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Abstract—Ransomware of the Advanced Persistent Threat
(APT) type are very sophisticated and often have a contingency
plan of attack in case they are discovered while the attack
is in progress. Due to the ever-changing trait of such APT-
type ransomware, an intelligent and robust intrusion detection
system (IDS) is the need of the hour and in this paper, we put
forward machine learning (ML) and natural language processing
(NLP) based intrusion detection systems. We utilize a commercial
simulator to run different real-world ransomware attacks to
create, for the first time, a dataset for APT-type ransomware
research. Then, we develop multiple IDSes by training ML
models like support vector machine (SVM), logistic regression
(LR), gradient boosting (GB) decision trees, random forest (RF),
naive Bayes classifier (NBC), and an NLP model called BERT,
on this dataset. With our intelligent IDS, we could precisely
distinguish the system calls of processes spawned by ransomware
from legitimate system calls. We compare the different intrusion
detection systems developed using the six aforementioned models.
The IDS using the NLP BERT model achieves the best accuracy
of 99.98%, and the IDS using the Naive Bayes Classifier achieves
an accuracy of 98.55%. Furthermore, we discuss the tradeoffs of
these models for designing an intelligent IDS. The advancement in
cyber attacks, especially ransomware-based attacks, necessitates
this upgrade in IDS which is essential for a strong defense.

Index Terms—Advanced Persistent Threats (APT), Artificial
Intelligence (AI), Cybersecurity, Intrusion Detection System
(IDS), Machine Learning (ML), Natural Language Processing
(NLP), Ransomware.

I. INTRODUCTION

Ransomware are a type of malware which encrypt critical

data of a system and hold them for ransom. The data under

siege is released by the attacker when they receive the ransom.

They generally refrain from releasing the encrypted resources

if the ransom is not paid. Some of the recent sophisticated

ransomware variants possess a few additional characteristics

including existence of a “campaign abort” or a “contingency

plan of attack” upon discovery. Such ransomware variants are

often termed as advanced persistent threats (APT) and are

generally perpetrated by nation state actors with huge amount

of resources at their disposal [1].

According to a study by Ponemon Institute, the average

financial losses suffered by a company owing to the damaged

reputation after an APT attack, amounts to about $9.4 Million

[2]. APT ransomware campaigns like WannaCry, Petya, and

NotPetya caused considerable financial losses to the victims

[1]. According to published reports, between May 12, 2017

and May 17, 2017, WannaCry collected $75,000 to $80,000

in ransom [3], [4]. Off late, the malware WannaCash is

also causing trouble to the cyber-world [5]. Recently, Indian

nuclear power plants became victims of data breaches [6].

Colonial Pipeline Co., one of the biggest oil and gas pipeline

companies in the USA, came under ransomware attack in

May 2021 [7]. This attack caused widespread gas shortages,

disruptions in functioning of airports and gas stations and

caused gas prices to go up. A ransom of $4.4 Million was

paid to receive the decryption key [8], [9]. The following

characteristics make these ransomware attacks a true APT:

1) exploiting zero-day vulnerabilities to achieve their goal, 2)

non-stop campaign until goals are achieved, 3) adaptive and

having the ability to attack high value targets through multiple

modes of attack [1], [10], and 4) using stealth to quietly invade

in a series of steps [11]. The financial losses keep increasing

with time, and when the target is a government agency, then

national security is put to risk. APT-type ransomware attacks

are causing trouble not only to the government organizations

but also to the industrial systems and other organizations

and/or institutions, which directly affect daily lives of the

masses.

The aforementioned factors and incidents outline a great

threat to the critical infrastructure as a whole, be it government

or industry. The problems are intense and the attacks are

adaptive in nature, requiring a holistic approach to address

them. With more emerging threats, the attack dynamic is

rapidly changing. These sophisticated ransomware stealthily

infiltrate the system and mount the attack through multiple

stages. They disguise the processes as legitimate processes

in the system. This warrants the introduction of a smarter

IDS rather than rule-based or signature-based ones [12], [13].

In this paper, we explore multiple models to make an IDS

smarter with the use of machine learning (ML) and natural

language processing (NLP). Using a commercial tool, we
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create a dataset consisting of system call information obtained

by running a few APT-type ransomware, viz. BlackByte,

BlackMatter, Diavol, REvil, and Darkside. Then we develop

IDSes by training the ML and NLP-based detection models

on this dataset and compare their accuracy and performance.

The major contributions of this paper are the creation of a

dataset from APT-type ransomware and the development of

ML and NLP-based intelligent detection models. Since we

utilize a modern industry-grade commercial tool to simulate

the ransomware and create a dataset from the system calls

and other metadata, the dataset we generate is a close rep-

resentation of real-world attack data. This can be beneficial

in designing and testing any new detection techniques. The

paper is organized as follows. In Section II, we provide

the background on ransomware and discuss relevant research

work on their detection. Following this, in Section III, we

put forward our intelligent and apt intrusion detection system

(IDS). In Section IV, we present the details of the experimental

setup and the dataset creation. Then, in Section V, we discuss

the effectiveness of the various detection models and their

performance. Finally, in Section VI, we conclude the paper

and discuss the future prospects of our research.

II. BACKGROUND AND RELATED WORK

APT groups mount attacks through multiple stages by cre-

ating sophisticated malware. Lockheed Martin’s “Cyber Kill

Chain” framework describes an APT through a seven-stage

life cycle [14]. LogRythm describes an APT through a five-

stage life cycle [15]. Baksi and Upadhyaya [1] describe APT

through a set of five characteristics exhibited by sophisticated

malware. The detection of sophisticated APT malware in the

ever-changing attack landscape is a daunting task. People

have explored quite a few options for this purpose. One such

approach is security incident and event management (SIEM),

and SIEM-like detection mechanism [16]. Milajerdi et al.

[17] used a graph-based technique. Here, they create an audit

log and thereafter, using a causality tracker, they generate a

provenance graph. This graph is then passed through a policy

matching engine and noise filter to create a high-level scenario

graph (HSG). This HSG is used by a detection engine to

detect any APT malware present in the system. Their goal is

achieved through alert generation, alert correlation, and attack

scenario presentation. Contrary to this, in our paper we use

ubiquitous system call logs to look for any intrusion in the

system. We use AI models to train, test, and validate on the

dataset created using system call logs. These models are then

used to detect the APT malware. The research presented by

Liu et al. [18] uses both graph-based techniques as well as

AI techniques. Their solution involves a heuristic approach

that converts log entries into a heterogeneous graph. Then

each graph is transformed into low-dimension vectors using

the log2vec technique which involves the usage of word2vec
processes. They managed to detect both malicious and benign

types of APT threats. Their detection algorithm comprises of

a clustering algorithm, a threshold detector, and selection of

parameters for the detection algorithm. Besides APTs, they

also detect insider threats using their log2vec technique. They

show that log2vec outperforms deep learning and Hidden

Markov Model (HMM) based models. But their solutions

have limitations, which includes redefining the graph rules

for different processes, high false positive rates (FPR), and

the task of choosing parameters for the detection algorithm.

In contrast to their approach, our solution uses NLP and ML

based models to detect a particular type of malware, viz., APT-

type ransomware. In our technique, the rules of engagement
are not required to be redefined for different processes and/or

different malware.

Ransomware can be categorized into three principal cate-

gories, namely the locker, the crypto and the hybrid [19]. The
threat model, i.e., the ransomware considered in this paper

is of the APT kind. They have the capabilities of a generic

ransomware as well as that of an APT-type malware. They are

often sophisticated enough to have a contingency plan of attack

on being discovered [1], henceforth called APT ransomware.

BlackByte, an APT ransomware, has two modes of attack. It

can either attack directly or offer services as ransomware-as-

a-service (RaaS) [20]. It exploits the ProxyShell vulnerabili-

ties that exist in Microsoft Exchange Server to infiltrate the

system. The ransomware has a Russian origin, as it avoids

any devices that have language settings in Russian and/or

some other language from any of the former Soviet countries.

The primary targets include US-based organizations in critical

infrastructure sectors such as government, finance, and food

& agriculture [21]. DarkSide is another APT ransomware that

was involved in attacks on Colonial Pipelines and Toshiba

[9]. REvil is also an APT ransomware which was responsible

for attacks on entities that are suppliers of Apple Inc. and

are responsible for stealing confidential information [22].

Both REvil and DarkSide have similar code bases. Just like

BlackByte, both REvil and DarkSide allegedly have Russian

origin. They avoid devices that have language settings similar

to Russian and former Soviet countries [23]. BlackMatter

is another APT ransomware, which targeted multiple U.S.

critical infrastructure entities, including two U.S. Food and

Agriculture Sector organizations [24]. They are allegedly a

“rebrand” of DarkSide ransomware and their main targets

include the food and agricultural sector [25]. Diavol, an APT

ransomware, is supposedly linked to a cybercrime group called

Wizard Spider who are also known as Trickbot. They are also

the perpetrators of the ransomware Ryuk, Conti and the spam

trojan Emotet [26]. Diavol, just like the other ransomware

created by TrickBot, attacks corporate entities, especially

financial institutions which used Windows [27], [28]. TrickBot

is a nation-state actor with apparent connections to Russian

intelligence agencies [29].

In this paper, we recreate the attacks of the five aforemen-

tioned ransomware via simulation using a commercial tool

and create a dataset out of it. Then, we develop classifier-

based IDS using this new dataset to detect APT ransomware.

Our objective is to classify a system call as malicious or

benign, and this is a binary classification task. We develop

the IDS based on this classification problem, and we consider
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two kinds of IDS in our work. One is based on machine

learning, and the other is based on transformer architecture

(neural networks). The first kind is machine learning-based

IDS, for which we choose five machine learning algorithms

to develop different IDSes independently. The second kind of

IDS is NLP-based, designed using the BERT model (which

uses a transformer neural network). Further, we evaluate these

six types of IDSes and provide a comparison between them.

A. Machine Learning Algorithms

In this section, we provide a brief overview of the machine

learning algorithms used in the design of the IDS. We chose

five algorithms in our experiment, viz. Naive Bayes, Support

Vector Machine, Logistic Regression, Gradient Boosting De-

cision Trees, and Random Forest algorithms. These are the

models that are used extensively by researchers for binary

classification. Naive Bayes [30] is a supervised machine

learning algorithm based on applying Bayes’ theorem along

with the conditional independence assumption between ev-

ery pair of features. The Naive Bayes Classifier can work

well on categorical data and can be extended to text-based

classification. Support Vector Machine [31] is a type of

supervised learning method used for classification, regression,

and outlier detection. The SVM classification algorithm has

been widely utilized in various applications such as email

spam filtering and developing IDS. Logistic Regression [32]

is another supervised learning model to perform binary or

multivariate classification. The Logistic Regression model is

one of the first choices for binary classification. The other

approaches that give good results are ensemble models, where

multiple models are combined to improve the classification

performance. Random Forests [33], and Gradient Boosting

Decision Trees [34] are two powerful algorithms, that are

based on the ensemble learning method, considered in our

IDS design. In our research, we used the aforementioned

models and compared the results using standard metrics such

as accuracy, F1 score, and training time [35] to learn how they

performed.

B. Datasets and ML-based IDS

Researchers have long used the KDD CUP’99 dataset to

design and evaluate IDSes [36]. Using this dataset, researchers

can design classifiers working on 41 features to detect attacks

like denial of service (DoS), probe, remote to local (R2L), and

user to root (U2R) [37]. NSL KDD is a more refined version

of the KDD CUP’99 dataset by removing several of its integral

issues and is used for the detection of attacks similar to the

KDD CUP’99 dataset [38], [39]. These datasets are mostly

used for designing network-based IDS (NIDS) [37]. On the

other hand, researchers have been plagued by the paucity of

data regarding APT ransomware. To overcome this problem,

in our research, we create a dataset consisting of system call

logs of APT ransomware. We believe the research community

can utilize this dataset to design and evaluate host-based IDS

(HIDS) in the context of APT-type ransomware attacks. This

dataset is discussed further in Section IV.

Traditionally, machine Learning has been used to develop

IDS. In [40], Kruegel and Toth show how the machine

learning model Decision Trees was employed to improve a

signature-based intrusion detection system. Our work focuses

on utilizing ML/AI on the system calls to directly identify

intrusion as opposed to rule-based or signature-based methods,

which are dynamic and constantly keep changing. Hamza et al.

[41] developed a system that can translate Manufacturer Usage

Description (MUD) policies into flow rules using Software-

defined networking (SDN), and then used for designing IDSes

in the IoT network. Jamshed et al. [42] presented Kargus, a

highly-scalable software-based NIDS compatible with Snort.

In contrast, we worked on developing an AI-based host-based

IDS (HIDS) that can be utilized in a system directly to detect

intrusion by APT ransomware. Furthermore, we provide a

comparison of various ML/AI models and give the users a

choice based on the computation power available to them and

the trade-offs between the best-performing models.

Alkasassbeh et al. [43] used data mining techniques along

with classification techniques like multi-layer perceptron

(MLP), Naive Bayes’ classifier (NBC), and Random Forest to

detect distributed denial of service (DDoS) attack. Almaseidin

et al. [35] used classifiers like J48, Random Forest, Random

Tree, Decision Table, MLP, NBC, and Bayes Network on the

KDD dataset to design and evaluate IDSes to detect attacks

like DoS, U2R, R2L, and Probe. Halimaa et al. [44] used

SVM, and NBC on NSL-KDD dataset to detect DoS, Probe

and R2L attacks. Keserwani et al. [45] used a combination

of Particle Swarm Optimization (PSO) and Grey Wolf Op-

timization (GWO) to obtain features from the dataset. They

used random forest (RF) for the purpose of attack detection.

Krishna and Arunkumar [46] also proposed a hybrid GWO-

PSO optimization algorithm used in conjunction with an RF

classifier on the NSL-KDD dataset to detect DoS, R2L, U2R,

and Probe attacks. But the existing aforementioned datasets

are generally used for designing NIDSes and are not useful

for our research since they do not truly represent the attacks

that we are trying to address. Therefore, in our research, we

created a new dataset for APT ransomware and designed a

HIDS to detect the same.

C. Natural Language Processing based Models

Natural Language Processing (NLP) has greatly improved

the abstract understanding and representation of language.

Earlier, Recurrent Neural Networks (RNN) were used for the

purpose, but now transformer based architectures [47] are

well-suited for the same. Bidirectional Encoder Representa-

tions from Transformers (BERT) [48] is a transformer-based

language model. BERT model differs from the traditional

transformer architecture in that it uses only the encoder instead

of the encoder-decoder design.

Researchers have previously worked on the intersection

of NLP and Cybersecurity. Rahali and Akhloufi [49] used

transformer-based models to automatically identify malicious

software. Andronio et al. [50] presented an NLP-based ran-

somware detection model called HelDroid for the mobile
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device platform. Continella et al. [51] put forward a detection

model “ShieldFS”, which focuses on the low-level behavior of

the ransomware. Tran and Sato used an NLP-based approach

to analyze and classify malware from the data collected from

API call sequences [52]. They collected behavioral data from

malware from API call sequences. Thereafter, they performed

feature extractions and feature vectorization using TF-IDF and

Paragraph Vectors. Following that, classification was done

using KNN, SVM, RF, and MLP. Najafi et al. [53] used

the events log of SIEM at enterprise systems to model the

behavior as directed acyclic graphs (DAG) and then used

NLP-based approach to detect graph-based outliers. Wang

et al. [54] presented research on the challenging problem

of APT attribution. In their research, for the intermediate

representations, they used the VEX IR method. They chose

two features, viz. string features and code features. They

applied a random forest classifier (RFC) and deep neural

network (DNN) classifier to learn and classify. Finally, they

ran RFC and Local Interpretable Model-agnostic Explanations

(LIME) to interpret the results from the classification task.

In our research, we posit that any malicious process that

can disguise itself would eventually execute a devious com-

mand, such as deleting a shadow copy or running a standard

encryption call. This will allow us to detect and identify the

ransomware in the system. This implies that the system call

logs and other process metadata can be useful features that

can be used to identify an intrusion in the system. We have

devised a way to identify APT ransomware using modern

NLP techniques and compared this with traditional machine

learning classifier-based approaches. The focus is on using

system calls and other metadata captured about the processes,

to generate a dataset that allows us to design a classifier-based

IDS to detect ransomware that disguises itself as legitimate

processes.

III. THE APT DETECTION SYSTEM

Intrusion Detection Systems (IDS) are responsible for iden-

tifying various forms of infiltration in the system with ma-

licious intent. In this paper, we design an intelligent IDS

to detect intrusions by identifying malicious processes. Our

intelligent IDS is trained on the system call information during

the ransomware attack simulation. This allows the IDS to learn

the malicious calls (attack patterns) in the system and can

effectively discern the benign and malicious system calls in

the test dataset (the data which is unseen by the IDS during

model training). This is analogous to being able to identify

rogue system calls during the actual attack using the previously

trained intelligent IDS. Microsoft Windows systems capture

various metadata about a process that is running such as

process name, description, command line system call executed,

operation performed, and so on. Analyzing this metadata can

give critical insights into determining whether the process is

malicious or not. Analyzing the metadata using ML and NLP

models will help in the detection of malicious processes in

the system which stealthily disguise themselves as legitimate

processes. This can be viewed as a classification task where

the system call metadata can be classified into “Malicious” or

“Non-Malicious.” The IDS developed in this paper uses the

aforementioned approach of using the system call metadata to

differentiate between malicious and non-malicious processes.

We use a few ML models and one NLP model for the

classification task. The IDS has been designed to identify APT

ransomware.

The designing of AI based IDSes requires a dataset to be

used for the purpose of training, validation, and testing. Since

existing datasets are not suitable for our study as described

before, we made use of a commercial simulator from Picus

Security [55] to generate our own data. The simulator provided

us with real-world APT ransomware and we ran it inside the

Windows sandbox environment. We then collected the system

call metadata and created the dataset to be used for designing

the IDSes.

The ML-based IDS was designed using multiple ML models

and the results were compared. The models used were NBC,

LR, RF, SVM, and GB decision trees. These models were

trained using the dataset created from the simulator. The TF-

IDF based vectorization was used to feed the data for the Naive

Bayes Classifier and the word embeddings based vectorization

was used to train the models SVM, RF, GB decision tree, and

LR.

The NLP-based IDS was designed using a BERT model for

sequence classification. This transformer model contains the

bare BERT Model architecture with a linear layer on top of

the pooled output layer. This linear layer can be trained for

sequence classification. The BERT Model is loaded from the

pre-trained model configuration that is available open-source.

The weights/parameters for the bare BERT Model architecture

are instantiated from the pre-trained model and the linear layer

on the top can be fine-tuned and the weights can be trained

with the dataset available for the classification task.

Figure 1 provides a summary of the various machine learn-

ing classifiers and the NLP model used in the IDS design.

The NLP-based BERT classification model is compared with

the machine learning models – Naive Bayes, Support Vector

Machine, Logistic Regression, Random Forest, and Gradient

Boosting Decision Trees, and the performance of these models

is benchmarked using standard metrics.

Fig. 1. Models evaluated for the IDS design

1624

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore.  Restrictions apply. 



IV. EXPERIMENTAL SETUP

The procedure to generate data, run simulations, and de-

velop the models consists of the following steps:

1) Ransomware attack simulation in a sandbox environ-

ment.

2) Capture system calls, metadata of non-malicious pro-

cesses and the system calls during the ransomware

execution.

3) Create the dataset from the system calls and process

metadata dumps.

4) Develop the classifier models for the classification of

malicious/non-malicious calls.

5) Evaluate and compare the models.

Figure 2 gives a pictorial view of the experimental setup

starting with the ransomware simulation to the final step of

model evaluation. Figure 3 illustrates the various steps in

each phase of the experiment workflow from generation of

the dataset to model evaluation.

Fig. 2. Experimental Setup

A. Ransomware & Simulated Environment

In our research, we used the simulator provided to us by

Picus Security. The platform contains various attacks which

denote the different stages in the Unified Kill Chain and

contain multiple attack scenarios as defined in the MITRE

ATT&CK® tactics [56], [57]. In our controlled experiment

inside the sandbox, we used five prominent and representative

APT ransomware, viz. BlackByte, BlackMatter, Diavol, Dark-

side, and REvil. The simulation was set up in a Dell OptiPlex

7010 system with Intel core i7-3770 @ 3.40GHz processor,

16.00 GB memory running a 64-bit Windows 10 Education

OS, and Intel HD Graphics 4000. The simulations were run

in a safe sandbox environment. We used Windows Sandbox

application feature (available from Windows 10). Windows

Sandbox is a lightweight environment for desktop intended

for safely running software in isolation. The configuration

of spawned Windows Sandbox was Intel core i7-3770 @

3.40GHz processor, 4.00 GB RAM running a 64-bit Windows

10 Enterprise OS. The Picus platform requires the installation

of an agent, which is used to run the simulations. This agent

was installed in the Windows Sandbox and all simulations

were run inside of it. After the agent is installed, the platform

aids in simulating real-world attacks and threats against our

system. It can simulate various exploits and attacks that op-

erationalize the frameworks such as MITRE ATT&CK® tech-

niques. Furthermore, the ransomware simulations are made of

independent adversary techniques but these scenarios (exploits,

attacks) do not run any malicious code and only notepad-like

”safe apps to prove code execution. It does not actually lock a

user out of a system or encrypt the entire system and ask for

a ransom to regain access. It is like a scaled down version of

the ransomware that can still execute and simulate the attacks

or exploits but in a nondestructive fashion. This allows us to

capture enough data on the various kinds of actions performed

by a ransomware such as encrypting the drives (files, volumes)

or deleting the shadow copies or unblocking access to files and

deleting them from the system. After each attack simulation,

the Picus agent follows up with clean-up functions to restore

and clean-up the OS to the last known state. The creation of

the dataset and preprocessing of the data are described in the

next section.

Fig. 3. Experiment Workflow

B. Dataset

Windows Sysinternals offers a tool called Process Monitor

(Procmon). It is an advanced monitoring tool, that shows real-

time file system, registry, and process/thread activity. It can

capture reliable process data such as process name, command

line system calls executed, user ID, operations performed,

description, company name, and many more. It can capture

these details for every process that is running in the system

even if it is spawned in the background. This extensive

metadata information can be dumped into a csv file. When
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a ransomware is running, it executes multiple malicious pro-

cesses that perform actions such as encrypting a file, deleting

shadow copies, deleting files, and so on. Procmon is used to

capture a snapshot of the system while simulation is running.

This contains all the metadata about the processes running

during the ransomware simulations. Similarly, to capture the

non-malicious and default system process events, Procmon is

used when the attack simulation is not triggered. This captures

all the processes that run in the system in the background and

user actions are performed to capture the normal state of the

system. This involves performing few user actions such as

copying files, creating and deleting text files, opening few

applications such as notepad and browser. These Procmon

event details are converted into csv files and stored.

The process events captured during ransomware simulations

and the ones captured without the ransomware attacks are used

to create the dataset for our classification tasks. The features

of interest in these events are the Process Name, Operation,

Detail, Description, Command Line, and Company. The events

captured with no ransomware attacks are de-duplicated and

labelled as ‘System’, i.e., non-malicious and this dataset is

referred to as System dataset. The events captured during

the ransomware simulation cannot be marked entirely as

‘Malicious’ as background Windows processes and other non-

malicious processes would still be running. Hence, the events

captured in the System dataset are referenced to identify

the malicious processes. Every event in the data captured

during ransomware simulation is compared with the events

captured for the System dataset. Based on the uniqueness of

the Process Name, Command Line call executed, Operation

and Company features, the events are tagged as ‘Malicious.’

For instance, if all of these features are already available in

the System dataset, then that event is ignored since it denotes

that it is a background system event. If any of these four

features are not already available in the System events dataset,

then that particular event is tagged as Malicious. The Detail

and Description features are not taken into account while

this tagging is performed. If any process event has Detail

and Description values which are not there in the System

dataset, they may or may not be malicious in nature. If the

four features Process Name, Operation, Command Line, and

Company denote a process event as safe then those events,

even with different Detail and Description features, can be

labelled as non-malicious in nature.

The dataset is tagged as ‘System’ and ‘Malicious’ as ex-

plained above. It is used to build the classification model to

identify malicious process events. The dataset created contains

7 columns, viz. Process Name, Operation, Company, Detail,

Command Line, Description, and Label. It contains a total

of 90,841 rows with 43,487 events tagged as ‘Malicious’ and

47,354 events tagged as ‘System.’ In the following subsection,

we elucidate the pre-processing of the data to make it suitable

for the training of the AI models. As a part of our contribution,

we would like to release the dataset for the research commu-

nity to help researchers working with APT ransomware.

Figure 4 shows a sample of the created dataset with

four rows. The first two rows show non-malicious System

processes that were captured when no ransomware was run

in the Windows sandbox. The subsequent two rows show

Malicious processes that were captured as part of the ran-

somware simulation in the sandbox. The first row depicts

the notepad++.exe application running in the system. The

data row captured is a thread create event triggered by the

notepad++ application process. The other columns of that row

show the metadata related to this process. The second row

depicts a Windows Explorer.exe application running in the

system. An event related to file write is captured and this

is a benign data row as well. The third row represents a

malicious process running in the system. This was triggered

as part of ransomware and it is using the powershell.exe

application to carry out an unwanted operation in the system.

The shadow copies are storage extents that are duplicate copies

of the original volumes and can be used for back-up/restore in

case of system failures. Using the powershell.exe application,

the ransomware is trying to delete the shadow copy of the

volumes in the system. We can see in the command line that

it is using a combination of Get-CimInstance and Remove-

CimInstance scripting tools of the powershell.exe to carry

out its malicious task. The last row of Figure 4 represents

a malicious process named BlackByteEncryptor.exe which is

part of the BlackByte ransomware campaign. As the name

suggests, this is a dangerous process that is trying to encrypt

the files in the system. Encrypting the files, volumes in system

is a common technique used by ransomware to lock the user

out of the system and prevent access to the drives (system

storage). The command line columns of the fourth row shows

how this encryptor process is trying to encrypt a text file

available in a certain location.

C. Data Preprocessing

The dataset contains seven columns as depicted in Figure

4 with six columns for features and one column representing

the label. Each of these six features is text-based data. The

columns Process Name and Operation are categorical features,

and the columns Detail, Company, Command Line, and De-

scription are text data. These text-based features cannot be

used directly for training the models. Instead, they need to be

converted into numerical features. The categorical features are

converted into one-hot encoding and the text data columns are

converted into vectors of word embedding. To get the word

embedding, pretrained Stanford Glove word embeddings are

used [58]. The pretrained word embeddings provide vector

representation for several words. The package glove.6B.300d,

which contains pre-trained word vectors with 6B tokens, and

400k vocab with a vector of size 300 was used. The Out-

Of-Vocab words (any word for which vector representation

is not available in the package) are initialized to a random

vector of dimension 300 and stored so that the same vectors

are used for a word. The sentences are converted to vectors

by average pooling the word embedding of each word in the

sentence to get a final sentence embedding. Finally, to reduce

the number of dimensions, the sentence vector of each of the
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Fig. 4. Dataset Sample

features is again average pooled to get one final vector of size

300 that represents the four columns. The one-hot encodings

of the categorical columns are merged and combined into one

numerical array and this is further extended with the vector

representation of the four text columns to get a numerical

array of dimension 457 that represents one event in the dataset.

This is used to train SVM, Random Forests, Gradient Boosting

Decision Trees, and Logistic Regression models.

The dataset is processed in a different manner for the Naive

Bayes model. The features are joined by whitespace into a

single text sequence and are converted into a meaningful rep-

resentation of numbers based on the TF-IDF (Term Frequency

Inverse Document Frequency) vectorization method. This is a

method that takes into account the relevance and importance

of words in a corpus (collection of documents which is the

collection of all text sequences in this case). The relevance and

importance of words are derived from the occurrence count of

that word in a document and the number of documents in

which the word occurs. Each text sequence is converted into

a vector of length 17,125 (this is the number of unique tokens

in the document corpus).

In the case of the BERT model, the input is expected to be

a text sequence. Since each of the features is of type text data,

all the features are joined by whitespace into one text sequence

which is fed to the BERT-based tokenizer for encoding. The

BERT tokenizer can then use this text sequence to extract word

pieces that are encoded into numerical values and can be fed

into the model.

D. Model Training and Evaluation

The IDS needs to perform a binary classification to identify

a system call along with other metadata as malicious or non-

malicious. Since this is a binary classification task, models

such as Naive Bayes, Support Vector Machines, Logistic

Regression, Random Forests, and Gradient Boosting Decision

Trees classifiers are trained using the dataset. We also train

the NLP-based BERT model on the same dataset. We then

compare the results from all the aforementioned AI models.

The preprocessed dataset is split into training, validation,

and test sets in the ratio 7:1:2 respectively. This means 70%

of the data is used to train the model, 10% of the data is used

for validation, and the remaining 20% is used for testing and

computing the accuracy metrics of the models.

For the ML models, the entire training data is introduced

during the training stage. The validation and test sets are used

to evaluate the model after the training is completed. These

models are trained and evaluated on an MacBook Pro with M1

chip processor and 16GB memory. The scikit-learn package

was used to implement the machine learning classifiers. For

Naive Bayes classifier, MultinomialNB (multinomial Naive

Bayes) model was used with alpha (smoothing parameter) set

to 1.0. The logistic regression classifier LogisticRegression is

used with the following parameters – penalty (the norm of the

penalty term) used was ’l2’, the C parameter (inverse of the

regularization strength) is set to 1.0, class weight parameter

(weights associated with the classes) was set to ’balanced’

mode, the solver parameter (algorithm used in the optimiza-

tion problem) used was ’newton-cg’, and the max iter value

(maximum number of iteration to be used for convergence)

is set to 1000. The class SVC (support vector classification)

is used for the support vector machine model. The best

performing model was obtained with the following parameters

– the C parameter (regularization parameter) is set to 10, the

kernel parameter is set to ’rbf’, the gamma parameter (kernel

coefficient) is set to ’auto’ (this implies the algorithm will

use 1/n features as the coefficient value). The random forest

model RandomForestClassifier was used with the following

parameters – n estimators parameter (number of trees in the

forest) is set to 100, the criterion parameter (the function

to measure how the split happens and its quality) used was

’gini’, and the max features parameter (number of features to

look for the best split) is set to ’sqrt’. Finally, the gradient

boosted decision tree model GradientBoostingClassifier was

used with the following parameters – loss parameter (the loss

function to be optimized) was ’log loss’, the learning rate (the

rate at which the contribution of each tree shrinks) is set to

0.1, n estimators parameters (number of boosting stages to

perform) is 100, the criterion parameter (function to capture

the quality of the split) used was ’friedman mse’, and the

max depth (max depth of individual estimators) is set to 3.

For the NLP-based BERT model, a similar split of the

dataset is done with 70%, 10%, and 20% of the data for

training, validation, and testing, respectively. The BERT-based

model for sequence classification BERTForSequenceClassifi-

cation is used for the task. This model is a slightly modified
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version of the BERT base model with a linear layer over

the pooled output layer that can be fine-tuned and trained

for the classification task. The BERT base model is loaded

from a pretrained model that is available open-sourced “bert-

base-uncased.” This is a pretrained model over the English

language (Wikipedia and Google BooksCorpus) and it is a

case insensitive model. This pretrained model can be used to

load the models’ weights, parameters, and configuration for

the BERT base model encoder. The linear layer on the top

intended for classification is loaded with random weights. The

entire model (the embeddings layer, the encoder layers, and

the linear layer on top) is tuned and the weights are updated

as part of the model training step with the created dataset in

hand. As part of the training step, the data is fed to the model

in batches of 8 and the model was trained for 4 epochs. The

BERT model was trained and evaluated in Google Colab using

a GPU. The Nvidia Tesla T4 was available in Google Colab

for training and testing the BERT model.

The trained models are then evaluated against the validation

and test dataset. Both of these datasets are unseen by the

model before this step and each event in these datasets is

classified as malicious or non-malicious using the models. The

classification performed using the model is compared with the

actual labels of these events. The predicted labels and the

actual labels are assessed to get the evaluation metrics that

allow us to compare and evaluate the models.

V. RESULTS AND DISCUSSION

A. Results

After performing the experiments and generating the pre-

dictions on the test dataset of size 18,169 records, we now

compare the results on the basis of F1 score, Accuracy, and

the ROC plots.

TABLE I
MODEL ACCURACY AND F1 SCORE

Classifier Accuracy (%) F1 Score
BERT 99.98 1.00

Naive Bayes 98.55 0.984
Gradient Boosted DT 97.21 0.971
Random Forest 96.04 0.958

Logistic Regression 94.47 0.943
SVM 74.51 0.694

Table I summarizes the performance of each classifier in

terms of accuracy and F1 scores. We can see that the BERT

classifier has the highest accuracy and F1 score followed

closely by the Naive Bayes classifier. These are followed

by Gradient Boosting Decision Tree, Random Forests and

Logistic Regression classifiers in the order of decreasing

accuracy. The Support Vector Machine classifier has the least

accuracy and F1 score.

Figure 5 shows the receiver operating characteristic (ROC)

curves plotted for each model. The area under the curve

(AUC) computed for BERT is 1 indicating that is able to

distinguish between the two classes clearly. The AUC values

for Naive Bayes (NB) and Gradient Boosting (GB) Decision

Fig. 5. ROC curves for the Classifiers

Fig. 6. Zoomed view of the left Top part of ROC curves

Trees are almost equal to 1. This follows a similar trend to the

accuracy values and from Figure 6, we could see that, though

Naive Bayes model and GB Decision Tree model curves

seem similar, the green curve representing Naive Bayes covers

more area than the black curve representing GB decision tree.

These models are followed by Random Forest and Logistic

Regression models in decreasing values of AUC. The support

vector machine classifier represented by the yellow curve in

Figure 5 has the least area under the curve denoting its poor

classification performance on this dataset.

Of all the classification models used, NLP-based BERT

model has the best performance, being able to predict the

labels for the test set with a near perfect accuracy. The next

best performing model is the Naive Bayes Classifier. This is

followed by Gradient Boosting Decision Tree, Random Forest

Classifier and Logistic Regression Classifier in the order of

decreasing accuracy. The model with the least scores is the

SVM classifier. On comparing the models with respect to the

training time taken as shown in Table II, we can observe a

contrast with BERT taking the longest time for training. BERT

model took over six hours for four epochs of training. This

is followed by SVM classifier which took 5,190.30 seconds,

Naive Bayes Classifier took 21.92 seconds, Gradient Boosting

Decision Tree took 628.84 seconds, Random Forest Classifier
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took 98.65 seconds and Logistic Regression took 6.7 seconds.

B. Discussion

Our experiment and analysis demonstrate the capability

of machine learning and NLP-based techniques to develop

accurate IDS that can detect APT ransomware. The results

show that BERT model and Naive Bayes classifier had high

accuracy and are well suited for this use-case. BERT model

has the highest accuracy with a perfect F1 score of 1.0 and ac-

curacy of 99.98%. However, the downside of BERT is the high

computation requirement with training time of over 6 hours.

On the other hand, Naive Bayes Classifier has a slightly lower

F1 score of 0.984 and an accuracy of 98.55%. Furthermore,

the NB classifier requires a very low training time of around

22 seconds. In situations where accuracy is crucial and the IDS

achieving correct classification is important, NLP-based BERT

model can be utilized at the expense of longer training time.

However, in situations where we cannot afford such intensive

computation, training time, and an IDS needs to be trained

and run swiftly, the Naive Bayes Classifier can be used at the

cost of marginally lower accuracy.

The results illustrate that the NLP-based BERT model

performs exceptionally well when text-based data is involved.

It is the case with the dataset we created from the system call

information, which consists of the process name, operation,

detail, company, description, and the command executed in

the command line. The downside of the BERT model, as

discussed earlier, is its high computation power requirement.

Even with a GPU, the training time is significantly higher

than the machine learning models. In situations where one

cannot afford even a slight dip in accuracy, such as IDS in

systems for critical pipeline infrastructure or nuclear power

plants, it would be beneficial to use the BERT model that gives

the highest accuracy. In contrast, in situations such as shared

virtual machines (VMs) in an enterprise, having a dynamic

process environment due to new applications or test code

constantly installed and updated, one would require frequent

retraining of the model to capture non-malicious programs. In

such cases, where one can afford a marginally less accuracy

but require constant retraining of the models, it would be

beneficial to use the machine learning model (Naive Bayes)

that can be trained quickly.

TABLE II
CLASSIFIER MODELS AND THEIR TRAINING TIME

Classifier Training Time
BERT 6 hrs

Support Vector Machine (SVM) 5190.303s
Gradient Boosted Decision Tree 628.84s

Random Forest 98.65s
Naive Bayes Classifier (NBC) 21.92s

Logistic Regression 6.7s

VI. CONCLUSION AND FUTURE WORK

The usage of ML/AI in designing host-based intrusion

detection systems demonstrates the intriguing advancement

for the apt detection of APT ransomware. In this paper,

we have created a dataset using system call information

that represents APT ransomware attacks. This dataset can be

utilized by researchers in future work to develop intrusion

detection systems and carry out research on APT ransomware.

We demonstrated the capability of classifier-based IDS, using

different classifier models that are machine learning-based and

NLP-based. Furthermore, we compared the models on various

evaluation metrics and discussed the trade-offs of choosing a

model. We provided a choice for the user to utilize one of

the above ML/AI models for intrusion detection. The user can

make the decision based on their requirements. If the user

wants a very high accuracy irrespective of the training time,

they can choose BERT. Whereas, if the user requires a faster

training time with reasonably good accuracy, they can go for

the Naive Bayes Classifier. Though we considered the design

and development of IDSes to address the need of the hour

(APT ransomware), the approach taken here can be suitably

altered to handle generic malware as long as the applications

lend themselves to be characterized by system call sequences.

For future work, we like to expand our research into

designing classifier-based IDSes with lesser computational

complexities and training time. Another aspect of research

extending the current work post intrusion detection would be

to identify the exact processes or script and their path in the

system that execute the malicious commands. Also, it will be

interesting to compare the NLP-based BERT model to other

deep neural network-based models such as recurrent neural

networks (RNN), long short-term memory networks (LSTM),

and evaluate the models based on accuracy, computation cost,

and ease of implementation.
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[21] H. C. YÜCEEL, “Ttps used by blackbyte ransomware targeting critical
infrastructure,” Picus Blog, February 2022.

[22] T. M. Research, “Revil,” Trend Micro, 12 2021.
[23] K. Dilanian, “Code in huge ransomware attack written to avoid com-

puters that use russian, says new report,” NBC News, 07 2021.
[24] C. O. Release, “Blackmatter ransomware,” Cybersecurity & Infrastruc-

ture Security Agency, October 2021.
[25] W. Labs, “Blackmatter ransomware targets food/agriculture sector,” Food

Engineering Magazine, 10 2021.
[26] T. D. REPORT, “Real intrusions by real attackers, the truth behind the

intrusion: Diavol ransomware,” THE DFIR REPORT, 12 2021.
[27] D. Neemani and A. Rubinfeld, “Diavol - a new ransomware used by

wizard spider?,” FORTINET Blog, 07 2021.
[28] L. Abrams, “Fbi links diavol ransomware to the trickbot cybercrime

group,” BleepingComputer, 01 2022.
[29] K. P. Robert McMillan and D. Volz, “Secret world of pro-russia hacking

group exposed in leak,” The Wall Street Journal, 03 2022.
[30] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI

2001 workshop on empirical methods in artificial intelligence, vol. 3,
pp. 41–46, 2001.

[31] T. Evgeniou and M. Pontil, “Support vector machines: Theory and
applications,” vol. 2049, pp. 249–257, 01 2001.

[32] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic
regression analysis and reporting,” The journal of educational research,
vol. 96, no. 1, pp. 3–14, 2002.

[33] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[34] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, p. 21, 2013.

[35] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation
of machine learning algorithms for intrusion detection system,” in
2017 IEEE 15th International Symposium on Intelligent Systems and
Informatics (SISY), pp. 000277–000282, 2017.

[36] S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth, “The uci kdd archive
of large data sets for data mining research and experimentation,” ACM
SIGKDD explorations newsletter, vol. 2, no. 2, pp. 81–85, 2000.

[37] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021.

[38] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications, pp. 1–
6, Ieee, 2009.

[39] L. Dhanabal and S. Shantharajah, “A study on nsl-kdd dataset for
intrusion detection system based on classification algorithms,” Interna-
tional journal of advanced research in computer and communication
engineering, vol. 4, no. 6, pp. 446–452, 2015.

[40] C. Kruegel and T. Toth, “Using decision trees to improve signature-based
intrusion detection,” in International workshop on recent advances in
intrusion detection, pp. 173–191, Springer, 2003.

[41] A. Hamza, H. H. Gharakheili, and V. Sivaraman, “Combining mud
policies with sdn for iot intrusion detection,” in Proceedings of the 2018
Workshop on IoT Security and Privacy, pp. 1–7, 2018.

[42] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and
K. Park, “Kargus: a highly-scalable software-based intrusion detection
system,” in Proceedings of the 2012 ACM conference on Computer and
communications security, pp. 317–328, 2012.

[43] M. Alkasassbeh, G. Al-Naymat, A. Hassanat, and M. Almseidin,
“Detecting distributed denial of service attacks using data mining
techniques,” International Journal of Advanced Computer Science and
Applications, vol. 7, no. 1, pp. 436–445, 2016.

[44] A. Halimaa and K. Sundarakantham, “Machine learning based intrusion
detection system,” in 2019 3rd International conference on trends in
electronics and informatics (ICOEI), pp. 916–920, IEEE, 2019.

[45] P. K. Keserwani, M. C. Govil, E. S. Pilli, and P. Govil, “A smart
anomaly-based intrusion detection system for the internet of things
(iot) network using gwo–pso–rf model,” Journal of Reliable Intelligent
Environments, vol. 7, no. 1, pp. 3–21, 2021.

[46] E. S. P. Krishna and T. Arunkumar, “Hybrid particle swarm and
gray wolf optimization algorithm for iot intrusion detection system,”
International Journal of Intelligent Engineering & Systems, 2021.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[49] A. Rahali and M. A. Akhloufi, “Malbert: Using transformers
for cybersecurity and malicious software detection,” arXiv preprint
arXiv:2103.03806, 2021.

[50] N. Andronio, S. Zanero, and F. Maggi, “Heldroid: Dissecting and
detecting mobile ransomware,” in international symposium on recent
advances in intrusion detection, pp. 382–404, Springer, 2015.

[51] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi, “Shieldfs: a self-healing, ransomware-aware
filesystem,” in Proceedings of the 32nd annual conference on computer
security applications, pp. 336–347, 2016.

[52] T. K. Tran and H. Sato, “Nlp-based approaches for malware classifi-
cation from api sequences,” in 2017 21st Asia Pacific Symposium on
Intelligent and Evolutionary Systems (IES), pp. 101–105, IEEE, 2017.

[53] P. Najafi, D. Koehler, F. Cheng, and C. Meinel, “Nlp-based entity
behavior analytics for malware detection,” in 2021 IEEE International
Performance, Computing, and Communications Conference (IPCCC),
pp. 1–5, IEEE, 2021.

[54] Q. Wang, H. Yan, and Z. Han, “Explainable apt attribution for malware
using nlp techniques,” in 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS), pp. 70–80, IEEE, 2021.

[55] P. Security, “Picus Security the complete security control validation
platform,”

[56] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and philosophy,”
in Technical report, The MITRE Corporation, 2018.

[57] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pen-
nington, and C. B. Thomas, “Mitre att&ck®: Design and philosophy,”
2020.

[58] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 1532–
1543, 2014.

1630

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore.  Restrictions apply. 


