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QUASIMODE, EIGENFUNCTION AND SPECTRAL PROJECTION
BOUNDS FOR SCHRODINGER OPERATORS ON MANIFOLDS WITH
CRITICALLY SINGULAR POTENTIALS

MATTHEW D. BLAIR, YANNICK SIRE, AND CHRISTOPHER D. SOGGE

ABSTRACT. We obtain quasimode, eigenfunction and spectral projection bounds for
Schrodinger operators, Hy = —Ag + V(z), on compact Riemannian manifolds (M, g)
of dimension n > 2, which extend the results of the third author [40] corresponding to
the case where V' = 0. We are able to handle critically singular potentials and conse-
quently assume that V' € L% (M) and/or V € K(M) (the Kato class). Our techniques
involve combining arguments for proving quasimode/resolvent estimates for the case
where V' = 0 that go back to the third author [40] as well as ones which arose in the
work of Kenig, Ruiz and this author [25] in the study of “uniform Sobolev estimates” in
R™. We also use techniques from more recent developments of several authors concerning
variations on the latter theme in the setting of compact manifolds. Using the spectral
projection bounds we can prove a number of natural LP — LP spectral multiplier the-
orems under the assumption that V € L% (M) NK(M). Moreover, we can also obtain
natural analogs of the original Strichartz estimates [49] for solutions of (02 —A+V)u = 0.
We also are able to obtain analogous results in R™ and state some global problems that
seem related to works on absence of embedded eigenvalues for Schrodinger operators in
R™ (e.g., [21], [22], [26], [27] and [34].)

1. INTRODUCTION AND MAIN RESULTS

The purpose of this paper is to obtain quasimode, eigenfunction and spectral projection

bounds for Schrodinger operators,
(11) Hy = —Ag + V(CL‘),

on compact Riemannian manifolds (M, g) of dimension n > 2. We shall deal with real valued
potentials V' (z) with critical singularities. Consequently, we shall assume throughout that

V is real valued and
(1.2) Ve L¥(M).

Note that, in R™, multiplication by elements of L= (R") scales as operating by the Euclidean
Laplacian does. For most of our results we shall also have to assume that V belongs to the
Kato class, (M), which will be recalled in Definition 1.2 below.

M.D.B. was partially supported by NSF Grant DMS-1565436, Y.S. was partially supported by the Simons
Foundation and C.D.S. was supported in part by the NSF (NSF Grant DMS-1665373) and the Simons

Foundation.
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If we merely assume that (1.2) is valid the operator Hy need not be self-adjoint. Notwith-

standing, in higher dimensions, we can prove the following.

Theorem 1.1. Assume that n >4 and V € L= (M) and let
- o(p) = min(n(} = ) =4, 27 (3 = ).

Then for A > 1 we have

(14) HuHLp(M) < O;Dyv()\g(p)iln( - Ag +V - (/\ + Z.)2)’“”[/2(]\4) + )‘U(p)HuHL2(M) )7
if ue (M),

provided that
(1.5) 2 <p< 22
The constant Cp v depends on p, V and (M, g) but not on A.

If Hy were self-adjoint and positive and if C°°(M) were an operator core for Hy and if
we set Py = v/Hy, then (1.4) would yield the spectral projection bounds

XX fllp S @+ Pif)l2, A0,

for p as in (1.5), where XE\/ is the spectral projection operator for Py corresponding to the
unit interval [\, A + 1].

In the case where V = 0 in [40] the third author proved (1.4) for all n > 2 with
(1.6) p=pe =2t

n—1

This special case where p = p. yields the bounds in (1.4) for 2 < p < p. by Holder’s
inequality since the case where p = 2 is trivial. Heat kernel techniques also imply that when
V' = 0 the special case where p = p. yields the bounds for all p > p. if n = 2 or 3 as well
as the bounds for p. < p < oo when n =4 and p. < p < % if n > 5, see §6. In order
to use these techniques to extend the “quasimode” bounds in Theorem 1.1 for Hy to such
exponents, we shall have to assume that, in addition to (1.2), V belongs to the Kato class
that we shall define in a moment. We shall also be able to handle p = oo for n = 4 and
p > % for n > 5 using heat equation techniques if we include an additional term in the
right to account for the unfavorable Sobolev embeddings for such exponents.

Koch, Tataru and Zworski [28] also obtained semiclassical variants of (1.4) for all dimen-
sions and all exponents 2 < p < oo under the assumption that w is spectrally localized. This
assumption is needed since, as we shall see, when V' = 0 (1.4) does not hold for p = oo if
n:40rp>%ifn25.

The proof of quasimode estimates like (1.4) involves combining the resolvent/oscillatory
integral approach of the third author in [40] with techniques of Kenig, Ruiz and the third
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author [25] that were used to prove “uniform Sobolev inequalities” in R™, n > 3:

(17) HU’HLS(R") < Cr,s”(A + Z)UHLT(RH)7 A (C,
if ueSR"), n(-1)=2and se (2, 2.

n—1’n-3

As was shown in [25], the condition on the exponents is necessary. The last condition
accounts for the limitation in (1.5). On the other hand if, in addition to (1.2), we also
assume that V' belongs to the Kato class, we can obtain (1.4) for the larger (and essentially
sharp) range 2 < p < % when n > 4.

In addition to borrowing from the techniques of [25], we shall rely on arguments used
more recently to prove variants of (1.7) for compact manifolds. Of course (1.7) cannot hold
for all z € C since the right hand may be zero if z is in the spectrum of —A,. An appropriate

variant for compact manifolds reads as follows
(1.8) el any < Ol (=B — A+ 2ullzoqan, i n( — 1) =2,

where, as usual p’ denotes the conjugate exponent for p (i.e., % + % = 1). These estimates
were proved by Dos Santos Ferreira, Kenig and Salo [14]. In the work of Bourgain, Shao and
Yao and the third author [7] it was shown that (1.8) is sharp in the sense that when M = S™
one cannot have the variant of the inequality where (A +)? is replaced by (A +&()\)i)? with
e(A) N\ 0; however, it was also shown that certain improvements of this type are possible
under certain curvature assumptions.

One of course sees similarities between (1.4) and (1.8) since both involve the parameter
(A +)2. In [20], Huang and the third author also showed that when M = S™ the variant
of (1.8) holds involving the exponents in (1.7). The proof of our quasimode estimates will
rely on techniques from [20] as well as the earlier works [14] and [36], all of which allow one
to show that the “local operators” that arise have desirable bounds for p as in (1.5).

The proof of Theorem 1.1 also shows that the inequality holds whenn =3 and 2 < p < 0o
if Ve L%(M ). This, however, is not a useful inequality due to the fact that L% is not
contained in L? when n = 2,3 and so the right side of (1.4) may be infinite for typical
u € C°(M). We shall get around this nuisance by proving that if V' also belongs to the
Kato class we have the variant of (1.4) where u ranges over the domain of Hy, Dom(Hy ),
and 2 < p < oo for n = 3. We shall also be able to prove quasimode bounds for these
exponents when n = 2.

Before stating these, let us go over the definition of the Kato class, K(M). To do this,
let for r >0

[logr|, if n=2

(1.9) hn(r) =
r2=m if n > 3.
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Definition 1.2. The potential V is said to be in the Kato class and written as V € (M)
if

(1.10) lim sup/ hn(dg(z,y)) |V (y)|dy =0,
rNO g B, ()

where dy( -, -) denotes geodesic distance and B, (z) is the geodesic ball of radius r about x

and dy denotes the volume element on (M, g).

Note that since M is compact we automatically have that V € L1(M) if V € K(M). An
easy argument also shows that if V. € L3+(M), e > 0, then V € K(M); however, L= (M)
is not contained in (M) or vice versa. Moreover, as we shall review in the next section,
if Ve K(M), then Hy (defined as a sum of quadratic forms) is self-adjoint and bounded
from below. After adding a constant to the potential we may, and always shall assume that
Hy is positive when V' € (M), cf. §2.1.

For more background on the Kato class and related spaces we refer the reader to Si-
mon [37] which deals with Schrédinger operators on R™; however, most of the results there
carry over without difficulty to our setting.

Let us now state our other main result.

Theorem 1.3. Assume that V € L3 (M)NK(M). Then ifn =2 orn =3, o(p) as in (1.3)
and A > 1 we have
(L11) lulloqary € Cv AP (=8¢ +V = (A +0)*)u HL?(M)’

if 2<p<oco and u€ Dom(Hy).

If n > 4 this inequality holds for all 2 < p < 2% and we also have for such n

n—4’
(112) lullzean < Cv (AU<P>*1H (=g +V = O+t 12y
AN (L By Ry )

if pe [%,oo], and u € Dom(Hy), A>1

assuming that N > n/2 with Ry being the projection operator for Py = «/Hy corresponding
to the interval [2), 00).

We could have stated (1.11) as in (1.4) with the additional term in the right; however,
since Hy is self-adjoint under the above assumptions, by the spectral theorem, this term is
redundant by which we mean that (1.11) or the variant including A% ||u/|5 in the right are
equivalent.

If Y is the spectral projection operator associated with Py corresponding to the unit

intervals [A, A + 1], then we have the following corollary.
Corollary 1.4. Let n > 2 and o(p) be as in (1.3). Then if V. € L3 (M) NK(M)

(1.13) ||X§\/f|\Lp(M) <Cy(l1+ /\)U(p)HfHLP(M)v p>2, A>0.
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Consequently, if
(1.14) (—Ag +V)ex = )\26)\
in the sense of distributions, we have

(1.15) ||e)\HL:D(M) < Cv(l-i-)\)a(p)He)\HLz(M), p>2, A>0.

It is well known that for all exponents p > 2 when n = 2 and n = 3 and for relatively
small exponents (including the “critical” exponent p = p.) in dimensions n > 4, bounds of
the form (1.13) imply quasimode estimates of the form (1.4) or (1.11). See [45, Theorem
1.1].

Based on the work of the third author [39], [41], and the third author with Seeger [35],
it is known that in many cases one can use spectral projection bounds to prove multiplier
theorems. In §7, we shall show that (1.13) implies sharp bounds for the Bochner-Riesz
operators associated with Hy when p € [1,p] U [pc, o0] with p. as in (1.6). Moreover, we
observe consequences for spectral multiplier theorems of Hérmander-Mikhlin type.

We would now like to remark that (1.15) need not hold for p = oo if we drop the
assumption that V' € K(M). To see this, we shall take M to be the round sphere S™ with

n > 2. We then can write
S" = {(wsing,cos¢) : ¢ € [0,7], we S }.

Then if f is a function on S™ only depending on ¢ (i.e., distance from the poles (+1,0,...,0)),

one has

e D (e ne1
Agn f = (sin )~ 1>6—¢((sm¢) la—f;)-

Let us first handle the case where n > 3. We let
f= —ln(%sin¢)
so that f >1n2 > 0 on S™. Then,

—Agnf = (sing)~ Y % ((sing)**cos¢)

= (sin¢) _2((11 — 2) cos® ¢ — sin® ¢).
Thus, if
(n —2) cos? ¢ — sin® ¢
sin? ¢ In(3 sin ¢)
%<<Onear¢:0and¢:ﬂ', and
HVf =0- f7

so that f = eg is an unbounded eigenfunction with eigenvalue 0, which means that (1.15)

we have that V ~

cannot hold in this case when \ = 0.
Note that, as n > 3,
Ve Lz(S"),
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but
V¢ K(S")ULETI(S™), if §>0.

Thus, we conclude that merely assuming V € L% (M) is not sufficient to get O((1+|A|)"2")
sup-norm estimates for eigenfunctions of Schrodinger operators on compact manifolds when
n > 3.

To handle the case where n = 2 one needs to modify this argument. Here, we take
f = [In(5 sin¢)]?>. Then

0
—Agef = —2(sin¢g) 5% (cos¢ - In(4 sin ¢))
= 21n(4 sin ¢) — 2(sin ) ~* cos® ¢,
and so if
cos® ¢ —sin? ¢ - ln(% sin ¢)

sin® ¢ - (In £ sin ¢)?

)

then
Hyf=0-f.
Like before,
V ¢ K(SH)ULY™(S?%), if § >0, but Ve L'(S?).
Since f = eg is an unbounded eigenfunction with eigenvalue 0, we conclude that (1.15) also
breaks down on S? if we do not assume that V € K(S?).

Comparing Theorems 1.1 and 1.3 shows that the assumption V' € K(M) only enters when
proving quasimode estimates for large exponents p. Indeed, by (1.4) we have (1.15) for all
2<p< % if n > 4. The example we have just given only shows that the bounds need
not hold for p = co. It would be interesting' to determine if we might have (1.15) for a
larger range than 2 < p < f—fg when n > 4. Results of Brezis and Kato [8, Theorem 2.3] for
R™ suggest that, like for the above counterexample, only the case where p = oo may violate
(1.15).

The paper is organized as follows. In the next section we shall go over background
concerning the Kato class and also review the facts about the Hadamard parametrix and
the oscillatory integral bounds that we shall use in proving our quasimode estimates. Then
in §3 we shall prove Theorem 1.1. In §4 and 5 we shall prove the bounds in Theorem 1.3
for n = 3 and n = 2. Different arguments are needed for these two cases due to the
nature of Sobolev embeddings and the fact that the uniform Sobolev estimates in [25] (and
manifold variants) do not hold when n = 2. In §5 we shall prove the remaining part of this
theorem corresponding to n > 4. In §7-8 we shall go over applications, showing that we can

use the spectral projection estimates to prove natural multiplier theorems, and, moreover,

1Simon [37, §A.3] raises an analogous problem for LP bounds for eigenfunctions of Schrédinger operators
in R™ but says that the “class of potentials .... includes none of physical interest”. This is due to the
fact that the associated operators Hy need not be essentially self-adjoint if one weakens the hypotheses in
Corollary 1.4.
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Strichartz estimates for wave operators involving potentials V € L™/2(M) N K(M). In the
final section we shall show how our results extend to Schrédinger operators Hy in R™ and go
over some natural global problems, such obtaining improved spectral projection estimates
and the related problem of proving global Strichartz estimates, that remain open and seem
to be related to work on proving that embedded eigenvalues do not exist (e.g., [21], [22],
[26], [27] and [34]).

2. SOME BACKGROUND

In this section we shall collect the main facts that we shall require. We shall review how
the assumption V' € (M) implies that the symmetric operators Hy in (1.1) are self-adjoint
and bounded from below. We shall also review facts about the Hadamard parametrix and
bounds for the oscillatory integral operators that will arise in our proofs.

Let us start out with the former.

2.1. The Kato class and self-adjointness. As we stated before, for brevity, here and

throughout, dz shall denote the Riemannian measure on (M, g).

Proposition 2.1. If V € K(M) the quadratic form,

qV(u,v):—/ Vuﬂdx—i—/—Agude, u,v € Dom(y/—A4 + 1),
M

is bounded from below and defines a unique semi-bounded self-adjoint operator Hy on L>.

Moreover, C*(M) constitutes a form core® for qv .

Proof. Since (—A, + 1)'/2 is self-adjoint, by perturbation theory (specifically the KLMN
Theorem (see [32, Theorem X.17]) it suffices to prove that for any 0 < ¢ < 1 there is a

constant C. < 0o so that
(2.1) /|V| lul? do < & |[(=Ay + 1)”%”2 + Cc||lull3,  u € Dom(y/Hy),

where Hy = —A, + 1.
To prove this, following the argument, for instance, in [37, Proposition A.2.3] for R™, we
shall use the fact that the heat kernel p;(z,y) = (e~ *#°)(x,y) for Hy satisfies

Cot™™% exp(—co(dy(x,y))2/t), 0<t<1

exp(Cot), t>1,

2Recall that a form core for qy is a subspace S which approximates elements v in the domain of the

form in that there exists a sequence wm, € S satisfying limy, ||u — wm||? + qv (v — wm, u — um) = 0.
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where ¢y > 0 and Cy < oo are uniform constants. These are a consequence of the Li-Yau
estimates in [29]. Using this and the definition (1.10) of (M), we see® that if V € k(M)

sup / / e Nopi(z,y) |V(y)| dydt — 0, as N — oco.
zeM Jo M

Choose N = N, so that the left side is < €2, i.e.,
| (Ho + No)~ 'V, <&
This means that the operator u — (Ho + N.)~1(|V|u) satisfies
|(Ho+ No) V|| o, oo <€

By duality, we also have

IIVI(Ho + Ne) Y| 110 <€

An application of Stein’s interpolation theorem therefore yields
H |V|1/2(H0 + NE)_l |V|1/2HL2—)L2 < 52;
which, by a TT* argument, is equivalent to

(2.3) I[[V[/2(Hy + N.)~*/2 <e.

HL2~>L2

Since this implies (2.1) with C. = N, we are done. O

Ifue Dom(\/m) then —Agu and Vu are both distributions. If Hy is the self-
adjoint operator given by the proposition, then Dom(Hy ) is all such u for which —Agju +
Vu € L?. At times, such as in the statement of Theorem 1.3 we abuse notation a bit by
writing Hy as —Ag + V.

Note that (2.3) implies that qy is bounded from below. If we take €2 = 1/2 in (2.1) we
indeed get for large enough N

(2.4) Hw/—Ag—l—luﬂgz/(—Ag—l—l)uﬂdyg2/(—Ag+V—|—N)uEdy
=2||/Hy + Nulls, if Hy = A, + V.

Thus, (—A, + D)Y2(Hy + N)~Y2 and (Hy + N)~'/2(=A, + 1)/2 are bounded on L2

—1/2 From this we

Since (—A, +1)71/2 is a compact operator on L?, so must be (Hy + N)
conclude that the self-adjoint operator Hy has discrete spectrum. By heat kernel methods
one can also show that the eigenfunctions ey of (Hy + N) are continuous. (See, e.g., [15,
Theorem 2.21] and [50]).

After replacing V by V 4+ N to simplify the notation, we may assume, as we shall in what

follows, that (2.4) holds with N = 0. This just shifts the spectrum and does not change the

3To see this we note that by (2.2), if N is large enough the t-integral is dominated by hn (dg(z,y)). Thus,
as V € K(M), we just need to see that if the y-integral is taken over the region where {y € M : dy(x,y) > 6},
with § > 0 fixed, then the resulting expression is small. Since this also follows easily from (2.2) our claim

follows.
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eigenfunctions. In this case the spectrum of Hy is positive and its eigenfunctions therefore

are distributional solutions of
Hyey) = /\Qe,\7 some A > 0,
which means here that A is the eigenvalue of the “first order” operator v/ Hy, i.e.,

(25) PVe)\ = )\6)\, if PV = \/H .

2.2. The Hadamard parametrix and oscillatory integral bounds. As in many early
works (e.g., [14], [20] and [40]), we shall prove our estimates using the Hadamard parametrix.
Let us quickly review the facts that we shall require. More details can be found in these
works as well as in [19, §17.4] and [42, §2.4].

Recall that we are abusing the notation a bit by letting dx denote the volume element
associated with the metric ¢ on M and all integrals are to be taken with this measure. In
local coordinates it is of the form |g|'/? times Lebesgue measure, where |g| = det(g;x(x)).
Here g;i(x)dx?da"* is the metric. In local coordinates the Laplace-Beltrami operator A,

takes the form
n

1 8 1 s 8
g/~ j;l oz, 9l @) 50
and so A, is self-adjoint with respect to the volume element. Also for x sufficiently close to
y we shall let dy(x,y) denote the geodesic distance between = and y.
The Hadamard parametrix for —A, — (X +i)? is an approximate “local inverse” that is

built using the radial functions

ezx{

(2.6)  F(al,A) = ! (%)*n/ d6, v =0,1,2,3,. ...

e (62 = A+ 2)"
Here |z| denotes the Euclidean length of z € R". If A = Agn denotes the Euclidean
Laplacian, then
(A = (A +14)?) Fo(l2], A) = do,
whilst
(A= (A4 F, =vE,_1, if v=1,23,....
Here and throughout we are always assuming that A > 1.

Using these equations one can find coefficients a,, € C*> defined near the diagonal so

that for V € N we have for = near y

[N

(2.7) (—Ag - A+ 2)2)F = (det gjk(:v)) 0y(z) — (Agan)En,
if

N
(2.8) F(z,y,\) =Y o (@,y)F,(dg(x,y), \)
v=0
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and of course Fy = Fn(dg4(z,y),\) in (2.7). By choosing N large enough (depending on

the dimension) we can ensure that the last term is bounded, i.e.,
(29) |(AgaN)FN| S CQ if A 2 1.

The identity (2.7) is just (17.4.6)" in [19)].
We shall also need more information about the functions F, in (2.6). Specifically, we

recall that we can rewrite them as

v+1

(2.10) F,(r,\) =c,r 2tV Ko, a(Ver), z=—-(A+ i)?,

where K, are the modified Bessel functions of the second kind defined by
Kn(z) = /000 e 2 cosh(mt) dt, Re z > 0.
As is well known (see [1])
(2.11) |Kp(2)] < Clz|™™ if m >0, while |Ko(2)] < C|log(|z|/2)],
when |z <1 and Re z >0,
and also
(2.12) K (2) = am(2) 2 %e * when 2] >1 and Re z >0,

where the a,, behave like symbols, i.e.,
d’ .

(2.13) ’Wam(rﬁ)’ <Cippmrd, j=0,1,2,... if Rez>0 and r> 1.
r

More details can be found in [25, p. 338-339], [40, Lemma 4.3] and [14].
From (2.10)—(2.13) we deduce the following result which is essentially Lemma 4.3 in [40].

Lemma 2.2. There is an absolute constant C' so that for A > 1
|F| < C(dg(z,9)*™™ if dy(z,y) < A" and n >3,
and
|F| < C|log(Mdy(x,y)/2)| if dy(z,y) <A1 and n=2.
Furthermore, for dg(x,y) smaller than a fized constant (depending on (M,g))
F = N0 (dy(0,9)) T an(@y), i dylay) 2 A7
where

|Vg,ya1)\($7 y)| < C, (dg(x, y)) *\a|'

As we pointed out before, (2.7) is only valid near the diagonal, as is the representation of F’
as in the last part of this lemma. Due to this, as well as to be able to exploit our assumptions
regarding the potentials, let us introduce cutoffs. Specifically, fix n € C5°([0,00)) which

equals one for s < 1/2 and zero for s > 1 and set

ns(z,y) = n(dy(2,9)/9).
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Of course this cutoff then satisfies the bounds for a) above.
Next, if § > 0 is sufficiently small, by (2.7), we have

1
7)) (=8 = A+ D) (ns(e,9) (.9, 0)) = (det gyi(2)) * 6, (2)
_n6(w7y)AgaN : FN( 7y7)‘) + [nﬁ(ay)qu]F( 7y7)\)'
We think of the last two terms as “remainder terms”. As we pointed out before, by (2.9),
the second to last term is bounded, as we shall assume, if N is large enough, while the last
term is supported in the set where dy(z,y) € [0/2,6]. In practice we shall need to take § > 0

to be small depending on the potential V.
Using (2.7) and taking adjoints we find that Lemma 2.2 yields the following:

Proposition 2.3. If 6 > 0 is small we can write for A > 1

(2.14) I=Tyo(=Ay— (A+1)?) + Ry,

where Tx and Ry are integral operators with kernels Tx(z,y) and Rx(z,y), respectively,
satisfying

(2.15) Ta(z,y) = Ra(z,y) =0 if dy(z,y) > 0.

Furthermore,

n—1

(216) T)\(‘Tu y) = )\%ﬁge—ikdg(w,y) (dq(xay))_T (L)\(.’L',y),
if dg(z,y) > AL where Vi yax(z,y) = Oa((dg(x,y))_lo“)),
and
(217) [Ta(@p)| < Cldy(z, )" for n >3
and |Tx(z,y)| < Cllog(Ady(x,y)/2)| for n=2, if dg(z,y) <A

Also, Ry(z,y) = ra(x,y) + ba(z,y) where by(x,y) is bounded independent of X > 1 and

(2.18) ra(y) = NT e M ey (),
with
(2.19) IVayexl < Csa and co(z,y) =0 when dy(z,y) ¢ [0/2,6].

The oscillatory integral operators with kernels Th(z,y) (dg(z,y) > A7') and ry(z,y)
satisfy the Carleson-Sjolin condition (see [11] and [43]). Consequently, just as was done in
[40], one can estimate the operators T\ and Rj using the oscillatory integral theorems of
Hormander [18] when n = 2 and Stein [46] when n > 3.

The bounds that we shall require are the following:

Proposition 2.4. Let o(p) be as in (1.3) and p. as in (1.6) Then for A > 1

(2.20) IT5f I Locary < CoN @7 Fllnar)
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and

(2.21) 1Bxfllzoary < CsA7P £l L2qary,

provided that p € [pe,00] if n =2 or3, p € [p.,00) if n =4 and p € [pe, 2] forn > 5. Here,
Coy = Co(M, g) is an absolute constant, while Cs = C(§, M, g) depends on 6. Additionally,
if n > 3 and B, (xo) denotes the geodesic ball of small radius r > 0 about xy € M, we have
for p € [pe, 7225)

(2.22) I TSNl 2o(Bs(zo)) < Crpll fllLr(Bos(zo)) where L —21 =2

bS]

with Cy, = C(M, g,r,p) independent of small 6 > 0.

The bounds (2.20) and (2.21) for the “critical” case where p = p. are in [40, Lemma 4.2].
They are a consequence of the aforementioned oscillatory integral bounds of Hérmander [18]
and Stein [46]. The proof for the special case where p = p. is easily seen to handle the
other exponents arising in (2.20) and (2.21). The limitations on the exponents in higher
dimensions is due to the fact that convolution with |2[>~"1,<; in dimensions n > 4 only
maps L?(R") — LP(R") for the exponents in the first part of the proposition if 12<1
denotes the indicator function of the unit ball in R™. However, this is only used in the
bounds (2.20) but not the bounds (2.21) on Ry, which hold for p € [p., o] in any dimension
n > 2.

Since T satisfies (2.16) and (2.17) with constants independent of § we see that if p and

r are as in (2.22) then we see that
(2.23) ||T)\||LT—>LP < Cr,p

by appealing to [20, Proposition 2.2] or the earlier “local” bounds in Theorem 4.1 of [14].

Both are variable coefficient versions of the “uniform Sobolev estimates” (1.7) of Kenig, Ruiz

2n 2n )
n—1°’n—3

and we note that p, lies in this interval, which ensures that (2.23) is valid for p € [p., 22)
as in (2.23). By (2.15) we immediately see that (2.23) implies the localized variant (2.22).

and the third author [25]. As in these estimates, the exponent p must belong to (

3. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we first notice that (1.4) trivially holds when p = 2. Based on
this and a simple interpolation using Holder’s inequality one finds that the special case of
(1.4) where p = p. as in (1.6) implies the bounds for 2 < p < p...

As a result, we just need to prove (1.4) when p € [p., %) This will allow us to use
(2.22) in order to exploit our assumption that V € L= (M).

To use this, for each small § > 0 choose a maximal d-separated collection of points
zj € M,j=1,...,Ns, Ns ~ 6 ". Thus, M = UB; if B; is the d-ball about z;, and if B}
is the 2d-ball with the same center,

(3.1) > 1p:(z) < Cu,
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where C); is independent of § <« 1 if 1 B denotes the indicator function of B;. Since
V € L"/?(M), we can fix § > 0 small enough so that

P
(32) CM(CO sup ”VHLn/?(B(z,QJ))) <1/2,
xeM

where Cj is the constant in (2.20) above and (3.3) below.
Next, by (2.14),

u(x) = TA((—AQ —(A+ 2)2)’[1,) (z) + Ryu(x),
which we can rewrite as
u=T\((-Ag +V = (A+9)*)u) + Ryu — Tr(Vu).

By (2.20), (2.21) and (2.22) we can estimate the LP norms of each of the terms over one of
our ¢ balls as follows:

(33) g, < (CXP(=Ag +V = A+ D2)ull paqany + CA P Jullaqany)”
+ (OOHVUHLT(B;‘))pa

Here, as in (2.22) the constant Cj occurring in the last term, though depending on p, is

independent of d, and, moreover,

Consequently, by Holder’s inequality,

Vullrsyy < WVlpnrzs lulles;)-

Combining this with (3.3) yields
(3.4) ullf s,y < (CNPH(=Ag +V = A+ )Pl + CoA" Pl L2ary)”
+ (COHVHLW?(B;)

ullLoay)”,

Since M is the union of the B;, and the number of these balls is ~ § =", if we add up the
bounds in (3.4) and use (3.1) and (3.2) we get

HU||Z£p(M) = Z ||U||Z£p(Bj)
J
S GO (=g +V = (A i) ull 2ary + X7 [ull z2ar))"
+ (SIJIP COHVHLn/z(B;))pZ ||U||ZLJP(B;)
J
S CEATPTI(AG +V = A+ D)P)ullzany + A7 [[ull z2an)”
+Cwm (S?P CO||VHLH/2(B;))p||U||Z£p(M)
< TP +V = (4 2)ullzany + APl zzan)” + Sl .

which of course implies (1.4).
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4. QUASIMODE ESTIMATES IN THREE DIMENSIONS

In this section we shall prove (1.11) when n = 3. As before, the special case where
p = pe = 4 implies the bounds for 2 < p < p. and so we shall assume that 4 < p < co.
By taking adjoints in (2.14) (see also (2.7")), we have

I=(-Ay—(A+4)?) 0Ty + R, on C™(M),

where the kernels of T3 and R} are Th(y,z) and Ry (y, z), respectively, with the latter as in
Proposition 2.3.
To prove (1.11) it suffices to show that

(4.1) |/uwdw| < CvXT P (AT (=2g +V = A+ D) ullz + [lullz) + §llully,
for ¢ € C*(M) with ||¢||y =1,
assuming that u € Dom(Hy ). If we abbreviate the left side as |(u, )| then by the above
(4.2) [(w, )] < [(u, (=Ag = (A +14)?) 0 TX¥)| + |(u, R39)]
<((=Ag +V = A+ 0)*)u, Tw) | + [(u, B3| + |(Va, T3)]-
By duality, (2.20) yields || 75|, ;2 = O(A°®~1) and so
43) [(m2g +V = (A +0))u, T3P) | < I(=Ag + V = (A +0))ull2 [ T3¢]|2
< C)\“(p)_1||(—Ag +V — (A +i)H)ullz.
Similarly, by (2.21)
(4.4) |(us R3)| < [lull2| B3Nl < CA7Pfull2.
Thus, the left side of (4.1) is bounded by the first two terms in the right side plus
|(Vu, T3)|-
To handle this, we shall use the fact that Sobolev embeddings give that L*°(M) C
Dom(—Ay + V) if n = 2,3 (see §6). Thus, by (1.10), (2.16) and (2.17)
(4.5) Th(Vu)(z) = / T\(z,y) V(y)u(y)dy, u € Dom(—A,+V),
M
is given by an absolutely convergent integral, as is |(Vu, Tx)|. Hence, by Fubini’s theorem
|(Vu, TX9)| = [(Ta(Vu), )| < [ITx(Vu)llpllollp = [TA (V) |l

For each fixed finite p, i.e., p € [4,00) we can repeat the arguments from the previous
section to see that if 1/r = 1/p+ 2/3, then by (2.22), if § > 0 is small enough, we can find
a collection of d-balls B; so that if B} is the double then

”T)\(VU)HLP(M < Z ||TA Vu HLP(B < sz ”VH L3/2(B; )||u’||LP Br) = <27 p”u”p
J
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This along with the earlier bounds for the first two terms in the right side of (4.2) yields
(4.1) for p € [4, 00).

We cannot use this argument to handle the case where p = oo as (2.22) breaks down in
this case. On the other hand, by Proposition 2.3, |Tx(z,y)| < C(dg(x,y)) ™ La, (@,y)<s(2, y)
and so the Kato condition (1.10) ensures that

ITA(V)loe < 3llullo

if § > 0 is small enough. By the above this implies that (4.1) is also valid when p = oo and

n = 3, which completes the proof of the three-dimensional results in Theorem 1.3.

5. QUASIMODE ESTIMATES IN TWO DIMENSIONS

Let us now prove the estimates in Theorem 1.3 when n = 2. This is a unique case since
the off-diagonal uniform Sobolev estimates of Kenig, Ruiz and the third author [25] do not
hold in two dimensions. Consequently, we cannot use an inequality like (2.22) when n = 2.

Fortunately, we can prove (1.11) when p = oo and n = 2 exactly as before since we are
assuming that V € K(M).

To see this, we argue as in the preceding section to see that it is enough to prove (4.1)
for p = oo in order to obtain (1.11) for this exponent.

As before, (2.20) and (2.21) yield (4.3) and (4.4), respectively for all p € [p., o0] = [6, o0].
This means that for all such exponents the first two terms in the right side of (4.2) are
dominated by the first two terms in the right side of (4.1). Also, as before, Dom(—Ay+V') C
L*°(M) and so the Kato condition ensures that T)(Vu) is given by an absolutely convergent
integral. Thus, we would have (4.1) for p = oo if we could choose § > 0 so that

ITA(V) oo < 5 llulloo.
This follows exactly as before due to the fact that by Proposition 2.3

T\ (2, y)| < Cha(dyg(x,y)) La,(@,y)<s(T:Y)-

To finish the proof of the two-dimensional results in Theorem 1.3, it is now enough to
prove (4.1) when p = p. = 6 since this yields (1.11) for this case, and, by Holder’s inequality
the remaining cases follow from this, the trivial case where p = 2 and the case where p = oo
that we just proved.

By the fact that the first two terms in the right side of (4.2) are under control for this

exponent and the above arguments it is enough to bound
1T (V)6

Unlike all the earlier arguments we cannot bound this by %Hqu due to the aforementioned
fact that we cannot appeal to (2.22).
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To get around this, we shall use the fact that Proposition 2.3 yields

CoAN"V2(dg(z,y)) % if dy(z,y) > AL

|T>\(.’L',y)| < . 1
Collog(Mdy(x,y)/2)], if dg(z,y) <AL

As a result,

1/6

SUP(/ T (2, y)|® dz) /" < CA7Y/3,
Yy M

Whence, by Minkowski’s integral inequality,
ITA(Vu)lls < CAT2[Vally < CAE V1] oo
Since we are assuming that V' € L'(M) and we just proved that

lullse SA2ATHI(=Ag +V = (A +))ull2 + [lull2),

~

we conclude that ||T\(Vu)||e is also dominated by the first two terms in the right side of
(4.1), which finishes the proof.

6. REMAINING BOUNDS FOR HIGHER DIMENSIONS

In this section we shall prove the bounds in Theorem 1.3 for n > 4. Since L™? c L? for

n > 4, it follows that C'* is an operator core for Hy (see [37]) and so Theorem 1.1 and the

spectral theorem implies that (1.11) is valid when 2 < p < f—fg So it remains to prove this

2 as well as (1.12) for the remaining

n—47
cases where p € [%, oo]. We shall conclude the section by showing that when V =0 (1.11)

breaks down on any manifold if p = oo and n =4 or p > % and n > 5.

To prove the positive results, now let Ry : L? — L? denote the spectral projection

inequality in higher dimensions when f—fg <p<

operator corresponding to the interval (2, 00), i.e., Ry = 1p, ~2x, so that
Raf= > (f.e)es,
)\j >2X
where {e;} is an orthonormal basis of eigenfunctions of Py with eigenvalues 0 < Ay < Ag....
Recall that in § 2.1 we argued the the spectrum of Py is discrete.

Using probabilistic methods, specifically the Feynman-Kac formula, this yields the same
sort of bounds for e ~*V since V € K(M), i.e.

(6.1) e V| Loan s pany St 20 D, if 0<t<1, and 1<p<gq< oo

To prove these, we shall use the fact that, if V' is in the Kato class, Sturm [50, Theorem
4.12] proved that the kernel of e~V satisfies the pointwise bounds in (2.2). This implies
that the bounds for p = 1 and g = oo are valid, as well as the case where p = g = co. Since,
by the spectral theorem, the heat operator is also uniformly bounded on L? when 0 < ¢t < 1,
one gets the remaining cases in (6.1) by interpolation. See also the later work of Stollmann
and Voigt [48, Theorem 5.1] and Giineysu [15] for such results in a more general setting. In
Aizenman and Simon [2] it was shown that one needs the assumption that V € KL(R™) to
get reasonable heat operator bounds in the Euclidean setting and their arguments extend
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to our setting. Before the aforementioned results, Aizenman and Simon [2] also showed that
the bounds in (6.1) are valid for A +V in R™ if V € K, which we shall use in the final
section.

Next, let Ly = 1p, <25 denote the projection onto frequencies < 2\ so that I = Ly + R)
if Ry is as above. We then claim that we can use the special case of (1.11) corresponding
to p = p. along with (6.1) to prove
(6.2) ILxul Loy Svr AP TH(=A +V = (A +0)))ul p2(anys i 2> pe.

To prove (6.2) let us fix a nonnegative function 8 € C§°((1/2,1)) satisfying [0 B(t) dt =
1 and consider the Laplace transform of the following L'-normalized dilates of 3

Ba(T) = / e TAZB(Nt)dt, T >0.
0

Clearly, we have

Co ' <Pa(r) < Co, it 0<T <4,
for some uniform constant Cy < co. As a result, by the spectral theorem, the operator
= ~ -1 .
Lyf=35,<on (BA(A3)) ([, ej)e; satisfies
(6.3) Hio\HLzﬁ[p < Cp, and BA(HV)OiO\ = L.
Since -

Balty) = [ et 500,
0

by (6.1) we have the following bounds for these “Bernstein-type” operators
(6.4) 183 (HV) | o—ra S A™G~3, if 2<p<q<oo.

If we use the second part of (6.3), (6.4) and the special case of (1.11) corresponding to
P = p¢, we conclude that for p > p. we have

ILxully S A58 | Lyullp. S A% "IN 5™ [[(=Ag + V = (A +0)?) Laul| 22 (ar)-

Since o(p) = plc + n(p—lc - %) and

I(Hv = A+ %) Loul 2y = [1La(Hy = (A +)*)ul 2 ar) < Coll(Hy — (A +8)*)ull L2 (),

by the first part of (6.3), we obtain (6.2).
Using (6.4) and the spectral theorem also gives

(6.5) [Raulloary S =2y + V) Ryl 2ar) S (=g +V =X +0)*ull2any  if p < 325
Since o(p) — 1 > 0 when p > -2 this along with (6.2) yields (1.11) when p € [22, 210,

n—3’n—4
For the remaining case, we note that (6.4) implies that || Raul|, is dominated by the last
term in the right side of (1.12). This along with (6.2) gives us (1.12), which finishes the

proof of the estimates in higher dimensions.

Let us conclude this section by showing that (1.11) need not hold if p = co and n =4 or
D> % and n > 5. We shall adapt the arugment in [44, pp. 164-165].
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To prove these negative results we recall the local Weyl formula which says that for large

1 we have

(6.6) Z lej(zo)|* = p", Yaxo € M.

Aj<p

To use this, fix a nonnegative Littlewood-Paley bump function 5 € C§°((1/2,2)) satisfy-
ing 1=>Y7" _ B(r/2%), r > 0. Then if we assume that \? is an eigenvalue of —A,, choose
an eigenfunction ey satisfying |lex]|2 = 1, fix g € M and set for 0 < e < 1/2

ux(z) = ex(w) + Y 27 GR35 (3(P/28)) (2, 2.

26>\
Here P = /—Ay, and
(BP/2)) (1) = 3 B(%/2%)e;(w)e; (v)
is the kernel of the operator 5(P/2F). By (6.6)
(6.7) 1(B/29) (- ao); = 3~ B2(A/2")ej (o) = 2,
=0

and, similarly, since 8 > 0,
(6.8) (B(P/2%)) (z0,20) = 27F.
Since B(r/2%)B(r/2%) = 0 when |k — ¢| > 10, we conclude from (6.7) that

lux —exll3 Y 27 FVERTIE 2 = o(1),

2k >
and so
lurlla = 1+ o(1).
Similarly, since (A, + A?)e) = 0 and
(Ag + A+ )?)(BP/25)) (z,m0) = D (=X + (A +1)?) BN /2)e;j ()e; (o),
j=0

we see from (3.2) that

[(Ag + A+ )?)url3 S Z 9~ (ntkodkp—1-2¢ Z le;(zo)]
2k >N \jr2k

SR =0(1).

2k >\

(6.9) ATHI(=Ag = (A4 )%)uall2 + [luall2 =
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On the other hand, by (6.8) and the fact that § > 0, we obtain
ux(zo) — ex(wo) = j{: 27(%+2)kk7%4€(5(f72k))($07xo)

A>2F
~ Z 2—(%+2)k2nkk—%—€ ~ Z 2(%—2)kk—%—€ = 0,
2k >\ 2k >\

if n > 4 since 0 < ¢ < 1/2. Since, by results in [40], [lexllsc = O(A"2"), we conclude from
this that uy ¢ L* and hence (1.11) need not hold for p = oo for such n > 4.

It is straightforward to modify this argument to show that (1.11) need not hold as well
when 2—"4 < p < oo if n > 5. For such p and n for small € > 0 let

ux(x) = ex(x) + (P~ 7249 p(P/N) (x, 20)

where p € C'°° vanishes near 0 but equals one near infinity.

By arguing as before it is not difficult to check that as A — oo
lull2 1 and [[(Ag + A*)uall2 = o(1).
Furthermore, by arguing as in Chapter 4 of [43] it is also straightforward to verify that, if
dist(z,29) < A7, we have

lua(x) — ex(z)| = (dist(az,xo))i%Jerrs.

Since the right side is not in LP of a ball of radius ~ A~! about zq if p > % and € > 0 is

sufficiently small, we conclude that there are uy satisfying (6.9) and uy ¢ LP(M) for such p
if n > 5, which shows that (1.11) need not hold in this case, as claimed.

7. APPLICATIONS TO SPECTRAL MULTIPLIERS

Let x{ be the projection operator xY f = ZAJ-G[A A1) (f,ej)e; as defined above. In this
section, we examine the consequences of Corollary 1.4 for some of the spectral multiplier
theorems of significance in harmonic analysis, in particular, estimates for Bochner-Riesz

means and the Hormander multiplier theorem. To this end it is helpful to observe the

counterparts of our main theorem in dual spaces for 1 < p < 2(5—:31):
n_ntl
(7.1) IXX lzr(an— 2y SAT 2,
l,% —1
(72) I oty 2t oy S AT

Much of the early motivation for developing these bounds when V' = 0 emerged from their
applications to spectral multipliers. In particular, in [39], the third named author used
the LP bounds in [40] to give optimal bounds on Bochner-Riesz means in LP spaces when

min(p,p’) € [1, 2(5;1)]. The work [41] then expounded on this relation, clarifying the role

of finite speed of propagation for the wave equation in such results, thus giving a means
approaching cases where boundary conditions are nontrivial. Moreover, in [35], Seeger and
the third author used such bounds to extend the Hérmander multiplier theorem [17] to

functions of self-adjoint elliptic pseudodifferential operators on compact manifolds.
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Recall for operators with nonnegative discrete spectrum, the Bochner-Riesz means Sg
are defined by
S = D0 (1= N/X) (feide
2 <A
As before, throughout this section, without loss of generality, we shall assume that Hy is
positive. A well-known necessary condition for S to be bounded on LP is that § > (p)

where
(7.3) d(p) = max(n|1/2 —1/p| —1/2,0).

We now state the consequences of our main results for LP boundedness of S{ and the

Hormander multiplier theorem.

Theorem 7.1. Let V € L™2(M)NK(M). Suppose min(p,p’) € [1, 2(7:’—:31)] and that d(p) is
given by (7.3). Then for any § > d(p), S3 is uniformly bounded on LP. That is, there exists

a constant C independent of A such that
(7.4) 1531 Lo (a) > Lo ar) < C.

Theorem 7.2. Let V € L™?(M)NIK(M). For1 < r < oo, set r* = min(r,r’"). Suppose
m € L>®(R) satisfies

1 1\ 1
sup || B(-)m(p)| =) < 00, where s > max (n (— - —) ,—) )
pn>0 r* 2 2

whenever § € C§°((1/2,2)). Then m(v/Hy) is bounded on L"(M).

Theorems 7.1 and 7.2 are a consequence of Corollary 1.4, (7.1), (7.2), and finite speed
of propagation for the corresponding wave equation, namely (7.7) below. Indeed, once the
latter is observed, the aforementioned method in [41] proves Theorem 7.1 with no essential
change in the proof. Moreover, results of Chen, Ouhabaz, Sikora, and Yan [12, Theorem
C(ii)] give rather general sufficient conditions which ensure the Bochner-Riesz means asso-
ciated to a nonnegative self-adjoint operator satisfy (7.4), and these conditions are satisfied
here. In particular, in Proposition 1.14 of that work, the authors show that (7.2) is enough
to imply that the crucial condition “SCZQ):%” on p.225 is satisfied for p € [1, 2("+1)]. These

n+3
same hypotheses (finite propagation speed and SC?,:;) are also enough to yield Theorem 7.2

given Theorem B there.

Remark. Tt is now known that slightly weaker versions of the Hérmander multiplier theorem
follow from heat kernel methods. In particular, Alexopoulos [3, Theorem 6.1] showed that
whenever the heat kernel satisfies Gaussian upper bounds of the form (2.2), then m(y/Hy)
is bounded on L"(M) for 1 < r < oo provided the stronger hypothesis

(7.5) sup [|B()m(p)llcs®) < o0, s >n/2,
n>0

is satisfied. See also [51] for results of this type. As noted in §6, results of Sturm [50,
Theorem 4.12] give these Gaussian upper bounds. Strictly speaking, the hypotheses of
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Alexopoulos require uniform upper bounds p:(z,y) < C when t > 1. However, this can
be achieved by replacing V by V + N for N large enough as in §1.2, since by the spectral
theorem, this has the effect of multiplying the heat kernel by e~™*. The hypothesis (7.5)
is satisfied by the multipliers which yield the usual bound for the Littlewood-Paley square
function, see [47, Theorem 5, Ch. IV]. Among other things, this bound can be used to see
that (6.5) is satisfied at the endpoint p = 22 if n > 5.

n

Corollary 7.3. Let V € L"?2(M)NK(M) and let 1 < r < co. Let {3;};>0 be a sequence
of bump functions on R satisfying Bo(§) + Z;il B; (&) = 1 where B;(&) = B1(2179€), with
supp(B1) C {I¢| € (3,2)} and supp(Bo) C {|¢| € (—00,1)}. Define the Littlewood-Paley
square function for f € L™ (M) by

1/2

si = | S|/

=0
Then there exists uniform constants c., C, such that ¢, < ||Sfll -/l fllLr(ay < Cr for
f#0in L™(M).

Given the above, Theorems 7.1 and 7.2 are now a consequence of the following lemma.

Lemma 7.4 (Finite propagation speed). Suppose Hy = —A,+V, withV € L= (M)NK(M).
Suppose u,v € L*(M) satisfy d,(supp(u),supp(v)) = R, then

(7.6) (u, cos(t/ Hy)v) =0, [t] < R.
Consequently, if cos(t/Hy)(x,y) denotes the integral kernel of cos(t/Hy ),
(7.7) supp (cos(t Hy) (-, )) C{(z,y) € M x M :dg(z,y) <|t|}.

When n > 5, this is a consequence of results of Chernoff [13, Proposition 4.3]. In
particular, it is shown that if V' € L%(M) with ¢ = 2 when n < 3, ¢ > 2 when n = 4,
and ¢ = n/2 when n > 5, then (7.6), (7.7) are satisfied. Similarly, Remling* [33, Lemma
2.2] observed that this holds whenever C*°(M) is an operator core for Hy. The argument
below instead uses form cores for the quadratic forms defined by V', which are equivalent to
operator cores for \/Hy (see e.g. [38, p.606]).

Note that (7.7) is a consequence of (7.6) by typical measure theoretic considerations: if

supp (cos(tv/Hy) () 1 {dy () > It}

has positive measure, then one can find u,v € L?(M) for which (7.6) fails to hold.

4Strictly speaking, Remling’s work considers constant coefficient Laplacians rather than the Laplace-
Beltrami operator considered here, but the arguments extend to our setting by standard energy estimates

for the wave equation.
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Proof. We first observe that if V'€ L°° (M), then (7.6) holds by the usual energy estimates
and Gronwall’s inequality (see e.g. [33, Lemma 2.3]), or by the previously cited works [13],
[33]. For integers M, N > 1, define

VAl =1 Nevim<nV VN =1 _N<v@nV-

Let @ denote the quadratic form associated to Hy and define the approximating forms
18) QW= [ Vol + Vel Qulw) = [ V0 + Vil d,
M M

which generate corresponding operators H VM, Hy,, respectively. In all cases, we assume the
quadratic forms assume the value +0o0 whenever w is not in the domain of the form.

We appeal to the monotone convergence theorem for forms in [38, Theorem 7.5.18], using
parts (a) and (b) for increasing and decreasing sequences respectively. Since Q¥ (w) <

%[ *(w), for each M part (a) of the theorem yields strong resolvent convergence:

lim |[(Hyy +i)"'w — (Hyy £4) " 'w|| =0 for allw € L*(M).

M—o0

By [32, Theorem VIII.20b] or [38, Theorem 7.2.10], strong resolvent convergence implies the
strong convergence f(Hya) — f (Hy, ) as M — oo for any bounded continuous f on R. In

particular, cos(t,/Hy ) — cos(t\/Hy,) strongly which implies that since (7.6) holds for
each HV]GW, it persists in the limit and is satisfied by Hy, .

We now conclude the proof by taking limits as N — oo. Since Qn41(w) < Qn(w) for
each w, part (b) of the monotone convergence theorem for forms gives the strong convergence

(Hy, +i)™' = (Hy +£4)™',  and hence cos (t HVN) — cos(tv/ Hy ).

As before (7.6) thus persists in the limit. O

8. STRICHARTZ ESTIMATES FOR THE WAVE EQUATION

Let us now see how the spectral projection estimates (1.13) in Corollary 1.4 can also be
used to prove natural Strichartz estimates for Hy = —A, + V. As above, without loss of
generality, we shall assume that Hy > 0.

Theorem 8.1. Let (M,g) be a compact manifold of dimension n > 2 and assume that
Ve LV?(M)NK(M). Let u be the solution of

(0} —Ag+V(z))u=0

(8.1)
uli—o = fo, Orult—o0 = fi.
Then
(8.2) ull 20tn < Ov (I +Pv) 2 follrzany + I+ Pv) "2 fill2an),
Lon=1 ([0,1]x M)

with Py denoting \/Hy .
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e

R xR™) estimate of Strichartz [49]
for the wave equation. Indeed, if M = R™ and Hy is the standard Laplacian, the analog of

Remark. This exactly corresponds to the original L

(8.2) along with a scaling argument yields

(8.3) el 2 S ol graveny + 11l gr-1/2(mn)-

n—1 (RXRTL)

The variant of (8.2) with V' = 0 can be proved using parametrices as was done by Kapitan-
ski [24] and Mockenhaupt, Seeger and the third author [30] and this special case of (8.2) is
seen to yield the classical Strichartz estimate (8.3). Of course the existence of eigenfunctions
imply that, unlike (8.3), on (M, g) one cannot have the analog of (8.2) where the norm in
the left is taken over R x M.

Proof of Theorem 8.1. In [10, Theorem 2.1], the authors show that the bounds (8.2) follows
from Corollary 1.4, and their proof works equally well in our circumstances. See also [31].
Nonetheless, we include a proof for the sake of completeness which will serve as a model for

certain global Strichartz estimates that we shall obtain in R™ in §9.

If, as above, p. = %, then to prove (8.2) it suffices to show that

(8.4) 1€ Fll e o.1penny S N+ P2 fllc2ary.

To prove this, it suffices to prove that whenever we fix p € S(R) satisfying supp p C
(—=1/2,1/2) we have

(8.4°) ()™ FllLe@ean S I+ Pv)? fll 2 an

To prove this, we shall change notation a bit and let

XXf: Z Ejfv EJf: <fae)\j>e)\ja

A; € (k k1]
so that f =332, xy f. Then, since o(p.) = 1/pe, (1.12) yields
(85) ||XXfHLpC(M) 5 (1+k)1/pc||f||L2(M)7 k2051725

To use this, we first note that by Sobolev estimates

[ Fllaneqzenny S D27 (0O )| ey ensy

If we let
F(t,x) = |Dy|/27 1P (p(t)e™ f(x))

denote the function inside the mixed-norm in the right, then
F(t,z) =Y Fi(t,x),
k=0

where
Fio(t, ) = [Dy| 2717 (p(t)e'™ v x) f ().



24 MATTHEW D. BLAIR, YANNICK SIRE, AND CHRISTOPHER D. SOGGE

Consequently, its t-Fourier transform is
(8.6) Fy(r,z) = [r['/271Pe N p(r = N))E; f(x).
A €[k, k+1)

Since we are assuming supp p C (—1/2,1/2), we conclude that

/ Fk(t,x)Fg(t,x)dtz(%r)_l/ Fu(r o) Fo(r) dr =0 when |k — ] > 10.

— 00

As a result

([ D otaree s e

S S mwora)” = a2 ([T RmoP ) .

=% k=g — k=0
Also, since p. > 2, we conclude that this implies that the square of the left side of (8.4) is
dominated by

S / 1B (7, 2) 20 ap)
k=0" —°

Recalling (8.6), the support properties of p, we see that this along with (8.5) and orthog-
onality imply that the left side of (8.4") is dominated by

([ e
k=0"—

> b - Aj)Eijipc(M) ar)'’?

kje[k,k-i-l)
00 k410 o) )
— ([ RS = MBSy )
k=0 AjE€lk,k+1)
S R RPN f ey
k=0
> 1/2
= (DN + B2 flEe ) = T+ Po)Y2 f e
k=0
as desired, which completes the proof. O

Remarks. We only assumed in Theorem 8.1 that Hy > 0 to simplify the proof. Since Hy
is bounded from below due to the assumption that V' € K(M) this assumption can easily
be removed by applying (8.2) to the operators where V(x) is replaced by V(z) + N with
N sufficiently large. One just uses a simple argument involving the Duhamel formula and

modifies (8.2) by replacing the right side by
Cv (I(Hv = i)""* folla + || (Hv — ) ""/* ful2)

We would also like to remark that this argument shows that Strichartz’s estimate (8.2)
can be proven using the Stein-Tomas restriction theorem [52]. In [31], Nicola gives a slightly
different proof of this fact.
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9. ANALOGOUS RESULTS FOR SCHRODINGER OPERATORS IN R"

In this section we shall see that the results that we have obtained for compact manifolds
easily extend to the same sort of results for Schrodinger operators in R™. In what follows,
we shall say that V' € K(R™) if (1.10) is valid where B, (z) denotes the Euclidean ball of
radius r > 0 centered at z € R™. As before, we shall assume that our potentials are real
valued. Also, we shall let A denote the standard Laplacian on R™. If V' € K(R™) it then
follows exactly as before that the quadratic form associated with —A 4 V(z) is defines a
unique self-adjoint operator Hy which is bounded from below.

We can easily modify our arguments for the manifold case to obtain the following analog
of Theorem 1.3:

Theorem 9.1. Assume that V € (L% (R") + L*(R")) N K(R™). Then ifn =2 orn =3
we have for o(p) as in (1.3) and A > 1 we have

(9.1) ||’UJ||Lp(Rn)§CV/\U 1H( A+V —(A+19) )UHL2 (R")?
if 2<p<oco and u€ Dom(Hy).

If n > 4 this inequality holds for all 2 < p < ;= and we also have for such n
9:2) Nullioee < Oy (AP (-A+V = (A + z‘>2)uHL2<Rn>
—N+n/2 N/2
AN (1 H )Y Ry ey ),
if p€[-2,00], and u € Dom(Hy), \>1,

assuming that N > n/2 with Ry being the projection operator for Hy corresponding to the
interval [2A%, 00).

Our assumption that V € L3 (R")+ L>(R™) means that we can split up V as V = Vo +V;
where Vy € L2 (R") and V; € L>(R"). Before sketching the proof, let us state a couple of
corollaries.

As before, if X‘A/ is the spectral projection operator for Hy associated with the intervals

[A2, (A +1)?], then as an immediate corollary of this result we have the following bounds

(9.3) XX Fllorny < Cv(X+ NP flloany, p>2, A>0.

By routine Sobolev estimates for Hy, a consequence of Gaussian upper bounds on the heat
kernel as in (2.2) (see e.g. [37, Theorem B.2.1]), since Hy is bounded from below we also
have

(9.4) XU~ o0y f o @y < Cv I fllL2@n),
if X(—o0,0) denotes the spectral projection onto the interval (—oo,0) for Hy .

Using (9.3)—(9.4) it is straightforward to adapt the proof of Theorem 8.1 to obtain the
following local Strichartz estimates for Hy:

(9.5) lull 2t < Cyv(I(Hy = i) foll L2ny + I|(Hy — 1) fill 2@y,
LI ([0,1]xRn)
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if, u solves the wave equation
(9.6) (2 - A+V(@)u=0, duli=o=7fj, j=0,1.

We have formulated (9.5) a bit differently from (8.2) since we are not assuming here that

Hy is positive.

The proof of Theorem 9.1 follows from straightforward modifications of the arguments
that we used earlier for the case of compact manifolds. Let us sketch how one can obtain
(9.1) when p = p, u € C§°(R™) and n > 4 and leave it up to the reader to verify that the
other cases follow from our earlier arguments. Note that, as we mentioned before the heat
kernel bounds in (2.2), which are due to Aizenman and Simon [2], are valid here since we
are assuming that V' € IC(R™). Based on this one easily obtains the bounds for the other
exponents p > 2 when n > 4, and the arguments that we used to prove the results for
n = 2,3 in the case of compact manifolds are also straightforward to adapt to the Euclidean
setting.

To prove (9.1) for u € C§°(R™), p = p. and n > 4, we let

T . et(z—y)-¢ p

) = ) % @m) " [ e

with, as before ns(z,y) = n(|x — y|/d), where we are fixing n € C§°(R) which equals one on
[-1/2,1/2] and is supported in (—1,1). We then have the following analog of (2.7),

(A = (A +0)*)Ta(z,y) = dy(2) + [ns(-,y), A] Ta(, y)-
Thus, if —Ry(z,y) equals the last term in the right, we have
I=Tyo(=A—(\+1i)%) + Ry,

if Ty and Ry are the integral operators with kernels T)(x,y) and Ry(x,y), respectively.

Note that these kernels both vanish when |x — y| > d. They also are as in (2.16)—(2.19)
if we replace dy(x,y) there by |z — y|. Similarly, we have the analogs of (2.20)—(2.22) in our
setting. Also, since V € L% (R") 4+ L>(R"), we have that

(9.7) SUPHVHL%(Bé(m)) <e(d),

where €(d) can be made as small as we like by choosing § > 0 small (depending on V).
Let us now see how we can use these facts to prove our inequality. Just like before, we
have u = T\ ((—A — (A +4)?)u) + Ryu. Consequently,

u=Tr((-A+V = (A+1i)*)u) + Ryu — Tr(Vu).

Since we have the bounds in Proposition 2.4 and the kernels vanish when |z — y| > §, it

follows that if {Q;} is a lattice of nonoverlapping cubes in R™ of sidelength 4, then

IT>Fllzee (@) < CoA” P 7| fll2(g:),
T2 fllzre (@) < Collflir@s, if ¢ =2+,
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and
IR zre(@y) < CoA" P fll2(@s),s

where Q7 is the cube with the same center as ); but four times the side-length.

As a result,

98) Jullzoe(ay) < COX P (=A +V = A+ Pl aqas) + CoXP ul s

+ CollVullLrqs)-
By Holder’s inequality and (9.7)
(9.9) Vullzr s < E0)lullLre @),

where £(5) can be made as small as we like. Thus, since R" = [JQ; and the {Q}} have finite
overlap, if we raise both sides of (9.8) to the p.-power and sum both sides of the reulting

inequality over j, we obtain, similar to before,
[ull Lo (gny < CXTPITH((=A +V = (A +0))ullp2grn) + Alull L2gn)) + 5[l Loe @),

assuming that £(d) in (9.9) is small enough. This of course yields (9.1) as claimed for our
u € C5°(R™).

9.1. Global results for small potentials. Let us conclude by showing that we can greatly
improve (9.3) and obtain global Strichartz estimates if we assume that V' € L% (R") has small
norm and n > 3.

Before doing this, let us review how we can adapt the arguments from §2.1 to see that,
in this case, —A 4+ V is (essentially) self-adjoint and positive.

To see this, we first notice that, by Holder’s inequality,

2 _ n 2
Vet )] < VI3 17 2z gy = IV 5 gy Bl

By Sobolev’s theorem

[0l 25 oy < Collulis gy = Coll V=Bl gagany

Thus, if a = HVHL%(RH)O,% <1, ie,
(9.10) IVl 1 gy < 1/C2,

we have
‘ (Vu,u) ‘ < a(—Au,u)
with @ < 1. As a result, by the KLMN theorem (see Reed-Simon [32, Theorem X.17]), the

quadratic form associated with —A + V defines a unique positive self-adjoint operator Hy .
In what follows we shall assume that (9.10) is valid. If we make a further assumption based
on the constants in the uniform Sobolev inequalities of Kenig, Ruiz and the third author [25]

we can obtain the following generalization of the Stein-Tomas restriction theorem [52].
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Theorem 9.2. If n > 4 there is a 0 < 6, < 1/C2, where C,, is as in (9.10) so that if
HVHL%(RH) < 8y, there is a uniform constant Co = Co(n) so that

(9.11)  lull re@ny < Co)\_lﬂ/pcg_l/QH(_A +V -0+ i£)2)uHL2(R")’
if €€ (0,\/2), and u € Dom(Hy).

If n = 3 this result also holds if, in addition to the assumption that V|| s/2rs) < 3, with
83 small enough, we assume that V € K(R3).

The reader can check that when V' =0 (9.11) is equivalent to the Stein-Tomas restriction
theorem for R™. Half of this claim will be used to prove the following special case of (9.11)
which will be needed for its proof. Specifically, we shall require the following:

Proposition 9.3. Fiz n > 2. Then there is a uniform constant C so that if 0 < & < \/2
(9.12) [ ul| poemny < CoA™ T/ Pee™ /2| (A — (A + i€)*)ul| o gy, uw € CE(R™).

To prove (9.12), we note that, by duality, the inequality is equivalent to the statement
that

"1 = (A +ie)? |

5 A€ = [[(=A = (A +ie)") 7 fllZ2(an

< A‘2+2/”°€_1||f||ipg( if 0<e< /2

Rn)’
To prove this we shall use the following result which follows from a change of scale and

the Stein-Tomas [52] L?-restriction theorem for the Fourier transform (the 7 = 1 case):

. 1/2
(9.13) ([ P aw)” < Cor/e 1l g oy

Proof of Proposition 9.3. As we just noted, it suffices to prove (9.12"). By (9.13), the left
side of this inequality is majorized by

o r2/Pe dp
/ T
0 |r2—(A+ig)?|

which yields (9.12") as,

o 2/pe o 2/pe
/ r2/ee dr 2:,\.>ﬁ4+2/pc/ r2/ve dr !
0 |r2—(A+ig)?| o |r2—(1+ie/N)?]

~ \T312/pe (Afe) = /\72+2/pc€71,

as desired, since we are assuming that 0 < e < A\/2. O

Proof of Theorem 9.2. Let us first handle the case where n > 4. Since C§°(R™) then is an
operator core for —A +V (cf. [37, Theorem B.1.6]), it suffices to prove the inequality for
such u. To do so, we write

uw=(-A—A+ie)?) " (~A+V = (A +ie))u— (~A— (A +ie)?) " (Vu) = T+ 11
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By Proposition 9.3, the LP<(R™) norm of I is dominated by the right side of (9.11). By the
uniform Sobolev estimate (1.7) from [25], the LP<(R™) norm of IT is dominated by

An|Vullpr@wny, where 1/r=2/n+1/p.,
and A,, is a uniform constant. Hence, by Holder’s inequality,
M ooy < AnllV I 2 oyl e o)

which, together with the bound for I yields (9.11) if §,, < (24,,)~ .

It is straightforward to see that the arguments in §4 can be used to show that (9.12)
and (1.7) imply the 3-dimensional result. One repeats the duality argument, noting that
the step that involves Fubini’s theorem is justified due to the fact that if K . denotes the
kernel of (—A — (A + i5)2)_1 then

sup [ | clo =)l V@)l fulw)l dy < o.

due to the fact that if v € Dom(—A + V) then u € LP(R3) for all 2 < p < oo ® and
|Kxc(z)] S |z —y|~!. One uses the assumption that V € KC(R?) to control the integral in
the region where |z —y| < 1. One then controls the remaining part using Holder’s inequality
since u(-)Kyc(z — -) € L3(Jy| > 1) and we are also assuming that V' € L3/2(R"). O

Next, just as before, we can use the spectral theorem to show that the quasimode es-
timates (9.11) yield related (and indeed equivalent by the arguments in [45]) bounds for

spectral projection operators:
Corollary 9.4. Let n > 3 and let V be as in Theorem 9.2. If Py = /Hy let XK,M—E)
denote the associated spectral projection operators corresponding to the interval A\, A + ¢).

Then

(914) |‘X[‘§\7)\+g)f||LPC(R") S CV)\I/Z)CEI/2 HfHLQ(]Rn), Zf )\ 2 25,
and

141
(9.15) 1X[0.26) f |l Loe @y < Cve ¥ | fll L2y

Proof. To prove (9.14), we note that if A > 2e and 7 € [\, A\ 4 ¢) then
|72 — (A +ie)?| < Cole.
Consequently, by the spectral theorem
IXtoase)fllzz@ny < Codell fllL2@ny-

If we use this and the quasimode estimates (9.12), we obtain (9.14).
To prove (9.15) we take A = 2¢ in (9.12):

_ 341 .
(9.16) [ul| Lrerny < Cve™ 275 | (~A+V — (2e + ie))ul L2 (rn)

5This follows from [37, Theorem B.2.1].
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Since for 0 < 7 < 2¢, |72 — (2 + i€)?| = €2, by the spectral theorem
I(=A+V = (2 +i8)*)x [ 20) fll 2@y S €20 Fll L2y

Hence, by (9.16) we have (9.15). O

Remarks. It was noted in Ionescu and Jerison [21] that if ||V n/2gny is small enough
then —A +V cannot have eigenvalues. The argument at the beginning of this section shows
that, under this assumption, the operator can have no negative spectrum, and (9.14)—(9.15)
imply that there can be no eigenvalues in [0, 00).

There has been much work in recent years in trying to obtain bounds of the form (9.12)
or (9.14) on compact Riemannian manifolds (M, g) when ¢ = ¢(\) is a function of A and
where p. may be replaced by other exponents. See, e.g., [4], [7], [16], [6] and[5].

It would be interesting to see whether one could replace the smallness condition in Theo-
rem 9.2 by ones that are analogous to those in [21] or [34]. The reader can check that if the
global Kato norm, as defined in Rodnianski and Schlag [34], is smaller than 47 when n = 3,
then one has the variant of (9.12) corresponding to p = co (where A~ 1H1/Pe is replaced by 1
in the right side). Rodnianski and Schlag showed that under this smallness assumption one
has the natural dispersive estimates for e**/v | and they also improved on the related earlier
results of Journé, Soffer and the third author [23] in terms of assumptions on the potentials
V(z) that are needed for such dispersive estimates. It would be interesting to see whether
such hypotheses could lead to bounds of the form (9.12).

Let us conclude by presenting another estimate which breaks down if there are embedded

eigenvalues: Global Strichartz estimates.

Theorem 9.5. Let n >3 and V be as in Theorem 9.2. Then, if Py = v/Hy,

(9.17) lull e rxrny < Cv 1P foll Loy + 1P 2 full 2 eny,

if u solves the wave equation associated to Hy with initial data (fo, f1), i-e.,
(2 —A+V)u=0, &ulj—o=f;, j=0,1.

When n = 3, Bui, Duong and Hong [9] obtained results of this type (as well as the
stronger dispersive estimates) under an assumption that requires a global Kato norm of V'
to be finite.

Proof. Tt suffices to see that there is a uniform constant Cy(V,n) so that for 0 <e < 1
(9.17') €Y Fll Lo ((—ee)xrm) < Coll(Py + D)™ fll L2(an).

To prove (9.17"), similar to the proof of Theorem 8.1, it suffices to show that if we fix
p € S(R) with supp p C (—1/2,1/2), then we have the uniform bounds

(9.18) p(et) €7 f|| prexrny < Coll(Pv + )2 f|| p2rn)-
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In order to verify this, let
Iy =[(k —1)e,ke), k=1,2,3,....

Then if g is the spectral projection operator for I associated with Py, it follows from
Corollary 9.4 that

(9.19) Xk f Nl oo @y S €% (k)P xkfllo@ny, B =1,2,3,....
Also,

Z I f T2 ey = 1117 20n)-

k=1
As before, we use L? — LY Sobolev estimates to deduce that

lo(et) €™ fllupe < WD (p(et)e™ ™ £) | pre e
Let
P(t,) = |Du/2 2 (p(et)e ™ ).

If we take the Fourier transform in ¢, we deduce that

F(r,x) = |r|t/371/Pe g1 (pe™ (= Pv)f)(2) = Z (7, 1),
k=1

where
Fy(r,z) = |[r['/>7VPe =t (p(e™H (7 — Py)) o xuf) ().

Note that since supp p C (—1/2,1/2), p(e 1 (r — Pv)) o xx if 7 & [e(k — 10),e(k + 10)].

Consequently,

/ Fk(t,x)Fg(t,:v)dt:(%r)_l/ Fulr o) Fo(ma)dr =0 if k=1 > 10.

— 00 —0o0

As a result,
([ reapa)” = ([ 13 B P (3 [ IncoP )
k=17~

- T k=1
g(z/ |B(ry2) 2 dr) 2.
k=1Y "
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By combining this with (9.19) and the above we deduce that

() €Y £y S 3 / 1B, )2 oy
k=17~
0)
—2 Z/ ) |7_|172/;Dc||[)(671(7_ _ PV))ka”;Q;C dr

Se2 e () 2 oM = PO I,
k=1

S () (e )
k=1

=e?Y &% (ke) S5
k=1

= DIl ke) Pxat g ~ || (B D) |l
k=1

as desired. O
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