2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) | 979-8-3503-8199-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/TrustCom60117.2023.00221

2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

Apt Detection of Ransomware - An Approach to
Detect Advanced Persistent Threats Using System
Call Information

Rudra Prasad Baksi

Vishwas Nalka

Shambhu Upadhyaya

School of Information Technology Dept. of Computer Science & Engineering Dept. of Computer Science & Engineering

Lllinois State University
Normal, IL, USA
rpbaksi @ilstu.edu

Abstract—Ransomware of the Advanced Persistent Threat
(APT) type are very sophisticated and often have a contingency
plan of attack in case they are discovered while the attack
is in progress. Due to the ever-changing trait of such APT-
type ransomware, an intelligent and robust intrusion detection
system (IDS) is the need of the hour and in this paper, we put
forward machine learning (ML) and natural language processing
(NLP) based intrusion detection systems. We utilize a commercial
simulator to run different real-world ransomware attacks to
create, for the first time, a dataset for APT-type ransomware
research. Then, we develop multiple IDSes by training ML
models like support vector machine (SVM), logistic regression
(LR), gradient boosting (GB) decision trees, random forest (RF),
naive Bayes classifier (NBC), and an NLP model called BERT,
on this dataset. With our intelligent IDS, we could precisely
distinguish the system calls of processes spawned by ransomware
from legitimate system calls. We compare the different intrusion
detection systems developed using the six aforementioned models.
The IDS using the NLP BERT model achieves the best accuracy
of 99.98%, and the IDS using the Naive Bayes Classifier achieves
an accuracy of 98.55%. Furthermore, we discuss the tradeoffs of
these models for designing an intelligent IDS. The advancement in
cyber attacks, especially ransomware-based attacks, necessitates
this upgrade in IDS which is essential for a strong defense.

Index Terms—Advanced Persistent Threats (APT), Artificial
Intelligence (AI), Cybersecurity, Intrusion Detection System
(IDS), Machine Learning (ML), Natural Language Processing
(NLP), Ransomware.

I. INTRODUCTION

Ransomware are a type of malware which encrypt critical
data of a system and hold them for ransom. The data under
siege is released by the attacker when they receive the ransom.
They generally refrain from releasing the encrypted resources
if the ransom is not paid. Some of the recent sophisticated
ransomware variants possess a few additional characteristics
including existence of a “campaign abort” or a “contingency
plan of attack” upon discovery. Such ransomware variants are
often termed as advanced persistent threats (APT) and are
generally perpetrated by nation state actors with huge amount
of resources at their disposal [1].

According to a study by Ponemon Institute, the average
financial losses suffered by a company owing to the damaged

University at Buffalo, SUNY
Buffalo, NY, USA
vishwasn @buffalo.edu

University at Buffalo, SUNY
Buffalo, NY, USA
shambhu @buffalo.edu

reputation after an APT attack, amounts to about $9.4 Million
[2]. APT ransomware campaigns like WannaCry, Petya, and
NotPetya caused considerable financial losses to the victims
[1]. According to published reports, between May 12, 2017
and May 17, 2017, WannaCry collected $75,000 to $80,000
in ransom [3], [4]. Off late, the malware WannaCash is
also causing trouble to the cyber-world [5]. Recently, Indian
nuclear power plants became victims of data breaches [6].
Colonial Pipeline Co., one of the biggest oil and gas pipeline
companies in the USA, came under ransomware attack in
May 2021 [7]. This attack caused widespread gas shortages,
disruptions in functioning of airports and gas stations and
caused gas prices to go up. A ransom of $4.4 Million was
paid to receive the decryption key [8], [9]. The following
characteristics make these ransomware attacks a true APT:
1) exploiting zero-day vulnerabilities to achieve their goal, 2)
non-stop campaign until goals are achieved, 3) adaptive and
having the ability to attack high value targets through multiple
modes of attack [1], [10], and 4) using stealth to quietly invade
in a series of steps [11]. The financial losses keep increasing
with time, and when the target is a government agency, then
national security is put to risk. APT-type ransomware attacks
are causing trouble not only to the government organizations
but also to the industrial systems and other organizations
and/or institutions, which directly affect daily lives of the
masses.

The aforementioned factors and incidents outline a great
threat to the critical infrastructure as a whole, be it government
or industry. The problems are intense and the attacks are
adaptive in nature, requiring a holistic approach to address
them. With more emerging threats, the attack dynamic is
rapidly changing. These sophisticated ransomware stealthily
infiltrate the system and mount the attack through multiple
stages. They disguise the processes as legitimate processes
in the system. This warrants the introduction of a smarter
IDS rather than rule-based or signature-based ones [12], [13].
In this paper, we explore multiple models to make an IDS
smarter with the use of machine learning (ML) and natural
language processing (NLP). Using a commercial tool, we

2324-9013/23/$31.00 ©2023 IEEE 1621
DOI 10.1109/TrustCom60117.2023.00221
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

create a dataset consisting of system call information obtained
by running a few APT-type ransomware, viz. BlackByte,
BlackMatter, Diavol, REvil, and Darkside. Then we develop
IDSes by training the ML and NLP-based detection models
on this dataset and compare their accuracy and performance.
The major contributions of this paper are the creation of a
dataset from APT-type ransomware and the development of
ML and NLP-based intelligent detection models. Since we
utilize a modern industry-grade commercial tool to simulate
the ransomware and create a dataset from the system calls
and other metadata, the dataset we generate is a close rep-
resentation of real-world attack data. This can be beneficial
in designing and testing any new detection techniques. The
paper is organized as follows. In Section II, we provide
the background on ransomware and discuss relevant research
work on their detection. Following this, in Section III, we
put forward our intelligent and apt intrusion detection system
(IDS). In Section IV, we present the details of the experimental
setup and the dataset creation. Then, in Section V, we discuss
the effectiveness of the various detection models and their
performance. Finally, in Section VI, we conclude the paper
and discuss the future prospects of our research.

II. BACKGROUND AND RELATED WORK

APT groups mount attacks through multiple stages by cre-
ating sophisticated malware. Lockheed Martin’s “Cyber Kill
Chain” framework describes an APT through a seven-stage
life cycle [14]. LogRythm describes an APT through a five-
stage life cycle [15]. Baksi and Upadhyaya [1] describe APT
through a set of five characteristics exhibited by sophisticated
malware. The detection of sophisticated APT malware in the
ever-changing attack landscape is a daunting task. People
have explored quite a few options for this purpose. One such
approach is security incident and event management (SIEM),
and SIEM-like detection mechanism [16]. Milajerdi et al.
[17] used a graph-based technique. Here, they create an audit
log and thereafter, using a causality tracker, they generate a
provenance graph. This graph is then passed through a policy
matching engine and noise filter to create a high-level scenario
graph (HSG). This HSG is used by a detection engine to
detect any APT malware present in the system. Their goal is
achieved through alert generation, alert correlation, and attack
scenario presentation. Contrary to this, in our paper we use
ubiquitous system call logs to look for any intrusion in the
system. We use Al models to train, test, and validate on the
dataset created using system call logs. These models are then
used to detect the APT malware. The research presented by
Liu et al. [18] uses both graph-based techniques as well as
Al techniques. Their solution involves a heuristic approach
that converts log entries into a heterogeneous graph. Then
each graph is transformed into low-dimension vectors using
the log2vec technique which involves the usage of word2vec
processes. They managed to detect both malicious and benign
types of APT threats. Their detection algorithm comprises of
a clustering algorithm, a threshold detector, and selection of
parameters for the detection algorithm. Besides APTs, they

1622

also detect insider threats using their log2vec technique. They
show that log2vec outperforms deep learning and Hidden
Markov Model (HMM) based models. But their solutions
have limitations, which includes redefining the graph rules
for different processes, high false positive rates (FPR), and
the task of choosing parameters for the detection algorithm.
In contrast to their approach, our solution uses NLP and ML
based models to detect a particular type of malware, viz., APT-
type ransomware. In our technique, the rules of engagement
are not required to be redefined for different processes and/or
different malware.

Ransomware can be categorized into three principal cate-
gories, namely the locker, the crypto and the hybrid [19]. The
threat model, i.e., the ransomware considered in this paper
is of the APT kind. They have the capabilities of a generic
ransomware as well as that of an APT-type malware. They are
often sophisticated enough to have a contingency plan of attack
on being discovered [1], henceforth called APT ransomware.
BlackByte, an APT ransomware, has two modes of attack. It
can either attack directly or offer services as ransomware-as-
a-service (RaaS) [20]. It exploits the ProxyShell vulnerabili-
ties that exist in Microsoft Exchange Server to infiltrate the
system. The ransomware has a Russian origin, as it avoids
any devices that have language settings in Russian and/or
some other language from any of the former Soviet countries.
The primary targets include US-based organizations in critical
infrastructure sectors such as government, finance, and food
& agriculture [21]. DarkSide is another APT ransomware that
was involved in attacks on Colonial Pipelines and Toshiba
[9]. REvil is also an APT ransomware which was responsible
for attacks on entities that are suppliers of Apple Inc. and
are responsible for stealing confidential information [22].
Both REvil and DarkSide have similar code bases. Just like
BlackByte, both REvil and DarkSide allegedly have Russian
origin. They avoid devices that have language settings similar
to Russian and former Soviet countries [23]. BlackMatter
is another APT ransomware, which targeted multiple U.S.
critical infrastructure entities, including two U.S. Food and
Agriculture Sector organizations [24]. They are allegedly a
“rebrand” of DarkSide ransomware and their main targets
include the food and agricultural sector [25]. Diavol, an APT
ransomware, is supposedly linked to a cybercrime group called
Wizard Spider who are also known as Trickbot. They are also
the perpetrators of the ransomware Ryuk, Conti and the spam
trojan Emotet [26]. Diavol, just like the other ransomware
created by TrickBot, attacks corporate entities, especially
financial institutions which used Windows [27], [28]. TrickBot
is a nation-state actor with apparent connections to Russian
intelligence agencies [29].

In this paper, we recreate the attacks of the five aforemen-
tioned ransomware via simulation using a commercial tool
and create a dataset out of it. Then, we develop classifier-
based IDS using this new dataset to detect APT ransomware.
Our objective is to classify a system call as malicious or
benign, and this is a binary classification task. We develop
the IDS based on this classification problem, and we consider

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

two kinds of IDS in our work. One is based on machine
learning, and the other is based on transformer architecture
(neural networks). The first kind is machine learning-based
IDS, for which we choose five machine learning algorithms
to develop different IDSes independently. The second kind of
IDS is NLP-based, designed using the BERT model (which
uses a transformer neural network). Further, we evaluate these
six types of IDSes and provide a comparison between them.

A. Machine Learning Algorithms

In this section, we provide a brief overview of the machine
learning algorithms used in the design of the IDS. We chose
five algorithms in our experiment, viz. Naive Bayes, Support
Vector Machine, Logistic Regression, Gradient Boosting De-
cision Trees, and Random Forest algorithms. These are the
models that are used extensively by researchers for binary
classification. Naive Bayes [30] is a supervised machine
learning algorithm based on applying Bayes’ theorem along
with the conditional independence assumption between ev-
ery pair of features. The Naive Bayes Classifier can work
well on categorical data and can be extended to text-based
classification. Support Vector Machine [31] is a type of
supervised learning method used for classification, regression,
and outlier detection. The SVM classification algorithm has
been widely utilized in various applications such as email
spam filtering and developing IDS. Logistic Regression [32]
is another supervised learning model to perform binary or
multivariate classification. The Logistic Regression model is
one of the first choices for binary classification. The other
approaches that give good results are ensemble models, where
multiple models are combined to improve the classification
performance. Random Forests [33], and Gradient Boosting
Decision Trees [34] are two powerful algorithms, that are
based on the ensemble learning method, considered in our
IDS design. In our research, we used the aforementioned
models and compared the results using standard metrics such
as accuracy, F1 score, and training time [35] to learn how they
performed.

B. Datasets and ML-based IDS

Researchers have long used the KDD CUP’99 dataset to
design and evaluate IDSes [36]. Using this dataset, researchers
can design classifiers working on 41 features to detect attacks
like denial of service (DoS), probe, remote to local (R2L), and
user to root (U2R) [37]. NSL KDD is a more refined version
of the KDD CUP’99 dataset by removing several of its integral
issues and is used for the detection of attacks similar to the
KDD CUP’99 dataset [38], [39]. These datasets are mostly
used for designing network-based IDS (NIDS) [37]. On the
other hand, researchers have been plagued by the paucity of
data regarding APT ransomware. To overcome this problem,
in our research, we create a dataset consisting of system call
logs of APT ransomware. We believe the research community
can utilize this dataset to design and evaluate host-based IDS
(HIDS) in the context of APT-type ransomware attacks. This
dataset is discussed further in Section IV.

1623

Traditionally, machine Learning has been used to develop
IDS. In [40], Kruegel and Toth show how the machine
learning model Decision Trees was employed to improve a
signature-based intrusion detection system. Our work focuses
on utilizing ML/AI on the system calls to directly identify
intrusion as opposed to rule-based or signature-based methods,
which are dynamic and constantly keep changing. Hamza et al.
[41] developed a system that can translate Manufacturer Usage
Description (MUD) policies into flow rules using Software-
defined networking (SDN), and then used for designing IDSes
in the IoT network. Jamshed et al. [42] presented Kargus, a
highly-scalable software-based NIDS compatible with Snort.
In contrast, we worked on developing an Al-based host-based
IDS (HIDS) that can be utilized in a system directly to detect
intrusion by APT ransomware. Furthermore, we provide a
comparison of various ML/AI models and give the users a
choice based on the computation power available to them and
the trade-offs between the best-performing models.

Alkasassbeh et al. [43] used data mining techniques along
with classification techniques like multi-layer perceptron
(MLP), Naive Bayes’ classifier (NBC), and Random Forest to
detect distributed denial of service (DDoS) attack. Almaseidin
et al. [35] used classifiers like J48, Random Forest, Random
Tree, Decision Table, MLP, NBC, and Bayes Network on the
KDD dataset to design and evaluate IDSes to detect attacks
like DoS, U2R, R2L, and Probe. Halimaa et al. [44] used
SVM, and NBC on NSL-KDD dataset to detect DoS, Probe
and R2L attacks. Keserwani et al. [45] used a combination
of Particle Swarm Optimization (PSO) and Grey Wolf Op-
timization (GWO) to obtain features from the dataset. They
used random forest (RF) for the purpose of attack detection.
Krishna and Arunkumar [46] also proposed a hybrid GWO-
PSO optimization algorithm used in conjunction with an RF
classifier on the NSL-KDD dataset to detect DoS, R2L, U2R,
and Probe attacks. But the existing aforementioned datasets
are generally used for designing NIDSes and are not useful
for our research since they do not truly represent the attacks
that we are trying to address. Therefore, in our research, we
created a new dataset for APT ransomware and designed a
HIDS to detect the same.

C. Natural Language Processing based Models

Natural Language Processing (NLP) has greatly improved
the abstract understanding and representation of language.
Earlier, Recurrent Neural Networks (RNN) were used for the
purpose, but now transformer based architectures [47] are
well-suited for the same. Bidirectional Encoder Representa-
tions from Transformers (BERT) [48] is a transformer-based
language model. BERT model differs from the traditional
transformer architecture in that it uses only the encoder instead
of the encoder-decoder design.

Researchers have previously worked on the intersection
of NLP and Cybersecurity. Rahali and Akhloufi [49] used
transformer-based models to automatically identify malicious
software. Andronio et al. [50] presented an NLP-based ran-
somware detection model called HelDroid for the mobile

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

device platform. Continella et al. [51] put forward a detection
model “ShieldFS”, which focuses on the low-level behavior of
the ransomware. Tran and Sato used an NLP-based approach
to analyze and classify malware from the data collected from
API call sequences [52]. They collected behavioral data from
malware from API call sequences. Thereafter, they performed
feature extractions and feature vectorization using TF-IDF and
Paragraph Vectors. Following that, classification was done
using KNN, SVM, RF, and MLP. Najafi et al. [53] used
the events log of SIEM at enterprise systems to model the
behavior as directed acyclic graphs (DAG) and then used
NLP-based approach to detect graph-based outliers. Wang
et al. [54] presented research on the challenging problem
of APT attribution. In their research, for the intermediate
representations, they used the VEX IR method. They chose
two features, viz. string features and code features. They
applied a random forest classifier (RFC) and deep neural
network (DNN) classifier to learn and classify. Finally, they
ran RFC and Local Interpretable Model-agnostic Explanations
(LIME) to interpret the results from the classification task.

In our research, we posit that any malicious process that
can disguise itself would eventually execute a devious com-
mand, such as deleting a shadow copy or running a standard
encryption call. This will allow us to detect and identify the
ransomware in the system. This implies that the system call
logs and other process metadata can be useful features that
can be used to identify an intrusion in the system. We have
devised a way to identify APT ransomware using modern
NLP techniques and compared this with traditional machine
learning classifier-based approaches. The focus is on using
system calls and other metadata captured about the processes,
to generate a dataset that allows us to design a classifier-based
IDS to detect ransomware that disguises itself as legitimate
processes.

III. THE APT DETECTION SYSTEM

Intrusion Detection Systems (IDS) are responsible for iden-
tifying various forms of infiltration in the system with ma-
licious intent. In this paper, we design an intelligent IDS
to detect intrusions by identifying malicious processes. Our
intelligent IDS is trained on the system call information during
the ransomware attack simulation. This allows the IDS to learn
the malicious calls (attack patterns) in the system and can
effectively discern the benign and malicious system calls in
the test dataset (the data which is unseen by the IDS during
model training). This is analogous to being able to identify
rogue system calls during the actual attack using the previously
trained intelligent IDS. Microsoft Windows systems capture
various metadata about a process that is running such as
process name, description, command line system call executed,
operation performed, and so on. Analyzing this metadata can
give critical insights into determining whether the process is
malicious or not. Analyzing the metadata using ML and NLP
models will help in the detection of malicious processes in
the system which stealthily disguise themselves as legitimate
processes. This can be viewed as a classification task where

1624

the system call metadata can be classified into “Malicious” or
“Non-Malicious.” The IDS developed in this paper uses the
aforementioned approach of using the system call metadata to
differentiate between malicious and non-malicious processes.
We use a few ML models and one NLP model for the
classification task. The IDS has been designed to identify APT
ransomware.

The designing of Al based IDSes requires a dataset to be
used for the purpose of training, validation, and testing. Since
existing datasets are not suitable for our study as described
before, we made use of a commercial simulator from Picus
Security [55] to generate our own data. The simulator provided
us with real-world APT ransomware and we ran it inside the
Windows sandbox environment. We then collected the system
call metadata and created the dataset to be used for designing
the IDSes.

The ML-based IDS was designed using multiple ML models
and the results were compared. The models used were NBC,
LR, RF, SVM, and GB decision trees. These models were
trained using the dataset created from the simulator. The TF-
IDF based vectorization was used to feed the data for the Naive
Bayes Classifier and the word embeddings based vectorization
was used to train the models SVM, RF, GB decision tree, and
LR.

The NLP-based IDS was designed using a BERT model for
sequence classification. This transformer model contains the
bare BERT Model architecture with a linear layer on top of
the pooled output layer. This linear layer can be trained for
sequence classification. The BERT Model is loaded from the
pre-trained model configuration that is available open-source.
The weights/parameters for the bare BERT Model architecture
are instantiated from the pre-trained model and the linear layer
on the top can be fine-tuned and the weights can be trained
with the dataset available for the classification task.

Figure 1 provides a summary of the various machine learn-
ing classifiers and the NLP model used in the IDS design.
The NLP-based BERT classification model is compared with
the machine learning models — Naive Bayes, Support Vector
Machine, Logistic Regression, Random Forest, and Gradient
Boosting Decision Trees, and the performance of these models
is benchmarked using standard metrics.

Intrusion Detection

System

v v
Machine Learning Models NLP Model

A 4
Naive Bayes
Classifier

Y

BERT
Classifier

A 4
[Lag\sﬁc Regression]

Random Forests| |
Classifier H

Classifier

Gradient Boosted

¥
Support Vector Machine
DecisionTree Classifier

Classifier

Fig. 1. Models evaluated for the IDS design

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTAL SETUP

The procedure to generate data, run simulations, and de-
velop the models consists of the following steps:

1) Ransomware attack simulation in a sandbox environ-
ment.
Capture system calls, metadata of non-malicious pro-
cesses and the system calls during the ransomware
execution.
Create the dataset from the system calls and process
metadata dumps.
Develop the classifier models for the classification of
malicious/non-malicious calls.
Evaluate and compare the models.

2)

3)
4)

5)

Figure 2 gives a pictorial view of the experimental setup
starting with the ransomware simulation to the final step of
model evaluation. Figure 3 illustrates the various steps in
each phase of the experiment workflow from generation of
the dataset to model evaluation.

Ransomware ‘ I
Simulation
v
PYCUS| | coosmomecas 8
ataset Creation

(with process metadata)

Evaluate Classifier
Metrics

P

Train Classifier

Models Preprocess Data

Fig. 2. Experimental Setup

A. Ransomware & Simulated Environment

In our research, we used the simulator provided to us by
Picus Security. The platform contains various attacks which
denote the different stages in the Unified Kill Chain and
contain multiple attack scenarios as defined in the MITRE
ATT&CK® tactics [56], [57]. In our controlled experiment
inside the sandbox, we used five prominent and representative
APT ransomware, viz. BlackByte, BlackMatter, Diavol, Dark-
side, and REvil. The simulation was set up in a Dell OptiPlex
7010 system with Intel core i7-3770 @ 3.40GHz processor,
16.00 GB memory running a 64-bit Windows 10 Education
OS, and Intel HD Graphics 4000. The simulations were run
in a safe sandbox environment. We used Windows Sandbox
application feature (available from Windows 10). Windows
Sandbox is a lightweight environment for desktop intended
for safely running software in isolation. The configuration
of spawned Windows Sandbox was Intel core i7-3770 @
3.40GHz processor, 4.00 GB RAM running a 64-bit Windows
10 Enterprise OS. The Picus platform requires the installation
of an agent, which is used to run the simulations. This agent
was installed in the Windows Sandbox and all simulations
were run inside of it. After the agent is installed, the platform
aids in simulating real-world attacks and threats against our

1625

system. It can simulate various exploits and attacks that op-
erationalize the frameworks such as MITRE ATT&CK® tech-
niques. Furthermore, the ransomware simulations are made of
independent adversary techniques but these scenarios (exploits,
attacks) do not run any malicious code and only notepad-like
”safe apps to prove code execution. It does not actually lock a
user out of a system or encrypt the entire system and ask for
a ransom to regain access. It is like a scaled down version of
the ransomware that can still execute and simulate the attacks
or exploits but in a nondestructive fashion. This allows us to
capture enough data on the various kinds of actions performed
by a ransomware such as encrypting the drives (files, volumes)
or deleting the shadow copies or unblocking access to files and
deleting them from the system. After each attack simulation,
the Picus agent follows up with clean-up functions to restore
and clean-up the OS to the last known state. The creation of
the dataset and preprocessing of the data are described in the
next section.

Ransomware
Simulation

Dataset Creation and
Labelling

Data De-Duplication

Dataset Creation Phase

Sentence
Embeddings,
Encoding Categorical
features

Combine Features
into single sentence

Train & Test
“»{SVM or LR or RF or .
4 GB} Model

Train & Test Naive
Bayes Model

TF-IDF Encoding

BertTokenizer and
Encoding

Data Encoding Phase Meodel Training and
Evaluation Phase

Train & Test
BERT Model

Fig. 3. Experiment Workflow

B. Dataset

Windows Sysinternals offers a tool called Process Monitor
(Procmon). It is an advanced monitoring tool, that shows real-
time file system, registry, and process/thread activity. It can
capture reliable process data such as process name, command
line system calls executed, user ID, operations performed,
description, company name, and many more. It can capture
these details for every process that is running in the system
even if it is spawned in the background. This extensive
metadata information can be dumped into a csv file. When

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

a ransomware is running, it executes multiple malicious pro-
cesses that perform actions such as encrypting a file, deleting
shadow copies, deleting files, and so on. Procmon is used to
capture a snapshot of the system while simulation is running.
This contains all the metadata about the processes running
during the ransomware simulations. Similarly, to capture the
non-malicious and default system process events, Procmon is
used when the attack simulation is not triggered. This captures
all the processes that run in the system in the background and
user actions are performed to capture the normal state of the
system. This involves performing few user actions such as
copying files, creating and deleting text files, opening few
applications such as notepad and browser. These Procmon
event details are converted into csv files and stored.

The process events captured during ransomware simulations
and the ones captured without the ransomware attacks are used
to create the dataset for our classification tasks. The features
of interest in these events are the Process Name, Operation,
Detail, Description, Command Line, and Company. The events
captured with no ransomware attacks are de-duplicated and
labelled as ‘System’, i.e., non-malicious and this dataset is
referred to as System dataset. The events captured during
the ransomware simulation cannot be marked entirely as
‘Malicious’ as background Windows processes and other non-
malicious processes would still be running. Hence, the events
captured in the System dataset are referenced to identify
the malicious processes. Every event in the data captured
during ransomware simulation is compared with the events
captured for the System dataset. Based on the uniqueness of
the Process Name, Command Line call executed, Operation
and Company features, the events are tagged as ‘Malicious.’
For instance, if all of these features are already available in
the System dataset, then that event is ignored since it denotes
that it is a background system event. If any of these four
features are not already available in the System events dataset,
then that particular event is tagged as Malicious. The Detail
and Description features are not taken into account while
this tagging is performed. If any process event has Detail
and Description values which are not there in the System
dataset, they may or may not be malicious in nature. If the
four features Process Name, Operation, Command Line, and
Company denote a process event as safe then those events,
even with different Detail and Description features, can be
labelled as non-malicious in nature.

The dataset is tagged as ‘System’ and ‘Malicious’ as ex-
plained above. It is used to build the classification model to
identify malicious process events. The dataset created contains
7 columns, viz. Process Name, Operation, Company, Detail,
Command Line, Description, and Label. It contains a total
of 90,841 rows with 43,487 events tagged as ‘Malicious’ and
47,354 events tagged as ‘System.” In the following subsection,
we elucidate the pre-processing of the data to make it suitable
for the training of the AI models. As a part of our contribution,
we would like to release the dataset for the research commu-
nity to help researchers working with APT ransomware.

Figure 4 shows a sample of the created dataset with

1626

four rows. The first two rows show non-malicious System
processes that were captured when no ransomware was run
in the Windows sandbox. The subsequent two rows show
Malicious processes that were captured as part of the ran-
somware simulation in the sandbox. The first row depicts
the notepad++.exe application running in the system. The
data row captured is a thread create event triggered by the
notepad++ application process. The other columns of that row
show the metadata related to this process. The second row
depicts a Windows Explorer.exe application running in the
system. An event related to file write is captured and this
is a benign data row as well. The third row represents a
malicious process running in the system. This was triggered
as part of ransomware and it is using the powershell.exe
application to carry out an unwanted operation in the system.
The shadow copies are storage extents that are duplicate copies
of the original volumes and can be used for back-up/restore in
case of system failures. Using the powershell.exe application,
the ransomware is trying to delete the shadow copy of the
volumes in the system. We can see in the command line that
it is using a combination of Get-CimInstance and Remove-
Cimlnstance scripting tools of the powershell.exe to carry
out its malicious task. The last row of Figure 4 represents
a malicious process named BlackByteEncryptor.exe which is
part of the BlackByte ransomware campaign. As the name
suggests, this is a dangerous process that is trying to encrypt
the files in the system. Encrypting the files, volumes in system
is a common technique used by ransomware to lock the user
out of the system and prevent access to the drives (system
storage). The command line columns of the fourth row shows
how this encryptor process is trying to encrypt a text file
available in a certain location.

C. Data Preprocessing

The dataset contains seven columns as depicted in Figure
4 with six columns for features and one column representing
the label. Each of these six features is text-based data. The
columns Process Name and Operation are categorical features,
and the columns Detail, Company, Command Line, and De-
scription are text data. These text-based features cannot be
used directly for training the models. Instead, they need to be
converted into numerical features. The categorical features are
converted into one-hot encoding and the text data columns are
converted into vectors of word embedding. To get the word
embedding, pretrained Stanford Glove word embeddings are
used [58]. The pretrained word embeddings provide vector
representation for several words. The package glove.6B.300d,
which contains pre-trained word vectors with 6B tokens, and
400k vocab with a vector of size 300 was used. The Out-
Of-Vocab words (any word for which vector representation
is not available in the package) are initialized to a random
vector of dimension 300 and stored so that the same vectors
are used for a word. The sentences are converted to vectors
by average pooling the word embedding of each word in the
sentence to get a final sentence embedding. Finally, to reduce
the number of dimensions, the sentence vector of each of the

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

Process Name Operation Detail Company

Description Command Line label

notepad++.exe Thread Create | Thread ID: 2440

Explorer.EXE WriteFile

powershell.exe RegEnumKey Index: 9, Name:
{CF78C6DE-64A2-4799-

B506-89ADFF5D16D6}

BlackByteEncryptor.exe | RegQueryValue | Type: REG_SZ, Length: 8,
Data: 2.0

Don HO don.h@free.fr

Offset: 4,366, Length: 242 | Microsoft Corporation

Microsoft Corporation

Notepad++ : a free System
(GPL) source code

editor

"C:\Program Files\Notepad++\notepad++.exe"

Windows Explorer C:\Windows\Explorer.EXE System

Windows PowerShell "powershell.exe" -¢ "Get-Ciminstance Malicious
Win32_ShadowCopy | Remove-Ciminstance"
BlackByteRansomware | C: Malicious

Encryption \Users\WDAGUtilityAccount\AppData\Local\Temp\BI
ackByteEncryptor.exe http://pcsdl.com/short-url-

v2/000917988986/forest _e486af8e-1d93-4a7e-

a9a0-87b94b0car1b.png C:
\Users\WDAGUtilityAccount\AppData\lLocal\Temp\te
st.txt

Fig. 4. Dataset Sample

features is again average pooled to get one final vector of size
300 that represents the four columns. The one-hot encodings
of the categorical columns are merged and combined into one
numerical array and this is further extended with the vector
representation of the four text columns to get a numerical
array of dimension 457 that represents one event in the dataset.
This is used to train SVM, Random Forests, Gradient Boosting
Decision Trees, and Logistic Regression models.

The dataset is processed in a different manner for the Naive
Bayes model. The features are joined by whitespace into a
single text sequence and are converted into a meaningful rep-
resentation of numbers based on the TF-IDF (Term Frequency
Inverse Document Frequency) vectorization method. This is a
method that takes into account the relevance and importance
of words in a corpus (collection of documents which is the
collection of all text sequences in this case). The relevance and
importance of words are derived from the occurrence count of
that word in a document and the number of documents in
which the word occurs. Each text sequence is converted into
a vector of length 17,125 (this is the number of unique tokens
in the document corpus).

In the case of the BERT model, the input is expected to be
a text sequence. Since each of the features is of type text data,
all the features are joined by whitespace into one text sequence
which is fed to the BERT-based tokenizer for encoding. The
BERT tokenizer can then use this text sequence to extract word
pieces that are encoded into numerical values and can be fed
into the model.

D. Model Training and Evaluation

The IDS needs to perform a binary classification to identify
a system call along with other metadata as malicious or non-
malicious. Since this is a binary classification task, models
such as Naive Bayes, Support Vector Machines, Logistic
Regression, Random Forests, and Gradient Boosting Decision
Trees classifiers are trained using the dataset. We also train
the NLP-based BERT model on the same dataset. We then
compare the results from all the aforementioned Al models.

The preprocessed dataset is split into training, validation,
and test sets in the ratio 7:1:2 respectively. This means 70%
of the data is used to train the model, 10% of the data is used
for validation, and the remaining 20% is used for testing and
computing the accuracy metrics of the models.

For the ML models, the entire training data is introduced
during the training stage. The validation and test sets are used
to evaluate the model after the training is completed. These
models are trained and evaluated on an MacBook Pro with M1
chip processor and 16GB memory. The scikit-learn package
was used to implement the machine learning classifiers. For
Naive Bayes classifier, MultinomialNB (multinomial Naive
Bayes) model was used with alpha (smoothing parameter) set
to 1.0. The logistic regression classifier LogisticRegression is
used with the following parameters — penalty (the norm of the
penalty term) used was ’12°, the C parameter (inverse of the
regularization strength) is set to 1.0, class_weight parameter
(weights associated with the classes) was set to ’balanced’
mode, the solver parameter (algorithm used in the optimiza-
tion problem) used was ‘newton-cg’, and the max_iter value
(maximum number of iteration to be used for convergence)
is set to 1000. The class SVC (support vector classification)
is used for the support vector machine model. The best
performing model was obtained with the following parameters
— the C parameter (regularization parameter) is set to 10, the
kernel parameter is set to 'rbf’, the gamma parameter (kernel
coefficient) is set to ’auto’ (this implies the algorithm will
use 1/n_features as the coefficient value). The random forest
model RandomForestClassifier was used with the following
parameters — n_estimators parameter (number of trees in the
forest) is set to 100, the criterion parameter (the function
to measure how the split happens and its quality) used was
’gini’, and the max_features parameter (number of features to
look for the best split) is set to ’sqrt’. Finally, the gradient
boosted decision tree model GradientBoostingClassifier was
used with the following parameters — loss parameter (the loss
function to be optimized) was ’log_loss’, the learning_rate (the
rate at which the contribution of each tree shrinks) is set to
0.1, n_estimators parameters (number of boosting stages to
perform) is 100, the criterion parameter (function to capture
the quality of the split) used was ’friedman_mse’, and the
max_depth (max depth of individual estimators) is set to 3.

For the NLP-based BERT model, a similar split of the
dataset is done with 70%, 10%, and 20% of the data for
training, validation, and testing, respectively. The BERT-based
model for sequence classification BERTForSequenceClassifi-
cation is used for the task. This model is a slightly modified

1627

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

version of the BERT base model with a linear layer over
the pooled output layer that can be fine-tuned and trained
for the classification task. The BERT base model is loaded
from a pretrained model that is available open-sourced “bert-
base-uncased.” This is a pretrained model over the English
language (Wikipedia and Google BooksCorpus) and it is a
case insensitive model. This pretrained model can be used to
load the models’ weights, parameters, and configuration for
the BERT base model encoder. The linear layer on the top
intended for classification is loaded with random weights. The
entire model (the embeddings layer, the encoder layers, and
the linear layer on top) is tuned and the weights are updated
as part of the model training step with the created dataset in
hand. As part of the training step, the data is fed to the model
in batches of 8 and the model was trained for 4 epochs. The
BERT model was trained and evaluated in Google Colab using
a GPU. The Nvidia Tesla T4 was available in Google Colab
for training and testing the BERT model.

The trained models are then evaluated against the validation
and test dataset. Both of these datasets are unseen by the
model before this step and each event in these datasets is
classified as malicious or non-malicious using the models. The
classification performed using the model is compared with the
actual labels of these events. The predicted labels and the
actual labels are assessed to get the evaluation metrics that
allow us to compare and evaluate the models.

V. RESULTS AND DISCUSSION
A. Results

After performing the experiments and generating the pre-
dictions on the test dataset of size 18,169 records, we now
compare the results on the basis of F1 score, Accuracy, and
the ROC plots.

TABLE 1
MODEL ACCURACY AND F1 SCORE
Classifier Accuracy (%) | F1 Score

BERT 99.98 1.00
Naive Bayes 98.55 0.984
Gradient Boosted DT 97.21 0.971
Random Forest 96.04 0.958
Logistic Regression 94.47 0.943
SVM 74.51 0.694

Table I summarizes the performance of each classifier in
terms of accuracy and F1 scores. We can see that the BERT
classifier has the highest accuracy and F1 score followed
closely by the Naive Bayes classifier. These are followed
by Gradient Boosting Decision Tree, Random Forests and
Logistic Regression classifiers in the order of decreasing
accuracy. The Support Vector Machine classifier has the least
accuracy and F1 score.

Figure 5 shows the receiver operating characteristic (ROC)
curves plotted for each model. The area under the curve
(AUC) computed for BERT is 1 indicating that is able to
distinguish between the two classes clearly. The AUC values
for Naive Bayes (NB) and Gradient Boosting (GB) Decision

Receiver operating characteristic (ROC curves)

|4

True Positive Rate

BERT Classifier
—— Naive Bayes Classifier
024 —— GB Tree Classifier
= Random Forest Classifier
—— Logistic Regression Classifier
SVM Classifier

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Fig. 5. ROC curves for the Classifiers

Receiver operating characteristic (ROC curves)

True Positive Rate

BERT Classifier

0.85 4 —— Naive Bayes Classifier

—— GB Tree Classifier

—— Random Forest Classifier

= Logistic Regression Classifier
SVM Classifier

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
False Positive Rate

Fig. 6. Zoomed view of the left Top part of ROC curves

Trees are almost equal to 1. This follows a similar trend to the
accuracy values and from Figure 6, we could see that, though
Naive Bayes model and GB Decision Tree model curves
seem similar, the green curve representing Naive Bayes covers
more area than the black curve representing GB decision tree.
These models are followed by Random Forest and Logistic
Regression models in decreasing values of AUC. The support
vector machine classifier represented by the yellow curve in
Figure 5 has the least area under the curve denoting its poor
classification performance on this dataset.

Of all the classification models used, NLP-based BERT
model has the best performance, being able to predict the
labels for the test set with a near perfect accuracy. The next
best performing model is the Naive Bayes Classifier. This is
followed by Gradient Boosting Decision Tree, Random Forest
Classifier and Logistic Regression Classifier in the order of
decreasing accuracy. The model with the least scores is the
SVM classifier. On comparing the models with respect to the
training time taken as shown in Table II, we can observe a
contrast with BERT taking the longest time for training. BERT
model took over six hours for four epochs of training. This
is followed by SVM classifier which took 5,190.30 seconds,
Naive Bayes Classifier took 21.92 seconds, Gradient Boosting
Decision Tree took 628.84 seconds, Random Forest Classifier

1628

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

took 98.65 seconds and Logistic Regression took 6.7 seconds.

B. Discussion

Our experiment and analysis demonstrate the capability
of machine learning and NLP-based techniques to develop
accurate IDS that can detect APT ransomware. The results
show that BERT model and Naive Bayes classifier had high
accuracy and are well suited for this use-case. BERT model
has the highest accuracy with a perfect F1 score of 1.0 and ac-
curacy of 99.98%. However, the downside of BERT is the high
computation requirement with training time of over 6 hours.
On the other hand, Naive Bayes Classifier has a slightly lower
F1 score of 0.984 and an accuracy of 98.55%. Furthermore,
the NB classifier requires a very low training time of around
22 seconds. In situations where accuracy is crucial and the IDS
achieving correct classification is important, NLP-based BERT
model can be utilized at the expense of longer training time.
However, in situations where we cannot afford such intensive
computation, training time, and an IDS needs to be trained
and run swiftly, the Naive Bayes Classifier can be used at the
cost of marginally lower accuracy.

The results illustrate that the NLP-based BERT model
performs exceptionally well when text-based data is involved.
It is the case with the dataset we created from the system call
information, which consists of the process name, operation,
detail, company, description, and the command executed in
the command line. The downside of the BERT model, as
discussed earlier, is its high computation power requirement.
Even with a GPU, the training time is significantly higher
than the machine learning models. In situations where one
cannot afford even a slight dip in accuracy, such as IDS in
systems for critical pipeline infrastructure or nuclear power
plants, it would be beneficial to use the BERT model that gives
the highest accuracy. In contrast, in situations such as shared
virtual machines (VMs) in an enterprise, having a dynamic
process environment due to new applications or test code
constantly installed and updated, one would require frequent
retraining of the model to capture non-malicious programs. In
such cases, where one can afford a marginally less accuracy
but require constant retraining of the models, it would be
beneficial to use the machine learning model (Naive Bayes)
that can be trained quickly.

TABLE I
CLASSIFIER MODELS AND THEIR TRAINING TIME

Classifier Training Time
BERT 6 hrs
Support Vector Machine (SVM) 5190.303s
Gradient Boosted Decision Tree 628.84s
Random Forest 98.65s
Naive Bayes Classifier (NBC) 21.92s
Logistic Regression 6.7s

VI. CONCLUSION AND FUTURE WORK

The usage of ML/AI in designing host-based intrusion
detection systems demonstrates the intriguing advancement

1629

for the apt detection of APT ransomware. In this paper,
we have created a dataset using system call information
that represents APT ransomware attacks. This dataset can be
utilized by researchers in future work to develop intrusion
detection systems and carry out research on APT ransomware.
We demonstrated the capability of classifier-based IDS, using
different classifier models that are machine learning-based and
NLP-based. Furthermore, we compared the models on various
evaluation metrics and discussed the trade-offs of choosing a
model. We provided a choice for the user to utilize one of
the above ML/AI models for intrusion detection. The user can
make the decision based on their requirements. If the user
wants a very high accuracy irrespective of the training time,
they can choose BERT. Whereas, if the user requires a faster
training time with reasonably good accuracy, they can go for
the Naive Bayes Classifier. Though we considered the design
and development of IDSes to address the need of the hour
(APT ransomware), the approach taken here can be suitably
altered to handle generic malware as long as the applications
lend themselves to be characterized by system call sequences.

For future work, we like to expand our research into
designing classifier-based IDSes with lesser computational
complexities and training time. Another aspect of research
extending the current work post intrusion detection would be
to identify the exact processes or script and their path in the
system that execute the malicious commands. Also, it will be
interesting to compare the NLP-based BERT model to other
deep neural network-based models such as recurrent neural
networks (RNN), long short-term memory networks (LSTM),
and evaluate the models based on accuracy, computation cost,
and ease of implementation.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under Grant No. DGE-2234945. Usual disclaimers
apply.

The authors would like to thank Picus Security for providing
access to their threat emulation platform. The dataset will be
made available by our research group with proper authoriza-
tion to facilitate further research on APT ransomware.

REFERENCES

[1]1 R. P. Baksi and S. J. Upadhyaya, “A comprehensive model for elu-
cidating advanced persistent threats (APT),” in Proceedings of the
International Conference on Security and Management (SAM), pp. 245—
251, The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp),
2018.

[2] P. 1. LLC, “The state of advanced persistent threats,” Ponemon Institute
Research Report, December 2013.

[3] Z. Clark, “The worm that spreads wanacryptOr,” Malwarebytes Labs,
May 2017.

[4] Secureworks, “Wery ransomware campaign,” Secureworks Inc., May
2017.

[5] T. Meskauskas, “How to uninstall wannacash ncov ransomware?,” PC
Risk, 04 2020.

M. Robbins, “Cyberattack hits indian nuclear plant,” Arms Control
Association, 12 2019.

W. Tourton and K. Mehrotra, “Hackers breached colonial pipeline using
compromised password,” Bloomberg, 06 2021.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

[8]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

(19]

[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34

=

[36]

C. Eaton and D. Volz, “Colonial pipeline ceo tells why he paid hackers
a $4.4 million ransom,” The Wall Street Journal, 05 2021.

T. M. Research, “What we know about the darkside ransomware and
the us pipeline attack,” Trend Micro, 05 2021.

R. P. Baksi and S. J. Upadhyaya, “Decepticon: a theoretical framework
to counter advanced persistent threats,” Information Systems Frontiers,
pp. 1-17, 2020.

R. Mehresh, “Schemes for surviving advanced persistent threats,” Fac-
ulty of the Graduate School of the University at Buffalo, State University
of New York, 2013.

V. Kumar and O. P. Sangwan, “Signature based intrusion detection
system using snort,” International Journal of Computer Applications
& Information Technology, vol. 1, no. 3, pp. 35-41, 2012.

W. Stallings, Cryptography and Network Security: Principles and Prac-
tice. USA: Prentice Hall Press, 6th ed., 2013.

E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven
computer network defense informed by analysis of adversary campaigns
and intrusion kill chains,” Leading Issues in Information Warfare &
Security Research, vol. 1, no. 1, p. 80, 2011.

LogRhythm, “The apt lifecycle and its log trail,” Tech. Rep., July 2013.
S. Singh, P. K. Sharma, S. Y. Moon, D. Moon, and J. H. Park, “A
comprehensive study on apt attacks and countermeasures for future
networks and communications: challenges and solutions,” The Journal
of Supercomputing, vol. 75, pp. 4543-4574, 2019.

S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1137-1152, IEEE, 2019.

F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 1777-1794,
2019.

W. Z. A. Zakaria, M. F. Abdollah, O. Mohd, and A. F. M. Ariffin,
“The rise of ransomware,” in Proceedings of the 2017 International
Conference on Software and e-Business, pp. 66-70, 2017.

D. Strom, “Beware of blackbyte ransomware,” Avast Blog, February
2022.

H. C. YUCEEL, “Ttps used by blackbyte ransomware targeting critical
infrastructure,” Picus Blog, February 2022.

T. M. Research, “Revil,” Trend Micro, 12 2021.

K. Dilanian, “Code in huge ransomware attack written to avoid com-
puters that use russian, says new report,” NBC News, 07 2021.

C. O. Release, “Blackmatter ransomware,” Cybersecurity & Infrastruc-
ture Security Agency, October 2021.

W. Labs, “Blackmatter ransomware targets food/agriculture sector,” Food
Engineering Magazine, 10 2021.

T. D. REPORT, “Real intrusions by real attackers, the truth behind the
intrusion: Diavol ransomware,” THE DFIR REPORT, 12 2021.

D. Neemani and A. Rubinfeld, “Diavol - a new ransomware used by
wizard spider?,” FORTINET Blog, 07 2021.

L. Abrams, “Fbi links diavol ransomware to the trickbot cybercrime
group,” BleepingComputer, 01 2022.

K. P. Robert McMillan and D. Volz, “Secret world of pro-russia hacking
group exposed in leak,” The Wall Street Journal, 03 2022.

I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
pp. 41-46, 2001.

T. Evgeniou and M. Pontil, “Support vector machines: Theory and
applications,” vol. 2049, pp. 249-257, 01 2001.

C.-Y.J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic
regression analysis and reporting,” The journal of educational research,
vol. 96, no. 1, pp. 3-14, 2002.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5—
32, 2001.

A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, p. 21, 2013.

M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation
of machine learning algorithms for intrusion detection system,” in
2017 IEEE 15th International Symposium on Intelligent Systems and
Informatics (SISY), pp. 000277-000282, 2017.

S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth, “The uci kdd archive
of large data sets for data mining research and experimentation,” ACM
SIGKDD explorations newsletter, vol. 2, no. 2, pp. 81-85, 2000.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51

[52]

[53]

[54]

[55]

[56]

[57]

[58]

1630

Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. 4150, 2021.

M. Tavallace, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications, pp. 1-
6, Teee, 2009.

L. Dhanabal and S. Shantharajah, “A study on nsl-kdd dataset for
intrusion detection system based on classification algorithms,” Interna-
tional journal of advanced research in computer and communication
engineering, vol. 4, no. 6, pp. 446-452, 2015.

C. Kruegel and T. Toth, “Using decision trees to improve signature-based
intrusion detection,” in International workshop on recent advances in
intrusion detection, pp. 173-191, Springer, 2003.

A. Hamza, H. H. Gharakheili, and V. Sivaraman, “Combining mud
policies with sdn for iot intrusion detection,” in Proceedings of the 2018
Workshop on IoT Security and Privacy, pp. 1-7, 2018.

M. A. Jamshed, J. Lee, S. Moon, 1. Yun, D. Kim, S. Lee, Y. Yi, and
K. Park, “Kargus: a highly-scalable software-based intrusion detection
system,” in Proceedings of the 2012 ACM conference on Computer and
communications security, pp. 317-328, 2012.

M. Alkasassbeh, G. Al-Naymat, A. Hassanat, and M. Almseidin,
“Detecting distributed denial of service attacks using data mining
techniques,” International Journal of Advanced Computer Science and
Applications, vol. 7, no. 1, pp. 436-445, 2016.

A. Halimaa and K. Sundarakantham, “Machine learning based intrusion
detection system,” in 2019 3rd International conference on trends in
electronics and informatics (ICOEI), pp. 916-920, IEEE, 2019.

P. K. Keserwani, M. C. Govil, E. S. Pilli, and P. Govil, “A smart
anomaly-based intrusion detection system for the internet of things
(iot) network using gwo—pso—rf model,” Journal of Reliable Intelligent
Environments, vol. 7, no. 1, pp. 3-21, 2021.

E. S. P. Krishna and T. Arunkumar, “Hybrid particle swarm and
gray wolf optimization algorithm for iot intrusion detection system,”
International Journal of Intelligent Engineering & Systems, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

A. Rahali and M. A. Akhloufi, “Malbert: Using transformers
for cybersecurity and malicious software detection,” arXiv preprint
arXiv:2103.03806, 2021.

N. Andronio, S. Zanero, and F. Maggi, “Heldroid: Dissecting and
detecting mobile ransomware,” in international symposium on recent
advances in intrusion detection, pp. 382—404, Springer, 2015.

A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi, “Shieldfs: a self-healing, ransomware-aware
filesystem,” in Proceedings of the 32nd annual conference on computer
security applications, pp. 336-347, 2016.

T. K. Tran and H. Sato, “Nlp-based approaches for malware classifi-
cation from api sequences,” in 2017 21st Asia Pacific Symposium on
Intelligent and Evolutionary Systems (IES), pp. 101-105, IEEE, 2017.

P. Najafi, D. Koehler, F. Cheng, and C. Meinel, “NIp-based entity
behavior analytics for malware detection,” in 2021 IEEE International
Performance, Computing, and Communications Conference (IPCCC),
pp. 1-5, IEEE, 2021.

Q. Wang, H. Yan, and Z. Han, “Explainable apt attribution for malware
using nlp techniques,” in 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS), pp. 70-80, IEEE, 2021.
P. Security, “Picus Security the complete security control validation
platform,”

B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and philosophy,”
in Technical report, The MITRE Corporation, 2018.

B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pen-
nington, and C. B. Thomas, “Mitre att&ck®: Design and philosophy,”
2020.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 1532—
1543, 2014.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 02,2024 at 21:24:56 UTC from IEEE Xplore. Restrictions apply.

