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Accurate quantitative description of the atmospheric fine particulate matter (PM2.5) burden requires an

understanding of aerosol amounts and properties that transcends measurement platforms. For example,

air quality studies often seek to describe ambient PM2.5 with columnar aerosol optical depth (AOD), point

measurements of mass, or some combination. PM2.5 chemical constituents affect such measurements

differently. We investigate the ratio of PM2.5-to-AOD (h) from 2005 to 2016 at multiple surface locations

across the contiguous U.S. using observations and models, and quantitatively account for PM2.5 sampling

bias of nitrate and aerosol liquid water (ALW). We find h peaks during winter and is lowest in summer at

all locations, despite contrasting seasonality in PM2.5 mass and AOD. Accounting for loss of nitrate and

ALW from PM2.5 monitors improves consistency among h calculations in space and time. Co-occurrence

of extreme PM2.5 mass concentrations and AOD events declined in the eastern U.S. but not in the west.

On peak days, in all locations, ALW mass concentrations are higher and fractional contributions are

larger relative to PM2.5 chemical composition during average conditions. This suggests an increased

fraction of ambient PM2.5 is detectable via optical methods but not well described by surface mass

networks on peak days. The Community Multiscale Air Quality (CMAQ) model reproduces similar spatial

and temporal variability in h to surface observations in winter and summer simulations at the beginning

and end of the analysis period. Accounting for sampling artifacts in surface monitors may improve

agreement with model predictions and remote sensing of PM2.5 mass concentrations. The poor

understanding of organic compounds and their PM2.5 sampling artifacts remains a critical open question.

Environmental signicance

Atmospheric ne particulate matter (PM2.5) adversely affects human health and the environment. A variety of sampling approaches, such as lter-based

measurements and optical techniques, exist to quantify the atmospheric aerosol burden. Each approach has advantages and each is prone to sampling bia-

ses that are, in part, a function of particle chemical composition. In this work, we seek to reconcile differences among aerosol optical depth (AOD) and PM2.5

mass measurements at surface sites in the contiguous U.S. We calculate the ratio of PM2.5-to-AOD with and without accounting for PM2.5 sampling biases due to

two individual chemical constituents for which we can explicitly estimate lter artifacts. We investigate the ability of the EPA's community Multiscale Air

Qualburnsity (CMAQ) model to reproduce observed ratios, and describe the predictive skill in the context of PM2.5 chemical constituents that are poorly
described in lter-based samples.

1 Introduction

Globally, exposure to ambient ne particulate matter (PM2.5) is
a leading cause of non-communicable disease such as worsened

cardiovascular health and increased mortality risks.1,2 Long
term, chronic PM2.5 exposure is harmful to human health, as is
acute exposure at high concentrations.3 Accurate, quantitative
understanding of PM2.5 trends and peak concentrations is
therefore critical to the management of air resources to safe-
guard human health. The U.S. Environmental Protection
Agency (EPA) and other regulatory bodies in the U.S. employ
surface monitoring networks to measure PM2.5 mass and
characterize chemical composition. For example, the EPA's
Chemical Speciation Network (CSN) measures 1-in-3 or 1-in-6
daily aggregated PM2.5 chemical composition predominantly
in and near urban areas.4 The Interagency Monitoring of
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PROtected Visual Environments (IMPROVE) network measures
ne aerosol mass and chemical composition predominantly in
national parks around the U.S. on a similar 1-in-3 daily
schedule.5 EPA's chief PM2.5 monitoring network measures
daily-aggregated and/or hourly concentrations across the
country, primarily located near populated areas.6 These
networks record improved air quality and visibility at many
locations over past decades, most notably in the eastern United
States and in localized sites of California.7,8 Recently, to improve
upon the spatial limitations of surface networks and increase
global coverage, satellite observations of columnar aerosol
optical depth (AOD) are frequently employed to understand
near-surface PM2.5.9 AOD products advance understanding of
the troposphere's PM2.5 burden and facilitate epidemiological
studies that link PM2.5mass concentrations to health endpoints
related to exposure.10–14

Application of once-or-twice a day satellite-derived clear sky
AOD to understand surface PM2.5 and its impacts are limited.
During cloudy times, quantitative understanding of tropo-
spheric composition from satellites is most uncertain and oen
not possible. At any given time most of the Earth's surface is
covered by clouds. Even during clear sky conditions, it is diffi-
cult to accurately assess surface PM2.5 with remotely retrieved
AOD in some locations. In the arid western contiguous United
States (CONUS), surface reectivity induces large uncertainty in
AOD.15,16 Further, the chemical speciation of atmospheric
particles via satellite is challenging, and toxicology and epide-
miology studies suggest PM2.5 chemical constituents, including
water soluble species, contribute differently to adverse health
impacts.17–20 Babila et al. (2020) hypothesize that including ALW
in PM2.5 mass concentrations may reconcile epidemiological
studies that nd positive statistical associations among sulfate
in ambient PM2.5 and health endpoints in the humid eastern
U.S. but not in the arid western U.S.21 ALW mass is largely
controlled by sulfate in the eastern U.S.,22 while nitrate, which is
more hygroscopic, is more abundant in the western U.S. PM2.5

mass surface monitors exhibit negative artifacts for nitrate,
organic species, and ALW from lter measurements,21,23,24 while
satellites observe aerosols in situ with the condensed phase of
these chemical species intact. This highlights the need to
reconcile independent aerosol observations across measure-
ment platforms.

Peak mass concentrations of PM2.5 and some constituents
are frequently not captured by satellite AOD products due to
satellite pass over times. The Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard the Aqua and Terra
satellites measures AOD and has nominal overpass times on
a sun-synchronous near-polar orbit of 10:30 a.m. (descending)
and 1:30 p.m. (ascending) local time,25,26 which does not
correspond to peak concentrations.27,28 During six weeks of
direct surface measurements during the Southern Oxidant and
Aerosol Study (SOAS),29 hourly ALW mass concentrations and
particle hygroscopicity peak at approximately 8 a.m.
Throughout the CONUS, peak values in ALW and nitrate mass
are perceived to occur on cloudy days22,30 when remotely sensed
AOD is least reliable. AOD and ALW mass concentrations are
both greater in the eastern CONUS, though reported PM2.5 mass

concentrations are oen higher in the west.31–33Over the CONUS
correlations between satellite derived AOD and surface PM2.5

mass concentrations are more strongly positive in the east.16,34,35

Several factors affect the PM2.5-to-AOD (h) relationship, such as
vertical distribution of particles and their intrinsic physico-
chemical properties that impact extinction, in addition to
surface reectivity.36,37 ALW mass and potentially other chem-
ical constituents, such as nitrate and organic material, not well
characterized by surface monitors also provide a plausible
contributing explanation for the differences among PM2.5-to-
AOD ratios.21,38

Recently, Jin et al. (2020) assessed h for the eastern CONUS
from 2003 to 2017.39 They employed once-a-day MODIS AOD
observations and daily integrated surface PM2.5 mass reported
at EPA regulatory monitors. Their ndings demonstrate
declining correlation between lter-based surface PM2.5 mass
and remotely sensed AOD, in addition to decreasing frequency
of co-occurrence for peak values of AOD and PM2.5 mass. PM2.5

mass concentrations decreased dramatically in the eastern U.S.
during their study period, most notably as a co-benet of acid
rain rules that also reduced sulfate concentrations.40–42 Mass
concentrations of ALW and detection of its optical extinction
also decreased in the eastern CONUS, contributing to improved
visibility.43–46

For most locales on a clear sky day with a well-mixed
boundary layer, PM2.5 and AOD are directly linked:

AOD ¼ PM2:5 �H � f ðRHÞ �
3�Qext;dry

4� r� reff
(1)

where H is the aerosol scale height (m),47 f(RH) (dimensionless)
is the ratio of ambient-to-dry extinction coefficients as a func-
tion of RH, Qext,dry is the Mie extinction efficiency of the dry
particle (cm−1), r is the mass density of aerosols (g m−3), and reff
is the effective particle radius (m). Eqn (1) is oen rearranged
and presented as eqn (2), and h is used to estimate near-surface
PM2.5 mass concentrations from satellite AOD.37,39,48

PM2:5

AOD
¼ h (2)

ALW is implicit in h. f(RH) is an estimate of the ALW-induced
change in aerosol radius, and the amount of liquid water affects
both r and reff directly.Qext,dry describes optical properties of dry
particle mass; however, the metastable state of ambient aerosol
is ubiquitous,49 and ALW is found in most ambient aerosol.33

Consideration of ALW can reconcile AOD and surface PM2.5

mass. Nguyen et al. (2016) nd that in the southeastern U.S.,
seasonality in AOD is more consistent with seasonality in ALW33

than surface PM2.5 mass.50 Additionally, Bergin et al. (2000) nd
better agreement between surface-measured and inferred AOD
from micropulse lidar proles of aerosol backscatter and
extinction when accounting for ambient RH and particle
hygroscopicity.51 Thus, accounting for ALW and other semi-
volatile PM2.5 constituents that exhibit negative mass artifacts
in surface monitoring can facilitate improved understanding of
the relationship between near-surface PM2.5 mass and
columnar AOD and how it changes in space and time.
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In this work, we evaluate hourly, daily, seasonal, and inter-
annual trends in h from 2006 to 2015 at multiple surface
monitoring locations across the CONUS, including the western
U.S. where satellite retrievals are more uncertain. Hourly
measurements of PM2.5 and AOD at surface locations facilitate
analysis of h over a day, which is useful due to large diurnal
changes in ALW and other variables that affect h. We investigate
the plausibility of semi-volatile PM2.5 chemical constituents lost
by regulatory surface PM2.5 monitors, to reconcile PM2.5-to-AOD
relationships across the CONUS over a recent ten-year period
during average conditions and at peak times. We quantitatively
estimate nitrate and ALW loss. We also examine the ability of
the EPA's Community Multiscale Air Quality (CMAQ) model,
which is used to develop and assess policy related to PM2.5,52 to
reproduce observed spatial and temporal trends in h.

2 Data and methods

We analyze h, AOD, and mass concentrations of PM2.5 and
chemical constituents at surface sites across the CONUS in
areas we classify as “humid” or “arid” based on average RH and
simulated ALWmass concentrations (Fig. 1 and Table S1†) from
2006 to 2015.

This date range encompasses declining PM2.5 mass
concentrations.40,42 Fig. 1a denotes 8 AERONET locations paired
with long-term PM2.5 chemical speciationmeasurements within
50 kilometers in red outlines. All other sites outlined in black
are studied in August 2015 and January 2016 only, and
compared with CMAQ as discussed below. The 8 AERONET sites
studied from 2006 to 2015 are depicted in Fig. 1b and c with
their respective paired PM2.5 mass concentration monitoring
stations. We use all available surface air quality measurements

for these 8 locations from January 2006 to December 2015 from
AERONET,53 IMPROVE,5 and CSN4,6 public archives. Selected
sites are chosen so that all network data records have at least
85% completeness for paired measurement days during the
study period and represent areas with different physical and
chemical climatology. We assume consistent surface and alo
aerosol during a given measurement for the matched stations.
This assumption is a limitation that adds uncertainty. We
employ AERONET surface-based estimates of columnar AOD at
440 nm in the Level 2.0 quality data product with 15 minutes (or
ner) time resolution as this wavelength has the greatest data
completeness at all sites.54 AERONET measurements are
aggregated to temporally match available hourly and daily PM2.5

mass concentrations and chemical speciation measurements.
IMPROVE and CSN report surface, lter-based PM2.5 mass
concentrations of sulfate, nitrate, organic carbon (OC), and
other species as 24 h integrated samples measured once every 3
or 6 days. We use meteorological categories for seasonal anal-
ysis and dene winter as December, January, February; spring
as March, April, May; summer as June, July, August; and fall as
September, October, November.

At IMPROVE and CSN locations, we estimate mass concen-
trations of ALW using the inorganic thermodynamic equilib-
rium model ISORROPIAv2.1 in the reverse, open-system
direction.55 The method is described in detail elsewhere;30

briey, we assume metastable particles and inorganic chemical
species are fully water-soluble. We employ hourly average values
of surface temperature, dew point temperature, and planetary
boundary layer (PBL) height at monitor locations from the
European Centre for Medium range Weather Forecasting
(ECMWF) ERA5 reanalysis product.56 We use daily averages of
both surface and dew point temperatures to calculate ambient

Fig. 1 (a) Surface monitoring locations and average aerosol liquid water (ALW) mass concentrations simulated by the regional air quality model

CMAQ for August 2015 paired in time with observational estimates. Triangles indicate sites in the “arid” region and circles indicate “humid” sites.

Blackmarkers indicate AERONET stations used for h comparisons with CMAQ in 2 simulations. Red triangles indicate AERONET stationsmatched

with PM2.5 mass and chemical composition monitors analyzed from 2006 to 2015 for (b) daily ambient PM2.5 measurements from the IMPROVE

Network (green squares), EPA's CSN (blue diamonds), Federal ReferenceMethod (FRM), and Federal Equivalence Method (FEM) monitors (orange

circles; Table S1†), and (c) hourly measurements.

© 2024 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2024, 4, 547–556 | 549
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surface RH as in Huang (2018).57 We calculate ALW for ambient
conditions and remove data points when RH values exceed
95%, which excludes less than 1% of all measurement days.
Nitrate is a dominant, hygroscopic, and semi-volatile PM2.5

constituent in the western U.S. well documented to exhibit
negative sampling artifacts in Federal Reference Method (FRM)
and Federal Equivalence Method (FEM) PM2.5 monitors.23,58 We
estimate nitrate volatilization from PM2.5 lters with relevant
chemical equilibrium reactions that describe partitioning
between the gas and condensed phase, accounting for the
deliquescence relative humidity (DRH, 62% at 25 °C).59 Appli-
cation of a similar approach to lter measurements in southern
California was shown to describe nitrate losses from Teon
lters well.23 We add the estimated loss to PM2.5 and the nitrate
values in ALW calculations. Chemical composition data is only
available for 24 h integrated samples. Six of the eight CSN
locations measure the ammonium ion. We estimate ALW with
and without ammonium as a sensitivity at these locations,
nding the inclusion of ammonium reduces predicted ALW
mass concentrations by 9%. Overall interpretation of decadal
trends do not change (Fig. S1†). As the IMPROVE network does
not report ammonium concentrations, ALW mass concentra-
tions reported here are calculated excluding ammonium for
consistency of analysis across networks.

We use a mass balance method to calculate organic mass
(OM) from total OC mass with site- and season-specic OM : OC
ratios.60–62 OM : OC ratios are calculated for every paired
measurement day with available OC data, then averaged by
season per site and applied to organic matter (OM) and organic
ALW calculations. Some sites did not begin measuring OC until
partway through the time period studied, preventing holistic
analysis of the organic contribution to ALW and total PM2.5

mass. We assess differences in peak and average mass
concentrations at four individual sites where OC is available for
the entire study period separately (Fig. S2†). ALW due to organic
constituents is estimated at IMPROVE locations in a sensitivity
analysis using a lower bound hygroscopicity parameter (k) of
0.05 to represent urban, anthropogenic aerosol and an upper
bound k of 0.3 to represent rural, biogenic aerosol. We nd
organic ALW contributes, on average, 1–9% of the total PM2.5

mass (Fig. S3†). For consistency of analysis across networks, the
lack of OC data at some sites, and the relatively small contri-
bution to overall PM2.5 mass, organic ALW is not included in
this analysis.

We calculate the ratio of PM2.5-to-AOD (h) at 440 nm at
AERONET sites with the network reported PM2.5 mass concen-
trations and with PM2.5 adjusted for losses calculated individ-
ually for nitrate and ALW for each valid measurement pair (i.e.,
AOD and PM2.5 mass) from 2006 to 2015. We calculate Pearson
correlations (rP) among measured values of PM2.5 mass
concentrations, sulfate, nitrate, AOD, and estimates of PBL
height in and from 2006 to 2015 for locations in the humid and
arid regions independently. We also examine the annual “hit
rate” of extreme events for PM2.5 mass and AOD at each loca-
tion. As described by Jin et al. (2020), a hit rate is dened as the
number of hits (days with peak PM2.5 and peak AOD) divided by
the sum of hits and misses (days with only peak AOD).39 We

compute an annual hit rate (q) at each location to determine the
co-occurrence of extreme AOD and PM2.5 mass concentration
events for paired measurements:

q ¼
days with AOD. 75% and ½PM2:5�. 75%

days with AOD. 75%
(3)

where the numerator is the number of days when both AOD and
PM2.5 mass exceed their locally determined 75th percentile and
the denominator is the number of days when only AOD exceeds
its 75th percentile, regardless of PM2.5 mass concentration on
those days. The 75th percentile is determined locally at each site
for each year in the studied period. We perform a linear
regression to determine the change in q over time. Values of q
closer to 1 indicate frequent co-occurrence of extreme PM2.5

mass concentrations and extreme AOD events, while values
closer to 0 indicate less co-occurrence of these events.

We evaluate the Community Multiscale Air Quality (CMAQ,
version 5.3.3)63 model's representation of h compared to surface
measurements during a representative summer and wintermonth.
CMAQ simulations for the CONUS employ a 12 km × 12 km
horizontal grid resolution using meteorological inputs from the
Weather Research and Forecasting model (WRFv4.1.1). Anthropo-
genic and biogenic emissions are based on the EPA's Air Quality
Time Series (EQUATES).64 In our simulation, we represent gas-
phase chemistry with the Carbon Bond (version 6.3) mechanism,
and the particle microphysics with the aero7 submodel.65 We
perform four simulations representative for summer and winter,
each for two months, employing year-specic emissions and
average meteorology. For summer, we simulate July to August in
2005 and 2015, and for winter, December to January in 2005 to
2006 and 2015 to 2016, where July and December are regarded as
spin up periods, respectively, and are not included in the analyses
presented here. August is used to describe a representative summer
month and January a representative winter month. CMAQ-derived
h is calculated for each day and hour of the month matched to
surface sampling days in space and time. The version of CMAQ
utilized does not account for nitrate losses in the PM2.5 mass
concentrations, and the paired surface observations similarly only
utilize the network-reported PM2.5 mass concentrations for this
analysis. We use all available data from all sites and present
monthly averages. We compare CMAQ-simulated AOD available at
550 nm with AERONET AOD at 440 nm. Lower AOD values are
expected at 550 nm than 440 nm due to the spectral dependence of
AOD.54 Four of the AERONET stations (Fresno (FRES), Bondville
(BOND), Goddard Space Flight Center (GSFC), Maryland Science
Center (MDSC)) have nearby stations that measure hourly PM2.5

mass concentrations in August 2015 and January 2016 (Fig. 1c),
which we compare to diurnal patterns during daylight hours in
CMAQ model simulations. All data processing and signicance
tests are conducted with R statistical soware66 and relevant data
are available at the related repository.67

3 Results and discussion
3.1 Temporal and spatial analysis

All estimates of h calculated with reported or adjusted PM2.5

mass concentrations exhibit the same seasonal pattern at both

550 | Environ. Sci.: Atmos., 2024, 4, 547–556 © 2024 The Author(s). Published by the Royal Society of Chemistry
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humid and arid locations from 2006 to 2015, despite contrasting
patterns in PM2.5 and AOD (Fig. 2). h peaks in winter and is
lowest in the summer. PM2.5 mass concentrations are highest at
locations in the western arid region and peak in the winter, up to
a factor of 4 times greater than summertime values. At sites in
the humid eastern U.S., PM2.5 mass peaks in the summer
and seasonal differences are considerably less. Conversely, AOD
is highest at humid locations, with pronounced seasonality
(factor of 3) not observed at western sites.

At the arid sites, the wintertime peak in h is driven by greater
PM2.5 mass concentrations and lower AOD. At the humid loca-
tions, the wintertime peak in h is driven primarily by lower AOD.

ALW and nitrate are plausible contributors to the spatial and
temporal patterns in h. AOD observational techniques observe
ambient aerosol unperturbed, while PM2.5 surface monitors
exhibit negative sampling artifacts for nitrate, organic species,
and largely remove ALW.21,24 In the eastern U.S., non-volatile
sulfate mass peaks during summer and plays a predominant
role in aerosol physicochemical properties, in particular water
uptake. The seasonality in AOD and ALW mass concentrations
at humid locations is similar. Further, PM2.5 mass concentra-
tions and AOD decline at eastern surface sites over the time
period, consistent with previously noted observations
(Fig. S4†).40,43–46 Western arid sites do not exhibit a decline in
sulfate, ALW, or AOD from 2006 to 2015. Nitrate contributes
substantially to particle mass and hygroscopicity in the western
U.S., especially during winter when thermodynamics favor the
condensed phase. Consistency among h estimates for the
humid and arid locations is noted with these adjustments
applied, most notably in wintertime peak values (Fig. 2c and f).
When adjusting h (Fig. 3), calculations for the humid sites
change the most substantially to better match the h distribution
at arid locations. Accounting for ALW, Nguyen et al. (2016)

could better reconcile surface PM2.5 collected on lters with
remotely sensed AOD,38 similar to ndings here where the
addition of ALW to PM2.5 mass concentrations improves
correlation with surface AOD (Fig. S5†).

At sites in the eastern humid U.S., average AOD values and
surface mass concentrations of PM2.5, nitrate, sulfate, and ALW
estimates signicantly decline. Only nitrate mass signicantly
declines at arid western sites (Table S2†). Estimated ALW mass

Fig. 2 Time series of (a) monitor-reported PM2.5 mass concentrations (lower line) with nitrate corrections applied (shaded region) (b) aerosol

optical depth (AOD, 440 nm), (c) h calculated using reported PM2.5 mass, (d) nitrate mass concentrations (lower line) with nitrate corrections

applied (shaded region), (e) aerosol liquid water (ALW) mass concentrations, and (f) hadj calculated with ALW and nitrate corrections applied to

reported PM2.5 mass for the 8 AERONET locations in the humid (dark blue) and arid (dark gold) regions studied from 2006 to 2015.

Fig. 3 Histograms representing the distribution of (a) h calculated

using reported PM2.5 mass and (b) hadj calculated with ALW and nitrate

corrections applied to reported PM2.5 mass for the 8 AERONET loca-

tions in the humid (blue) and arid (gold) regions studied from 2006 to

2015.

© 2024 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2024, 4, 547–556 | 551
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concentrations, and how they differ for arid versus humid
locations seasonally and over the studied decade, is consistent
with the observed trends in AOD. Liquid water is a plausible
contributor to these trends.

Particle chemical composition varies at the humid and arid
sites to affect the amount of ALW, which inuences particle size
and subsequently AOD. At the arid locations, AOD correlates
positively with nitrate, sulfate, and PM2.5 mass concentrations
in 2006. In 2015, all species exhibit weaker but positive corre-
lation with AOD (Fig. 4). At the humid locations, positive
correlations between AOD with sulfate and PM2.5 also decline
from 2006 to 2015 (Movie S1†).

Nitrate is slightly anti-correlated with AOD in both years and
across the decade. Negative correlation for all variables with
PBL height is noted across all analyzed sites. PBL height is
greatest in summer and lowest in winter across the CONUS
(Fig. S4†). The western sites demonstrate greater variability in
and stronger anti-correlation of all variables to PBL height
relative to locations in the eastern U.S. These spatial and
seasonal trends over the decade in the fractional contribution of
aerosol chemical constituents at eastern sites is consistent with
earlier ndings regarding trends in sulfate mass, haze, and

visibility, optical indicators of ambient particulate matter
burden similar to AOD detection, with changing optical prop-
erties detected with AOD measurements.68,69

Mean mass concentrations of ALW, nitrate, and sulfate are
higher on peak (extreme PM2.5 mass and extreme AOD) days at
humid and arid locations alike (Fig. 5). Comparison of average
and peak day PM2.5 chemical composition for each site illus-
trates the impact of semi-volatile species and their detection in

situ with satellites versus regulatory lters. Over the studied
decade, PM2.5 mass and chemical composition are relatively
similar for average days at individual sampling sites. Peak day
concentrations decline by 50% or greater at sites in the humid
region. On peak days when PM2.5 mass concentrations and
AOD are elevated, the fractional contributions of ALW and
sulfate are larger. For the two arid sites, average and peak day
chemical composition mass is nearly identical in both 2006
and 2015 for the Red Mountain Pass (RDMP) and Fresno
(FRES) locations. The contribution of nitrate is greater for the
Fresno site compared to all other sites. At the four locations
where OC is measured throughout the decade, contributions
from OM are similar on average days in 2006 and 2015, but
peak day fractional contribution of OM increases at all sites,
with the exception of the Bondville (BOND) site (Fig. S2†). The
precise sampling artifacts of lter-collected OC are difficult to

Fig. 4 Pearson (rP) correlations for aerosol optical depth (AOD) at

440 nm, planetary boundary layer (PBL) height, PM2.5, nitrate, and

sulfate mass concentrations for sites in the (left) humid and (right) arid

regions in (top) 2006, (center) 2015, and (bottom) interannually from

2006 to 2015. Red and positive numbers indicate positive correlation,

blue and negative numbers anti-correlation, and gray little to no

correlation between two variables. From 2006 to 2015 for the 6 humid

locations N = 25 211 days, and for the 2 arid sites N = 4858 days.

Fig. 5 Sum of measured species that contribute to PM2.5 chemical

composition consisting of non-volatile species (sulfate, dust (calcium,

magnesium, potassium), NaCl) and semi-volatile species (nitrate,

aerosol liquid water (ALW)) on average (top) and peak days (bottom,

where AOD and PM2.5 are both above their locally determined 75th

percentile) for the 8 AERONET stations analyzed in 2006 (left bars) and

2015 (right bars).
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quantify and may contribute to variation in PM2.5-to-AOD (h)
values.

Collectively and individually, all humid locations exhibit
a signicant decline in annual hit rate (q) from 2006 to 2015,
while the arid locations do not (Fig. 6). The decrease in co-
occurrence of extreme reported and adjusted PM2.5 mass
concentrations and AOD values suggests diminishing ability of
satellite AOD to estimate peak values of near-surface PM2.5 at

eastern locations.39 Addition of ALW and nitrate to daily PM2.5

mass concentrations at BOND renders the change statistically
insignicant. For the arid west locations, peak AOD and surface
PM2.5 mass concentrations co-occur at similar rates from 2006
to 2015, with no signicant change in annual hit rate with or
without ALW and nitrate adjustments. The sites with signi-
cantly decreasing q had hit rates of about 70% co-occurrence of
peak AOD and PM2.5 events in 2006 and declined to approxi-
mately 38% co-occurrence or less in 2015. Additionally, sites
with declining hit rates had fewer days with elevated PM2.5mass
concentrations later in the decade compared to earlier in the
decade. The number of peak AOD days varied less. Alo aerosol
is becoming more prevalent due to wildres and contributes to
AOD and surface PM2.5 differently,70–73 consistent with declining
hit rates in the east.

3.2 Comparison of observations with CMAQ

Spatial and seasonal patterns in CMAQ-simulated and
AERONET-observed h are identied in the summer and winter
simulations (Fig. 7). In both the observations and CMAQ
predictions, h peaks in winter and is lowest in the summer
across the CONUS, similar to the seasonal patterns in Fig. 2.
Localized peaks in h in January at surface network sites in the
California Central Valley and the Colorado Plateau near Denver
are also present in the CMAQ prediction. Table S3† provides
performance metrics for CMAQ indicating that particularly in
winter, CMAQ predicts h well, both in 2006 and 2016. CMAQ's
replication of localized and regional patterns in surface obser-
vations in summer and winter simulations and decadal changes
highlight that this regulatory model is a reliable source, when
either satellite AOD retrievals or PM2.5 monitors are scarce.

Fig. 6 Annual rate of change in hit rates (q) for peak values of PM2.5

mass concentrations and AOD for the 8 AERONET stations analyzed

from 2006 to 2015 with reported PM2.5 mass concentrations (q re-

ported) and aerosol liquid water and nitrate adjustments (q adjusted).

As reference, the qadj in 2006 is indicated by color. Triangles represent

“arid” regions and circles indicate “humid” regions. A red outline indi-

cates statistical significance (p < 0.05).

Fig. 7 Every third day monthly averaged eta (h) simulated by CMAQ with monthly averaged surface network observations (obtained every third

day) overlaid in white outlined triangles (“arid” region) and circles (“humid” region) across the CONUS for (a) August 2005, (b) January 2006, (c)

August 2015, and (d) January 2016.

© 2024 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2024, 4, 547–556 | 553
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Diurnal patterns in simulated and observed h are similar at
all sites (see Fig. 8 and S7†), with the largest differences
occurring at humid locations during the summer in the
morning (Fig. 8). CMAQ predictions of h are offset higher rela-
tive to observations, consistent with the utilization of a smaller
wavelength used for AOD in CMAQ versus AERONET due to the
spectral dependence of AOD.54 Observed and modeled h peaks
at or before local 9:00 a.m. in both seasons at all locations, prior
to Aqua and Terra pass over times. The greatest differences
between measured and modeled hourly h values occur for the
sites with larger ALW mass concentrations (MDSC, GSFC,
BOND; Fig. S6†). Summertime differences in h are minima near
midday. ALW mass concentrations during SOAS were highest
from 8:00 to 9:00 a.m. and lowest during midday,74 similar to
trends in the differences between CMAQ-simulated and surface
estimated h at humid locations. In the winter when ALW mass
concentrations are low for all sites, differences between the
model and observations throughout the day are small.

4 Conclusions

Chemical composition of semi-volatile species not well-
characterized in reported PM2.5 mass measurements is a plau-
sible contributing explanation for spatial, diurnal, seasonal and
decadal patterns in the PM2.5-to-AOD relationship at multiple
locations across the CONUS from 2006 to 2015. ALW and nitrate
are semi-volatile PM2.5 constituents for which we can estimate
losses. Accounting for their negative mass artifacts in PM2.5

surface mass improves agreement in median and peak h values

across arid and humid surface-based sampling locations.
Patterns in the associations among AOD and hygroscopic PM2.5

constituents that differ in space and time are consistent with
particle hygroscopicity and water uptake exhibiting a deter-
mining impact on AOD. There are other semi-volatile species
known to inuence AOD, such as organic PM2.5 constituents,
but their sampling biases are difficult to quantitatively describe.
EPA's chief air quality modeling tool, CMAQ, replicates average
summertime and wintertime surface-based geospatial patterns
in observed h in the winter and summer across the CONUS. The
co-occurrence of peak AOD and PM2.5 events decline at humid
sampling locations, but not arid. Chemical composition during
peak events, most notably for sulfate and ALW, declined
substantially from 2006 to 2015 in those locations, but not at
western arid sites. Specic accounting of semi-volatile species
can be useful to reconcile PM2.5 measurements across sampling
platforms.
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Environ. Challenges, 2021, 5, 100350.
19 T. Fang, H. Guo, L. Zeng, V. Verma, A. Nenes and R. J. Weber,

Environ. Sci. Technol., 2017, 51, 2611–2620.
20 M. L. Bell, F. Dominici, K. Ebisu, S. L. Zeger and J. M. Samet,

Environ. Health Perspect., 2007, 115, 989–995.
21 J. E. Babila, A. G. Carlton, C. J. Hennigan and V. P. Ghate,

Atmosphere, 2020, 11, 194.
22 A. E. Christiansen, A. G. Carlton and B. H. Henderson,

Atmospheric Chemistry and Physics Discussions, 2020, 1–26.
23 J. C. Chow, J. G. Watson, D. H. Lowenthal and

K. L. Magliano, J. Air Waste Manage. Assoc., 2005, 55, 1158–
1168.

24 B. J. Turpin, P. Saxena and E. Andrews, Atmos. Environ., 2000,
34, 2983–3013.

25 L. A. Remer, S. Mattoo, R. C. Levy and L. A. Munchak, Atmos.

Meas. Tech., 2013, 6, 1829–1844.
26 R. C. Levy, S. Mattoo, L. A. Munchak, L. A. Remer,

A. M. Sayer, F. Patadia and N. C. Hsu, Atmos. Meas. Tech.,
2013, 6, 2989–3034.

27 B. Gantt, R. C. Owen and N. Watkins, Environ. Sci. Technol.,
2021, 55, 2831–2838.

28 Z. Eskandari, H. Maleki, A. Neisi, A. Riahi, V. Hamid and
G. Goudarzi, J. Environ. Health Sci. Eng., 2020, 18, 723–731.

29 T. K. V. Nguyen, M. D. Petters, S. R. Suda, H. Guo, R. J. Weber
and A. G. Carlton, Atmos. Chem. Phys., 2014, 14, 10911–
10930.

30 M. M. Flesch, A. E. Christiansen, A. M. Burns, V. P. Ghate
and A. G. Carlton, ACS Earth Space Chem., 2022, 6, 2910–
2918.

31 A. G. Carlton and B. J. Turpin, Atmos. Chem. Phys., 2013, 13,
10203–10214.

32 S. Li, M. J. Garay, L. Chen, E. Rees and Y. Liu, J. Geophys. Res.:
Atmos., 2013, 118, 11228–11241.

33 T. K. V. Nguyen, Q. Zhang, J. L. Jimenez, M. Pike and
A. G. Carlton, Environ. Sci. Technol. Lett., 2016, 3, 257–263.

34 J. A. Engel-Cox, C. H. Holloman, B. W. Coutant and
R. M. Hoff, Atmos. Environ., 2004, 38, 2495–2509.

35 J. Li, B. E. Carlson and A. A. Lacis, Atmos. Environ., 2015, 102,
260–273.

36 J. D. Stowell, J. Bi, M. Z. Al-Hamdan, H. J. Lee, S.-M. Lee,
F. Freedman, P. L. Kinney and Y. Liu, Environ. Res. Lett.,
2020, 15, 094004.

37 A. van Donkelaar, R. V. Martin and R. J. Park, J. Geophys. Res.:
Atmos., 2006, 111, 1–10.

38 T. K. V. Nguyen, V. P. Ghate and A. G. Carlton, Geophys. Res.
Lett., 2016, 43, 11903–11912.

39 Q. Jin, P. Crippa and S. C. Pryor, Atmos. Environ., 2020, 239,
117718.

40 J. L. Hand, B. A. Schichtel, W. C. Malm and M. L. Pitchford,
Atmos. Chem. Phys., 2012, 12, 10353–10365.

41 W. Aas, A. Mortier, V. Bowersox, R. Cherian, G. Faluvegi,
H. Fagerli, J. Hand, Z. Klimont, C. Galy-Lacaux,
C. M. B. Lehmann, C. L. Myhre, G. Myhre, D. Olivié,
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