an)
if || = 89 and A > 1. Thus, by (2.9) and duality,

(2.37) I(Hy = 2% +ips() ) Lo o2 < Csy 8, pH AP o) ™!

if [u| = §p and A > 1. while, by (2.2), we have

(2.38) I(=Ag =22 +ipe) D) z2ms = Cay 6. 9) A7 D7 (1) ™!

if [u| > 8o and A > 1. Also, by (2.7),

(2.39) l(~Ag =A% +ipne() D) |Lr>ra < Cs, if || = 8o and A > 1.
If we then split as in (2.21) and argue as before, we find that (2.39) yields

(2.40) Mg < Csoll flp

and

(2.41) Il + Mg < 3I(Hy =A% +ipe) D)~ flLa,

if the latter N1, N, are fixed large enough and || > 6o and A > 1.
If we use (2.13) and an earlier argument, we obtain

11Vllg < Cs, NN, 2800, ) A~ ) T [ (Hy — A% + ipe(M) D)7 2
< G, N PN} P50, @) 2@ 8, p AP () £ .
and since we are assuming (2.5), this yields
(2.42) 1VIlg < Csoll £ llp-
Since (2.39), (2.41) and (2.42) yield (2.35), the proof is complete. ]
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Now we show another abstract theorem that gives us quasimode estimates for larger
exponents.

Theorem 2.4. Assume (M, g) is a compact Riemannian manifold of dimension n > 5.
Assume further that (2.9) holds for some % <r< %, with e(A) and §(A, r) satis-
fying (2.3) and (2.4), respectively. Then, if V € L"™2(M), we have, for u € Dom(Hy),

(2.43) lully < Cyy 8, 1) AT D M) [(—Ag + V = A2 +ie(M) M) ull2

fA>1r<gq< ,,2Tn4~ Similarly, for n = 3 or n = 4, assuming that (2.9) holds for some
2(:—:1) <r < oo, with e(A) and §(A, r) satisfying (2.3) and (2.4), we have

(2.44) lully < Cyy 8 1) AT D M) (=Ag + V =A% +ie(D) A ul,

ifA>1r<qg<oo.

Here compared with the non-perturbed case (2.2), we have §(4, r) on the right-hand
side of (2.43) and (2.44) instead of §(A, ¢q) for larger exponents ¢g. This is because we

are using the bound (2.9) for the exponent r in our proof. And as we can see in the first
section, except for the case g, = 2(::1), for our applications, we have §(4,q) = /e(4)
for all larger exponents in the quasimode estimates.

Proof of Theorem 2.4. Throughout the proof, we shall assume that

245 2D <y g <2 ifp>5 or 20ED < <y <0 ifn =3,4.
Note that proving (2.43) is equivalent to showing that for ¢ satisfying (2.45),

(246) [|(Hy =A% +ieM)) 7" fllg < Cvr Q.12 D7 ) ! f 12 ifA = 1.

As before, in order to justify a bootstrapping argument that follows, we shall temporarily
assume that for g as in (2.45),

(2.47) [(Hy =A% +ie()AN)7! fllLaany < oo if f € LA(M).

We shall give the proof of (2.47) later in Lemma 2.5 by obtaining Sobolev type inequalities
for the operator Hy .

Fix a smooth bump function B € C§°(1/4,4) with B = 1in (1/2,2),let P = /A,
and write

(248) (Hy —A> +ie()V)~" f
= B(P/X)(Hy =A% +ie)A) " f + (1 = B(P/V))(Hy = 2> +ieM) D)7 f
= A+ B.
To deal with the first term, note that, since A~%7%8(z/A) is a symbol of order 0, by

Theorem 4.3.1 in [29], A™% (—Ag)“/ 2B(P/A) is a 0 order pseudo-differential operator,
thus

(2.49) I(=A)*2B(P/M)ILr—rr SA* if 1 <7 < oo.
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So, by the Sobolev estimates (2.49) and (2.9), if « = n(1/r — 1/q), we have
(2:50) 14llg < I(A)*2B(P /D) (Hy =22 +ie) ) fl»

< AnrUD | (Hy = 2% +ie) D)

< Cyy 81, ) A" AT D 20O 5.

Since n(1/r — 1/q) + o(r) = o(q), the first term is dominated by the right-hand side
of (2.46).
To bound the second term, we shall use the second resolvent formula (1.4) to write

(2.51) (1—B(P/M)(Hy — A% +ie(M)A)7Lf
= (1 =BP/M)(—Ag =A% +ieMAD) " f
— (1= BP/IIVan V2 (=Ag =22 —ie) D) * (VY2 (Hy =22 +ie(H V)7L f)
— (L= BP/I)IVan " (=Dg = A2 —ie() V)T (V2 (Hy — 2% +ie() 1) f)
=1-1I-—1III

Since the function 1 — B(t/A) vanishes in a dyadic neighborhood of A, it is easy to
see that

(1= B/M))E? =A% +ieM)A) 12 +1?)

is a symbol of order zero and, again by Theorem 4.3.1 in [29],
(1= B(P/A)(~Ag = A% + i) 2) " (~Ag +22)
is a 0 order pseudo-differential operator, thus
(2.52) I(1 = B(P/I)(~Ag =22 +ieM)N) T fll; S I(=Ag + 237 fII;
if 1 <r < oco. So, by (2.52), Sobolev estimates, the proof of (2.11) and the fact that

(2.53) (1= BP/MIVan]?(—Ag — A2 —ie(M)A)7']*
= [[Van|"2(1 = B(P/A)(—Ag — X2 —ie(A)A)']*,

we have, for ¢ satisfying (2.45),

(2.54) Illg < CIVan I} VY2 (Hy =22 +ie) )7 £ 5
< CIVan )2 IVILE, - I(Hy =22 +ie() )7 f e,

where 1/p —1/q = 1/n. By (2.20), we can fix N large enough so that

1/2 1/2 1
CIVan I VI < 4

yielding the bounds

(2.55) llg < 3ICHy =22 +ie)D) 7" fllq-
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To bound the third term, note that since (rz’f P /2 s a symbol of order 0, by The-
orem 4.3.1 in [29],

(—Ag /A2 +1)71/2

is a 0 order pseudo-differential operator, thus if 1/p = 1/q — 1/n, then, by Sobolev
estimates,

(2.56) I(=2¢ + 277" fllg = Cl(=2g + A2 fll5 < CA7MI f I

Thus, (2.52) and (2.56) and our earlier arguments (i.e., the proof of Lemma 2.3) yield

2.57) Iy < CAT'NY2| V2 (Hy =22 +ie() D)7 flIp
< CATINYR VIS (Y = A2+ i2() ) flg.

If we choose A such that CA~IN1/2|| V||i/,52 = 1/4, we conclude that

(2.58) I, < HI(Hy =22 +ie)V)7 fllg ifA=A.

Also note that for ¢ satisfying (2.45), we have 1/2 — 1/q < 2/n. By Sobolev estim-
ates, ifa = n(1/2—1/q),
259 (A =BP/A)=Ag =22 +ie) D) [ g
< 1(=A)"2(1 = BP/A) (=B = 22 +ieM) )™ f .

Since the symbol of the operator on the right-hand side of (2.59) satisfies
(2.60) (1= B(t/A))(E? =A% +ie(MA) T < A*72,

a combination of (2.59) and (2.60) yields the bounds

(2.61) ITlg < A"V £,

which is better than the right-hand side of (2.43) and (2.44), due to the condition on &(1)
and §(A,r).
If we combine (2.50), (2.55), (2.58) and (2.61), we conclude that for A > A, we have

262 |(Hy — e ig(/l)/\)_lf”L‘I(M) <Cy,8(, r))tn(l/r—l/q))w(r)—l||f||L2(M)
+ 2I(Hy =A% + iS(A)A)_If“Lq(M)'

By (2.47), this leads to (2.43) and (2.44) for A > A since we are assuming that f € L2(M).
On the other hand, by (2.34), the quasimode estimates for I < A < A follow as a corollary
of the special case when A = A.

To finish the proof of Theorem 2.4, we shall need the following lemma, which gives
us (2.47).

Lemma 2.5. Assume (M, g) is a compact Riemannian manifold of dimension n > 3. If
V € L"2(M), there exists a constant Ny > 1 large enough such that

n
n—2

(2.63)  lullg < I(=Ag +V + No)ullp if ﬁ —1=24pq < g < 0.

1
q
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The condition on ¢ in (2.63) is necessary, since we do not have the corresponding
Sobolev inequalities even for the non-perturbed operator at the two endpoints p = 1
or ¢ = oco. Also observe that for g satisfying (2.45), we have p(q) < 2. Thus, by the
above inequality, we have |[u||La(ar) < oo for ¢ satisfying (2.45) if u € Dom(Hy ), which
implies (2.47).

To prove (2.63), note that it is equivalent to showing that

(2.64) I(Hy 4+ No)™" fllaamy < ClIlf ey if f € L*2(M),

with (p, ¢) as in (2.63). By duality, it suffices prove this inequality when

(2.65) no<q <A

n—2 —

We are assuming (2.65), since by (A.7) in the appendix, we have

ueli(M), 2<gq<-2_ifuecDom(Hy).

n—2’
Thus, for g as in (2.65),
(2.66) I(Hy + No)™" fllLaeuy < 00 if f € L2(M).

As before, in proving (2.64), since L2 isdense in L?, we shall assume that fe L2(M)
to be able to use (2.17) to justify a bootstrapping argument that follows.
We shall use the second resolvent formula (1.4) to write

(2.67)  (Hy + No) ' f = (=Ag + No)™' f
—[[Van|Y2(=Ag + No) 1 * (VY2 (Hy + No)~ f)

—[[Ven "2 (=Ag + No) ' 1* (VY2 (Hy + No)™' )
=1-1-1II

By the Sobolev estimates for the unperturbed operator, we have

(2.68) g < Clfllp.

where the constant C does not depend on Ny. Similarly, our earlier arguments yield

lly < CIVan V2 IV (Hy + No) ' f 15

n/2
< CIVanIl) 2 VI, - I(Hy + No)™ £l e,
using Holder’s inequality and the fact that 1/p = 1/g + 1/n in the last step. By (2.20),
we can fix N large enough so that C ||V~ y ||]1~/,32 IV ||]14/,32 < 1/4, yielding the bounds
(2.69) g < I(Hy + No)™' fllg-

To bound the third term, note that since (1:2]—\]}-01\10)1/ 2 is a symbol of order 0, by The-
orem 4.3.1 in [29],
(~Ag/No+ D)7
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is a 0 order pseudo-differential operator, thus
2700 l(=2g +No) " fllg < Cl(=Ag + No) ™/ fI5 < CNg 21 /5.

using Sobolev estimates and the fact that 1/p = 1/g + 1/n in the first inequality. Thus,

2.71) I, < CNy 2NV (Hy + No) ' £
< CNy PNV I(Hy + No)™ fllq-
If we choose Ny such that CN, 1/2N1/2||V||2/,32 < 1/4, (2.68), (2.69) and (2.71)
imply
I(Hy + No)™" fllaary < CIf ey + 3I(Hy + No)™" fllLaan).-
By (2.606), this leads to (2.63), and the proof is complete. ]

Let us next show how Theorem 1.1 is also a corollary of Theorem 2.1 and Theorem 2.4.

Proof of Theorem 1.1. We shall use Theorem 2.1 with
(2.72) SA,r)=eA) =1, A>1,

andr =g andr = p = p(q) satisfying (1.6).

Then, by the spectral projection estimates of the fourth author [27], we have the quasi-
mode estimates (2.2) for the unperturbed operators Hy = —A,. The uniform Sobolev
estimates (2.8) are due to Dos Santos Ferreira, Kenig and Salo [10]. Also, it is a simple
exercise, using (1.11), to check that for (p, ¢) as above, we have o (q¢) + o(p’) —2 < 0,
and so (2.5) is also trivially valid.

Thus, by inequality (2.9) in Corollary 2.2, and Theorem 2.4, we have (1.10) for g €

[%, nzT”4] ifn>5andq € [%, o0) if n = 3 or 4. If we use the bound for g =
% along with Holder’s inequality and the trivial quasimode estimate for ¢ = 2 (which

follows from the spectral theorem), we also see that (1.10) is valid for 2 < g < %

The other inequality in Corollary 2.2, (2.10), also trivially implies the uniform Sobolev
estimates (1.7) in the region where Re ¢ > 1. Since the bounds for {{ € Q5 : Re ¢ < 1}
are valid for the unperturbed operators Hy = —A, by [10], we can use the quasimode
estimates (1.10) for A = 1 and the proof that (2.8) implies (2.10) to see that the uniform
Sobolev bounds in Theorem 1.1 in the region Re { < 1 are also valid, which finishes the
proof. ]

Next, let us also see how we can use Theorem 2.1 and Theorem 2.4 to prove The-
orem 1.5, which says that when (M, g) is the standard sphere, we can improve The-
orem 1.1 by obtaining the inequalities for a larger range of exponents when V € L"/2(S").

Proof of Theorem 1.5. 1t is easy to modify the proof of Theorem 1.1 to obtain the uniform
Sobolev estimates for S”, which involve the improved range of exponents in (1.12). As in
the preceding proof, we shall use Theorem 2.1 with §(A,r) = e(A) = 1 when A > 1. Here
r=qgandr = p = p(q) are assumed to be as in (1.12). A simple calculation using (1.11)
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then shows that we have a(q) + o(p’) —2 € [-1,—1 + 1/2n] and so (2.5) is trivially
valid. As a result, for g < ,,2T"3, we would have the bounds in (1.29) and (1.30) when Re ¢
and A are larger than one, respectively, if we had the quasimode estimates (2.2) and the
uniform Sobolev estimates (2.8) for the unperturbed operators Hy, for e(A) and §(A, r)
as above and exponents satisfying (1.12). The quasimode estimates are due to Sogge [26]
(see also [14]), and the uniform Sobolev estimates are due to S. Huang and Sogge [14].
Since the remaining larger exponents ¢ in (1.30) follows from the case ¢ < nzT"3 and
Theorem 2.4, and the cases where { € Q5 hasRe{ < 1 or A > 1 in (1.29) follow from our

earlier arguments, the proof is complete. ]

Spectral projection estimates for larger exponents

Let us conclude this section by briefly reviewing how if, in addition to assuming (1.2)
(e.,V e L"/z), we assume that V_ = max{0,—V} € K (M), then we can obtain spectral
projection and quasimode estimates for exponents, which are larger than those in Theor-
ems 1.1-1.5 or Corollary 2.2.

Recall that V is in the Kato class K (M) if

@.73) lim sup / i (d (. )V dy = 0.
™0 x JB,(x)
where
log2 +r71Y) ifn=2,

hn(r) = {rz_" ifn >3

Here dg(x, y) is the geodesic distance between x and y in M and B,(x) denotes the
geodesic ball of radius r about x.

Let us first show that we can use estimates like (2.9) to obtain certain spectral projec-
tion estimates. Specifically, if

(2.74) Xoatey) = lnarenn(VH)

is the projection onto the part of the spectrum of +/ Hy in the interval [A, A + &(A)], then,
by the spectral theorem, (2.9) implies that

2.75) IXGareanflr <Cv8Q. A DY fll2n A= 1.

To see this one takes u in (2.9) to be X[Ifl’ Ate(y)./ and then uses the spectral theorem to
see that that for this choice of u the right-hand side of (2.9) is dominated by the right-hand
side of (2.75).

Next, recall that if V_ € K (M), then we have favorable heat kernel bounds (see [33]),
and, consequently, if 8 € C§°((1/2, 1)) is a nonnegative function with integral one and if

B (v) :/ eTTA2B(A)dt, T>0,4> 1,
0
we have

(2.76) 1B (Hy) || Lr—>ra S AM/=1Dif2 < < ¢ < 0.

~
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For details, see Section 6 of [3].> Arguing as in [3] it is a simple matter to use the spectral
theorem and (2.76) to see that if (2.75) is valid, then we have

Q@ID tfaseon flla S 8Qr)20OFWI=UD| £l 3> 1, if g € (r, 0],

when V_ € KX(M).

Based on this and the aforementioned relationships between spectral projection estim-
ates and quasimode estimates, if V € L"/2(M) and V_ € KX (M), by Theorem 1.1, for all
(M, g), we can also obtain (2.75) with e(A) = 8(A,r) = 1 whenr > 2" 7ifn>50rr =00
ifn =3,4,since a(r) +n(l/r —1/q) = a(q) if 2("+1) <r< q < oo. Thus, for such
exponents, we recover the universal bounds in [3], whlle for smaller ones, Theorem 1.1 is
stronger since it only requires V € L"/2(M).

In the case of the standard sphere S, if V € L"/2(M) and V_ € X (M), we can
similarly obtain (2.75), with e(A) = (A, r) = 1 forr = co whenn = 3,4, and r > nZT"4
whenn > 5.

We note that Theorem 1.1 says that when n = 3 or n = 4, we have (2.75) with ¢(1) =
8(A,r) =1 forall 2 < r < oco. As noted in [3], such spectral projection estimates can
break down for r = oo on S” in all dimensions if one merely assumes V € L"/2(S"), and
there is related recent results for general manifolds in Frank and Sabin [11].

We have focused here on variants of the spectral projection estimates for larger expo-
nents than the ones in Theorems 1.1 and 1.5. As we shall see in the next two sections,
there are similar results corresponding to Theorems 1.3 and 1.4.

3. Improved bounds for manifolds of nonpositive curvature

The main purpose of this section is to prove Theorem 1.3. Consequently, we shall assume
throughout this section that n > 3 and that (M, g) is an n-dimensional manifold whose sec-
tional curvatures are nonpositive. In Section 5 we shall prove that the quasimode estimates
in Theorem 1.3 are valid in the two-dimensional case if, in addition to (1.2), we assume
that V is a Kato potential.

By Corollary 2.2 and Theorem 2.4, we would have Theorem 1.3 if we knew that for
exponents (p, g) satisfying

3. min(p’, g) > 2("+1)

we had the classical quasimode estimates
32 ull, A7) V2 (~Ag — A +ie()?]2 forr =g, p'and 2 > 1,
as well as

(3.3) lullg S I(=Ag = A +ie)Dull,, A=>1,

2In [3], this inequality was only proved under the stronger assumption that V € J; however, since the proof
only relied on the heat kernel estimates of Sturm [33], which are valid when V_ € K, it also yields (2.76).
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where here and throughout this section, we shall take
(3.4) e(A) = (log(2 + 1)L

Even though we have replaced A2 + ig(A)A by (A + ie(1))? here to simplify some cal-
culations to follow, (3.2) and (3.3) are equivalent to (2.2) and (2.7), respectively, with
8(A,r) = y/e(A) as in (3.4) in the former.

Even though the first inequality is a consequence of spectral projection estimates in
Hassell and Tacy [12] following earlier results of Bérard [2], and even though the resolvent
estimates are in [9] and [24], let us sketch their proofs since we shall need to adapt them in
order to show that we also get improved quasimode estimates for g = g, = %, which
is missing in (3.2). We cannot appeal to Corollary 2.2 to obtain these estimates since it
is not known whether the uniform Sobolev estimates (3.3) are valid when ¢ = ¢q.. The
quasimode estimates for this exponent are analogous involving L"/2 potentials of those
in [4], which treated the case V' = 0.

Let us start with the sketch of (3.2). Since both r = p’ and r = ¢ in (3.2) are smaller
than nZT”4 when n > 4, by the discussion at the end of the last section, it is simple to see

that (3.2) is equivalent to the spectral projection estimates for the unperturbed operator
H 0= —A g

(3.5) lxarecnfllr S Ve ATO| flloy A =1, 7> 202D

with r as in (3.2) (see [31]). We shall actually indicate why this inequality is valid for all
r> % Here x[a,a+¢(1)] s the operator projecting onto the part of the spectrum of
V/—Ay in the shrinking intervals [A, A + &(A)].

To establish this, fix a real-valued function a € § (R) satisfying

(3.6) suppd C (—8¢,80) and a(t)=1,t€[-1,1],

where §¢ > 0 will be specified later on. We then claim that (3.5) would be a consequence
of the following:

3D fa(e@n @ =D)h|, £ Ve® IO Nl Az 1> 2D

n—1 2

if P = \/—A,. To verify this claim, one just takes & to be ¥z 1+e(1)]f > Where

Ta+en](©) = Ipate (@) - (a((e) 1A — T)))_l-

Since this function has sup-norm smaller than one and since a((s(1))"'(P — A))h =
XA A+e)].f > one obtains (3.5) from (3.7) and the spectral theorem.

We next observe that, by duality, (3.7) is equivalent to the statement that

la(EON T P = D)h] o arysr2any S VEG AT, A= 1, ifr > 2040,
By a routine 7'T* argument, this is equivalent to the following:

38 [b(E)P =) anysrran S EMAFD, A= 1 ifr > 2041

n—1 °

and b(1) = (a(7))>.
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Next, since, by the first part of (3.6), bis supported in (=268, 28¢), it follows, from
Fourier’s inversion theorem, Euler’s formula and the first part of (3.6), that

(3.9) b((e()HP =)k = % / i b(e(A)t)e " (costP)h dt
+ b((e(_/\T))_l(P + A))h, where T =25, - (e~
Since A > 1 and P > 0, using crude eigenfunction bounds, one obtains
()P + 1) |ty Loy = o™, A=1,N=1,2,3,...,

and consequently we would have (3.8) if we could show that for small enough fixed §¢ > 0,
we have

SAO A= 1 ifr > 204D
L (M)—Lr (M) ~ ’ - n—1 >

T
(3.10) H / be(M)t)e~"* costP di
-T
and T = 28¢ - (e(A))~L.
Next, let us fix n € C5°(R) satisfying
3.11) n(t)=1, t € (=1/2,1/2), and suppn C (=1,1).

Then it follows from the universal spectral projection estimates of [27] that

G | / NObEI) e HeostP) fdi| 2O fll 2= 1,

for all r > 2. Consequently, we would have (3.10) if we could show that when §, as
in (3.6) and (3.10), is sufficiently small, we have

<A20(r), /‘\,Zl,

P —ith
a13) | / (1 =n@)be@e  cosipar| s

2(n+1)
n—1 °
Since the function

T—> W, (1) = /(1 — 17(t))l;(e(/\)z‘)e_mk costt dt

ifr >

clearly satisfies
WA ()] S ()71,
it follows from the spectral theorem that

< ()" =log(2 + A).

_ r —ith
(3.14) H / (1 =n@)ben e eosipdr| | -

‘We claim that if we also had for some ¢y < o0,
3.15 H/l— ) b(s(A)r) e it* dezH <23t 0T < 35" pcobo
G15) | [A=nnbetneFeosipdi| | <2

then for 8¢ small enough depending on r, we would have (3.12). This just follows from a
simple interpolation argument and the observation that if 6 = 2/r, then (1 — 6) - "2;1 <
20 (r), provided that r > 2(:—:1)
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One can prove (3.15) using the Hadamard parametrix after lifting the calculation to
the universal cover of (M, g) as in Bérard [2] and Hassell and Tacy [12] (see also [28]).
This completes the proof of (3.8) and hence that of (3.2).

The proof of (3.3) is similar. As in Section 2 of [9], we shall use the formula

(3.16)  (“Ag — (i) f = m /0 e Me=e W (cogtP) £ dt.
If nisasin (3.11), we shall write
(—Ag — (A +ie))H) ' = TP + T + R,
where if T = 28, - (¢(1)) ™! is as in (3.9),
(3.17) o L /OO n)n(t)T)e* e M costP di
' AT A +ie() Jo

is a local operator, while

i *° ;
3.18 T = ——— 1= ) n(t)T)e e costP dt,
G18) T = s [ A et o
and
i & ;
(3.19) Ry = T(k)/ (1 =n@t/T))e*Me W cos P dr.
X 0
To prove (3.3), by duality, it suffices to handle the case where g € ( % nZT"z], in

which case the estimate is equivalent to the statement that

(3.20) l(=Ag — A+ e s ary—>raany = O, A =1,
ifq € (%, nzTnZ] and 1/p(q) — 1/q = 2/n. In view of the above decomposition, this

would follow from

(3.21) ||S)L||LP(I1)(M)_>L4(M) =0(1) ifS, = T;?, T;tl or R).
As observed in [24], the bounds for R are an immediate consequence of (3.5) and a

simple orthogonality argument, after observing that o(¢) + o((p(q))") = 1 if (p(q).q)
are as in (3.20) and

; oo
T—>my(t) = m/o (1 =n(t)T))e*e P cosrt dt
satisfies
(3.22)  |mi(0)]| S (eA)'A 4+ (W) A =)™V forall N, if T >0, A > 1,

assuming, as above, that T = 28, - (¢(1))~L.
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The local operator Tf was estimated in [10] and later in [9] (see also [27]), where
it was shown that this operator enjoys the bounds in (3.21) even for the larger range of
exponents, where g > nzT"l One proves this result using stationary phase and Stein’s oscil-
latory integral theorem in [32]. For this step, it is convenient to assume, as we may, that
the injectivity radius of (M, g) is ten or more.

Based on this, only one estimate in (3.21) remains. We just need to handle Tl ie.,if
T = 28y - log(2 + A) with §¢ small enough,

= 0(1).

[e]
’\_IH/ L= (N n(t/T)e M e M costP dt =
| (I =n@)n@/T)e" e cos LP@ (M)— L4 (M)

Since g < (p(q)) if (p(g).q) are is in (3.20) or (3.19), by Holder’s inequality, this would
follow from

(3.23) H / T = )0/ Ty e ™ e=s @ cos 1P di — 00
0

LT (M)—L" (M)

e 2n(n+1)
ifr'<:3- =1,

(see (3.1)).
One can repeat the proof of (3.14) to see that

2n(n+1)
n2—n—4

assuming that 8o > 0 is small. Here, we use the fact that (p(g))’ <

R = 0(T)
L2(M)—L2(M)

= O(log(2 + A)).

(3.24) H / (1= n(0)n(t/T)eM s costht‘
0

Also, by using the Hadamard parametrix and arguing as in [2], one can adapt the proof
of (3.15) to see that

(3.25) H / T = )0t/ Ty el M e cos P di ‘ — O(A"5 A0k
0

L1(M)—L®(M)

if 8¢ > 0 is small. Since
2n(n+1) < 2(n—1)
n2—n—4 n—3 °

we have
lo(1-0)<1 iff=2andsr <2020,
and we obtain (3.21) via interpolation if 8¢ = 8¢(r’) is small enough.
This completes our proof of Theorem 1.3 except for the quasimode estimates (1.21)

for the critical exponent g = g, = %, which we shall handle in the next subsection.

Improved quasimode bounds for the critical exponent

As we noted before, we cannot appeal to Corollary 2.2 to obtain improved quasimode
estimates for the critical exponent g, = % on manifolds of nonpositive curvature,
since we do not have the uniform Sobolev estimates (3.3) when ¢ = g.. Despite this,
we can use the above arguments to obtain (1.21), which extends the critical quasimode
estimates of two of us [4] for the case V' = 0 to include singular potentials when n > 3.

In a later section we shall prove analogous estimates for the two-dimensional case.
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To prove the quasimode estimates in (1.21), we shall of course use the fact that, by [4],
we have (1.21) when V' = 0, which is equivalent to the following:

(3.26) I(=Ag = A+ ieOND)  L2an)> ey S A7) ™0,
as well as the following bounds for the spectral projection operators associated to Hy =
—Ag:
(3.27) 1203 2+ et 20ty Lae ary S 274 (1))
To proceed, just as before we shall write
(3.28) (—Ag — (A +ie())>) ' =Ty + Ry, where Ty =Ty + T,

with T}, T,! and R, as in (3.17), (3.18) and (3.19), respectively.

Since R) = my(«/Hp), with my(7) as in (3.22), one can use (3.27) and a simple
orthogonality argument to see that

(3.29) IRAN L2(a)—> e (ary S (£(A)) ™1 Hon 201,
and also
(3:30) [[R3 0 (~Ag = A + ieD))|z2an)—>Lae ay < ()T FHATEITL Qe(2)).
If weset Ty = Tf + T)tl as above, then, since T = (—Ag — (A +ie(1))?)~1 — Ry,
we trivially obtain from (3.26) and (3.29) the bound
(33D I T3l L2 (aty— Lae ary S (£(A) 7 Hon A0 @)=L,
We noted before that

1 2

||T,{)||Lp(qc)(M)_>ch(M) =0(1) ifﬁ —w =

Additionally, by our earlier argument, if the 69 > 0 used to define T,xl is small enough, we
also have

(3.32) 1T | 2otae) gy Lae ary = O(1),

2(n—1)

by Hoélder’s inequality, as ¢ < (p(qc))" and (p(qc))' < ==~

If we combine the last two estimates we conclude that
(3.33) ||TA||Lp(qc)(M)_>ch(M) = 0(1).
To use these bounds write
(3.34) U= (—Ag—A+ic)H T o(=Ag — (X +ic()H)u
=Ti(-Ag +V — (A + i) u+ Th(Ven - u) + T (Von - u)
+ Ry(—Ag — (A +ic(M)P)u
=I1+1II+1I+1V,

with V< and Vs as in (2.18).
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By (3.31),
(3.35) ITlge < €)™ H#A7@ T (Hy — (4 + i) ulla,
and, by (3.30), we similarly obtain

(3:36) IV llge < ()™ 27@O7E Qe(L)) Jull2,
S () THRATUT[(Hy — (4 + ie (1)) ull2,

using the spectral theorem in the last inequality.
If we use (2.20) along with Holder’s inequality, and (3.33) along with the arguments
from Section 2, we conclude that we can fix N large enough so that

(3.37) IMlge < 3llullg-
Also, (3.31) and (2.19) yield, for this fixed N,

(3.38) ITlg. < Cw(e(h)™ o A7@I=1 1y,

< (e) 1 0@ (Hy — (A 4 ie(R))?)ull2,

using the spectral theorem and the fact that (1) - A > 1if A > 1.
Combining (3.35), (3.36), (3.37) and (3.38) yields

lullg < (e(R) ™ o 20@"N(Hy — (X +ie(A)P) ul2,

and since this is equivalent to (3.26), the proof of the quasimode estimates for ¢ = g, in
Theorem 1.3 is complete.

4. Improved bounds for tori

In this section we shall prove Theorem 1.4. Let us start by going over the proof of

quasimode and uniform Sobolev estimates for the unperturbed operator Hy = —ATn,

which involve the exponent g = 22 :

n—2
@D el g S ATEO)T2 (A = (A +ieA)) Ul
@2 el o S IAg = G+ el 2, o
for A > 1, with
(4.3) e(l) = A73%%0 forall § > 0.

2n

Recall that a(nzT”Z) = =2

3(A,q) = e(h).
Even though these estimates are in [9] for n = 3, and in [13] for other dimensions,
let us start by reviewing their proofs, since, as in the preceding section, we shall need to

and so (4.1) corresponds to (2.2) for g =

%, with the optimal
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modify them to handle the estimates for Hy , especially the ones involving exponents g
for which appropriate uniform Sobolev estimates are unavailable, which includes the case
q=dc-

The main estimate that is used to prove these two inequalities is a discrete version of
the Stein—Tomas restriction theorem:

4.4) It a+00f Laecny < (pA)V9€ 220 £ || p2¢pny  for all g > 0,

ifg. = 2(" +1) and A~ < p < 1. Here, y; denotes the spectral projection operator associ-

ated with the interval I for Hy. Since o(q.) = 1/4., this represents a substantial improve-
ment over the unit band (p = 1) spectral projection estimates of [27]. On the other hand,
unlike (4.1), it does not involve 6(p) = ,/p. Indeed, no such estimate can be valid for p
close to the associated wavelength 171

Hickman [13] proved (4.4) using the decoupling estimates of Bourgain and Demeter,
see [6]. Specifically, Hickman showed that (4.4) is a consequence of Theorem 2.2 in [6].
Before that, Bourgain, Shao, Sogge and Yao [9] obtained a somewhat weaker form of (4.4)
when n = 3, in which it was required that A~'/3 < p < 1. This paper preceded the decoup-
ling estimates of Bourgain and Demeter, and instead relied on multilinear techniques of
Bourgain and Guth [7].

We shall require an equivalent form of (4.4):

45) [mao(VHo) f lLaccrny < Imiplloo - (01)*/% A% £ 1|yt my forall eg > 0,

if suppm; , C [A, A + p] and A~ < p < 1. After observing that (4.4) and orthogonality
imply that [|m | z2(T7)— Lac (Tm) = O((pA)1/4 p#0) for all & > 0, one obtains (4.5) from
this and a standard 7' T* argument.

Let us now briefly recall the proof of (4.1). As we mentioned earlier, it is equivalent
to the statement that

4.6) ”X[A’Aﬂgu)]”LZ(T[‘")—)anT"Z(T") <V E(A)Al/z e(A) = )t_l/3+80, for all §o > 0.
If ag € S(R) satisfies
4.7 ap(0) =1 and suppag C (—1/2,1/2),

then (4.6) is equivalent to the statement that ao((e(1))™'(A — P)), P = /Hy, maps
L2(T™) to anT"Z(T”) with norm O(/e(1) 1'/2), and by a simple T T* argument this
in turn is equivalent to the statement that

@.8) lla((e) ' —P)f] . witha(t) = (ao(1))>.

SeWAISN an

Ln Z(T”) n+2 (T"n)

Next we note that

a((eM) A= P) f

% / a(eMr)etr e P 1 4y

Y [aean e costp)f di +aei) G+ P
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Since ((1))™', A > 1 and P is a positive operator, it is a simple matter to use either
Sobolev estimates or spectral projection estimates from [27] to see that the operator in the
last term in the right-hand side maps L2(T") to L (T") with norm O(A~) for any N.
Thus, we would have (4.8), and consequently (4.1), if we could show that

(4.9) 1TF N, 2 gy S AN g e €0 = A7,

where Tf = [ a(e(A)t)e'* (costP) f dt.
Note that, by (4.7), the integrand vanishes when || > 2(e(1))~!. To exploit this, let
us fix a Littlewood—Paley bump function 8 € C5°((1/2,2)) satisfying

(4.10) Y pein=1. t>0,
j=—00
and set
(4.11) Bo(t) = 1= BQ27|t]) € C°(R).
j=1

Using these we can split the operator in (4.9) as

(4.12) Tf =31 f.

J=0

where

Tof = / Bo(t)a(e(M)) e (costP) f d,
4.13)

T, f = / Bt a(e(M))eH (costP) fdt, j=1,2,....
Clearly, then (4.9) would be a consequence of the following:

(4.14) 175 £1I, S2VASN, 2, j=0,1,2,...,

2 () ™ 2(T")’

for some § > 0 which depends on n and §¢ > 0 in (4.3).
The bound for j = 0 is a simple consequence of the spectral projection estimates of

one of us [27]. It is simple to check that the remaining bounds follow, by interpolation,

from the following two estimates:

. < y80 )2t 52
(415) ”7}f”L2(r:ljll) (T ~ AP0 A nFT 2n+1 ||f||L2£1nr31) (T7) for all g9 > 0,
and
71 n +1 -
(4.16) 75 fllLooqTny S A 2 NNy

Indeed, since 2n =05 ” 11) +(1-0)5 L with § = % by interpolation, (4.15)
and (4.16) yield, for all 80 > 0,

(417) ” ” <A]+EOA 1/n231/n
J Ln+2(T")—>Ln % (T")
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which implies (4.14), since, by (4.3) and (4.7), T; = 0 for 2/ larger than a fixed constant
times A~1/3%%0 S, given any fixed 8¢ as in (4.3), we obtain (4.14) with § = §o/n if the
loss g9 > 0 here is small enough.

To finish our proof of (4.1), it remains to prove (4.15) and (4.16).

The first inequality follows from applying (4.5) with p = 27/, since

/ﬁ(z*f|z|)a(s(x)t)em cos(tt)dt = 02/ (1 +27|A —t)™™) forall N,

if A > 1 and 7 > 0. Note that the integral in the left-hand side vanishes if 27 is larger than
a fixed multiple of (g(1))~!.

The remaining inequality, (4.16), amounts to showing that the kernel K; (x, y) of T}
satisfies

n+1

(4.18) Kj(x.y) = O(A"7 2"5),

If we relate T” to (—m, w]" and the wave kernel cos P on T" to the Euclidean one (see,
e.g., [28, Section 3.5]), we can write this kernel as follows:

4.19) Kj(x.y)=Q2m)™" > /00,3(2_j|t|)fz(8(k)t)ei’“(cost\/—ARn)(x,y +0)dt,

Lezn”

with (cost+/—ARrn)(x, y + £) denoting the wave kernel in R”. If we call the £-th sum-
mand above K ((x, y), then, by using stationary phase and arguing as in [9] or as in
Section 3.5 of [28], shows that

4200 K ) SAT A+ -y =) SAT A+ 1)
for x, y € (—m, «]". Furthermore, by Huygens’ principle, K ¢ (x,y) =0 when x,y €
(=7, )" and |¢] is larger than a fixed multiple of 2/. Therefore, for such x, y, we have

n+

(4.21) Kol SA7 > a4 a2 2
{Lezn:|t|<2/}

as desired.

Let us now see how we can use this argument to prove the uniform Sobolev estim-
ates (4.2). As was the case in Section 3, we shall make use of the splitting of the resolvent
operator (—At» — (A +ie(1))?)71, as in (3.16)—(3.21), where £(1) now as in (4.3). In
our setting, we may simplify things a bit compared to the argument in Section 3 by taking
T = (e(1))™!, with, as we said, £(1) being now as in (4.3). We then would obtain (4.2) if
we had (3.21) in the current setting.

The bounds there for R follow from a simple orthogonality argument and (4.6). Also,
just as before, the bounds in (3.21) for the local operator are known (see [9], [10]).

To prove the bounds for the remaining operator T)Ll in (3.21), we split up the integral
dyadically as before, by writing

o0
1 1,0 z : 1,j
TA == TA. + T/’{ ]s
j=1



M.D. Blair, X. Huang, Y. Sire and C. D. Sogge 1268

where, for j = 1,2,...,

4220 1) = / BRI =) n(t)T)e* e M cost P di,

A +18()L)

and TAI’O is given by an analogous formula with 8(27/¢) replaced by Bo(t) € CyP(R™).
Since Tkl’o is a local operator which shares the same properties as T,{) , we have the ana-
logue of (3.21) with Sy = Tll’o. As aresult, we would have the remaining inequality (3.21)
with §; = TAI, if we could show that when (4.3) is valid, we have, as before, for some
8 > 0 depending on §y and n,

1,j < 9—4j
(4.23) T3y 2y opmy s p 225y S 2

Since Tll’j = 0 when 2/ is larger than a fixed multiple of (¢(1))~!, by the proof
of (4.1), we would obtain this estimate via interpolation from the following two estimates:

1.j < A~V peo At 2wt/
(424) ”T/l f”Lz(:jll) (T7) =~ A A0 L nF1 2 a+l ||f||L2£ln++31) (T7) for all Eo > 0,

and
1,j _ n—1 n+1
(4.25) T, fllLooerny SAT!-A72 INF s rny-

Due to the (A 4 ie(1))~! factor in (4.22), one sees from this formula and (4.13) that

1 "/ behaves like A™1 7T}, and so it is clear that the proof of (4.15) and (4.16) yield (4.24)
and (4.25), respectively. This finishes our proofs of (4.1) and (4.2).

Using (4.1) and (4.2) along with Corollary 2.2, we obtain the bounds in Theorem 1.4

involving ¢ = 2%

Quasimode and uniform Sobolev estimates for the critical exponent

Suppose that g, = 2("—_+11), 1/p(gc) —1/q. = 2/n, and, as in Theorem 1.4, let us assume

n

that for an arbitrary fixed 8¢ > 0,
(4.26) e(A) = A7V5%%0 ifp >4 and e(d) = A7/10F00 ify = 3.

We then recall that the estimates in Theorem 1.4 for ¢ = ¢, say that for u € Dom(Hy),
we have

(4.27) ]l ae xny S A% (6(A)) 2050 A2 0 || (Hy — (A + ie(A)D)ullp2erny, A= 1,
as well as

(4.28) lullzaecrny < 1(Hy — (& +ieQ))ullppaoromys A = 1.

As noted before, the inequality (4.27) is equivalent to the spectral projection estimates

(4.29) X ptpf e cony S (0A)49 X%0|| f | 2qpny  forall 8o > O,
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where p € [A™V/5%% 1]if n > 4, or p € [A73/16+%0 1] if n = 3. This is weaker than the
V' = 0 results of Hickman [13], i.e., (4.4). Even though the p-intervals in (4.29) do not
shrink to {1} as n — oo, it would be interesting to try to improve the range of p in this
inequality.

Since it is straightforward to check that for e(A) satisfying (4.26), (2.6) is valid, by
Corollary 2.2, we would have (4.27) and (4.28) if we knew that for such (1), we had the
quasimode estimates

n+3

(430)  fullg < A0 (e(A) 2D ATH [(~Ag — (A +ieA) ulz ford = 1,

and

@30 fullpgy S AT ATPEDD T (A — (A +is(0) ulla for A =1,
as well as

(4.32) lullge < N(=Ag = A +ie) P ullp@y. += 1.

Inequality (4.30) follows from Hickman’s estimate (4.4) and a simple orthogonality
argument. And (4.31) follows from the same argument by using the general spectral pro-
jection estimates of the fourth author [27]. As we shall see at the end of this section, we can
get a better bound than the right-hand side of (4.31) for ¢ = p(g.)’, but as long as (2.6) is
valid for (1) satisfying (4.26), the powers of £(1) in inequalities (4.30) and (4.31), which
are numbers between [—1, —1/2], are not crucial in the proof of (4.28).

Now let us see how we can modify the proof of (4.2) to obtain (4.32). We shall make
use of the splitting of the resolvent operator (—Ar» — (A +ig(1))?) "' asin (3.16)—(3.21),
where £(A) now as in (4.26). We then would obtain (4.32) if we had (3.21) in the current
setting.

Unlike previous cases, we do not have sharp spectral projection bounds here for the
exponent g.. The operator R, will be dealt with differently after we established the desired
bounds for T}.

As we noted earlier the local operator Tf always satisfies the desired bounds in the
uniform Sobolev estimates regardless of the choice of e(1):

. . 2 1
1Tz raer ny Laecrmy = O)if s = 5o = 2. e plge) = 5

For the operator T, just as in the proof of (4.2), we shall need to use the dyadic
decomposition

o0
T =T+ T,
j=1
exactly as before, where for j = 1,2,3, ..., TLI s given by (4.22) and for j = 0,
the analogue of this identity with 8(27/) replaced by Bo(t) € Cy°(R). Since the factor
(1 — n(¢)) in each of these integrals vanishes near the origin, the quasimode estimates
in [27] imply that || TAI’O | Lr@e) (Ty— Lac (rny = O(1) or, alternatively, one can use the fact
that T)Ll’o behaves like T/{’ and deduce this from arguments in [9], [10] or [27]. Based on
the desired bounds for j = 0, we conclude that if we could show that for some § > 0,

1,j —j . .
433) T e omysraemy = 0Q7°) it b —L =2 j =123,
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then we would obtain [|73 || rwe) (pny— Lae (rny = O(1). As before, § here depends on the
various parameters in (4.26), and, in order to get the bounds in (4.33), we are lead to
assume that (1) is as in (4.26).

In order to prove (4.33), we claim that, by interpolation, it suffices to prove, for all
g9 > 0, the following three inequalities:

@34) T panysran S APATYm2YIM g = 20
; : ifg = " forn > 4,
435 Tl . ny < A%02J
(4.35) 175" e (rmy—LacTm) or g = o0 forn _3
n242n-2 - . 2
(4.36) ||T - lze(rmy—>raerm S ATV T2 ifg = (,,_12)%,

where 1/p —1/q = 2/n.
To verify this claim, we note that if p = ¢/ and ¢ = p(q.)’ =
we have

2n(n+1)

a4 Whenn > 4,

1 _ —2 n—1)(n-2) . _ n?-3n—2
7= 0 (10 O i = s

Consequently, by interpolation, (4.34) and (4.36) yield, for any g9 > O,

@37 1T, lLocemy—sracrm S AR 1/"231/")<n+1><n 2. (A 1/ny",
= )\%0 )\~ 1/n .25]/n.

f) T

m’iﬁ% <0ifn = 3. Instead,

we shall use interpolation between (4.35) and (4.36). More precisely, note that if p = ¢/,
and g = p(g.) = 12, we have

When n = 3, the above argument does not work, since

1 _ 1 _ 1 1 :cp_ 3
By interpolation, (4.35) and (4.36) yield, for any g9 > 0,

(438) ”T ]||LP(']T”)—>L4(']I‘") < AEO(A 1/3213]/9)3/4 (2/)1/4 = (%0~ 1/4 24]/3

By duality, (4.37) and (4.38) leads to (4.33) if we fix o > 0 in (4.26) and choose &g
here to be sufficiently small, since 7}~/ = 0 if 2/ is larger than a fixed constant times
(e(A))~1, which, satisfies (4.26).

Now we shall give the proof of (4.34)—(4.36). The first inequality, (4.34), follows
from (4.17), since, as noted before, the operator T)Ll’j behaves like A1 T;.

To prove the second inequality, first note that if n > 4, by Theorem 2.7 in [6] and a
simple orthogonality argument, we have, for all &9 > 0,

439)  ltpatalzan-raen < pV22°027@ itg = 2250 pe 271 1).
As a consequence of (4.39), we have, for all g9 > 0,
(4.40) 1T |2 qrmyos Lacrny S A AT@=12112 i g = 2021

by an onhogonality argument, since, as noted before, T)Ll” =2"lm 1,j (v Hp), where
my j(t) =02 (1+2/|r - A7) forany N,if r > Oand A > 1.



Uniform Sobolev estimates involving singular potentials 1271

Inequality (4.35) now just follows from (4.40) and (4.25) via interpolation. Indeed,
since
n3=9. T 1)+(1 6)-L, ztl=6.24+1-06)-1,

with 6 = ”n;l, we deduce that, for all g > 0 and 0 as above, we have

1771, SABQTHED 2120 (315 2 )70 = je0n),

n I(T”)—)Ln 3 (Tn)

as desired.
The case n = 3 in (4.35) follows from exactly the same argument by using the fact
that, for all g > O,

(4.41) IxtatollL2msysroms) S p72A%0T pe A7 1]

If we take p = A™! in the above inequality, (4.41) is equivalent to counting the lattice
points on a sphere, which has a general upper bound in any dimensions, i.e., for all 9 > 0,

(4.42) It a2 sreqn S AT, 0 =2,
See, e.g., [8] for a more detailed discussion about inequality (4.42). Inequality (4.41) now
follows from (4.42) by a simple orthogonality argument.

The third inequality, (4.36), involves the pair of exponents (p, ) which is the inter-
section of Stein—Tomas restriction line, where ¢ = ”+1 “=. p" and the uniform Sobolev line,
where 1/p — 1/q = 2/n. More precisely, note that by (4.4), after using the same argu-
ment as in the proof of (4.40), we have, for all g9 > 0,

(4.43) IT7 (| 2y pae (omy S A0AT12T (A2 Ve jf g, = 2tD),
Now (4.36) follows from (4.43) and (4.25) via interpolation. Indeed, since
(n—1)(n—2) 1 n?+n+2
BIATE) =6 +(1—9)-§, LrRTe —0. +(1—0)-1,

2n2 “on?

with § = ("+12(" 2 and "2;":”'2 = (= lz)n(;' 2 4+ 2/n, we deduce that for all gy > 0 and
6 as above, we have

6 132 o iy 1-6
||T ||Lp(qc)(qrn)_>L(p(qc))’(Tn) AT 2D 22("“)1) Az 2z

n+2n2

= A0\~ l/n ]’

as desired.

For the remaining operator R, we claim that it has the same mapping properties as
the operator TA where 2/ ~ £(1)~!. Recall that in proving (4.34), (4.35) and (4.36), the
only properties we required for the operator TA J are

(4.44) |T,1 J@) =0 1 +2/ ]t —A)N)
and
(4.45) 1T} (x, )| = O(A"7° 2"3),

Similarly, for the operator R, if 2/ ~ (1)~!, by (3.22), we have
(4.46) IR, ()] = 027 (1 + 2/ |t —A~N).
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For the other kernel bounds (4.45), if we use the dyadic decomposition Ry = Z/iozo R’/{,
where

: oo

447) Rr= m / B e))(1 = n(e(V))t) e e =D costP dt,
1€ 0

and argue as in (4.19)—(4.20) using stationary phase, we have

IRE(x, y)] S A" 2" K (e(1)) T e

After summing over k, we conclude that

n+1

2)_

As a consequence of (4.46) and (4.48), by using the same argument as for the oper-
ator T/f” , we obtain that

(4.49) 1Rl Lo (rmy— Lae Ty = O(1),

which completes the proof of (4.32).

(4.48) IRA(x,y)| = O(A"7 (s(1))

Quasimode and uniform Sobolev estimates for general exponents

Now we will see how we can modify the above argument to show that (1.24) and (1.26)
hold for general exponents g. We shall first give the proof of (1.24), since essentially it
does not require sharp spectral projection bounds. To see this, by Corollary 2.2, we would
have (1.24) if we knew that for exponents (p, g) satisfying (1.12), we had the quasimode
estimates

4.50) fully S A @) THI(—Ag — (A +ie(A)?ully forr =gq.p and A > 1,
as well as
(4.51) lully S I(=Ag — A +ieA)P)ull,. A =1,

where, for all 5o > 0,

n—2’

—B1(n,q)+6 if 2n 2n_
AP 0 if 55 <q <;55.

A—PLp@)+b0 20 o o 20
(4.52) s(4) = o

We shall give the explicit form of §1(n, ¢) later in (4.59). Roughly speaking, it is a
number that decreases from 1/3 to 0 as ¢ increases from nZTnz to nZT”3

Here (4.50) follows easily from the spectral projection bounds of [27] and a simple
orthogonality argument. We shall obtain an improvement over (4.46) at the end of this
section by modifying the previous argument that was used to prove (4.1). Right now the
bounds in (4.50) is sufficient, since for (1) satisfying (4.52), (2.6) is valid for all expo-
nents (p, q) satisfying (1.12), by (4.50).

To prove (4.51), by duality, it suffices to handle the case where g € [nzTnz’ nzT”3). As
before, we shall split the resolvent operator as

(—Ag — (A +ieQ))) ' =T + T + R;.
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As noted earlier the local operator T/{) always satisfies the desired bounds regardless of the
choice of £(A). That is,

(4.53) 1T Lo crmy—sraerny = O(1) if 5 — 2 = 2and 22 < ¢ < 225,

see, e.g., [24] and [14] for a proof of the above inequahty.
For the operator 7, we shall need to use the dyadic decomposition

oo
T =T+ 1"
ji=1

exactly as before, where for j = 1,2,3,..., T!/ is given by (4.22) and for j = 0, the
analogue of this identity with B(27/¢) replaced by Bo(t) € CS°(R). The operator ;-0
behaves like Tf , and it is not hard to see that it satisfies (4.53). Based on the desired
bounds for j = 0, we conclude that if we could show that for some § > 0,

1,j _i . .
(4.54) 1T s myspaeny = 0Q770) it L -1 =2 j =123,
then we would obtain

ITxllLe(xmy—>La(rny = O(1) aswellas ||RyllLr(T7)—La(Tn) = O(1),

since, as mentioned before, the operator R behaves like Tf’j .
Given (4.34), (4.35) and (4.36), the above inequality now follows easily from an inter-

polation argument. First, for 2—" <gq < (n_lz)”w, write

(4.55) L= 24 (1—0y). 82002 g, = 2051 =Do2)

Consequently, by 1nterpolat10n, (4.34) and (4.36) yield, for any g9 > 0,

(4.56) ||T)}’j||LP(T”)—>Lq(T”) < ASO(A_l/n23j/n)91 . (A—l/n n +2n 1)1 01
— )0 ) —1/n, 2"2+22"721' 2—”2;5‘_291]"

Similarly, for m <gq< 3, write

4.57) 5:92-—(" DO 1 (1-6y)- 52 if 6 = n?(2 - %22).

By interpolation, (4.35) and (4.36) yield, for any g¢ > 0,

(4.58) 7, Nirernysraerny S APAY2 )92 (27)1-%-
= A% p02/n o) ~272921.

As aresult, given 0 and 6, as in (4.55) and (4.57), if we define

2 Yo if 2 < g < 2

4.59) Bi1(n,q) = n +2”0_2_(” —n—2)61 n—2 —1 — (n—1)(n— 2)
n .

T Gn—20; f—(n Der—2 =9 < n- s

by (4.56) and (4.58), we obtain (4.54) if we fix 8o > 0 in (4.52) and choose g¢ above to
be sufficiently small, since T)Ll” = 0 if 27 is larger than a fixed constant times (g(1)).
Thus, the proof of (4.51) is complete.
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2(n+1)

To conclude, we shall give the proof of (1.26). We shall focus on the case <
qg < nz—”, since, the estimates for ¢ > ;=5 follow as a corollary of Theorem 2.4.

To proceed, note that by Corollary 2.2 as well as (4.51), we would have (1.26) if we
knew that for exponents (p, ¢) satisfying

(4.60) 204 g <20 and

n—1 — n—2
we had the quasimode estimates
@61 [ul, A7) 2 (—Ag — (A + i) ’uly forr =¢,p’ and A > 1,

where we shall take

(4.62) (L) = A7 D+0  foranl §y > 0,
with
(4.63) Ba(n,q) = GapdsEes oty

m+1)(r—1)g—2(@m+1)2+8"

Actually, given (4.51) and (4.61), in order to apply Corollary 2.2, it suffices to check (2.6)
is valid, which is equivalent to (1) > A~1/2 when 2(" +1) < ¢ < 2% However, for such
exponents ¢, we have
min(B1(n,q), f2(n.q)) < 3.

which implies (2.6). Also, as before, the inequality for » = p’ (4.64) is not crucial for our
proof. Indeed, simple quasimode estimates as in (4.50) are sufficient for our use.

Note that, compared with (4.50), the power on £(4) in (4.61) is sharp, which, as before,
is equivalent to the spectral projection estimates

(4.64) Ixtata fllLacrny < pY2 29D fllL2rny  forall p > ().

To prove (4.64), if we repeat the argument in (4.7)—(4.13), by using a T T* argument,
it suffices to prove that for g > 2(" 'H) and &(A) satisfying (4.62),

(4.65) ITf lzacrmy S XL £l La (xm-
where
(4.66) Tf = [ a(s(M)t) e (costP) f dt,

with a € §(R) defined as in (4.8).
As before we shall split the operator in (4.66) as

Tf =) T;/f
j=0

where the operator T} is defined as in (4.13).
Clearly, then (4.66) would be a consequence of the following:

(4.67) 175 £ Nzoqrny <279 22D £l qay. J =0.1.2.....

for some § > 0 which depends on n and §¢ > 0 in (4.3).
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The bound for j = 0 is a simple consequence of the spectral projection estimates of
one of us [27], while the remaining bounds follow by interpolation from (4.15) and (4.16).
Indeed, since for any ¢ > % é =0. 2(n+1) +(1—0) 5, with = %2"_41')2, (4.15)
and (4.16) yield, for all g9 > 0,

(4 68) ”’T]”Lq(T”)—)Lq (Tn) ~ <A’20(l])+80—7 (n—1)q 2‘] 2 (n—1)q J ¥t (n—1)q |

n—1_ (n—=1g—2(n+1) (n=1)g— 2(n+1)+ 2 2(n+tl)

As a result, given any fixed ¢ as in (4.62), we obtain (4.67) if the loss g9 > 0 is small
enough, since, by (4.3) and (4.7), T; = 0 for 2/ larger than a fixed constant times &(1)!,
defined as in (4.62).

For later use, note that the above argument works for any n > 2. When n = 2, it gives
the following analogue of (4.64):

-6
@69 lxpitaflzacrn S p 22O fll2en forall p = 27510+ 5 5 0,
if ¢ > 6. In particular, at the point ¢ = oo, we have

(4.70) Ixpasnf Izoen S p 227 fllpzerm forall p > A71/3,
by using (4.16) directly without interpolation with (4.15).

Remark. We shall briefly mention that improvements over the inequality (4.64) can be
made in several ways. First, if we take p = A~ 1lin (4.64), it is conjectured by Bourgain
in [5] that for n > 3,

n—2_n
@) xpacaf ey SA 2 a1 fllaepny  forall >0, 1> 1 and ¢ > 2%

Asin (4.43), by Theorem 2.7 in [6], (4.71) holds for all g > %, which is currently
the best partial results for this problem. It is interesting and not known to the authors
whether one can use (4.71) for g > 2(" 1) to improve the range of p in the inequality (4.64)
when 2(n+1) <p< nz_nz

On the other hand, as in [9] and [13], we can slightly improve the kernel bound (4.21),
and thus obtain an improvement on the range of £(A) in inequalities such as (4.51), (4.61)
and (4.64), by exploiting the cancellation between different terms in (4.19), using expo-

nential sum estimates. We omit the details here for simplicity.

5. Improved quasimode estimates when n = 2

The purpose of this section is to derive improved quasimode estimates under certain geo-
metric assumptions for n = 2. Throughout this section, we shall assume that V € K (M)
satisfies (2.73), since in two dimensions, V € LI(M ) cannot ensure that the associated
Schrodinger operator is self-adjoint. For a proof of self-adjointness of Schrodinger oper-
ators with Kato potentials, see, e.g., [3].

Unlike what was the case for higher dimensions in Theorem 1.1, we cannot improve
the universal quasimode bounds in [3] when n = 2. We can, however, improve the bounds
in Theorem 1.3 in two dimensions by removing the smallness assumption on V that was
made in [3], and we can also obtain new bounds for two-dimensional tori.

First, let us see the following analogue of Theorem 1.3.
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Theorem 5.1. Assume that (M, g) is a Riemannian surface of nonpositive curvature and

that V.€ K (M). Then, for ¢ > 6 and

(5.1) 8(q) = { igz ZZ ;6

we have, for u € Dom(Hy) and A > 1,

(5.2) lully < 27O M) THD(Hy — (A + ie(W)?)ul,
where e(A) = (log(2 + A))~L. Consequently,

(53) It steonf la S 279 Q0g2 + )@ £ 2.

To prove (5.2), as before, we shall use the fact that by [4] and [12], we have (5.2) when
V' = 0, which is equivalent to the following:

G4 [(—Ag — (A + 58(/\))2)_1 ||L2(M)—>Lq(M) < )La(q)_l(e(k))_lﬁ(q),
as well as bounds for the spectral projection operators associated to Ho = —A,:
(-5 It aseillzzan—raan S A°@E0))5@.

The proof of (5.2) is based on the same idea as in the critical exponent case for higher
dimensions. And unlike in higher dimensions, where we are able to prove uniform Sobolev
estimates for certain range of exponents, the fact that 6(¢) = 1/2 for g > 6 is not crucial
in our proof.

Proof of Theorem 5.1. As in [3], we shall first prove (5.2) for the exponent ¢ = oo, and
then use it to obtain (5.2) for 6 < g < .
To proceed, just as before, we shall write

(5.6) (—Ag —(A+ie(W))?) ' =Ty + Ry, where Ty = Ty + T,

with Tf, T)k1 and R, asin (3.17), (3.18) and (3.19), respectively.
Since Ry = m ) (v/Hp) with m () as in (3.22), one can use (5.5) and a simple ortho-
gonality argument to see that for all ¢ > 6,

(5.7) IRl L2ty Laary S ATDP T (1) T1TH@),
and also
(5.8) Ry o (=Ag — (A +ie)I2am-reany S AP He() @ . (Ae(r)).

If weset Ty = Tf + TAI as above, then, since T) = (—Ag — (A +ie(1))?)™1 — Ry,
we trivially obtain from (5.4) and (5.7) the bound

(5.9 I TallL2 o Laary S AT@P71(e(1) 1@,
Note that, by (3.25), if the §o > 0 used to define T} is small enough, we have

(5.10) T L1 aty Looary = OATH2A0%0) « 1.
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Also for the local operator T/{), we have the following kernel estimates:

log(A 2 if < )1
5.11) IT0(x, )| < | CollogGda(x.0)/DI i dglx,y) < A7,
CoA™ 2 (dg(x, y)™? i AT < dg(x.y) < 1,
which comes from using stationary phase and the formulas
i o0 )
512 SO = — A[ t T iAt —e(A)t tP dt
(5.12) Y= e [ o T e o
and
i o0 )
G S=m / (n() = 00t/ T)e* e cos P dt,
! 0
separately.

To see this, note that the multiplier associated to the operator Sf is

i o ,
§9 =—/ A)n(t)T)e e M cosrr di.
0O =gy ) 10/ T e P cos x
Using integration by parts, it is not hard to see that for j =0, 1,2,...,

d’ CiA~27  if|r] < A
5.14 ‘—.S ‘< J . =4
(5.14) 207 o) —{c,-|f|—2—/ if 7] > A.

Given (5.14), if we argue as in the proof of Theorem 4.3.1 of [29], along with a change
of variables, we have |So(x, y)| < Collog(Adg(x, y)/2)[14, (x,y)<a-1 (¥, y). The kernel
for the operator S i is a consequence of stationary phase argument after using Hadamard
parametrix, see [9] and [24] for more details.

Since by heat kernel methods, we have Dom(Hy ) C L°°(M) when n = 2, by the very
definition of the Kato space, S)?(Vu) is given by an absolutely convergent integral. Thus,
if A = A(M, V) > 1is sufficiently large, we have, since V € X,

(5.15) ISR (Va)lleoary < §llullLoary ifA = A.
To use these bounds write
(5.16) U= (—Ag—A+ic)H T o(=Ag — (A +ic()H)u
=Ti(~Dg +V — A +ieA))u + Ty(Van -u) + Ty (Vo - u)
+ Ru(=Ag — (A +is(M))u

=I1+1I+II+1V,
with V< and Vs as in (2.18).
By (5.9),
(5.17) Moo S ) 2A7Y2(Hy — (A +ie(M)?)ul.
and, by (5.8), we similarly obtain
(5.18) MV]lso S () TV2A7Y2 - Ae()[ul2

< () V2ATV2||(Hy — (A + is(W)Dul2,

using the spectral theorem in the last inequality.
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If we use (5.10), (5.11) and (5.15), along with Holder’s inequality, we conclude that
we can fix N large enough so that

(5.19) Ml < 3 ullee ifA > A.
Also, (5.9) and (2.19) yield, for this fixed N,
(5.20) Moo < Cy ()2 A2 ul
S Q)22 (Hy — (A + ie(0)?)ulla.

using the spectral theorem and the fact that e(A) - A > 1if A > 1.
Combining (5.17), (5.18), (5.19) and (5.20) yields

(5.21) [ulloo < () TV2ATY2|(Hy — (X +ie(W))ully ifA > A.

To obtain the quasimode estimate (5.2) for ¢ = oo, we need to see that the bounds
in (5.21) are also valid when 1 < A < A. As before this just follows from the fact that

I(Hy = 2> +ie) )" fllzany < CIl(Hy =22 +ie(MA) " fllzry if1<A<A,

where C is a constant that depends on A.

Now we shall prove (5.2) for 6 < g < oo. We shall focus on the term III, since by (5.7),
(5.8) and (5.9), the other three terms are easily bounded by the right-hand side of (5.2).
Note that, by (5.11), we have

1/q
sup(/ |Tf(x,y)|qu> <CA 7?1 if6<q < oo.
y MM

Whence by Minkowski’s integral inequality,
(5.22) IR Nt vy acary < €A1
If we combine (5.10) and (5.22), by Holder’s inequality,
1T (Vanw)lly < CAT/4Vanuly < CA V1 ] co-
Since we have just proved that
lulloo < ()22 2 (Hy — (A + ie()?)ull2.
we conclude that the term III is dominated by the right-hand side of (5.2). ]

We can also obtain the following improved quasimode estimates for the two-dimen-
sional torus.

Theorem 5.2. Let T? denote the two-dimensional torus with flat metric, and assume that
V € K(T?). Then for ¢ > 6 and

_3(1:?0"'80 ]
A 3a forall §g > 0if 6 < g < o0,

(523) 8(1) = S(A” q) = {1—1/3 lfq = 00,
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we have, for u € Dom(Hy) and A > 1,

(5.24) lellLacr2y S A7PH M) T2 I(Hy — (A + ie()>) ]l L2cr2).
Similarly, if e(A) > A~V/3, we have

(5.25) lull Lscr2)y S A - e ™>/CN[(Hy — X + ie())*) ullL2r2).-

To prove (5.24), we shall of course use the fact that, by the spectral projection bounds
in (4.69) and (4.70), if (A) satisfies (5.23), we have (5.24) when V = 0, which is equi-
valent to the following:

(5.26) [(=Ag — A+ ie)?)  r2an—rean S AP e() V2.
Also for the critical point ¢ = 6, we shall use
(5.27) [(=Ag = A+ ie)) M2 —rsan S AP (Ae(r) /¢

forall g > 0,if A~! < g(1) <1, whichisa consequence of the spectral projection estim-
ates in (4.4).

Now let us see how we can modify the proof of (5.2) to obtain (5.24) and (5.25). As
before, we shall first prove (5.2) for the exponent ¢ = oo, and then use it to obtain similar
inequalities for 6 < g < oo.

To proceed, write

(—Ag — (A +ie(A)>)™' =Ty + Ry, where Ty = Ty + Ty,

with Tf, T)k1 and R, asin (3.17), (3.18) and (3.19), respectively.
Since R) = my(+/Hp), with m (z) as in (3.22), one can use (4.69), (4.70) and a
simple orthogonality argument to see that for all g > 6,

(5.28) IRl 2212y La(r2y S AZD 7 (e(1)) V2
and also
(529) [[Ryo(=Ag — (A +ie(M)))r2(r2)sracr) S AP M) TV2 - (Le(h)).

If we set Ty = T + T} as above, then, since T) = (—Ag — (A +ie(1))*)™' — Ry,
we trivially obtain from (5.26) and (5.28) the bound

(5.30) ITall2 ez 2oy S ATO7 M) ifg > 6.
For the operator T,', we claim that if e(1) > A~'/3 as in (5.23), we have
(5.31) T3 |12y o2y = O(1).

To see this, we shall split the integral dyadically as before by writing

o0
1 1,0 z : 1,j
TA == TA. + TA ]s
j=1
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where, for j = 1,2,...,
1) i *© ;i At —s(A)t
T7,” = ——— 277)(1 —n(t t/T - tP dt,
F = AT =i/ Ty e e B oy

and TAI’O is given by an analogous formula with 8(27/¢) replaced by Bo(t) € CyP(R™).
If j = 0, by using the spectral projection estimates of [27] and the fact that

T,°00) <A7'A+ A —z))™ forall N, if A > landz > 0,
it is not hard to obtain
(5.32) 17,1 (r2) Loo(2) = O(1).
On the other hand, if j > 0, by using (4.25) for n = 2, we have
(5.33) 1Ty fllieesy S 29207 20 sy, J=12,....

Since T,f’j = 0if 2/ is larger than a fixed constant times (¢(1)) ™!, after summing over j,
if e(A) > A~1/3, we obtain (5.31).

As for the local operator T, by repeating the argument in (5.12)—(5.15), we have the
following kernel estimates:

Collog(Adg(x,y)/2)|  ifdg(x,y) <A™,

5.34 T9(x, <
G L y)'—{cox—l/%dg(x,y))—”z A < dy(xy) < 1.

which is independent of the choice of ().
To use these bounds write

(5.35) U= (-Ag —A+ieA)) T o(=Ay — (A +is(A))*)u
=Ta(~Ag +V —(A+ieA))Hu+ Ta(Van -u) + Ta(Von - u)
+ Ri(=Ag — (A +is(M))u
=1+11+ 10 +1V,

with V< and V5 as in (2.18).
By (5.30),

(5.36) Moo < () V2AV2||(Hy — (X +ie(A)Pul2,
and, by (5.29), we similarly obtain

(5.37) TV]oo < (e()™22712 - (Ae(A))llull2
< () V2ATV2|(Hy — (A + ie(A)Dul2,

using the spectral theorem in the last inequality.
If we use (5.31), (5.34), and the definition of Kato class, we conclude as before that
we can fix N large enough so that

(5.38) Moo < 3lulleo ifA = A.
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Also, (5.30) and (2.19) yield, for this fixed N,

(5.39) Moo < Cn((A)"Y2A7Y2 ull,
< ()22 (Hy — (A + ie(M)Dul2,

using the spectral theorem and the fact that (1) - A > 1if A > 1.
Combining (5.36), (5.37), (5.38) and (5.39) yields

(5.40) lulloo < (eA)TV2ATY2|(Hy — (X +ie(W))ully ifA > A.

To obtain the quasimode estimate (5.24) for ¢ = oo, we need to see that the bounds
in (5.21) are also valid when 1 < A < A. As before, this just follows from the fact that

|(Hy =22 +i) )™ flaerzy < Cll(Hy =22 +ie(M)A) ™ fllzaerzy if1<A<A,

where C is a constant that depend on A.

Now we shall prove quasimode estimates for ¢ < oo. First, if 6 < ¢ < oo, by using
(5.28), (5.29) and (5.30), we see that the terms I, II, and IV are bounded by the right-hand
side of (5.24). Thus, we only need to focus on the third term III. Note that, by (5.34), we
have

1/q
sup(/ |Tf(x,y)|qu> <CA 7?1 if6<q < oo.
y NJIM
Whence, by Minkowski’s integral inequality,
(5.41) 1T L1 12y Lar2y < CAT2/9.

The T/f’o operator behaves like the local operator, and we can also use the spectral
projection estimates in [27] to get

(5.42) ||T)3’0||L1(’]I‘2)%Lq(’]1‘2) < C/\_Z/q.

To obtain the analogue of (5.42) for the operator T/ll’j , we shall use interpolation between
(5.33) and the following estimates:

(5.43) I3 fllaesy S 2720720 fllasy J=1.20. 0,
which follows from applying a dual version of (4.69) with p = 27/ as well as the fact that
T} (1) = 027 (1 +2/|A —z|)™) forall N, if A > T and v > 0.

Since é = % -0+ % -(1-0),with 6 = %, by interpolation between (5.33) and (5.43),
we get

(5.44) T |1 12y Laeray < CATY220@/272/0) £ < ¢ < o0
After summing over j € N, with 27 < e(A)~L, we conclude that

(5.45) IT Lt 12y Laer2y < CATY2e(M)2/973/2 4 724,
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Thus, we would have
(5.46) 1T 21 r2)>Lacr2y < CAT2/4,
—4
if we knew e(A) > =3 However, since Z2=% > _4=%_ thjs yields (5.46) for all (1)

3g—4 3¢g—10°
satisfying (5.23),if 6 < ¢ < oo.
If we combine (5.41) and (5.46), by Holder’s inequality,

1T (Vant)llg < CA™2 4| Vayully < CATH|V ||y |[u]|oo-
Since we have just proved that
ullos < () V2ATV2|(Hy — (X + ie(A)®)ul2,

we conclude that the term III is dominated by the right-hand side of (5.2), which completes
the proof of (5.24).

To conclude the section, we shall prove (5.25), by using (5.27), (4.4), and by repeating
the arguments above, we can easily see that the terms I, I, and IV are bounded by the
right-hand side of (5.25). For the third term III, if we combine (5.41) and (5.45), and
use (5.24) for ¢ = oo, as above, we have

(547 | Ta(Vanu)lle < CATV2 4 A7 26(0) V3732 Ve wu )y
<CATYE 27270V I ulloo
< () V2AC 4 (e TPATY (Hy — (A +ie(A)?) ull2.

which is bounded by the right-hand side of (5.25) if e(A) > A~1/>. Thus, the proof of (5.25)
is complete.

Appendix: Self-adjointness and limited Sobolev estimates

As we stated before, for brevity, dx denotes the Riemannian volume element for (M, g).

Proposition A.1. Forn >3, if V € L"%(M), the quadratic form

A.l)  gy(u,v) = —/ Vuvdx +/—Ag uvdx, u,veDom(y/—Ag +1),
M

is bounded from below and defines a unique semi-bounded self-adjoint operator Hy
on L2. Moreover, C*® (M) constitutes a form core for qy.>

Proof. Since (—Ag + 1)!/2 is self-adjoint, by perturbation theory (specifically the KLMN
theorem, see Theorem X.17 of [22]), it suffices to prove that for any 0 < ¢ < 1, there is a
constant C, < oo such that

(a2 [IVIlPdx < el-85 + D2l + CulB. € Dom(y/Ho)

where Hy = —Ag + 1.

3Recall that a form core for qy is a subspace S which approximates elements u in the domain of the form,
in that there exists a sequence u,, € S satisfying limy, || — |2 + qy (U — Um . u — Uy) = 0.
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To prove this, for each small § > 0, choose a maximal §-separated collection of points
xjeM,j=1,...,Ns, Ngs ~ 67" Thus, M = UB; if B, is the §-ball about x;, and
if B;‘ is the 2§-ball with the same center,

(A3) Y 1 (x) < Cu.

where Cj is independent of § < 1 if 1 B} denotes the indicator function of B* Since
V e L"2(M), for any fixed &, we can choose § > 0 small enough so that

(A4) Cu (Co sup ||V||Ln/2(B(x,28))) <&
xeM

where Cy is the constant in (A.5) below.
Now for each B;, define a smooth bump function ¢;, with ¢; = 1 on Bj, and ¢; =0
outside of B]’.k. Since M = UB;, we have

as) [IviPax <Y [Wiigurax
J
< (59 IV luaaceann) DIyl
xXEM ; n—2
= Co( sup IV llzoraqaeesn ) D IV 13
xeM i

< Co( sup IV llwaqeasn ) D (V@ 2aey + (V) 0)13)
xeM J J

< &ll(=Ag + 1D)"?ull} + Cellul3, u € Dom(v/Ho),
where Hy = —A, + 1. Here we have used Sobolev estimates as well as (A.4). ]

If u € Dom(,/—Ag + 1), then —A,u and Vu are both distributions. If Hy is the
self-adjoint operator given by the proposition, then Dom(Hy ) is all such u for which
—Agu + Vu e L%

If we take ¢ = 1/2 in (A.2), we indeed get, for large enough N,

(A.6) ||,/—Ag+1u||§=[(—Ag+1)uﬁdy52/(—Ag+V+N)uﬁdy
=2||VHy + Nul} ifHy =—-Ag + V.

Thus, (—Ag + 1)Y/2(Hy +N)~Y2 and (Hy 4+ N)~"/2(—Ag4 + 1)'/2 are bounded on L2.
Since (—Ag + 1)~1/2 is a compact operator on L2, so must be (Hy + N)~'/2. From this,
we conclude that the self-adjoint operator Hy has discrete spectrum.

A combination of Sobolev estimates for the unperturbed operator and (A.6) also gives
us

(A7) lull 2. < ClIVHy + Null2  ifu € Dom(Hy).
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Note that in the above inequality (A.5), and thus (A.6), we need the condition n > 3,
because we do not have a suitable Sobolev inequality at nz_"z when n = 2. Additionally, if
n > 5, by an analogous argument as in (A.5), we have, for any 0 < e < 1, that there is a

constant C, < oo such that

(A.8) /qu|2dx <ell(=Ag + Dul3 + Cellull3, u € Dom(Hy),

where Hy = —A, + 1.
Inequality (A.8) also appears in Theorem X.21 of [22] under a weaker assumption
on V. The reason it does not hold when n = 3, 4 is that we do not have an appropriate

Sobolev inequality at nz_"4 when n = 3, 4. As a consequence of (A.8), we have, for large
enough N,
(A.9) Cill(=Ag + Dullz = [[(Hy + N)ul2 = Gll(=Ag + Dull2

if Hy = —Ag + V.

After replacing V' by V 4+ N to simplify the notation, we may assume, as we have
throughout starting with (1.3), that (A.5) holds with N = 0. This just shifts the spectrum
and does not change the eigenfunctions. In this case, the spectrum of Hy is positive and
its eigenfunctions therefore are distributional solutions of

Hye; = A%e; for some A > 0,

which means here that A is the eigenvalue of the “first order” operator /Hy, i.e.,
(A.l()) PVeA IAQ)L ifPV2 \/H .
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