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WEYL FORMULAE FOR SCHRODINGER OPERATORS WITH
CRITICALLY SINGULAR POTENTIALS

XIAOQI HUANG AND CHRISTOPHER D. SOGGE

ABSTRACT. We obtain generalizations of classical versions of the Weyl formula in-
volving Schrédinger operators Hy = —Ag + V(z) on compact boundaryless Rie-
mannian manifolds with critically singular potentials V. In particular, we extend
the classical results of Avakumovié [1], Levitan [13] and Hormander [8] by obtaining
O(A\"~1) bounds for the error term in the Weyl formula in the universal case when
we merely assume that V' belongs to the Kato class, K(M), which is the minimal
assumption to ensure that Hy is essentially self-adjoint and bounded from below or
has favorable heat kernel bounds. In this case, we can also obtain extensions of the
Duistermaat-Guillemin [4] theorem yielding o(A”~1) bounds for the error term under
generic conditions on the geodesic flow, and we can also extend Bérard’s [2] theorem
yielding O(A»~1/log \) error bounds under the assumption that the principal cur-
vatures are non-positive everywhere. We can obtain further improvements for tori,
which are essentially optimal, if we strengthen the assumption on the potential to
V € LP(M) N K(M) for appropriate exponents p = pn,.

1. Introduction.
The purpose of this paper is to prove Weyl formulae for Schrédinger operators
(1.1) Hy =-A,+V(z)

on smooth compact n-dimensional Riemannian manifolds (M, g). We shall assume through-
out that the potentials V' are real-valued. Moreover, we shall assume that

(1.2) Ve K(M),
where IC(M) denotes the Kato class. Recall that IC(M) is all V satisfying
(1.3) lim (sup [ V()] ha(dy(a,9) dy ) =0,

=0\ zeM JB(x,5)

where dg, dy and B(z,§) denote geodesic distance, the volume element and the geodesic
ball of radius § about x associated with the metric g on M, respectively, and

r2 " n>3

log(2+1/r), n=2.
For later use, note that (M) C LY(M).

(1.4) hn(r) =
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2 WEYL FORMULAE FOR SCHRODINGER OPERATORS

As was shown in [3] (see also [15]) the assumption that V is in the Kato class is
needed to ensure that the eigenfunctions of Hy are bounded. If Hy has unbounded
eigenfunctions, then its spectral projection kernels will be unbounded for large enough A,
and obtaining spectral bounds in this situation seems far-fetched. The assumption that
V € K(M) ensures that this is not the case.

Moreover, if V' is as in (1.2) then the Schrodinger operator Hy in (1.1) is self-adjoint
and bounded from below. Additionally, in this case, since M is compact, the spectrum of
Hy is discrete. Also, (see [15]) the associated eigenfunctions are continuous. Assuming,
as we may, that Hy is a positive operator, we shall write the spectrum of /Hy, as

(1.5) {7tz

where the eigenvalues, 71 < 75 < ---, are arranged in increasing order and we account
for multiplicity. For each 7 there is an eigenfunction e,, € Dom (Hy) (the domain of
Hy) so that

(1.6) Hye,, =Tfes,.

We shall always assume that the eigenfunctions are L?-normalized, i.e.,

/ ler, (z)|* dz = 1.
M

After possibly adding a constant to V' we may, and shall, assume throughout that Hy
is bounded below by one, i.e.,

(1.7) 113 < (Hvf, f), f€Dom (Hy).
Also, to be consistent, we shall let
(1.8) HY=-A,+1

be the unperturbed operator also enjoying this lower bound. The corresponding eigen-
values and associated L*-normalized eigenfunctions are denoted by {;}52, and {e9}52,
respectively so that

(1.9) H%) =€), and /M |€9(x)|* do = 1.

VAR
Both {e, }32, and {€}}32, are orthonormal bases for L?(M). Recall (see e.g. [16])
that if N9(\) denotes the Weyl counting function for H° then one has the “sharp Weyl
formula”

(1.10) NO(A) = (27) "w, Volg (M) A™ + O(A"™1), N°(\) =#{j: A\; <A},

where w,, denotes the volume of the unit ball in R” and Voly (M) denotes the Riemannian
volume of M. This result is due to Avakumovié [1] and Levitan [13], and it was generalized
to general self-adjoint elliptic pseudo-differential operators by Hormander [8]. The bound
in (1.10) cannot be improved for the standard round sphere, which accounts for the
nomenclature “sharp Weyl formula”.

The main goal of this paper is to show that this sharp Weyl formula also holds for the
operators Hy in (1.1) involving critically singular potentials V as in (1.2). Specifically
we have the following.
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Theorem 1.1. Let V € K(M) and let Hy as above and set
(111) Nv(/\) = #{k LTk S )\}
We then have

(1.12) Ny (\) = (27) "w, Vol (M) A" + O\ 1).

We shall also be able to obtain improved counting estimates under certain geometric
assumptions.

The first such result is an extension of the Duistermaat-Guillemin theorem [4]. Recall
the assumption in this theorem is that the set C C S*M of all (z,¢) lying on a periodic
geodesic in S*M have measure zero (see [16]). Here, S*M denotes the unit cotangent
bundle of (M, g). In this case Duistermaat and Guillemin [4] showed that one can improve
the bounds for the error term Weyl law (1.10) (assuming that V' =0 or V is smooth) to
be o(A"~1). The proof of this relies on Hérmander’s theory of propagation of singularities
for smooth pseudo-differential operators. Even though this theory does not apply to our
situation involving very singular potentials, we can extend the theorem of Duistermaat
and Guillemin to include the above operators.

Theorem 1.2. Let V € K(M) and let Hy be as above, and assume that the set C of
directions of periodic geodesics has measure zero in S*M. Then

(1.13) Ny (A) = (27) "w, Vol (M) A™ 4+ o(A"1).

We also can extend the classical theorem of Bérard [2].

Theorem 1.3. Assume that the sectional curvatures of (M, g) are non-positive. Then,
if Ve K(M),

(1.14) Ny (A) = (27) "w, Vol (M) A" + O(X" "1 /log \).

In the special case of the torus, we can do much better.

Theorem 1.4. Let T™ = R"/Z" denote the standard torus with the flat metric, and
assume that V € KK(M) whenn =2 and V€ LP(M)NIK(M) for some p > nQ—J:Q if n > 3.
Then

(1.15) Ny (A) = (27) "w, Voly (M) A" + O(A"~ 22/ (41,
Moreover, if V.€ L>(M)NK(M) and n > 4, we have

(1.16) Ny (\) = (27) "wn Vol (M) A" + O(}\n72+5)'

If V =1, the bounds in (1.15) are the classical results of Hlwaka [7]. The same bounds
hold for irrational tori. Also, with the stronger condition on the potential V' in the second
part of the Theorem, if we use more recent improved bounds for the error term in the
Weyl formula for V' = 1 and related bounds for the trace of certain spectral projection
operators, we obtain the improved bounds in (1.16) involving singular potentials.
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2. Preliminaries.

We first recall that, if as above, {e;, } is an orthonormal basis of eigefunctions of Hy
then

(2.1) No(\) = 40k 7 < A} :/ S e (2)]2 d.
M2
Thus, Ny (A) is the trace of the spectral function
(2.2) EY (x,y) = Z er.(z)er, (y).
Tkg)\

Here, we are assuming, as we may, that all the eigenfunctions of Hy in our orthonormal
basis are real-valued. To simplify the notation, as we may, we shall assume the same for
those of H, i.e., the {e%}.

To prove the Weyl formula (1.12), we shall need the fact that if we consider the kernels
of the unit band spectral projection operators

(2.3) XY(%Q) = Z er.(¥)er, (v)
TRE[NA+1)

for Hy, then we have
(2.4) / XY (z,x)de = O(\"71), A > 1.
M

We postpone the proof of (2.4) until the last section. Also observe that if we assume
additionally V € L3 (M) N K(M), (2.4) would be a consequence of the kernel bound

XX () = 0(A" )
which is proved in [3].

The general strategy behind the proof of Theorem 1.1 will be to exploit the classical
results of Avakumovi¢ [1] and Levitan [13] telling us that if,

ES(x,y) = > e(z)ed(y),
A <A

is the spectral function corresponding to V' = 1 then we have the following estimate for
its trace

(2.1) /M S 1e0(@)? dz = NO(A) = (21) " Voly (M)X" + O(A" 1),
A <A

and then compare the trace of Eg with that of the one EX for the perturbed operators.

To do this, we shall follow the classical approach of rewriting these traces using the
wave equation. To this end, let P° = vHO and Py = +/Hy be the square roots of the
two Hamiltonians. Then since the Fourier transform of the indicator function 15(7) is
28 “we have for A not in the spectrum of PP

(2.5) NO(\) = l/ / SH;M (cos tPO)(J:,:zr) dtdz,
T™JM J -0
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if

(2.6) (cos(tP?)) (z,y) = Z cost; ejo- (x)e? (y)

is the kernel of the solution operator for f — (costPY)f = u°(¢,z), where u° solves the
wave equation

(2.7) (07 + HO)u'(2,1) = 0, (2,t) € M x R, u®|i—0 = f, 9pu’]1—o = 0.

Note that (2.6) is the kernel of a bounded operator on L?(M), and when we check that
(2.7) is valid, it suffices to do so when f is a finite linear combination of the {eg} since
such functions are dense in L?(M). We shall use similar facts in what follows. See [16]
for more details.

Similarly, for A not in the spectrum of Py

(2.8) Ny(\) = %/M /_Z sintt)\ (cos(tPy))(z, z) dtd,
if
(2.9) (cos(tPy)) (x,y) = Y _ costry e, (x)er, ()

k

is the kernel of f — cos(tPy)f = uy(x,t), where uy solve the wave equation

(2.10) (0 + Hy)uy (z,t) =0, (z,t) € M x R, uyl|i=o = f, duy =0 = 0.

To exploit (2.1) and prove its more general version (1.11), in view of (2.5)—(2.10), it
will be useful to relate the kernels in (2.6) and (2.9). To do so we shall make use of the
following simple calculus lemma.

Lemma 2.1. If 4 # 7 we have

t .
t— tT — t

(2.11) / sinft = s)i cos s ds = ST OB Z C(;S iy

0 K pe =T
Stmilarly,

t .
t— tsint
(2.12) / sin(t = ) cos s ds = T
0 T 27

Proof. To prove (2.11) we make use of the identity
sin(s(7 — p) + tp) = sin((t — s)u + s7) = sin((t — s)p) cos sT + cos((t — s)u) sin s,
and, similarly,
—sin((7 + p)s — tp) = sin((t — s)p — s7) = sin((t — s)p) cos s7 — cos((t — s)p) sin s7.
Thus,
sin(s(t — p) + tp) —sin((7 + p)s — tp) = 2sin((t — s)p) cos 7.
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Consequently, the left side of (2.11) equals

1 cos(s(r — p) + tp) N cos(s(T + p) — tp) '
2u w—=r p+T 0

1 1 1 1 1
:—{costr-( +—)—costu-( + )}
21 w—7 p+T w—T7 p+T
1 (2ucost7' 2,ucost,u) _coslT —costu

21 N

3

w2 —72 2 — g2 12 — 72

as desired.

The proof of (2.12) is similar. O

Let us now describe how we shall use (2.1) and Lemma 2.1 to prove the Weyl formula
(1.12). If, as above, 1(7) is the indicator function of [—A,A], by (2.1), proving this
amounts to showing that the trace of 1)(P,) satisfies the bounds in (1.12). As is the
custom (cf. [16]), we shall do this indirectly by showing that an approximation 1y (Py)
also enjoys these bounds, and, separately showing that the difference between the trace
of ][)\(Pv) and ][)\(Pv) is O()\nil)

To this end, fix an even real-valued function p € C*°(R) satisfying
(2.13) p(t)=1on [-1/2,1/2] and supp p C (—1,1).
We then define

- 1 [ in At
(2.14) (1) = —/ p(t) smt costr dt.
Then since the Fourier tranform of 1(7) is 2% it is not difficult to see that for 7 > 0
and large A we have
(2.15) I(r) = a(r) =O((1+ A= 7))~N) VN.
Also, for later use, for 7 > 0 we have

(2.16) (L) Iy(r) =01+ A =7)"N) VN, if j=1,2,3,....

If we use (2.4) we can estimate the difference between the trace of 1y(Py) — 1x(Py).
Indeed, by (2.15) we have

(2.17) }/M(JIA(PV)(Q:,;E)_L(PV)(x,x)) dz| = ]/MZ(JIA(T,C)—L(T,C)) e, (2)2 da
k

SY [ =) e @ do 20
k

using (2.4) in the last inequality. Here, and in what follows, we are using the notation
that A < B means that A is less than or equal to a constant times B where the constant
may change at each occurrence.

The fact that (2.17) holds when V' = 1 is due to Avakumovié¢ [1] and Levitan [13].
Since they also showed that the Weyl formula (1.12) is also valid when V' = 1, in view of
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(2.1) and (2.8), in order to prove Theorem 1.1, it suffices to prove our main estimate

(2.18) / (L(PV)(x,x) - L(PO)(x,x)) dz = O\ 1),
M
We shall actually be able to prove better bounds, namely,
(2.18') / (1(Pv) . 2) — 1y (P) (2, 2)) da = O(X"—72),
M

The implicit constants here of course depend on our V as in Theorem 1.1.

To prove this, we shall use the fact that, by (2.9) and (2.14) the kernel of 1y(Py) is

(2.19) In(Py)(z,y) = %/OO p(t) sin Af ZCOS try er, (z)er, (y) dt.
oo -

To use this formula, we note that, by (2.10) if f is a finite combination of the {e,, },
then

(02 + HY) / Zcostmem r)eq, (y) fy) dy

=—V@%%;Xk%ﬂwm@km@ﬁ@ﬁw=—V@%@%ﬁ%ﬂﬁ@)
Also, since

(%)J ( /M ; costrier, (x)er, (y) f(y) dy—/M ; o t)\je?(;v)e?(y) F(y)dy ) ‘t:O =0

J=01

by Duhamel’s principle we have

/M zk: costtrer, (x)er, (y) f(y) dy — /M ; costAjed(x)e) (y) f(y) dy
— _/ (M(V COS(SPV)f)) (:Z?) ds
/ / / Z bm(’f S))‘J (x Zcos sTker, (2)er, () f(y) dzdyds.

By (2.14) or (2.19) if we integrate this against = !p(t)®22 we obtain 1,(Py)f(z) —
1,(P°) f(z). Therefore, by Lemma 2.1 the kernel of 1y(Py) — Iy(P?) is

(2.20)  (Ir(Pyv) = Ir(P")) (2, y

sm A
—Z//’ (i A)) )NV (e, (e, (1) dod.

where

costT—costu :
-y R if 7#u

(2.21) m(r, 1) =
_ tsintr

5, A T =p.
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Thus, by (2.19)—(2.20) we have

(2.20")  (n(Py) = IA(PY)) (z,y) =

) /M %ﬂ\%(me?@)eg('z)v@)@m (2)en, (y) dz,

if, by the second part of (2.21) we interpret

) = hiw) L\() = il/)\(T)/2T, if T=p.

2.22
(222 o

Thus, we would have (2.18) and consequently Theorem 1.1 if we could prove the
following:

Proposition 2.2. As in Theorem 1.1 fit V€ K(M). Then

15 ( -—]l T
22 |3 [ 2B ) )V w)er, (e)en, 0) dady
<OV Vg A2

for some constant Cy depending on V.

We remark that even though the right side, curiously, involves the L!'-norm of V', we
need that V' is in (M) since, among other things, the proof of Proposition 2.2 will use
heat kernel estimates involving Hy . Steps like this will contribute to the constant Cy in
(2.23).

Note that the kernel in (2.20’) involves an amalgamation of the kernels of 1y(P?),
1,(Py) and the resolvent kernels (Hy — p2)~! and (H® — 4?)~1. To prove (2.23) we shall
attempt to separate the contributions of the various components by using the following
simple lemma.

Lemma 2.3. Let I C Ry and for eigenvalues 1, € I assume that 6, € [0,9]. Then if
m € Cl (R+ X M)

(2.24) /Z Or, ) ager, (z )‘d

TREL
5
< (1m0l + [ Ims, Mgzqunyds) x (3 lawl)™

TRET

Proof. We shall use the fact that m(d,,,x) = m(0,z) + f(f 1jo,5,,1(s) %m(s, x)ds, where
Ijo,5,,1(s) is the indicator function of the the interval [0,dr,] C [0,6]. Therefore, by
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Minkowski’s inequality, the left side of (2.24) is dominated by

/‘mO x ZakeTk ‘dx—l—/ ‘ Z/ 05% Bs (s,x)akeTk(x)ds‘dx

TREl Trel
/’mO:v ZakeTk ’dw—i—/ /‘65 m(s, ) ‘Zakem ‘d:v)
TLET TRETL
<0, M S el + [ (Lo, s o, G ) s
TRETD
=m0, )l (3 fanf?) 2 + /llas M- (3 Mo (s)acf?) 2 ds
TRLEL TREI
5 1/2
< (1m0, Moz + [ Imts, sy ds) % (3 laef)
0 TRET
as desired. ]

Next, recall that we mentioned that the kernel in (2.23) is a juxtaposition of the kernels
of 15 (P?) as well as resolvent-type kernels. To handle the former, we shall appeal to the
following straightforward result.

Lemma 2.4. Let 1y(P°) be defined by (2.14) and the analog of (2.19) involving P°.
Then the kernel of (P°)*15(P°), u=0,1,2,... satisfies

(2.25) (P 15(PY)) va ej(y) = O™ ),

and, moreover,

(2.26) @ AP 9l gy = OO2H).

HL2(M)

The proof of the lemma is very simple. First, by the pointwise Weyl formula of
Avakumovié [1], Levitan [13] and Hérmander [8] (see also [16]),

(2.27) Z |ejo-(x)e?(y)| =01, reN.
AjE€[,0+1]

If we use this and (2.15), we obtain (2.25). To prove the other inequality, (2.26), we note
that, by orthogonality

[P AP )y = D02 (1) S = O )

by this argument, which is (2.26).

To deal with the contributions of resolvent type operators in the mixture (2.23) we
shall need a couple more results. The first is bounds for cutoff resolvent operators for
the free operator HP.
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Lemma 2.5. Fizn € C®(Ry) satisfying n(s) =0 on s <2 and n(s) =1, s > 4. Then
if we set for 7> 1

(2.28) Roto) = Y 5T @)
we have
(2.29) R (2,9)| < CnT" 2ho (7 dy(2,y)) (147 dy(z,9)) ",

for any N =1,2,3,..., if hp(r) is as in (1.4). The constant Cn depends on N, (M, g)
and finitely many derivatives of 1.

Here we are abusing the notation a bit. In (2.29) we mean that the inequality holds
near the diagonal (so that dg(z,y) is well-defined) and that outside of this neighborhood
of the diagonal R, (z,y) is O(t—%) for all N. We shall state certain inequalities in this
manner in what follows.

To verify (2.29), we note that the integral operator R, arising from the kernel R, (z,y)
is

7 2m(P%/7),
where m
mm:;ﬁl

Thus, m is a symbol of order -2, i.e.,
) - AT
ohm(p) =O((1+p)~*7),j=0,1,2,....

As a result, one can use the arguments in [17, §4.3] to see that (2.29) is valid. Indeed,
modulo lower order terms, R, (z,y) equals

- [ 2 UET) i,
(2m) /n JE/n—1° .

near the diagonal, which satisfies the bounds in (2.29), while outside of a fixed neighbor-
hood of the diagonal R, (z,y) = O(r=) for all N.

We also need bounds for the kernels of (Hy)~7.

Lemma 2.6. Let (Hy) I (z,y) = >, T,;Qjem(x)efk (y) be the kernel of (Hy) ™, j =
1,2,.... Then if hy(r) is as in (1.4)

(2.50) (my%MSmewx#%wmywww,

1, otherwise.

Furthermore, if n > 5 and j <n/2, j € N we have

—n—+2j . .
(do(z,)) "7, if dglwy) < Inj (M)/2,
1 otherwise.

(2.31) wwﬁ@ws{

To prove (2.30) or (2.31), we note that

(2.32) (Hv) 7 (2,y) = /Ooo t (eV) (,y) dt.
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We then use the heat kernel estimates of Li and Yau [14] (V € C*°) and Sturm [18,
(4.14) Corollary] (V € K(M)), which say that for 0 < ¢ < 1 there is a uniform constant
¢ = cum,v > 0 so that

t="/2 exp(—c(dy(z,y))?/1), if dg(z,y) <Inj (M)/2,
1 otherwise.

(2:33)  (e7")(2y) S {

As a consequence of (2.33), we have for 0 < ¢ <1
[ e ) Py st
M

By Schwarz’s inequality, we have ||e "V || 2,7~ < t~%. If we consider the kernels of
the dyadic spectral projection operators

(2.34) Nxy)= Y enl@)enly),
Tke[)\,2)\)

for Hy, then, by the spectral theorem, we have
~ 22 n
XX 2z Slle™ 1V L2mpe S AR,
which, along with the Cauchy-Schwarz inequality, implies

(2.35)  sup | e (2)en (y)] < sup len, @2 = || KX 5., 1 S AT
z,yeM TkG[ZAQ)\) * " IGMT;CG[;,Q)\) * L:=L

Since the eigenvalues of HY are all > 1, by (2.35) we have
(2.36) (") (2,y) Se 2 t>1.
If we use (2.33), (2.36) along with (2.32), we obtain (2.30) and (2.31).

3. Proof of the universal Weyl law involving singular potentials.

To prove Proposition 2.2, which, as noted, implies our main result, Theorem 1.1,
we shall split things into three different cases that require slightly different arguments.
Specifically, we shall first handle the contribution of frequencies 7, which are comparable
to A, and then those that are relatively small followed by ones that are relatively large.

Handling the contribution of comparable frequencies. In this subsection we shall
handle frequencies 7, which are comparable to A, which one would expect to be the main
contribution to the Weyl error term in (1.12). Specifically, we shall prove the following.

Proposition 3.1. As in Theorem 1.1 fix V. € K(M). Then

ey (X 5[ AR sy e e ) oy

T {k:me€[A/2,100]}
< Cv|VIpian A2,

for some constant Cy depending on V.
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To prove Proposition 3.1, let us fix a Littlewood-Paley bump function 5 € C5°((1/2,2))
satisfying

o0

Z B2 ) =1, s>0.

l=—o0
Let us then set

= B27sl) € C((-2,2)),

£<0

and
B(s) = s'B(Is]) € C5°({Is] € (1/2,2)}).
We then write for \/2 <7 < 10\

@2 Koy = 5 PR

- Z L A :jl"\ )BO)(\&_F_TT) e (x)e) (y)

ooy (XD 60 i) )

{LEN:2¢<A/100}  j /\ T

+Z(Z{“N:”>WO}B e _T”)(hm 1(7) ()] (v).

)\? _ J J
Next, let
L) = () BN —7) o, 1\ o
K o(2,y) ; /\ g N7 ej(x)ej(y)a
O —1) .
Ry y(x,y) = Z )\ s e?(x)eg(y), if 2¢ < /100,
j
and

‘rooxy

tem2esa/100) BT — 7 0/.3.,0
Z(Z{ /1003 B(27( )))e (@) ().

2 T
A] 2
A].SO, fOY 2 < )\/100 ].et

—3(9C(\i — 1)) .~
Koy = 32 2 PC AT 6, () - 1) ed@)edn)

- i+ T : 7
; j

39\ — 7))
K5 ) = 30 ST ) ol o).
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and, finally,
- D geen: 2¢>x/1003 B(27 ‘=)
K7 oolay) = Y (S — ) (a0y) = 1) @)l )
3 J
D eens 2653100 B2 = 7)) -
J J
If K, is as in (3.2), our current task, (3.1), is to show that
(3.1 Z J[ Ko gpen en ) V ) dady] £ 30 F Vs
Tke[A/z 10A]

To prove this, we note that we can write
(3.3) Kr(r,y)=EKrolwy)+ Y K y(wy)+ Ko o(a,y)
{¢£€N: 2¢<2/100}

+ > Ry o(2,9)(1 = 1n(7)) + Rroo(z,y) (1 — 1x(1)),

{£eN: 2¢<7/100}

(34) Kr(z,y) =Krolzy)+ Y,  Kh(e,y)+K! (29
{¢EN: 2¢</100}

- Z Ry o(z, y)ib\ (1) = Rroo(, y)ib\(T),

{£eN: 2¢<)/100}

We shall use (3.3) to handle the summands in (3.1") with 7 = 7, € [A\/2, ] and (3.4) to
handle those with 7 = 7, € (A, 10A].

For ¢ € N with 2¢ < A/100, let for j = 0,1,2,...
(35) L, =MA-(0G+1251=-42] and I, = (A+j2 A+ (G +1)2°].

Then to use the d,~Lemma (Lemma 2.3), we shall use the following result whose proof
we momentarily postpone.

Lemma 3.2. If{ € Z,, 2* < \/100, and j = 0,1,2,..., we have for each N € N
(3.6) K, )lleans 122K, w)ll2aan
SANT 2214 5)7N, T e IE N [A/2,10)).
Also,
B.7) NEro( 92y 1Kol 9Lz
AT 147N, 7 eI N[A/2,10),

n

(38) ”K:oo( 7y)||L2(M)7 ||A87-K7—"’_OO( Y )||L2(M) S )‘5_27 TE [)‘7 10)‘]7

and we can write

K‘r_,oo(xvy) = K‘r_,oo(xu y) + H;oo(%y),
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where for T € [A/2, )]

1K oo Collizans INEK S oo(59) 2y S AZT2
(3.9)
[Hy oo (2, 9)| S A 2ha(Mdg (2 — 1)) (1 + My (2, )7,

7,00

where hy, is as in (1.4). Finally, we also have for 1 < 2° < \/100 and T € [\/2,10)]

(3.10) IRre( )2y 1202 Ree(- )l ceany S A7 12742,
and
(3-11) |R‘r,<>0(xvy)| S )‘n_zhn()‘dg(xa y)) (1 + )‘dg(xa y))_N'

As before, we are abusing notation a bit. First, in (3.6) we mean that if K, equals
K:Z or K, then the bounds in (3.6) for 7 in IZj N[A, 10A] or I, ;N [A/2, A], respectively.
Also, in both the second inequality in (3.9) and in (3.11) we mean that the kernels satisfy
the bounds when z is sufficiently close to y (so that dg(z,y) is well-defined) and that
they are O(A~Y) away from the diagonal.

Before proving this result let us see how we can use it along with Lemma 2.3 to prove
Proposition 3.1.

Proof of Proposition 3.1. First, by (3.6) and Lemma 2.3 with § = 2¢, we have

s | Y [k ee @ oV dis
TRELF,N[A/2,10)]
< Vo -sup J[ &t e vea@ent],,

T}CGIi A/2 10)]

SVl 50 (1 oz + [ [ REC)lloan )

£,3

(Y lemP)?

TRELF,N[A/2,10)]

204 )N Y fen )

T€[N/2,10)]

SATE2T2(1 4 )N,
In the second to last inequality we used the fact that, by (2.35),

(3.13) S len@P AN A1
TrE[N/2,10)]
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If we sum over j = 0,1,2,..., we see that (3.12) yields

Gy | [ K] e @en ) Vo) dod]

ALTE<10A
Y Ko @en @ Vi) dedy| £ 32 Vg, 122 <2100,
2/2< <A

If we take § =1 in Lemma 2.3, this argument also gives

E15) | 3 [ Kot ven@en o) Vi) ddy

A2<m <A

H X[ Knolwvien @en ) V) dods] S 3 EV s,

A< T <10\

Similarly, if we use Lemma 2.3 with § = A\ along with (3.8) we find that

1o | X [[ KL wen @en ) Vi) dedy)

A< <10\
n_ 1/2 n—
SAZWIn (Y len@) T SAE IV,

TRE[N/2,10)]
using (3.13) for the last inequality.

Next, since R, ¢ enjoys the bounds in (3.10), we can repeat the arguments in (3.12) to
see that for 1 < 2¢ < A\/100 we have

> Rey @, y)In(7e)er, (2)er, (0)V (y) dady|
€L} (10

n—1 ~
SV 2720 Tsup( Y [1n(rk)er, (v)]?)
€L} N(X,10)]

SANTET2 V- (14 5) 7Y,

1/2

since 1y (1) = O((1+4)"N)if 71, € IZj. Summing over this bound over j of course yields
G | X[ Redoi)ismen @en 0V ) dedy| S 322V
A<T, <10A
The same argument gives
613) | Y [[ Roden) (1= )en (2)en )V () dody] S A E2 RV
A/2<mp <A

Also, by (3.11) we have

sup / Sup |Rroo(e,y)|dz < A2,
Yy 2/2<T<10A
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and since (3.13) yields >0 ~ox ler. (¥)er, (y)| S A", we have

| [ Rrle s men 2en )V 0) dady| £ XV

Tk E()\ lO)\

Y[ Bason (- ) en @en 0V ) dady] £ X2V

TRE[N/2,A]

(3.19)

If H- is as in (3.9) this argument also gives us

Y [ e @en @) Vi) sty S 0V,

M2< <A

while the proof of (3.16) along with the first part of (3.9) yields

| Y[ R e @en ) V) dady] £ X3V

2/2<T, <A

Since K, oo = =K, 00 T H o, we deduce

) | Y [[Kwen@en ) Vo) dods] S 32V
2/2<T, <A

We now have assembled all the ingredients for the proof of (3.1"). If we use (3.14),
(3.15), (3.18), (3.19) and (3.20) along with (3.3), we conclude that the analog of (3.1)
must be valid where the sum is taken over 7, € [A/2, A]. We similarly obtain the analog
of (3.1") where the sum is taken over 7, € (A, 10]\] from (3.4) along with (3.14), (3.15),
(3.17) and (3.19).

From this, we deduce that (3.1") must be valid, which finishes the proof that Lemma 2.3
and Lemma 3.2 yield Proposition 3.1. O

To finish the present task we need to prove this lemma.

Proof of Lemma 3.2. To prove the first inequality we note that if 7 € Ilitj N [A/2,10)]
then |\; — 7| < 2¢+1 )\Z,T ~ A B(2 _é()\ — 7)) # 0, and, in this case, we also have
L) —1=0(A+[i)N)if 7€ I;; and 1x(\;) = O((1+[5])™N) if 7 € I};. Therefore,
by orthogonality and (2.27), we have

KLl SA+ED N2 A0 Y 1w
{iz |\ —7|<2¢+1}
Sa+ph e Y )

{pe{N: |p—7|<2¢+1}
< (14 i) N2,

which is the first part of (3.6). In the second inequality, we used (2.27). The other
inequality in (3.6) follows from this argument since

9 BRT*N=T) ey
o7 mrr oA
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due to the fact that we are assuming that 2¢ < \/100
This argument also gives us (3.7) if we use the fact that 7 — (1 (7) — Ix(p)) /(7% — u?)
is smooth if we define it as in (2.22) when 7 = p (which is consistent with (2.20")) and

use the fact that
=0 i), k=01, 7€ I,

T (Bo(Ni — 1)(In(N;) — 1n(7)) /(N — 7)) = O((1 + |3])

and the fact that, if this expression is nonzero, we must have [A\; — 7| < 2
To prove (3.8) we use the fact that for & = 0,1 we have for 7 € (A, 10]

’ (g)k(z{@; 205 x/100 B2 (i — T)))ﬂ o) AR A <A
ar 32— 72 A ATEE(L A =AY A > A
Thus for £k =0,1
B 1/2
1005 K0y £ A2 2 1@+ 3 0+ 0= )V ew)l?)
A <A Ai>A
<A
as desired if N > 2n, using (2.27) again.
To handle this, let 17 be as in Lemma 2.5

Next we turn to the bounds in (3.9) for K~

and put

Z{EGNt 2¢>)/100} P~ 1) )n()\i/T) ed(x)ed (y)

H;,oo(‘rvy)__Z( )\2_7,2
- Z 7)7\2)\_/:2 z ?(y>a

The last equality comes from the properties of

assuming, as we may, that A > 1
our Littlewood-Paley bump function, 5. We then conclude from Lemma 2.5 that

satisfies the bounds in (3.9). If we then set
- D een:2esa1003 BRI = 7))\ <
Rolay) = Y (Sl — T el @)el (v)
> e atsas100) B2 = 7))
_ Z( {ren:2¢> //\2 iTz ) (1= n(\i/7)) (@)l (y),
we have K = R' ~+H7 ., and, also, by the proof of (3.8), K.
n (3.9).
It just remains to prove the bounds in (3.10) for the R, ¢(x,y) and that in (3.11) for

satisfies the bounds

R: «(z,y). The former just follows from the proof of (3.6)
To prove the remaining inequality, (3.11), we note that if n is as above and we set
5 nAi/7) o
RT,OO(:v,y) /\2 ) €; (x)e?(y),

then, by Lemma 2.5, R, o satisfies the bounds in (3.11). Also, we have

RT,OO(‘T7 y) = R?’,oo(‘r7 y) + R‘r,oo(x7 y)u



18 WEYL FORMULAE FOR SCHRODINGER OPERATORS

if

> een 2652 100y B2 (N = 7))
R o, y) = D (1 = n(h/m)) (S )el
(again using the properties of ), and, since the proof of Lemma 2.5 shows that for
7 € [A/2,10)] we have

IR ol )| S 7772 (14 7dg(,y) " SAM (L4 My(a,y)
we conclude that (3.11) must be valid, which completes the proof. O
Handling the contribution of relatively large frequencies of Hy . In this section
we shall handle relatively large frequencies of Hy by proving the following.

Proposition 3.3. As in Theorem 1.1 fit V € K(M). Then

o) [¥ % [ [ RO RO s e e ) s

J A{k: T >10X}
< Ov [V ian A" 2 (log \) /2,

for some constant Cy depending on V.

To prove (3.21) fix
(3.22) U e C5°((1/2,2)), with U(s)=1, s€[3/4,5/4].

To proceed, assume that 7, > 10A. Since, by the mean value theorem and (2.16)
1,(Ay) — In(m)
)\j — Tk

by (2.27) and (3.13), to prove (3.21) it suffices to show that

=0(1, %) Vo, if \j € (1/2,213), T > 10,

(3.21)
‘Z Z // L\ )\2 ) (1 =W\ /7)) e (@)ed (y)V (y)er, (x)er, (y) dxdy‘

7 {k:T>10)}
SV Izran A" 2 (log A) M2,

since

X5 [ a0 iV e @en ) sty

J {k} Tk>10)\}
<)\_U||V||L1(M), Vo.

As 1x(rx) = O(7;,7) for all o € N for 7, > 10\ and, by Lemma 2.5,

)\/Tk)) 0/11.0 T 4 (dg ()™, n>3
‘Z )\2 —7' ej(ac)ej( )‘ S {1og(2+ 1/(deg(a:,y))), n=2,
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the analog of (3.21") where we replace (15(\;)—1x(7%)) by 1x(7x) is trivial. Consequently,
we would have (3.21") and consequently Proposition 3.3 if we could show that

sy |3 %= o P 5, () €2 @)l )V 9)er, (2)er, (v) dady

— 2
J {k} Tk>10)\}
SNV ILran A" 2(log A)/2.

If 1 — U(X\;/7) # 0 we have \; # 73, and then can write

_ _ 2 _ 2N-2 1
- _)\2_:Tk2+7-k2(/\j/7-k) +o (/) +()\j/7'k)2NT2_)\2_-
k j k J

As a result, we would have (3.21”) if we could choose N € N so that we have

(3.23)

}//ZX”][A W) (X 0 WO /1) en, (2)en, (1)) V() dady

T >10X
SV anA"2(log N2, £=0,...,N -1,

as well as
(3.24)

)P // L A/Tk))( APV ()] (@)ed )V ()7 2N e (2)ex, () dady

J Tr>10X

SN2V L an.-

To handle (3.23) we start with a trivial reduction. We note that if 7, > 10X, then by
(2.15), (3.13) and (3.22)

ﬁb\( Z \I] Aj /T Tk -2 eTk(x)eTk(y)l 5 ﬁb\(}‘]) Z 7_];272667k(x)em(y)’

T >10A TkG()\'/Q 2)\')
5)\;6 Z i - QEGTk(x)eTk(y)|
TR
< )\n—2€—20'
] )

for any o. If 0 > n, by (2.27) this yields

[ 0008@ew( X w2 w0 /m) enwen ) Vo) dads]

TR >10A
S IV Ly,

which means that in order to prove (3.23) it suffices to show that

(3.23) ‘// ((P°)*15(P%)) (2, y ( Z e (x )eTk(y)> V(y) d:vdy’

TE>10A
SIVIian A" 2(log \)/2, €=0,...,N -1,



20 WEYL FORMULAE FOR SCHRODINGER OPERATORS

since

DX D)@ (y) = (P Tn(P)) (2, y).

J

To prove this, in certain cases, we shall rewrite the expression inside the absolute value
in the left side of (3.23') slightly. Specifically, we can split it into the following two terms

e2) [[(PPRE) e (3 7 e @en ) Vi) dody

Tkzl

- [J@E P @ (X i e wlen ) Vi) dady

7, <10\
=I+1II, if£<(n—4)/4and n>4.

If n < 3 we shall not split things up in this way, and, instead, just deal with the expression
in the left side of (3.23") directly.

Note that if n > 5 and £ < (n—4)/4
1= [[ (@) @) (1) @) V) dod|
<

0\2¢7 . (p0 —1-¢
<f L (P RE) @] ) w1V @) ey

= N2 (d, (2, ) |V ()] dady
dg(z,y)<A—1

Vo -sup (P (P) )| )
v Jdy(@y)=a-1

o (/ ](dg(x,y))_Q(n_Q_%) d;v)l/2
dg(m7y)2)‘71

/S HVHLl .)\n+227(272l) + HV||L1 . ()\%+2Z . /\%72726)

=NV,
which is better than the bounds in (3.23'). Here we used Lemma 2.6 to bound (Hy, ') (z, )
(and our momentary assumption ¢ < (n —4)/4). In the second inequality we also used

Schwarz’s inequality, while in the second inequality and the second to last step we also
used Lemma 2.4.

If n = 4 than the requirement in (3.25) forces £ = 0. In this case, if we repeat the
above arguments we obtain slightly worse bounds, i.e.,

111 S A2 (1og )2V 1,

with the log A factor coming from the fact that when n = 4 we have
/ (dy(w,y))~*dx ~ log \.
dg(m7y)2)‘71

On the other hand, this bound is in agreement with the one posited in (3.23").
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We still need to handle the second term, I, in (3.25). To do this we shall again use
Lemma 2.4 and (3.13) along with Schwarz’s inequality to deduce that

11 < Wl -sup (PP o)l | DS 7% e (Denw)llse)
TE<10X
n —4— 1/2
SVl AE2 (N i enw)P)
Tk§10>\

<V - AF+2e, ( Z 27j(4+4f)2nj)1/2
{7EN: 27 <10A}
S ||V||L1 CAT2e . \T2-24 3

= VA2,

assuming in the last step ¢ < (n —4)/4. In the remaining case covered in (3.25) where
n >4 and £ = (n — 4)/4 (forcing n to be a multiple of 4), as was the case for £ = 0 and
n = 4, the bound is somewhat worse and we instead get, in this case,

(I S A2 (log )2V [ 1,
which still better than that of our current goal, (3.21).

Since we have obtained favorable estimates for I and IT in (3.25), we have shown that
(3.23') is valid when n > 4 and ¢ < (n — 4)/4. For the remaining cases where n = 2,3
and 0 < ¢ < N — 1 is arbitrary or (n —4)/4 < ¢ < N — 1 for n > 4, we shall just repeat
the argument that we used to control I1. We have not specified N; however, to get the
other inequality, (3.24), that is needed to obtain our current goal (3.21), N will have to
be chosen to be larger than (n — 4)/4.

In these remaining cases for (3.23') if we argue as above we find that the left side of
(3.23') is dominated by

[VIiz-sup ([P INE) ez | D0 7% en (en )]
T >10A
SV AR (3T e (y)P)
T >10A

SVl - AE¥ (3T pmilrangn)l2
{jEN: 27 >10X}

5 HVHLl ,)\%JrQE . )\—2—26+%

= A"V 1,

using the fact that our current conditions ensure that 4 + 4¢ > n. This completes the
proof of (3.23) and hence (3.23).

To finish this subsection we need to show that we can fix N € N sufficiently large so
that (3.24) is valid. As we mentioned before we shall specify our N > (n —4)/4 in a
moment.

To prove (3.24) for large enough N, here too it will be convenient to split matters into
two cases. First, let us deal with the sum in (3.24) where 7, > A\?2. We can handle this
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case using trivial methods if N is large enough. In fact, by using Schwarz’s inequality,
Lemma 2.4 and orthogonality, we see that for 7, > A2 we have the uniform bounds

[IS S0 g e

< HZ 20/ T’“))<AJ>2N1A<Aj>e2<->e9<y>||L2

< \BF2N

S P0 2Nb(PO) 3

This does not present a problem since if N is large, since, by (3.13) and the Cauchy-
Schwartz inequality,

S e @en ) S Y. 27N g AT

~

TR >A2 {jeN: 20 >X2}

if N > n. Using these two inequalities we deduce that

‘Z Z // V(A /Tk))()\J)QN][)\(/\j)e?(x)eg(y)v(y)Tl;2N€Tk(x)eTk(y) ddy

J TEr>A2
SAEFPNATIE Y oy < Ve,
if we assume, as we may, that N = 2n.

Based on this, we would be done with handling relatively large frequencies of Hy if
we could show that

(3.24')
’Z Z // 1— (A /Tk))(Aj)wif\()‘j)e?(x)e?(y)v(yﬁk_wem(:E)eTk(y) dudy

7 10A<TE<A?
SNV, if N =2n.

To this end, let ® € C>°(R, ) satisfy ®(s) =1, s < 3/2 and ®(s) = 0, s > 2. Then if
T, > 10, it follows that

DN /N (1= P(Nj/7k)) = P(A;/N),

and also for all o0 € N

ilx(&)%(l —U(\j/mk)) = O(1, %), if 10A <7, <A
P Tk

Thus, by an earlier argument, modulo O(A~?||V||1:) Vo € N, the left side of (3.24)
agrees with the expression where we replace (1 — U(\;/7x)) with ®(A;/A). Therefore
since (A —72) 71 = —(1— (\;/m)?) ! -7, 2, we would have (3.24") if we could show that

(3.24")
’Z > // 20/ SN @) () ()7, 2N Per, (2)er, (y) dady

1-— )\2 T,
J 10A<TE <A /k

S )\n_2||V||L1(M), N = 2n.
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Since the left side is dominated by ||V||;: times

(E 7 o b))

3.26
( ) 1—7, 2)\2

(Y N e @en(v) dal,

10A<TE <2
it suffices to show that this expression is O(A\"~2).

To do so, we shall appeal to the ,—Lemma, Lemma 2.3. We set for a given y € M

m(s,x) = Z M()\j)zNiA(/\j)eQ(x)eQ(y), s €10,1/10A].

1 — s2)\2 I
j

Then, since

(3.27) % ’ <1
and
(3.28) 55 (7o) [

if s €[0,1/104], it follows from orthogonality and Lemma 2.4 that

1/10X
B29)  mO Yean+ [ s sy ds = OF).
Consequently, by Lemma 2.3, (3.26) is dominated by

AERN| N N2 (e ()] = ARV N e, ()2)

10A< T <2 10A< T < A2
nioN —(AN+4)jonj\1/2
ATV 2~ (AN+4)igni)
{j€EN: 29 >107}
n — — n —
5)\2-‘4-2]\7.)\ 2N 2.)\2 :)\n 2,

using (3.13) in the second to last step and the fact that N = 2n in the final one. Thus,
the quantity in (3.26) is O(A\"~2), which, by the above, yields (3.24”) and finishes the
proof of Proposition 3.3.

Handling the contribution of relatively small frequencies of Hy . In this subsec-
tion we shall handle relatively small frequencies of Hy and prove the following result.
Proposition 3.4. As in Theorem 1.1 fix V€ K(M). Then

) |25 [ ] PR v e e ) s

J Tk<>\/2 _T
< Cy N3V,

for some constant Cy depending on V.
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If we combine this with Proposition 3.1 and Proposition 3.3 which handle frequencies
which are comparable to A and large compared to A, respectively, we obtain Proposi-
tion 2.2, which by the arguments in §2, yield our main result, Theorem 1.1.

Proof of Proposition 3.4. As in the earlier cases, we shall first handle a trivial case. To
do so, we note that, by (2.16) and the mean value theorem,

D) =) 5a-ay voeN, if 1<7<A/2and A < TA/S.

/\3 — 72
Also, by (2.27) and (3.13)
(3.31) Yo lS@SW D len(@)en )l S A
Aj<A TR<A/2

To use these and make our first reduction fix a € C*° (R, ) satisfying
a(s) =0, s$<3/4 and a(s)=1, s>7/8.

Using the preceding inequalities we see that in order to prove (3.30) it suffices to show
that

) |25 [ [ B0, @V e, e () o

J Tk<>\/2
< Cv A" |VILi s

due to the fact that the difference between the quantities inside the absolute values in
the left side of (3.30) and that of (3.30") is O(A~7||V| 1) for all o.

For the next reduction, note that the proof of Lemma 2.5 yields

a(N; /A (dg(z,9))*™, n>3,
‘Z A2 @) ’ S {10g(2+ (dg(z,9)7"), n=2

if 1 <7, < A\/2. Based on this and the second part of (3.31) and the fact that 1—1y(73) =
O(A79) for all o when 1 < 7, < A\/2, we easily see that

> [ [ 5 AQ a(\g/ N @)V ()en (2)en, (y) dady |

JoT<A/2

S)\iUHVHLl(M), Vo eN.
Consequently, we would have (3.30") if we could show that

(3:30%) ‘Z Z // z2 - 7-) )‘J’)_1)eg(iﬂ)@?(y)V(y)erk(x)eTk(y)d:zcdy’

2
J Te<A/2 k

< Cy A"V | Ly

We need to make one final reduction before we can appeal to the §,—Lemma, Lemma 2.3.
For this, let n be as in Lemma 2.5, i.e., n € C*°(R4) with n(s) =0 on s < 2 and n(s) = 1,
s > 4. It then follows that
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Consequently, we can write the quanity inside the absolute value in the left side of (3.30")
as

> > / / )\2_7 L) = 1) §@)ef )V (W)er, (z)ex, (v) dudy

I Te<A/2
2 / / e /A (A /) (I(A) = 1) €9(2)e] (y)V (y)er, ()er, (y) dady
J TR<A/2 i
=T +1I.

Therefore, in order to prove (3.30”), it suffices to show that both |I| and |II| are domi-
nated by the right side of (3.30”).

We can easily handle I without appealing to the §,—lemma. Indeed since 1y (A\) =
O(A;7) for all o if n(A; /) # 0, we see that (2.27) yields

P (1 0) - 1) @) =~ 3 T 0ayedy) + 00), v
7~ Tk = AT

Consequently, by the second part of (3.31) we would have the desired bounds for T if we
could show that

e |[[ X R @@ Vi) dudy] S0V,
‘rk<)\/2
where

Ry (o) = 30 B ) ).

To use this we note that the proof of Lemma 2.5 implies that

sup |R., (z,9)] < CO)\"_th()\dg(:v,y))(l + Mdy(z,y))"%, Vo,
1< <A/2

and, therefore,

swp [ sup (R ()] do S A2,
y 1< <A/2

Since, we always have 7, > 1 by (1.7), by the second part of (3.31) we have
sup/ Z R, (z,y)er, (x)er, (y )‘dx SAT sup/ sup  |Ry, (z,y)|dx < A2,
Th<A/2 v J 1<m<a/2
which clearly yields (3.32).

Since we have the desired estimate for I above, it only remains to prove the corre-
sponding estimate for I1. For this, let

S () - ) )

with b(s) = a(s)(1 —n(s)) € C*((3/4,4)).

We then can rewrite this desired bound for I1 as follows

] S mimaien@en ) Vo) dody| S 32V

Tk<)\/2
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Just as the last step in the proof of Proposition 3.3 was to establish (3.26), the final step
here would be to show that

(3.33) sup/’ Z m(Te, T, y)er, (@)er, (y)] do S A2
Y Tk<)\/2

To prove this we shall argue as in the very end of the last subsection and appeal to
the §,—Lemma 2.3 with the ¢ there equal to A\/2. We first note that by (2.27) and the
fact that b(\;/A) # 0 implies A; /A € [3/4,4]. Consequently,

’ (%)Z (lj\%)\i/jz))’ <SCA2 (A, £=0,1, if 1<s< A2

Using this and the support properties b we can easily see that by the proof of Lemma 2.4
that (2.27) and orthogonality yields for £ =0, 1

1) m(s, - 9 poary < CoAT (AT i y€ M, 0< s < A/2.

Consequently,

A/2
sup(Ilm(1, - )z +/1 J2mis, - ) agary) S X372
Yy

By Lemma 2.3 and the second part of (3.31) we deduce from this that the left side of
(3.33) is dominated by

N Zsup( Y fen (n)P)P S A2,
Y ‘rk<)\/2

which completes the proof. O
4. Improved Weyl formulae under geometric assumptions.

Generic improvements: Extension of the Duistermaat-Guillemin theorem.

To prove (1.13), we shall first establish the following proposition concerning the error
term in Weyl law estimates.

Proposition 4.1. Assume that the set C of directions of periodic geodesics has measure
zero in S*M and that V € KK(M). Then, for a constant Cy independent of € € (0,1), we
have

(4.1) > len(@)Pde < CveA™t, A= Ae),
M €[N A+e]

where A(g) < 4o depends on . Here {e;, } are eigenfunctions of the operator Hy
defined in the first section.

Proof. To prove (4.1), let us fix a non-negative function x € S(R) satisfying:
(4.2) x(t)>1, |7 <1 and x(t) =0, |[t| > 1/2.
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Then it suffice to show that for any fixed constant 7" > 1

(4.3) / —r)len (@) 2dz < CyT=IA"1, A > A(T),
M p—y

where A(T) < +oo depends on 7.

By Euler’s formula we can rewrite the left side of (4.3) as

1 [ 1 1y
(4.3") - / / —X(t/T)e"™ " costry|er, ()| *ddt
™o S T k=1
plus
[ 3w mlen @
Mk 1

Since x € S(R), the last term is rapidly decreasing in A with bounds independent of
T > 1. Thus we just need to show that the expression in (4.3’) is bounded by the right
side of (4.3).

On the other hand, under the assumption of the proposition, it is known that when
V =1 (see e.g [16])

it 2 1yn—1
(4.4) / / FX(/T)e Zcost/\ le2(@)|2dzdt < CT*A"1, X > A(T).

7j=1

Again, by using Lemma 2.1 and Duhamel’s principle, we can rewrite the difference of
(4.3") and (4.4) as

an [ RGN ) e (e, () oy
where
(4.5") XA (1) = %/_OO 111 (t/T)e' cost dt = x(T(A— 7)) + x(T(A+ 7))

and similarly, we interpret

W) B B o,

Since x € S(R), we have
(4.7) (L) (1) = O(TP A +TA—7))N) VN, if j=0,1,2,3,....

Given (4.7), we can use the same arguments as in the proof of Proposition 2.2 with minor
modifications to get the following:

0 |5 [, ], PRV oen a)en ) e

k

< OvT?||V || ) A" 2,
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where the constant T2 comes from the fact that
2)2)\(7-) - )Zk(u) 5 T2,
or T— U
which arises when we apply lemma 2.3. Since the right side of (4.8) is better than the

one in (4.1), the proof is complete. Note that if we take T'= 1 in the above argument,
we obtain (2.4). O

Proof of Theorem 1.2. Fix an even real-valued function p € C*°(R) satisfying (2.13), and
for any fixed constant T, define

(4.9) iy(r) = - / ot/ )22 cosirat
s

— 00

By a change of variable argument, it follows from (2.15) that for 7 > 0 and large A we
have

(4.10) (1) = \(r) =0(1L+TA—7)"") VN.
Also, for 7 > 0 we have the analog of (2.16)
(4.11) (L) Iy(r) < CT/ (1 4+ A —=7))"N) VN, if j=1,2,3,....

Furthermore, if 1y (Pp) is defined as in (4.9), by (4.10), (2.25) and (2.26) in Lemma (2.4)
still hold.

_ Now if we use (4.1) , we can estimate the difference between the trace of 1(Py) —
15 (Py). Indeed, by (2.15) or (4.10) we have

(4.12) ‘A4(1A(PV)(x,x)—ilA(PV)(x,x)) dx‘ = ]/MZ(JIA(T,C)—L(T,C)) |eTk(I)|2dx‘
k

1
§§1L0+TM—MYMWM@WMSTW”,AZMH,
k

using the (4.1) in the last inequality.
Since it is known that when V =1 (see e.g [16] )

1
<AL N> AT
S AT AZ A®D),

(4.13) ’ / 1 (P°)(x, 2) dz — (27)"w, Voly (M) A"
in order to prove Theorem 1.2, it suffices to prove the following:
~ ~ 1
(4.14) ‘/ (]l)\(Pv)(.’L',CL') — ][)\(PO)(;L'7.%')) d.%" < T)\nflj A > A(T)
M

By Lemma 2.1 and Duhamel’s principle, this equivalent to

w2 ], PO B 1) (e (e )y £ 2

_Tk

By (4.10), (4.11), as well as (2.25) and (2.26), the properties of the function 1y(7) here
is similar to the one defined in (2.14). It follows from the proof of Proposition 2.2 and
Proposition 4.1 that, the left side of (4.15) is bounded by CyT?||V|| 11 (ar A"~ 2 which
is better than the right side of (4.14), which completes the proof.
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Improvements for manifolds with non-positive curvature.

To prove (1.14), we need the following analog of (4.1).

Proposition 4.2. Assume that the sectional curvatures of (M,g) are non-positive and
that Ve K(M). Then for A>1

(4.16) > e (@)Pde < CuA" log A,
M ‘rke[)\,)\-l‘ﬁ]

where {e;, } are eigenfunctions of the operator Hy defined in the first section.

If we use the same arguments as in the proof of (4.1), we conclude that (4.16) follows
from

(4.17) %/ /M %;@(t/T)emZcostAj|eg(a:)|2dxdt <CT A"t T =log A\
e =

Also, given (4.16), by repeating the arguments in (4.9)-(4.15), we see that (1.14) would
be a consequence of

~ 1
(4.18) ’ /M 1 (P°)(z, ) dov — (271) " "w, Vol (M) A" | < T)\"fl, T = log \,

if 1)(7) is defined as in (4.9).

Since both (4.17) and (4.18) follow from the classical theorem of Bérard [2], the proof
is complete.

Improvements for tori.

To prove Theorem 1.4, we will first establish a simpler variant of the first part of
the theorem, (1.15), under the stronger assumption that V € L?(M) N K(M). After
presenting this model argument, we shall see how we can modify the argument to prove
Theorem 1.4. In all cases, the main strategy is the same as in the proof of (1.13) and
(1.14). That is, we need to utilize the standard known result when V' = 1. To that end,
let us recall the following:

Proposition 4.3. If T* = R"/Z"™ denotes the standard torus with the flat metric and
NO(\) denotes the Weyl counting function for H, then

(4.19) NO(A) = (27) "w,, Voly (M) A" + O\~ 7).

The result in (4.19) is due to Hlwaka [7] for any n > 2. As a consequence of (4.19),
we claim that we have the following two inequalities:

1 [ 1 e
(4.20) ;[m /M F)Z(t/)\a)e”A;cost)\j|eg(x)|2d:vdt <ot
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and
e |1 [ Zpa/v)

where x(7), p(t) are the Schwartz functions defined in (4.2), (2.13) respectively, and

sin At

(costP)(w,x) dtda — (2m) " Voly (M) X" | < CA" 17,

To see this, we first note that the left side of (4.20) equals

f o xor o aierars [0 e

so by a direct calculation, (4.20) is a consequence of

(4.22) N+ A" = N°(\) =017,
which is a corollary of (4.19). For the other inequality note that
(4.23)

‘ _/ t/)\“) nAl ( ostPO)(:v,:v) dtdx — NO()\)‘

-|: / PDE t” (costP%) (s, ) dtd]
/Zm (z)|*dz,

where

()] = | %/OO (1= ot/ XN 222 costr drar| = O((1+ XA — 7)) YN,

— 00

Therefore, (4.21) is also a consequence of (4.19) and (4.22).

To obtain the desired bounds for the torus, we need to modify the earlier arguments
since the right sides of (4.8) and (4.15) are too large to obtain the desired bounds for the
improved Weyl formula on the torus. To do this, we begin with the following Proposition.

Proposition 4.4. Let T" = R"/Z" denote the standard torus with the flat metric and
{er,} be eigenfunctions of the operator Hy, with V. € L*(M)NK(M). Given (4.19), if
we assume, for all A > 1 that

(4.24) / Z ler, (z)[2dz < Cy X170 for some —1<b<a,
TR ENAFAT?]
then,
(4.25) / S Jen(@)Pdr < Oy ||V 2 A" 5 log A+ A1,
TRENAFAT]
where a = Z—ﬁ

To put this in perspective, note that the conclusion here is reminiscent to how we
used (2.35) to prove the O(A\"~2) error bounds in (3.1). Indeed, by (2.34) we have (4.24)
with @ = 0 and b = —1, and, in this case, the first A-factor in the right side of (4.25) is
b 3

=\""z2.
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Before proving this Proposition, let us present a simple but useful corollary. We note
that, by (2.35), if V € K(M), then for all z € M

(4.26) Yoo len@P < Y len(@) <y
TRENAFAT] Tr €[N, 2]
So (4.24) is true for b = —1, and note that every time we apply the Proposition, we would

have (4.24) for a larger value of b. Consequently, we can obtain the following;:

Corollary 4.5. Let V € L*(M)NK(M), T" = R"/Z" denotes the standard torus with
the flat metric, and {e;,} are eigenfunctions of the operator Hy . Then given (4.20), we
have for all A > 1

(4.27) / Yo en(@)fdz < CyanTe,

ThE[NA+A—]

where Cy is a constant depend on V, and a = Z—_T_}

Proof. To prove (4.27), let us first ignore the log A factor on the right side of (4.25).
Define b, to be the best exponent such that

/ S len(@)Pde < Cy AT
TRE[NAFATA]

after applying Proposition 4.4 m times. We have

(4.27") n—l—bm+1—max{n—2+2(nn7;11)—b7m,n— n—l—l} m=0,1,2...
with bg = —

Now if b,,, < "—H, we have b, 11 = b7m+ 2(’:1131), In this case, bya1—bm = 2(7:1+31) _bTm >
%H, which means the sequence is strictly increasing in this case. Let N = [zgl] + 1,
we have by > 2=2. Thus by (4.27'), bm *ﬂforallm>N.

Since log A < A¢ for all ¢ > 0, by this argument, we have by4q1 > Z n+1 — ¢. However,
if € is small enough,

T e ot

So we have in this case b,, = Z—jr} for all m > N + 1. The proof of (4.27) is complete.
O

By using Corollary 4.5, along with the arguments in Section 3, we have the following
result on torus.

Theorem 4.6. If T" = R"/Z™ denotes the standard torus with the flat metric and
Ve L2(M)NK(M), then given (4.19), we have

(4.28) Ny (A) = (27) "w, Voly (M) A" + O(A" =71,
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Note that (4.28) is a variant of (1.15) with a stronger condition on the potential V.
The condition V' € L?(M) arises when we try to get an improvement over the main terms
n (3.1), which are (3.12), (3.15), etc. For more details, see (4.45) in the argument below,
and we postpone the proof of the stronger version of (1.15) to the end of the section.

Proof of Proposition 4.4 and Theorem 4.6. We shall first give the proof of (4.28), then
prove (4.25) by modifying the argument.

Similar to (4.9), let a = 2L and

ntl’
(4.29) 1(r) = %/Z p(t/)\“)Sir;)\t cos t dt.
By a change of scale argument, it follows from (2.15) that for 7 > 0 and large A we have
(4.30) (1) = In(1) = O((L+ A"|A=7)~N) V.
Additionally, for 7 > 0 we have the analog of (2.16)
(4.31) (L) 05(7) S ONI (A + AN =7)"N) VN, if j=1,2,3,....

Furthermore, by (4.30), the bounds in Lemma 2.4 still hold if we let 1(P°) be defined
as in (4.29).

In view of (4.21), after repeating the arguments in (4.9)-(4.15), we see that (4.28)
would be a consequence of

(4.52) \Z/ /, bt gz_h ) 0019V ()er, (e v) didy

< Cv|Vipz(an A" ?log A,

where we interpret

NG N NG
(4.33) R vl if T=p.

The proof of (4.32) requires a bound on the trace of certain spectral projection oper-
ators, which is (4.27). The fact that we rely on trace inequalities, rather than pointwise
ones as was done in the past, accounts for our assumption here that V € L?(M).

As before, we shall split things into three different cases that require slightly different
arguments. The main contribution still comes from frequencies 7, which are comparable
to A\. We shall skip the proof for large or small frequencies 7y, since, by the earlier
arguments, these two cases only contribute terms which are O(||V || 1 (an A" 2 (log A)1/2).

Consequently, we would obtain (4.32) if we could prove the following.

Proposition 4.7. As in Theorem 4.6, fix V€ L*(M)NK(M). If 1x(7) is defined as in
(4.29), then

am [¥ 5[ BB ) e, e ) dry

G {kiE[A/2,10M]} T
<Cy ||V||L2(M))\n72 log .
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To prove Proposition 4.7, we shall make appropriate modifications of the arguments
in the beginning of §3. So, as before, let us fix a Littlewood-Paley bump function g €
C°((1/2,2)) satistying

oo

> BERs)=1, s>0,

l=—00

and then set

=D B2 7s]) € G5 ((-2,2)),

£<0

and
B(s) = s'B(ls|) € C5°({Is] € (1/2,2)}).

We then now write for \/2 < 7 < 10\, a = 2=+

n+1
(4.35)
Hola) = 3 2GS eoe
— Z L\ . :jlf 7) fo (/\:J()i ; ) e)(x)ed (y)
ag—Lp(yao—L( ) . _ T ~ _
vy (AR ED 6,00 - ) o)
{6eN:2¢<A-Aa/100}  j J
L9265 AAd /1 A Aj—T -

+ Z(Z{EEN = &S?fg 2 ) ) (1a0y) = 1a(7) (@)l w).

Next, let
Ko o(z,y) Z 1 ( )\ :1>\ )50()\/’\1]()1;7)) e?(x)ejo-(y),
R,,.yg(x,y) _ Z AGQ*Zﬂ(iag—;i—()\j - T)) eg)(x)eg(y)7 if 25 <\ )\(1/1007

and

9fu . )a B2\ —
Ry oo(,y) = Z(Z{EGNQ >\ /;goi T(2 (A 7'))) O(2)e2(y).
j J

Also, for 2¢ < X\~ \%/100 let

ag—L 2 a9 —_
Kooy = 3 XN =) 5 ) w)ely)

; /\j+7'

ag—Lp(\ao—L ) -
K o) = Y02 ﬁ(ijir(& D3 00) 40160,

J
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and, finally,
ag—L(Y . _ T
(2,1) = Z(Z{éel\l: 205 axe 100} BA27H(A; ))) (1) — 1) () (y)

2_ 2
)\j T

K-

T,00
J

K+ (;C,y):Z(Z{EGN:2Z>)\.>\G/1OO}ﬁ()\a2 ()\ _T)))]l)\()\) O(x)eO(y)

2 _ 2
)\j T

J
If K, is as in (4.35), our current task, (4.34), is to show that

(434) > [ Kntwwen @en ) V) drdy| £ V] an " log
‘rke[)\/QlO)\]

To prove this, similar to before, we note that we can write

(4.36) K (x,y) = Kro(z,y) + > K- (2,y) + K o (z,y)

{£eN: 26 <A\ /100}

+ Z Rr,f(xu y) (1 - j)\(T)) + Rr,oo(xu y) (1 - iA(T))u
{£eN: 26 <X A2 /100}

or
(4.37) K. (z,y) = K o(z,9) + > K y(z,y)+ K (2,9)

{€eN: 26 <A\ /100}

- > Re (2, y)I\(1) = Ry o2, y)1n (7).

{€eN: 26< XA /100}

We shall use (4.36) to handle the summands in (4.34") with 7 = 7, € [A\/2, \] and (4.37)
to handle those with 7 = 7, € (A, 10A].

For £ € N with 2¢ < X\ - \%/100, let for j = 0,1,2,...
(4.38) I, = (A=(+DAT2 A=jA7"2] and [, = (A+5A°2% A+ (G+1)A 2]

Then to use the §,—Lemma (Lemma 2.3), we shall use the following result whose proof
we momentarily postpone.

Lemma 4.8. Ifa =
NeN

n+1,€€Z+, 26 <X -A%/100, and j = 0,1,2,..., we have for each

(4.39) K, 9)lle2any, IN“2°Z K2, 9) 2
SATEE T2 (14 )N e IE 0 M2, 10,

Also,
(4.40) 1 Kro( )2y IN* Kol 9)llL2an

AT L)Y, T e IE N2, 100,
(441) HK;r,oo( )HL2 (M) ||/\ joo( » Y )HLQ(M) S A£72 TE [Av 10)‘]7

and we can write }
K. o(x,y) = K o (2,y) + Hy o (2,9),
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where for T € [A/2, )]

||K7'_,oo(7y)||L2(M)7 ||>‘a_67-K7'_,oo(7y)||L2( <>‘ﬂ_2
(4.42)
|H

7,00

(2, 9)] S A" 2hn(Adg(z = y)) (1 + Mg (2, )77,

with hy, as in (1.4). Finally, we also have for 1 < 2% < X-\%/100 and 7 € [\/2,10)]

1+a
(4.43) IRre( )l Leany, INT"2°ZRes(- y)llzany SA T2 12742
and
(4.44) Rr oo (2, )| S A" 2hn (Mg (2, 1)) (1 + My (2, ) V.

As before, we are abusing notation a bit. First, in (4.39) we mean that if K, equals
K:Z or K, then the bounds in (4.39) for 7 in IZj N[A, 10A] or I, ;M [A/2, A], respectively.
Also, in both the second inequality in (4.42) and in (4.44) we mean that the kernels
satisfy the bounds when z is sufficiently close to y (so that d4(z,y) is well-defined) and
that they are O(A~") away from the diagonal.

Before proving this result let us see how we can use it along with Lemma 2.3 to prove
Proposition 4.7.

Proof of Proposition 4.7. First, by (4.39) and Lemma 2.3 with § = A7%2¢, we have

a5 | ¥ K2 (@, y)en, (@)en (5)V (y) dyde|
TRELF,N[A/2,10)]

Wi | X [ K e @)

TR€lF,N(A/2,10)]

SV s (1K g oD llazan + [ [EKEC )z ds)

£,3

([l

M
mELE,N[A/2,104]

n—14a _ o~ 1/2
SIVIAF 2P ([T fea)Pay)
Mrkelfi’jﬂ[k/ZlO)\]

L2 (dy;L* (da))

SN2+ )TNV e

In the second to last inequality we used Corollary 4.5 and the fact that |1, £ = A2t
As we alluded to before, since Corollary 4.5 only affords us trace bounds, the preceding
inequality involves ||V[|12(ar) in the right, as opposed to L'-norms of the potential as was
the case in the past.
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If we sum over j = 0,1,2,..., we see that (4.45) yields that for 1 < 2¢ < X-\%/100

@) | S [ K] e @en ) Vo) dod]

A<T<10A
H X [ K en @en ) Vi) dady| S X2V
A/2< T <A

If we take 6 = A™% in Lemma 2.3, this argument also gives

@) | 3 [ Kasten @enw) Vi) oy

A/2< TR <A
H X[ Koo vien @en ) V) dods] S 32V iz,
A<T<10A

Similarly, if we use Lemma 2.3 with § = A along with (4.41) we find that

@) | S [[ K e @enw) V) oy

AL <10

n_ 1/2 n—
SAEPWI (DD len @) T S ATV,
TE[A/2,10)]

using (4.26) for the last inequality.

Next, since R, ¢ enjoys the bounds in (4.43), we can repeat the arguments in (4.45) to
see that for 1 < 2¢ < X\ - \*/100 we have

> Bry (@, ()en (2)en, (5)V () dady
€I} N(A,10)]

1/2

_ n-lta_ =
SIVge - 27207 Z 115 (70)er () P dy)
€L N(X,10]

SN2+ )NV e,
since Iy (1) = O((1445)"N) if 71, € Ijj. Summing over this bound over j of course yields

@) | X[ Reswnismen @en V) dedy| €302V 2o,

A<TE<10A
The same argument gives
@50) | 3 [ Busten) (1= D)o 2len )V () dods] SN2V 2,
A/2< <A

Also, by (4.44) we have

up [ sup (Rl de S22
y A/2<T<10A
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and since (4.26) yields 37 _ o, e, (2)er, (y)| < A", we have

Y] B @ihmen, @ )V () dody] S X2V
TR E(X,10A]
(4.51) §

Y[ R (- D) en @en, )V () dody| S 32V

TRE[N/2,A]

If H- is as in (4.42) this argument also gives us

T,00

| Y [[ e @en ) V) dady| £ X2V

A/2< <A

while the proof of (4.48) along with the first part of (4.42) yields

} > /ffﬁ,oo(fvay)em(:v)erk(y)V(y)dwdy}S/\"‘2||V|IL1.

A/2< T <A

Since Kr o = Nﬂoo + H. o, we deduce

@sy) | X[ K ceen@en ) Vi) dady] £ X2V
A/2< TR <A

We now have assembled all the ingredients for the proof of (4.34). If we use (4.46),
(4.47), (4.50), (4.51) and (4.52) along with (4.36), we conclude that the analog of (4.34")
must be valid where the sum is taken over 7, € [A/2, A]. The log-loss comes from the
fact that there are ~ log A\ terms K -0 and R;,. We similarly obtain the analog of (4.34)

where the sum is taken over 7, € (A, 10A] from (4.37) along with (4.46), (4.47), (4.49)
and (4.51).

From this, we deduce that (4.34") must be valid, which finishes the proof that Lemma 2.3
and Lemma 4.8 yield Proposition 4.7. g

To finish the present task we need to prove Lemma 4.8.

Proof of Lemma 4.8. To prove the first inequality we note that if 7 € Iztj N [A/2,10)]
then |\; — 7| < A722 1 and \;, 7 ~ X if B(A*27%(\; — 7)) # 0, and, in this case, we
also have 1\(A;) =1 =O((1 + |j|)™N) if 7 € I,; and Ix(X;) = O((1 + |j)N) if 7 € I}
Therefore, by orthogonality, we have

ol ooy S DM 270 (0 30 e0(y)2) "
(it |Ai—T|<A—e26+1}

n—1lta
-1

< (L1327 2N

which is the first part of (4.39). In the second inequality, we used the fact that

(4.53) S led@elw) A
Xi €E[AAFA—9]
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which is a consequence of (4.22) if we choose{e}} to be the standard orthonormal basis,
{exp(2mij - x, j € Zy)} for the Laplacian on the torus. For we then have that the left
side of (4.53) equals the number of eigenvalues of P% in [\, X + A7¢].

The other inequality in (4.39) follows from this argument since
9 B2 (i = 1)

or N+ T
due to the fact that we are assuming that 26 <\ A%/100.

— o2,

This argument also gives us (4.40) if we use the fact that 7 — (1x(7) —1x(p))/ (7% — u?)
is smooth if we define it as in (4.33) when 7 = p and use the fact that

97 (Bo(X*(Ai = 7)) (I (X)) = Ta(7)/ (N = 7)) = O TV A+ [)~N), k=0,1, 7€ I,
and the fact that, if this expression is nonzero, we must have |\; — 7| < 2A7%.

To prove (4.41) we use the fact that for £ = 0,1 we have for 7 € (A, 10A]

‘ (%)k (Z{éeN: 2¢>\-A% /100} 2T - T)))]l)\(/\i)

A2 — 72
< A7T2R N <A
CAAZFL AN —A)N A > A
Thus for £k =0,1
B 1/2
10 B o9 aary S A2 (D 1@+ 30 (1 X0 = ) NIl
<A Ai>A
<A

as desired if N > 2n, using (4.53) again.

Next we turn to the bounds in (4.42) for K. To handle this, let n be as in Lemma 2.5
and put

ag—L(Y. _ T
H-(2,y) = — Z(Z{éeN: 2¢>X-A%/100} BA27( N\ )))77()\1'/7') e?(x)eo(y)

7,00 A2 — 72 ’

n(Ai/7)
- Z)\Q_TQ i ?(y>a

assuming, as we may, that A > 1. The last equality comes from the properties of
our Littlewood-Paley bump function, 5. We then conclude from Lemma 2.5 that H_
satisfies the bounds in (4.42). If we then set

A2 — 72 g v
7

ag—L0(Y. _ T
Kro(ey) = Z(Z{zeme».mﬂw}ﬁ()\ 27\ )))il,\()\i)eo(:v)eo(y)

J26SAa /1 X2 (N =7
~ Z(Z{ZGN. Axa /1003 B ( ))) (1—=n(\i/7)) ) (x)ed (y),

2 _ 2 i
A =T

we have KT_ K ot H-

.00 and, also, by the proof of (4.41), f(;oo satisfies the bounds
n (4.42).
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It just remains to prove the bounds in (4.43) for the R, ¢(x,y) and that in (4.44) for
R: (z,y). The former just follows from the proof of (4.39).

To prove the remaining inequality, (4.44), we note that if n is as above and we set

Rrele) = 3 BT 000l ),

then, by Lemma 2.5, RT_,OO satisfies the bounds in (4.44). Also, we have

RT,OO(‘T7 y) = R?’,oo(‘r7 y) + R‘r,oo(x7 y)u
if

D een 200 y100p B2 — 7))

R ooly) = 30 (1= n(/m)) (TRl ) d@)e(y),
(again using the properties of ), and, since the proof of Lemma 2.5 shows that for
7 € [A/2,10)] we have

IR (@) S 772 (14 7l (2,) " S A1+ Ay ()
we conclude that (4.44) must be valid, which completes the proof.

O

Now we give the proof of Propostion 4.4. Let a = 22, XaA(7) = x(A\*(A — 7)) +
X(A%(A + 7)). Since x € S(R), we have
(4.54) (L) (1) = OAY(1+ AN —7))"N) VN, if j=0,1,2,3,....
By using (4.54) and (2.27), it is not hard to prove that the kernel of (P?)“x\(PY), u =
0,1, 2... satisfies

(4.55) ((P°)" A (PY)) ZA“XA (2)ed(y) = O™ ),

and, moreover,
(4'56) H ((PO)# )ZA(PO)( ) ’y)HL?(M) = O()‘H/QJF#)'

Both (4.55) and (4.56) are analogs of inequalities in Lemma 2.4. Given (4.20), by the
arguments in (4.2)-(4.8), (4.25) would be a consequence of

4. 57 } Z/ / X)\ AQ — X)\(Tk)eg(x)e?(y)v(y)eﬂc (:I;)e‘rk (y) d(Edy

7_

< Oy ||V 2 A" 22 log A,
where we interpret
() —xw) X0
72— 12 27

As before, we shall split things into three different cases that require slightly different
arguments. The main contribution still comes from frequencies 7, which are comparable
to A. For large or small frequencies 7y, by (4.54), (4.55), and (4.56), it follows from earlier

arguments in Section 3 that the left side of (4.57) is O(||V[|1(an A"~ 2(log A)1/2).

, if T =p.
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Conequently, we would obtain (4.57) if we could prove the following.

(4.58)
—)Zk()\j) — )2)\(779)6(? x 60- er (r)e X

J {k:T€[N/2,10)\]} 4.k

< Oy |V z2any A2 log A,

The proof of (4.58) is similar to (4.34). After replacing 1y(7) by Xa(7) in the proof of
(4.34), the main contribution, which gives the right side of (4.58), still comes from terms
like (4.45), (4.47), etc. The difference is we use (4.24) instead of Corollary 4.5 to bound
(4.45) in this case. Moreover, in view of (4.54), we do not need to divide the proof into
two cases as in (4.36) and (4.37), since xx(7) is rapidly decreasing away from A on both
regions 7, € [A/2,A\] and 7, € [A, 10A]. This completes the proof of (4.58).

Having presented the model argument, let us now prove Theorem 1.4.

Proof of (1.16). To get an improvement over the error term as in (1.16), we need the
following

Proposition 4.9. If T* = R"/Z"™ denotes the standard torus with the flat metric and
NO(X) denotes the Weyl counting function for H®, then

(4.59) NO(\) = (27) "w, Voly (M) A™ + 1, (N),
where
A2, if n>5
RS A A
~ AT TE, if n=3
A20s (log \) #5230 | if m = 2.

There has been a lot of research related to the Weyl formula on the torus, which is
equivalent to counting the lattice points inside the ball of radius A. Currently, the exact
order of the error term is only known when n > 5. See e.g. E. Landau [12], A. Walfisz
[19], and E. Krétzel [11]. The above best known results in lower dimensions are due to
A. Walfisz [20] (n=4), D. R. Health-Brown [6] (n=3), and M. N. Huxley [9] (n=2). For
more details and a discussion of recent progress on the problem, see e.g. the survey paper
[10], and W. Freeden [5].

For simplicity, we will only give the proof of (1.16) for n > 5. The proof for n = 4
follows from the same argument due to the fact that the extra (log A\)?/3-factor is harmless
in the presence of the A\°-factor in (1.16). Also, for the n = 2,3 cases, if we use the
improved results in (4.59), by the same argument as in the proof of Theorem 4.6, we can
recover the improved bound without a A\®-loss.
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As a consequence of (4.59), if we repeat the arguments in (4.20)-(4.23), we have the
following two inequalities

(4.60) %/_OO /M %)A((t/)\)ei“‘ ;COS t)\j|e?(:1c)|2dxdt <o\

sin At

(4.61) ‘ %/OO p(t/N) (cos tPO) (z,2) dtde — (27) "w, Vol, (M) X" | < CA" 2,

where x(7), p(t) are the Schwartz functions defined in (4.2), (2.13) respectively.
As before, we first prove a Proposition which allows us to do iterations.

Proposition 4.10. Let T" = R"/Z"™ denote the standard torus with the flat metric and
{er.} be eigenfunctions of the operator Hy . Given (4.59), when n > 5, if we assume, for
all A >1

4.62 er (2))2de < Cy A" 170 for some —1<b<1
(4.62) > en (@) ; :
M o eAFA-1]
then,
4.63 er (2)2d < Cy ||V || p2an A" 27 log A + CA"2.
& (M)
M o eAAFA-1]

Note that, by (4.26), (4.62) holds for b = —1, and that every time we apply the
Proposition, we would have (4.62) for a larger value of b. Consequently, just as before,
after finitely many iterations, we will obtain the following:

Corollary 4.11. Let V € L*(M) NK(M), T" = R"/Z" denote the standard torus with
the flat metric, and {e;,} be eigenfunctions of the operator Hy. Then given (4.59), when
n > 5, we have for all A > 1

(4.64) / S Jen(@)Pde < CyAm, Ve s,
M

ThENAFATT]

where Cy . is a constant depending on V and ¢.

Proof. To prove (4.64), let us first ignore the log A factor on the right side of (4.25).
Define b, to be the best exponent such that

Z ler, (z)2dx < Cy XM= 17bm,

M o eMAFA-1]

after applying Proposition 4.4 m times. We have
14 by,

b1 = m=0,1,2..

with bo =—1.

By solving the arithmetic sequences explicitly, we have b,, = 1 — Q"L%l m=0,1,2....
So (4.64) follows by letting m — co. And since log A < C.X¢ for all ¢, (4.64) follows from
the same argument if we consider the log A-factor.

O
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Let Xa(T) = x(AA = 7)) + x(A(A + 7)), since x € S(R), we have
(4.65) (L) (1) = ON A+ AA=7))N) VN, if j=0,1,2,3,....
Given (4.60), by the arguments in (4.2)-(4.8), (4.63) would be a consequence of

ae) |5 [ [ PR S0V e wen )

< Ov||VlLaqan A" 27 log A,

where we interpret
() —xap) _ Xa(7)

= = o if 7=up.
Also, similar to (4.9), if we let
~ 1 [ in At
(4.67) In(r) = —/ p(t/X\) SH; costr dt,
T J-—co

then by a change of scale argument, it follows from (2.15) that for 7 > 0 and large A we
have

(4.68) L(7) = (1) = O+ A = 7)~%) VA,
Additionally, for 7 > 0 we have the analog of (2.16)
(4.69) (L) A5(r) <ON((L+ AN =7))™) VN, if j=1,2,3,....

In view of (4.61), after repeating the arguments in (4.9)-(4.15), we see that (1.15)
would be a consequence of

(4.70) \Z/ /, it Az_b 1) 00 )V (9)er, (2)er, () drdy

< Ov ||V Lean A" 27/ % log A,

where € is the same constant as in Corollary 4.11, and we interpret

~ ~ ~/
L(r) —I(p) L) .
4.71 = fr=upu.
(4.71) 2 o i T=p
So Proposition 4.10 and (1.16) follow from (4.66) and (4.70), respectively, and both
require a bound on the trace of certain spectral projection operators, which are (4.62)
and (4.64) respectively.

Similarly, we shall split things into three different cases. The main contribution still
comes from frequencies 7, which are comparable to A. For large or small frequencies 7,
by slightly modifying the corresponding arguments in Section 3, we see that the left side
of (4.66) and (4.70) would be bounded by Cy ||V||z1(ar A" 2(log \)!/2, which is better
than the the right side of (4.66) and (4.70).

Finally, for frequencies 7, which are comparable to A, if we let a = 1 in the proof of
Proposition 4.7, and use (4.62) or (4.64) correspondingly for the main terms (e.g. (4.45),
(4.47), ete.), it follows from the same arguments as in (4.45)-(4.52) that the left side of
(4.66) and (4.70) are controlled by their right sides. The proof of (1.16) is complete. [
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Proof of (1.15). To recover to Hlawka bound [7] under the weaker conditions on V in
Theorem 1.4, the strategy is similar to previous cases. That is, to get improvements
for the main terms in (3.1), which are (3.12), (3.15), etc., we begin with the following
Proposition.

Proposition 4.12. Let T" = R"/Z"™ denote the standard torus with the flat metric, and
{er, } be the eigenfunctions of the operator Hy . Then given (4.19), if we assume, for all
A>1 that

(4.72) / Z ler, (x)2dz < Cy X178 for some —1<b<a,
TRE[NA+ATA]
then it follows that for any 1 < p < 2 we have
(4.73)
[ Y kP Oy [[VllzsapAs—# log A+ CX*/* if m =2
el A=l T’“ Cy IV o AFOP log A + CA* =170 if n > 3,
where a = nll, and k(b,p) = 2=t —1+"*TH’.(2_%)+%,(%_1).

If Ve K(M), by (4.26), (4.72) is true for b = —1. In particular, when n = 2, by
applying the spectral projection bounds in [3], we have

(4.74) S len@P s Y len@P <Oy

Tk6[>\7)\+>\7%] TRENA+1]
So (4.72) is true for b = 0 when n = 2. As before, after finitely many iterations, we have:
Corollary 4.13. Let T" = R"/Z"™ denote the standard torus with the flat metric, and
{er,} be the eigenfunctions of the operator Hy. Assume also that V- € LP(M) N K(M)

for some p > =5 forn >3 and V € K(M) for n = 2. Then given (4.20), we have for
all A >1

(4.75) / Yo len(@)fdz < CyAnTe,

ThENA+A—]

: : _ n—1
where Cy is a constant depending on V', and a = -

Proof. For n = 2, by using (4.74), which is (4.72) corresponding to b = 0, (4.75) follows
from (4.73) directly since OVHV||L1(M))‘%7% log A is better than the right side of (4.75).

To prove (4.75) for n > 3, let us first ignore the log A factor on the right side of (4.73).
Define b, to be the best exponent such that

/ S fen @)z < Cyarihe,
TRE[MAFA]

after applying Proposition 4.12 m times. We have

-1
(4.75") n—1—=by1 = max{k(bm,p), n—1— Z——I—l}’ m=0,1,2...

with, as before, by = —1.
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Now by a straightforward calculation, if b,, < % + 21 we have bpy41 =
n—1—k(by,p). In this case, b1 — by, = &131) — 5 + = — —m > u(p), where
n+3 1 1 2n—(n+2)p n—1 . 2n
= 4y —~ >0, if p> :
HP) = 50D Tt T e -1p i p P2
2n — (n+2)p+ 1iq
So the sequence is strictly increasing in this case. If N = [%] +1, we have
n—(n+2
by > 228 4 ol Thus by (4.75), by, = 254 for all m > N.

Since log A < A¢ for all e, by the same argument, we have b1 > Z—: — . However,
if € is small enough,

1 n—1 n—1 . 2n

n—
k(—— —¢,p), n—1— =n—-1——— if p> .
max{ (n—l—l Ep) " n—i—l} " n+1 . n+2

So we have in this case b,, = T for all m > N + 1. The proof of (4.75) is complete.
O

To obtain (4.73), if we repeat the arguments in the proof of Proposition 4.4, this
inequality would be a consequence of

@ |3 [, [, P @b 0V wen @er ) dsdy

_ Cy|[V]ianAs 2 log X if n =2
Cv IV e (an A*OP) log A if n > 3,
where xa(7) = x(A*(A=7)) + x(A*(A+ 7)) and a = Z—j&
And similarly, to obtain (4.15), if we repeat the arguments in the proof of Theorem 4.6,
it suffices to show that

4 ‘Z/ [, R '._b ) 02)e 1)V (9)ers (2)er, (4) dady

< CV”V”Ll(M))\% log\ if n=2
CV”V”LP(M))\k(p) log A if n > 3,

where 1y(7) is defined as in (4.29), and k(p) = k(a,p) = nolte 4 noloe. (g %) +
5 (% —1),ifa= Z—j& Note that by a straightforward calculation, when p > 2% the

nt2
right side of (4.77) is controlled by the right side of (1.15).

As before, since the proofs of (4.76) and (4.77) are similar, we shall only give the
details of (4.77) here. By using the same argument as in Section 3, the terms for large
or small frequencies 7 in (4.77) will only contribute Cy[|V||r1(ar) A ~2(log A)/? to the
right side. So the proof of (4.77) would be complete if we could establish the following.
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Proposition 4.14. Asin Theorem 1.4, fixp > nfz and assume that V€ LP(M)NK(M)

forn >3, and V € K(M) for n=2. If 1\(7) is defined as in (4.29), then

ar | [ b A’J“ ) 000 )V (9o ()ere () iy

J A{k:Tr€[X/2,10A]}

< OVHV”Ll(M))\% log\ if n=2
Cv Ve A*® log A if n > 3.

We prove Proposition 4.14 directly by using the same setup as in (4.35)-(4.38), as well
as Lemma 4.8. Let K be as in (4.35), our current task, (4.78), then is to show that

@) | X[ Kawen@enw) Vi) ddy

Tke [A/2,10)]

IVl L1 (an)AS 10g/\ if p=2
IVl Lean AF® log A if n > 3.

First, by (4.39) and Lemma 2.3 with 6 = A7%2¢, we have for n = 2

wmy | Y[R e @en )V () duds
TRELF,N[A/2,10)]

<Wipesw| S [[KE e @en)

T}CEIi N[A/2,101]

L1 (dz)

SV s (I g D llazan + [ [ KEC )z ds)

£,3

(Y e )

mEIE N[A/2,10)]
6 N 1/2
RN Y len, (1)]?)
TRELF,N[A/2,10)]

/S HV|‘L1)\71/327€/2(1 _'_j)fN( Z ﬂnfl)l/Q
HENN(IFE,N[A/2,10)]

2— 1+a

SIVIzA

SV As (1 + )7V,

In the second to last inequality we used (4.74) and the fact that a = £, |Ilftj| = \792f < 2f
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Similarly, for n > 3

aso) | Y [[KE e @en )V @) dyds

mEIENA/2,10)]

Wi X [ e @enw)

TRELF,N[A/2,10)]

e’ (dy Ll(dw))

S WVl s (I sz Coilzon + [ [ BE oy )

[2%)

(LN el )

M
mEIENA/2,10)]

e N 1/2
22+ )TV > len)*) M Lor (ary»
mEIEN[A/2,104]

n— 1+a

S IVIEeA

1 1 _
where 5 + o= 1.

Now in view of Corollary 4.13 and (4.26), since 1% =1 1% +L.(1- 1%), by Hélder’s
inequality, we have for all A > 1 and 2 <p’ < 00

1/2 2 in2
||( Z |67k(y)|2) ||LP/(M) 5 A2 » +2(1 - )
T[N A+A—9]

Since the number of intervals in 7, th N [A\/2,10)\] with length comparable to A~ is about
2¢, by Minkowski’s inequality

I Y e @) Pl S 272072 00,
TR€IE,N[A/2,10)]

So the right side of (4.80) is bounded by \¢®) (1 + 7)=N||V| ».

If we sum over j = 0,1,2,..., we see that (4.79) and (4.80) yields that for 1 < 2¢ <
A+ A%/100

asy | X [[KL e @en ) Vi) dods

>\<Tk <10X

+ Z //Kﬂcé x,y eTk( )eTk(y) ( dxdy’ < { | ||L M) .

A/2<TR<A V]| oy AE®)if > 3.

If we take § = A% in Lemma 2.3, this argument also gives

(s2) | 2 //Krko 7, y)er, (@)er, (4) V() dudy|

A/2<1, <A

IVIpianAs if n =2
Y] Basewen@enw Vi dxdy]<{' lzzanil 4

A<TE<10A ”VHLP(M AP if > 3.
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Next, since R, enjoys the bounds in (4.43), we can repeat the arguments in (4.79)
and (4 80) to see that for 1 < 2¢ < X - \?/100 we have for n = 2,

> // oz, 9) T (M) en (@)er, (1) V () dmdy’

T,Ceﬁ N(X,10)]

_ 2—1ta _ 1 1/2
SV - 2720 Tsup( Y [m)en m)?)"Y
€l N(A,10)]

AL+ NV,
since Iy (1) = O((1 +4)~N) if 7 € IZj'
Similarly for n > 3, we have

Z // o2, y9) T (T en (@)er, (1) V () dxdy’

T,Cez N(A,101]
_ n—1+a _ ~ 1/2
SIVze - 27202 ( > [ (m)en W)12) M oo (any
mEIE,N[A/2,104]

SN+ )NV Lo

Summing over this bound over j of course yields

(4.83) Z // e, ) (Th)er, (2)er, (¥)V (y) d:z:dy’

A<T <10

< ”V”Ll(M))\% if n=2

The same argument gives

asy | ¥ //RTM 7,9)(1 = Tr () er, (2)er, (0)V (y) drdy|

M/2< <A

< ”V”Ll(M))\% if n=2
We now have assembled all the ingredients for the proof of (4.78"). If we use (4.81),
(4.82), (4.84), (4.51) and (4.52) along with (4.36), we conclude that the analog of (4.78’)
must be valid where the sum is taken over 7, € [A/2,A]. The log-loss comes from the
fact that there are ~ log A\ terms K -0 and R; ;. We similarly obtain the analog of (4.78)
where the sum is taken over 7, € (A, 10A] from (4.37) along with (4.81), (4.82), (4.83)
and (4.51). So the proof of (4.78) is complete.

O
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