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Abstract

New technologies such as low-cost nodes and distributed acoustic sensing (DAS) are
making it easier to continuously collect broadband, high-density seismic monitoring
data. To reduce the time to move data from the field to computing centers, reduce
archival requirements, and speed up interactive data analysis and visualization, we
are motivated to investigate the use of lossy compression on passive seismic array data.

In particular, there is a need to not only just quantify the errors in the raw data but also

the characteristics of the spectra of these errors and the extent to which these errors
propagate into results such as detectability and arrival-time picks of microseismic
events. We compare three types of lossy compression: sparse thresholded wavelet com-
pression, zfp compression, and low-rank singular value decomposition compression. We

apply these techniques to compare compression schemes on two publicly available Cite this article as Issah, A. H. S., and
datasets: an urban dark fiber DAS experiment and a surface DAS array above a geo- E. R.Martin (2024). Impact of Lossy
. . . . Compression Errors on Passive Seismic
thermal field. We find that depending on the level of compression needed and the Data Analyses,Seismol.Res. Lett. 95,
importance of preserving large versus small seismic events, different compression 1675-1686, doi: 10.1785/0220230314.
schemes are preferable. Supplemental Material
Introduction are needed to capture key features of the daftorts in lossy

Innovations in seismic instrumentation have given rise to a vaxdmpression oeismic data have been skewed toward active

ety of ways of gathering data. Two major innovations are the seiemic data and in the pasthave often focused on wavelet

of low-costseismic nodes and fiber-optic distributed acoustic decomposition and the discrete cosine transform (Bosman

sensing (DAShoth of which enable the recording of high-fre- and Reiter,1993;Donoho et al.,1999;Averbuch et al.2001).

guency data on many closely spaced senforsexamplethe  More recently, the advancement of machine learning has given

Penn State Fiber-Optic foR Environment SEnsEing (FORESEEg to more efforts toward using autoencoders for the compres-

project recorded urban environmental seismic data at 500 sasien of active seismic data (Valentine and Tramp2€t]2).

ples per second across 4189 m of fiber-optic cable at 2 m spacihmthis article, we provide a quantitative assessment of the

(Zhu et al., 2021; Spica et al., 2023) and the PoroTomo Natusaiitability of three methods—wavelet decomposition, zfp float-

Laboratory at Brady’s Hot Springs shared geothermal produdtignpoint compression, and low-rank singular value decompo-

and microseismicity data at 1000 samples per second acrosssBi@gm(SVD) approximation—for compressing passive seismic

of cable at 1.021 m spacing (Coleman, 2016; Feigl et al., 201@iaAThis assessment focuses on the errors in analyses rather

sample of just nine DAS experiments (including these two) ptban the error in the raw dataWe choose these methodis,

duced more than 750 TB of DAS data from 2015 to 2@2d, part, because of the potentidior analytical bounds on these

this substantially faster rate of data acquisition (in comparisorrrors’ propagation. We give a brief overview of these methods,

with long-period seismometers or nodatrays) has inhibited their comparison in different metrics for assessing the integrity

geoscientists’ ability to quickly access, analyze, and visualizeoftresenstructed datand the effect of compression on event

new data sources (Lindsey and Mar2921). detection.In addition, we have released open-source software
One solution to reduce the volume of seismic data is com-to enable easy application of these error analysis workflows to

pressionwith higher compression ratios commonly achieved additional compression schemes and datasets in the future.

through the use of lossy compression techniques. However, lossy

compression techniques introduce data err@q we need to

quantitative]y compare the various options for reducing data 1. Colorado Schoolof Mines, Golden, Colorado, U.S.A., @ https://orcid.org/0000-

. . L .0002-4794-2754 (AHSI); ® https://orcid.org/0000-0002-3420-4971 (ERM);

storage and data movement during passive seismic processifgsqinia Tech. Blacksburg Virginia, U.S A,
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Background The error in approximation E is then

Here, we provide an introduction to three types of compression

that are frequently applied to reduce the size of spatiotemporgl X %_18 X1 _ 4

scientific data: wavelet compression (1D and 2D), zfp compres- MU i jn o and

sion, and SVD compression. We use two publicly available DAS

datasetdor testing and comparing these compression tech- If a large enough T is selected, this approximation has few non-

niques’effects on the characteristics afompressed data and zero coefficients that can be encoded to achieve compression.

the errors incurred in the results of event detection workflowsHence,the threshold determines the amount of compression

These data include one urban dark fiberdatasetcalled the  and the associated error in the approximation.

FORESEE data, and one geothermal microseismicity monitoring

dataset, called the Brady’s Hot Springs data. Here, we providaCawavelet compression

overview of the compression schemes and datasets. ThrougAauéxploit additional redundanciesin 2D datasets, wavelet

this articlethe compression factor is defined as the ratio of theompression can be performed using 2D wavelet decomposi-

size of the originatlata to the size of the compressed data. tion (Villasenor et al., 1996).In this approach,separable 2D
waveletsderived from 1D wavelets are used to decompose

1D wavelet compression the data in both dimensions. For 2D data, f, the wavelet decom-

Given a time-domain signal f(t), we can represent it in terms pbsition can be computed as follows:

a spanning set of wavelet functionEhis spanning set is gen- o

erated using scaled and translated versions of a mother wavelet X R-1X-

1 1 2 2
function, g, and a father waveletfunction, ¢. The discrete dimny jmn d fM0Y o,

jL1 m0 nO
wavelet transform of fcan be computed as follows: o150
| -1 X1
J -1 01
XX X d 3mny3 ... amn® ., 5
f any , and o 1 ! b mo  no o
jL1 n0 n0

in which the inner productsndhf .y ;.iand gn hf, i, in which ', y?, y?, and ®x,y are the 2D wavelets and are
denote the detail and approximation wavelet coefficients, respemputed from the 1D wavelets as w'x,y oxyy,

tively. =L > 0 is the number of nested subspaces, correspondg’tqy Wxdy, Wiy wxyy, and ®x,y

the number of scaling levels represented in the wavelet basispepgl ~ The coefficients dm,n, d?m,n, and d’m,n are
is related to the number of discrete points in f, thatis, N-.2  referred to as detail coefficients, apu,a are called approxi-
The functions g and ¢, are the scaled and translated versiongation coefficientsSimilar to the 1D casewe can threshold
of the mother and father wavelets, respectively, and are defirthd asefficients to achieve compression with approximation

follows: error.
1 X-n 1 x-n High-dimensional wavelet compression has been studied to
WX 95”’ N and ¢; ,x pad’ 5 2 achieve higher compression rates for active source seismic data

] ) ] organized by streamer number, shot number, sensor, and time
Typically, this representation has a small number of large- dimensions (Villasenor et al., 1996). For passive DAS data, we

magnitude wavelet coefficients around and leading to areas %vestigate how 1D wavelet compression does in comparison
high amplitude in time (Mallat, 2009). This property allows th¢, 5y compression considering the differentchannels asa

application of the wavelet transform for denoising (Donoho, dimension in space in addition to the recording in time.
1995) or for the preservation of events when used for compres-

sion Villasenor et al. (1996). For a predetermined threshold Tzfp floating-point compression

we can construct an approximation of our signal, The zfp compression technique uses processes such as block
X X X1 transforms and embedded codingommonly used in image
f diny j, and y, compression, to perform compression that is suitable for a vari-
Lt no no ety of floating-pointscientific dataas detailed by Lindstrom
X XK1 x-1 (2014).We briefly outline the process hefeor d-dimensional
- diny j, and data, the data array is sectioned into blocks' afaduesyhich
L1 no no are assumed to be approximately continuous within any block.
an 0, jagnj=T Each block is compressed separately; the following are the steps
J an-Txsigna jn, janj>T during compression that may introduce some errors:
~ 0, jdinj=sT _ . . g
dn 3 1. Convert floating point valuesin the 4 ¢ block to scaled

dn-Txsignd jn,  jdjnj>T integers with a common exponent.
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2. Perform a block transform to introduce some sparsity into The FORESEE data
the integer representation. To study the use of lossy compressed data for passive data
3. Encode the numbers in the sparse representation only. Théxploration, we used data from the FORESEE urban DAS
encoding takes sparsity into consideration and only uses agtudy. This study’s publicly available data were continuously
many bits as required to save nonzero entriise process recorded between ApriR019 and October 202 Tresulting in
also allows for specified bits to be allocated for each block~46 TB of data (Zhu et al., 2021). The data examplesin
(fixed rate), the number of binary exponentsto encode  Figure 1 illustrate two instances of recordings in the dataset,
(fixed precision), and the maximum error allowed for eachone with a few events due to thunder earthquakesgnd the
floating point value (fixed accuracy). other with 30 min of passive data with vehicles and noise
due to infrastructure. These examples provide visuialsights
Although Wade (2020) released a zfp formaénd imple-  into the characteristics of the recorded datégcilitating sub-
mentation designed to handle triggered active-source seismisequentdata exploration, analysis,and interpretation. This
data formats here we use the generafp implementation to  datasetcontains recordings ofsignals like these and others
align with a wider variety of zfp error analysisstudies. from both natural and anthropogenic sourcesproviding a
Although this article focuses on analyzing the errors intro- comprehensive representation dhe seismic activity in the
duced in passive seismic data workflows, other teams have pmsan environment (Zhu and Stensrud, 2019; Zhu et al., 2021).
viously studied the numericakrror due to zfp (Diffenderfer
et al., 2019) and its effect on workflows for severalfluid = The Brady’s Hot springs data
dynamics and plasma physics problems as well as climate mbd-study the use of lossy compressed data for microseismicity
els (Laney et al., 2013; Baker et al., 2016; Poppick et al., 202@tection and extraction of arrival times for tomographic imag-
ing, we used data from the Brady’s Hot Springs geothermal field.
SVD compression This was recorded in 2016 in Nevada as part of an investigation
The SVD can be used to decompose data represented in maimbo the feasibility of using DAS for cost-effective monitoring of
form into the product of three matrices: the left singular vectoggothermal reservoirs. The data consist of ~8.7 km of fiber-optic
a diagonal singular value matrix, and the right singular vectorsable deployed horizontally in a shallow backfilled trench, with
in which the singular values represent the amount of variatior i621 m channel spacing. The data, which were shared publicly,
the data explained by each singular vector. SVD has been wiglglysampled at 1000 samples per second and recorded ~40 TB of
used in various scientific fields (e.gignalprocessingimage data in 15 days (ColemaB016).The dataset recorded micro-
compressiondata mining,and machine learning) because of seismic activities thahave been previously studied and cata-
its ability to identify and capture the highest possible amountloged (Liand Zhan,2018).We take advantage of the existing
of variability in the data.Seismic data collected through DAS workflow and resulting catalog to compare the detectability
can be organized as “channels by samples” to obtain seismicofletaents and arrival times in various types of compressed data.
matrices.The application of SVD to these matrices offers a
unique opportunity to decouple the channelsand samples Computational Experiments
and enable efficient processing (Mart2)19). Errors are expected in lossy compressed seismic data, and these
Although constructing the full SVD can be computationallyerrors can affect the quality of the data as wedk the results
expensiverandomized SVD is a powerfuand efficient algo-  obtained from seismic processing workflows. These errors can
rithm for computing partial SVD of large-scale matrices usingcause distortions in the seismic waveforms and may propagate
randomized projection methods to quickly approximate the through the seismic processing workflow, affecting subsequent
dominant singular vectors and singular values. One of the pristeps such as imaging and inversidiitimately, this can lead
mary benefits ofrandomized SVD is its ability to efficiently  to interpretation errors based on seismic propertiesaging,
decomposelarge matrices storing high-dimensional data  and inversion results. Therefore, it is crucial to carefully evalu-
(Halko et al., 2011). This makes it an attractive tool for a wideate the effects of lossy compression on seismic data and the
range of scientific applications.Given data stored a matrix  extent to which these propagate through processing workflows.
D e RN*Nt | in which N is the number of channelsr is the Here, we present several experiments designed to explore how
rank;and N, is the number of time sample$o achieve com- errors from varying compression types and ratios propagate
pression,we constructa low-rank (rank, r) approximation, into (1) the level of noise in the data,(2) the distribution of
D, Uzv using randomized SVD, in which U € R N, error across frequency rangeand (3) errors in key metrics
2 eR™, V eR™N: Then we combine U and X into an for microseismic event detection.
(N¢ x r) matrix. Storing (N, x r) and (r x N) matrices pro-
vides a compression factor ofcﬁt “Compression factor”  Norm of error in data
as used here is defined as the ratlo of the size of the original To investigate the level of noise introduced by different com-
data to the size of the compressed data. pression schemesat various compression rateswe studied
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Figure 1. Data from the Penn State Fiber-Optic foR Environment
SEnsEing (FORESEE)-urban project Am)example of 60 s of
continuous data recorded at 03:33:35 on 15 April 2019. This
shows recordings of multiple thunder earthquakes starting at 10
and 40 s. It also shows some traffic noise around 1000 m from 0
to 25 s. (b) Twenty min data used for frequency preservation
experiment recorded from UTC 00:00:04 to 00:20:04 on 1
August 2019. The coherent signals here are traffic noises
between 1500 and 2500 m along the fiber. These visuatep-
resentations provide valuable insights into the characteristics of
the recorded data, offering us a better understanding of what to
anticipate during the analysis and interpretation of the com-
pressed data. The color version of this figure is available only in
the electronic edition.

10 days of data from the FORESEE urban projeatecorded
from UTC 23:51:35 on 04/09/2019 to UTC 00:07:35 on
04/21/2019.We selected this particulartime range because
it contains a diverse range ofecorded signals thatve wish
to preserve when compressing passive seismic dataeach

compression scheméhe comparison workflow is as follows:

1. Begin with data D € R\t
2. Compress D.
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Noise introduced by lossy compression
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Figure 2. Frobenius norm of noise introduced in data at various
levels of compression for compression with wavelet decompo-
sition, singular value decomposition, and zfp floating point
compression (three modes—fixed accuracy, fixed precision, and
fixed rate). The color version of this figure is available only in the
electronic edition.

3. Reconstruct compressed dafac RNeN:
4. Compute the normalized Frobeniusnorm error defined
as |ID -Dlle=IDll .

The results of this test are presented in Figure 2. Among the
three modes of zfp compression, fixed accuracy maintains lower
errors than fixed precision and fixed rate at similar compression
factors. This can be attributed to the fixed accuracy mode encod-
ing as many bit planes as necessary to achieve a specific absolute
error; the other modes encode a fixed amount of bit planes irre-
spective of error level. The drawback to the fixed accuracy mode
is that it requires complete knowledge of the range of values in
the data to provide an absolute error tolerance, making it unsuit-
able for some on-the-fly compression of streaming data. When
comparing 2D and 1D wavelet compression, it is observed that
2D wavelet compression results in a lower error e same
compression raté his improved performance could be attrib-
uted to the additional dimension available forcompression,
which allows for more effective use of space and time redun-
dancy (Villasenor et al1996).

Regarding how the differentcompression schemes com-
pare, we found that the three modes of zfp compression intro-
duce the least noise up to a compression rate of ~15x, followed
by SVD,2D waveletand then 1D wavelet compression in the
same rangeHowever,at higher compression rategfp com-
pression begins to incur errors at a higher rate, with only fixed
accuracy mode maintaining lower errors than SVD and 2D
wavelet compression. The errors incurred by wavelet compres-
sion may be attributed to its denoising qualityHowever,at
Volume 95 Number 3
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(@)  Proportion of spectral density after wavelet compression , ' factor. The factors governing the error bound is an area that
T may be explored in future studies.

To facilitate meaningful comparisons, we selected a specific
0.8 mode for wavelet compression and zfp compression, assuming
that the various modes within each compression method yield
comparable error characteristics. For wavelet compression, we
0.6 opted for the 2D mode because ofts observed tendency to
introduce a lower norm of noise, as evidenced by the previous
analysis. On the other hand, for zfp compression, we chose the
0.4 fixed precision mode instead of the fixed accuracy mode,
despite the latter’s exhibiting the least norm of noise. The fixed

precision mode allows for relative error controland can be
e ; 0.2 applied to unexplored datasets without requiring specific
0 500 1000 1500 2000 2500 3000 3500 4000 . . . ) .
Distance along fiber (m) fine-tuning for optimal tolerable error and compression ratio.
This consideration becomes crucial if the selected compression
method is intended for use on data as they are being gathered.
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To assess the extent to which the frequency content of the data
is preserved following lossy compressianmethodology was
used whereby the proportion of the power spectrum retained at
each frequency was calculated and then averaged across
frequencies. The step-by-step process is as follows for each file
containing a window of data in time:

Time (days hh:mm)

1. Obtain D previously defined by compression and sub-
sequent decompression of D.

2. Identify the power spectrumP D of D in predetermined
time windows, T,, (5 s for this experiment) such
thatP D e N . x N;=2 x N=T,,.

3. Divide the power spectrum at each frequency by the original

power spectrumthat is, Pa_p %.
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The outcome was a 3D data cube for f2 that captured
information across time windows of size ¥T,,, frequencies
of size N=2,and channels N. Weighted averaging was then
0.4 performed along each dimension to investigate the patterns of
frequency preservation across the various dimensions.
0.2 The data obtained by averaging the ratios of the compressed
: to original energy across all frequencies can be represented in
T R 2000'250 S ST00 00 0.0 two dimensions (time by channels), revealing the variations in
Distance along fiber (m) frequency preservatiorAs depicted in Figure 3the patterns
observed in this 2D matrix closely resemble the trendsin
Figure 3. Frequency preservation with respect to compression for the data shown in Figure 1. In the case of wavelet and low-rank
(a) wavelet compression, (b) zfp compression, and (®ingular compression, a general reduction in energy can be attributed to
value decomposition (SVD) compression. These images are the thresholding operation used in both the compression
Ni=T, x N, data in time and channel, respectively, obtained by - athods. In addition, whereas wavelet decomposition exhibits
averaging %.:D along th? frequency axis. Th.e color version of this better preservation of small events, SVD compression tends to
figure is available only in the electronic edition. ’
preserve mostly high-amplitude events. On the other hand, zfp
compression leads to a general increase in energy but preserves
higher compression rategompression may be depleting the the energy around the identified events to levels close to pre-
real signals to some extentSVD produces errors thatgrow  compression level§his may be due to the spurious frequen-
at a nearly linear rate relative to the log of the compression cies introduced at multiples of a quarter of the sampling rate as

Time (days hh:mm)
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Proportion of spectral de

sity.aftericompression with 21 coefficient of the template waveform and recorded seismic data
: E at different time intervals This correlation coefficient is nor-

malized to account for variations in signal amplitude and noise

levels and provides a quantitative measure of similarity

01 00:251.

€ 0100204 16  between the template and the recorded dathe significance

E : of template matching lies in its ability to enhance the detection
; 0100:154" 14  capability for microseismic eventBy applying cross-correla-

S ; tion analysiseven weak events that may be buried within the
£ 0100:101= background noise can be identified and accurately located

- -

12 (Gibbons and Ringdal20086).
To evaluate the impactof noise introduced by different
1.0 lossy compression schemes on event detectimnconducted
a series of experiments using a template matching workflow. In
particular,we investigate two questions:

01 00:05

01 00:00+=
0

30 40

Frequency (Hz)

) ) ) ) 1. To what extent is the array-wide detection significance of
Figure 4. Frequency preservation with respect to compression for

: T i . B varying-size events impacted?
zfp compression.This image is constructed from N=T,, x N;=2 . . . o .
data in time and frequency, respectively, obtained by averaging 2. Are there biases or increases in the variability of event times

Ps-p along the channel axis. The color version of this figure is picked across the array as higher compression ratios are
available only in the electronic edition. used for any types of compression?

To test microseismic event detection via template matching,
depicted in Figure 4This effect can be attenuated when therewe use the Brady’s Hot springs data. This dataset has been pre-
are other strong frequencies corresponding to events but tendously studiedand various microseismic activities have been
to be exaggerated in noisy parts when there are not many otleataloged providing a baseline catalog for comparison (Li and
strong frequenciesn contrast,such false frequencies are not Zhan, 2018).Our goals in this study are to apply a similar
observed in wavelet or low-rank compression. workflow as outlined by Li and Zhan (2018) and to compare

Finding a low-rank approximation of the data can result in the performance of event detection at various compression
varying levels of representation fidelity for different channels rates for 2D wavelet, zfp, and SVD compression. By analyzing
(i.e., columns of the data matrix). This discrepancy may the results of these experimentgs can gain valuable insights
explain the observed trend of certain channels exhibiting betdinto the trade-off between compression rates and event detec-
ter-preserved frequency characteristics compared with othergion performance for the compression schemes considered.
when those channels have high-amplitude events (e.g., To provide a detailed view of the template matching proc-
vehicles).Notably, the channelsthat were better preserved ess,we calculated the normalized cross correlation okach
through compression as evaluated in the time domain also channel’s recording ofthe template eventin Figure 5 with
showed improved representation in the frequency domain. its recording of the noise from UTC 14 March 2016 beginning
Despite compression being applied in smaller time windows, at 08:39:13The resulting array-wide normalized cross corre-
the channels thatdemonstrated good preservation remained lation is shown in Figure 5.
consistent throughout the entire time period under consider-  Typically, template matching would be carried out on small
ation (i.e.,well-preserved channels continued to be well-pre- collections of point sensorsyith large amplitude normalized
served in most other time windows). This consistency cross correlations being considered a possible event and poten-
suggests that these specific columns likely account for a signii@lly a voting system among sensors to ensure multiple sensors
cant portion of the overall variation of the data. However, detected the same possible evéiith thousands of sensors,
when many spatially distributed ray paths are needed (e.g., we use a simple metriccalculating the array-wide average of
many source—receiver pairs for imagingjprmalization prior  the normalized cross correlations at each time, then calculating
to compression may be required to ensure that many channelsé envelope of the resulting time series. Despite time delays in

compressed data are high quality. the original event as it moves across the array, if a similar event
occurs in the same locatiothe large normalized cross corre-
Changes in template matching event detection lations across the array are expected to occur at the same time

Template matching enables the detection of similar events byag. Thus,averaging across all sensors does not cause destruc-
comparing known seismic events, referred to as templates, witre interference.

continuously recorded seismic dafBhe underlying principle The average envelope for each type of compression at multi-
of template matching involves calculating the cross-correlatigple compression levels is shown in Figure 6. Three events were
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(a) Template (a) Peak amplitude variation with wavelet compression
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Figure 5. (a) An example template event recorded at Brady Hot (C) Peak amplitude variation for SVD compression
Springs at 08:39:05.24 on 14 March 2016. (b) The array-wide = ——
template matching results show the normalized cross correlation = 5: 7 soz
of each channel’s continuous recording with its template event 041 10x  —— 100x
recording. Verticallines indicate many channels with high simi-
larities at a particular time. The color version of this figure is
available only in the electronic edition. 0.31
S
2
2 0.2
detected, even though these events were barely distinguisha <
in the raw data. We refer to the first event (between 1 and 2 « 0.1
as event 1, which is the midsize event, the second event '
(between 2 and 3 s) as event 2, which is the small event,
and the third event (between 22 and 23 s) as eventvghich 0.0
is the largest event. We see that for all three types of compre 0 5 10 15 20 25 30
Time (s)

sion, the three events appear to be largely distinguishable frc...
the background noise level. 2D wavelet compression maintains
a more constant peak amplitude across compression ratios (ffigure 6. The envelope of the average normalized cross correla-
original, 5%, 10x,20x,50x, and 100x) than do zfp and SVD tions during three events in Figure 5 shows that the event picks

. . : are largely similar for various levels of compressiorThis was
compressionalthough there is a smalmount of amplitude tested with (a) 2D wavelet-compressed data, (b) zfp-compressed

loss at higher compression ratios(noticeable at 20%, 50x, data, and (c) SVD-compressed data. The color version of this
and 100x).The zfp compression shows some amplitude I0ss figure is available only in the electronic edition.

in the events, which particularly makes it difficult to
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(a) 80 Detection significance for wavelet-compressed data (e.g.,the peak of events 1 and 3 for 100x Compressed data
— are less than half their originaamplitudes).
701 //// As in Li and Zhan (2018), we use the detection significance of
9 60 each event pick to provide a single array-wide value to quanti-
§ tatively compare the preservation of each event when using vari-
£ 501 —o— Eventl ous compression schemes and ratios. The detection significance
7 —— Event?2 is defined a§“ for a value Con the array-wide average of
c 40 —e— Event 3 . . . . .
k) — Threshold the normalized cross correlations at the ith time sample. M is the
g 301 median of CC and MAD is the median absolute deviation
8 defined as medianjCC - Mj. We set a detection significance
201 minimum threshold of 9, which was set to provide a reasonable
T0. bound on false detections following laind Zhan (2018)The
_ : . : . detection significance for each of the three events across all com-
0 20 40 60 80 100

—
O
~—

Compression ratio

Detection significance for zfp-compressed data

pression schemes and compression ratios is shown in Figure 7.
All three compression schemes preserve events 1 and 3 (the
midsize and large events) as picked events above the threshold,

70, .\*_\f/’/ even at high-compression ratios (e4$x and 50x for alland
100x for wavelet and SVD). The SVD-compressed data have the
g 601 largestdrop in detection significance relative to 2D wavelet-
§ compressed and zfp-compressed datal00x SVD compres-
£ 507 —e— Eventl sion,midsize event 1 is barely above the detection significance
=) —e— Event 2 . .
| —e— Event 3 threshold.Even in the originaluncompressed datdhe small
2 —— Threshold event 2 starts out very close to the detection threshddith
E 30{ ©&————— ° — SVD compression a20x and higher compression and with
a 2D wavelet compression at the 100x lewlent 2 drops sub-
201 stantially below the threshold for detection significandé.is
10{ - e . s not surprising thata barely detectable evein the raw data
' ~ | s i ~ could be lost in some of the highly compressed ddthough
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Compression ratio

Detection significance for SVD-compressed data
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all events compressed with SVD show a drop in detection sig-
nificancethe 2D wavelet compression and zfp compression of
the large event 3 data actually show an uptick in detection sig-
nificance at high-compression ratioslikely indicating some
denoising occurring to further emphasize this largest event dur-
ing the compression process.

Figure 8 shows the event detected using the template match-
ing workflow discussed in the original daféhen compressed
data are used for althe events in this catalogye see similar
trends to the one explained by the small-scale Taseresults
of this are summarized in Figure 9 showing the variation in
detection significancewith compression.In these plots, we
expect a trend with a slope of 1 in the situation in which there
are not any changes in detection significance. For wavelet com-

Compression ratio

pression (Fig. 9a), we have a lot of points close to this trend even
at high-compression ratealthough points with smaller detec-

tion significance show a slight decreas®] points with high-
detection significanceshow some increaseindicating some
denoising effecfThis leads to smaller events eventually being
missed at higher compression rates. SVD compression (Fig. 9c)
shows a similar trend but shows more reduction in detection
distinguish event 2put events 1 and 3 are clearly above the significance forthe mid- and small-size eventsThe image

noise levelat all compression levels (1x original10x, 22x,  for zfp (Fig. 9b) shows less predictabilittsome smallevents

34x, and 45%). The SVD compression leadsto significant  increasein detection significanceeven though most events
energy loss, particularly at the higher compression ratios are observed to be reducing in detection significance.

Figure 7. Change in detection significance with compression rate
for (a) 2D wavelet-compressed data, (b) zfp-compressed data,
(c) low-rank SVD-compressed data. The color version of this
figure is available only in the electronic edition.
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Detection significance of peaks detected (a) Detection significance variation with wavelet compression
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Figure 8. Catalog of events detected by template matching using e 1x(52 events) (]
the uncompressed data. The color version of this figure is T 1751 « 16%(22 events) o
available only in the electronic edition. 2 e 24x(22 events) °
g 1501 o 35% (16 events)
£ e 44x (10 events)
S 1251 .
To address the question of whether event pick times are r¢ § 100 . o s
able,we need to quantify the distribution of how each event’s é e :
pick times change throughouthe array of compressed data & 751 o* : c
. . . . . n
compared with the event pick times on the originaflata.In S 5l @ o o8
particular,we need to know if the median pick time shift is g .. ®8 e . .
staying very close to 0 (indicating there is no substantial g 251 B ®s 85
array-wide bias) and compare the rate at which the minimum “ ol o’ e
Q1, Q3, and maximum values are spreading apart for higher 25 50 75 100 125 150 175
compression ratios. For each type of compression and for ea Detection significance (original)
cgmpresgon ratiowe created a box apd v.vhlsll<ers plot for the (C) Detection significance variation with SVD compression
distribution of each event’s changes in pick times across all . 1x(52 events) :
channelswhich is shown in Figure 1(or each type of com- 3 501 @ 5X(45 events)
pression, these boxplots are overlaid for all three events (colt 4 e 10x (30 events) .
coded) so that the spread for a small, midsized, and large ev 2 socdl & 20x (19 events) e
can be compared easily. 5 g 20X devents) s
There is not an apparent median bias for any of the event: § B
or compression typeswith a compression ratio <100x. At g 2 !
100x, there appear to be a slightly (<0.05 s) late median of S,
picks in SVD compression and a positive skew distribution ¢ 100
. . . . . o
(based on investigation of mimax, Q1, and Q3) to the picks £ es °
. . . a9 >
in 2D wavelet compression at 10@kough the median of the & 30 i v
. . . . 2 L4
wavelet distribution appears to be unbiased. We see that for o2 I L o
fcompressionthe extremes an rtil r 0
types o'co .p essionthe e t.e es'a d quartiles spread out 5 50 % 100 15 150 135
more with higher compression ratiosln the range of 5x- Detection significance (original)

15% compression, all three compression schemes perform rea-

sonably wellwith 5x 2D wavelet, 14x zfp,5x and 10x SVD Figure 9. Trends in detection significance and events detected as
compression all yielding distributions for all three events that(x)mpressiOn rate is increased for (a2D wavelet, (b) zfp, and

are completely contained within a £0.1 second shi#fmong  (c) SVD compressions. The color version of this figure is available
these low-ratio compression schemeD) 10x waveletcom-  only in the electronic edition.

pression does perform the worswith the largestspread for

all three eventsand the smallevent2 distribution only has

its inner quartile range (Q1-Q3) contained within £0.1 s,
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(a) Wavelet compression effects on detection time
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Figure 10. Boxplots show the distribution across allchannels in
the array of picked event times from template matching applied
to the (a) 2D wavelet-compressed data, (b) zfp-compressed data,
and (c) low-rank SVD-compressed data. These are shown at
various compression ratios for three events. The color version of
this figure is available only in the electronic edition.
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whereas its extremes have errors bounded by 0.3 s. In the range
20x-35x%,we see that zfp at 22x has the only distributions for

all three events that are completely contained within £0.1 s,
although both 2D waveletand SVD perform similarly well

at 20x compression for the large event 3 the range 45x-
50x%,we see that 2D wavelet at 50% and zfp at 45x have very
compact distributions for the large event 3yhereas SVD at

50x has a substantial spread in event pick shifts. All three com-
pression schemes in this compression ratio range perform sim-
ilarly for events 1 and 2, with extremes that exceed +0.4 s and
interquartile ranges that are bounded within 0.2 s. The zfp did
not allow higher compression ratios, but 2D wavelet and SVD
compression were tested at the 100x rati2D wavelet com-
pression outperformed SVD compression on the large event

3 in the sense of providing a more compact distribution of time
shifts,although 2D wavelet’s distribution of pick time shifts is
skewed to have larger positive shifts. Both schemes performed
similarly at the 100x levelon events 1 and 2,with extreme

shifts around ~+0.6 s.

Discussion

Overall,we see that although zfp has the lowest data errors at
lower compression ratioswaveletcompression (especially in

2D) has lower errors at higher compression ratios, and low-rank
SVD has an error growth that sits in between zfp and wavelets.
Wavelets strongly improve broadband representation of strong
events over quiet noise, and SVD tends to have better broadband
representation of louder signatsyt zfp tends to more evenly
distribute errors in the frequency content across loud and quiet
eventsUsing a microseismicity dataset could see that after
feeding compressed data through a template matching work-
flow, all types of compression could preserve the event
smaller compression ratioSVD compression tended to have

the largest drop in detection significance at high-compression
ratios, although it still preserved the detection significance of

a midsize and large event even at 100x compressionThe
unbiased picks with increasing variability caused by higher com-
pression ratios from Figure 10 suggest the opportunity to design
a postprocessing scheme tharomotes spatiakoherency in
eventpicks across the arrayin this way, more reliable picks

can be used from any highly compressed daiarticularly as

an input to the event location or for tomographic imaging using
microseismic event$his analysis workflow was extended to a
36-hour period recording with 52 events of varying detection
significanceand we found that wavelet compression preserved
the detection significance better than zfp and SVD compression
at similar compression ratios and tended to increase detection
significance for larger events and higher compression ratios (i.e.,
emphasizing and denoising large events). Zfp compression typ-
ically led to a reduction in detection significance across all event
sizesSVD compression tends to reduce detection significance
for smaller to midsize events and tends to increase detection
significance for larger eventsjith more decrease or increase
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in significance for higher compression levélimately, SVD  62681767-227888 through Stanford University, and the sponsor com-
and wavelet representations have been integrated into a largeanies of the Center for Wave Phenomena (CWP)their support
number of analysis workflows that can operate on data direct'l‘}ade this research possibldhe authors thank the Virginia Tech
in their compressed representation, which may lead us to prefidyanced Research ComputingARC) and Colorado School of
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entific computingso algorithms incorporating zfp may be on (CIARC) for computing resources.The authors also thank the
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further analysis should be done on the effects of lossy compres-
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