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Supplemental Material

New technologies such as low-cost nodes and distributed acoustic sensing (DAS) are
making it easier to continuously collect broadband, high-density seismic monitoring
data. To reduce the time to move data from the field to computing centers, reduce
archival requirements, and speed up interactive data analysis and visualization, we
are motivated to investigate the use of lossy compression on passive seismic array data.
In particular, there is a need to not only just quantify the errors in the raw data but also
the characteristics of the spectra of these errors and the extent to which these errors
propagate into results such as detectability and arrival-time picks of microseismic
events. We compare three types of lossy compression: sparse thresholded wavelet com-
pression, zfp compression, and low-rank singular value decomposition compression. We
apply these techniques to compare compression schemes on two publicly available
datasets: an urban dark fiber DAS experiment and a surface DAS array above a geo-
thermal field. We find that depending on the level of compression needed and the
importance of preserving large versus small seismic events, different compression
schemes are preferable.

Introduction
Innovations in seismic instrumentation have given rise to a vari-
ety of ways of gathering data. Two major innovations are the rise
of low-costseismic nodes and fiber-optic distributed acoustic
sensing (DAS),both of which enable the recording of high-fre-
quency data on many closely spaced sensors.For example,the
Penn State Fiber-Optic foR Environment SEnsEing (FORESEE)
project recorded urban environmental seismic data at 500 sam-
ples per second across 4189 m of fiber-optic cable at 2 m spacing
(Zhu et al., 2021; Spica et al., 2023) and the PoroTomo Natural
Laboratory at Brady’s Hot Springs shared geothermal production
and microseismicity data at 1000 samples per second across 9 km
of cable at 1.021 m spacing (Coleman, 2016; Feigl et al., 2016). A
sample of just nine DAS experiments (including these two) pro-
duced more than 750 TB of DAS data from 2015 to 2020,and
this substantially faster rate of data acquisition (in comparison
with long-period seismometers or nodalarrays) has inhibited
geoscientists’ ability to quickly access, analyze, and visualize these
new data sources (Lindsey and Martin,2021).

One solution to reduce the volume of seismic data is com-
pression,with higher compression ratios commonly achieved
through the use of lossy compression techniques. However, lossy
compression techniques introduce data error,so we need to
quantitatively compare the various options for reducing data
storage and data movement during passive seismic processing.
Compression of seismic data can be achieved by the transfor-
mation of data into a sparse representation so that fewer bytes

are needed to capture key features of the data.Efforts in lossy
compression ofseismic data have been skewed toward active
seismic data and in the pasthave often focused on wavelet
decomposition and the discretecosine transform (Bosman
and Reiter,1993;Donoho et al.,1999;Averbuch et al.,2001).
More recently, the advancement of machine learning has given
rise to more efforts toward using autoencoders for the compres-
sion of active seismic data (Valentine and Trampert,2012).

In this article,we provide a quantitative assessment of the
suitability of three methods—wavelet decomposition, zfp float-
ing point compression, and low-rank singular value decompo-
sition (SVD) approximation—for compressing passive seismic
data.This assessment focuses on the errors in analyses rather
than the error in the raw data.We choose these methods,in
part, because of the potentialfor analyticalbounds on these
errors’ propagation. We give a brief overview of these methods,
their comparison in different metrics for assessing the integrity
of reconstructed data,and the effect of compression on event
detection.In addition, we have released open-source software
to enable easy application of these error analysis workflows to
additional compression schemes and datasets in the future.
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Background
Here, we provide an introduction to three types of compression
that are frequently applied to reduce the size of spatiotemporal
scientific data: wavelet compression (1D and 2D), zfp compres-
sion, and SVD compression. We use two publicly available DAS
datasetsfor testing and comparing these compression tech-
niques’effects on the characteristics ofcompressed data and
the errors incurred in the results of event detection workflows.
These data include one urban dark fiberdataset,called the
FORESEE data, and one geothermal microseismicity monitoring
dataset, called the Brady’s Hot Springs data. Here, we provide an
overview of the compression schemes and datasets. Throughout
this article,the compression factor is defined as the ratio of the
size of the originaldata to the size of the compressed data.

1D wavelet compression
Given a time-domain signal f(t), we can represent it in terms of
a spanning set of wavelet functions.This spanning set is gen-
erated using scaled and translated versions of a mother wavelet
function, ψ, and a father wavelet function, ϕ. The discrete
wavelet transform of fcan be computed as follows:
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in which the inner products, djn  hf ,ψ j,ni and ajn  hf ,ϕ j,ni,
denote the detail and approximation wavelet coefficients, respec-
tively. −L > 0 is the number of nested subspaces, corresponds to
the number of scaling levels represented in the wavelet basis, and
is related to the number of discrete points in f, that is, N  2−L.
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follows:
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Typically,this representation has a small number of large-
magnitude wavelet coefficients around and leading to areas of
high amplitude in time (Mallat, 2009). This property allows the
application of the wavelet transform for denoising (Donoho,
1995) or for the preservation of events when used for compres-
sion Villasenor et al. (1996). For a predetermined threshold T,
we can construct an approximation of our signal,
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The error in approximation E is then
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ãJnϕ J ,n: 4

If a large enough T is selected, this approximation has few non-
zero coefficients that can be encoded to achieve compression.
Hence,the threshold determines the amount of compression
and the associated error in the approximation.

2D wavelet compression
To exploit additional redundanciesin 2D datasets, wavelet
compression can be performed using 2D wavelet decomposi-
tion (Villasenor et al.,1996).In this approach,separable 2D
waveletsderived from 1D waveletsare used to decompose
the data in both dimensions. For 2D data, f, the wavelet decom-
position can be computed as follows:
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in which ψ1, ψ2, ψ3, and Φx,y are the 2D wavelets and are
computed from the 1D wavelets as ψ1x,y  ϕxψy,
ψ2x,y  ψxϕy, ψ3x,y  ψxψy, and Φx,y 
ϕxϕy. The coefficients d1j m,n, d2

j m,n, and d3
j m,n are

referred to as detail coefficients, and aJm,n are called approxi-
mation coefficients.Similar to the 1D case,we can threshold
the coefficients to achieve compression with approximation
error.

High-dimensional wavelet compression has been studied to
achieve higher compression rates for active source seismic data
organized by streamer number, shot number, sensor, and time
dimensions (Villasenor et al., 1996). For passive DAS data, we
investigate how 1D wavelet compression does in comparison
to 2D compression considering the differentchannels asa
dimension in space in addition to the recording in time.

zfp floating-point compression
The zfp compression technique uses processes such as block
transforms and embedded coding,commonly used in image
compression, to perform compression that is suitable for a vari-
ety of floating-pointscientific data,as detailed by Lindstrom
(2014).We briefly outline the process here.For d-dimensional
data, the data array is sectioned into blocks of 4d values,which
are assumed to be approximately continuous within any block.
Each block is compressed separately; the following are the steps
during compression that may introduce some errors:

1. Convert floating point valuesin the 4 d block to scaled
integers with a common exponent.
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2. Perform a block transform to introduce some sparsity into
the integer representation.

3. Encode the numbers in the sparse representation only. This
encoding takes sparsity into consideration and only uses as
many bits as required to save nonzero entries.The process
also allows for specified bits to be allocated for each block
(fixed rate), the number of binary exponentsto encode
(fixed precision), and the maximum error allowed for each
floating point value (fixed accuracy).

Although Wade (2020) released a zfp formatand imple-
mentation designed to handle triggered active-source seismic
data formats,here we use the generalzfp implementation to
align with a wider variety of zfp error analysis studies.
Although this article focuses on analyzing the errors intro-
duced in passive seismic data workflows, other teams have pre-
viously studied the numericalerror due to zfp (Diffenderfer
et al., 2019) and its effect on workflows for severalfluid
dynamics and plasma physics problems as well as climate mod-
els (Laney et al., 2013; Baker et al., 2016; Poppick et al., 2020).

SVD compression
The SVD can be used to decompose data represented in matrix
form into the product of three matrices: the left singular vectors,
a diagonal singular value matrix, and the right singular vectors,
in which the singular values represent the amount of variation in
the data explained by each singular vector. SVD has been widely
used in various scientific fields (e.g.,signalprocessing,image
compression,data mining,and machine learning) because of
its ability to identify and capture the highest possible amount
of variability in the data.Seismic data collected through DAS
can be organized as “channels by samples” to obtain seismic data
matrices.The application of SVD to these matrices offers a
unique opportunity to decouple the channelsand samples
and enable efficient processing (Martin,2019).

Although constructing the full SVD can be computationally
expensive,randomized SVD is a powerfuland efficient algo-
rithm for computing partial SVD of large-scale matrices using
randomized projection methods to quickly approximate the
dominant singular vectors and singular values. One of the pri-
mary benefits ofrandomized SVD is its ability to efficiently
decomposelarge matrices storing high-dimensional data
(Halko et al., 2011). This makes it an attractive tool for a wide
range of scientific applications.Given data stored a matrix
D ∈ RNc×Nt , in which N c is the number of channels;r is the
rank;and Nt is the number of time samples.To achieve com-
pression,we construct a low-rank (rank, r) approximation,
Dr  UΣV using randomized SVD, in which U ∈ R Nc×r ,
Σ ∈ Rr×r , V ∈ R r×N t . Then we combine U and Σ into an
(Nc × r) matrix. Storing (Nc × r) and (r × N t ) matrices pro-
vides a compression factor of NcNt

rN tN c
. “Compression factor”

as used here is defined as the ratio of the size of the original
data to the size of the compressed data.

The FORESEE data
To study the use of lossy compressed data for passive data
exploration,we used data from the FORESEE urban DAS
study.This study’s publicly available data were continuously
recorded between April2019 and October 2021,resulting in
∼46 TB of data (Zhu et al., 2021). The data examplesin
Figure 1 illustrate two instances of recordings in the dataset,
one with a few events due to thunder earthquakes,and the
other with 30 min of passive data with vehicles and noise
due to infrastructure.These examples provide visualinsights
into the characteristics of the recorded data,facilitating sub-
sequentdata exploration,analysis,and interpretation. This
datasetcontains recordings ofsignals like these and others
from both natural and anthropogenic sources,providing a
comprehensive representation ofthe seismic activity in the
urban environment (Zhu and Stensrud, 2019; Zhu et al., 2021).

The Brady’s Hot springs data
To study the use of lossy compressed data for microseismicity
detection and extraction of arrival times for tomographic imag-
ing, we used data from the Brady’s Hot Springs geothermal field.
This was recorded in 2016 in Nevada as part of an investigation
into the feasibility of using DAS for cost-effective monitoring of
geothermal reservoirs. The data consist of ∼8.7 km of fiber-optic
cable deployed horizontally in a shallow backfilled trench, with
1.021 m channel spacing. The data, which were shared publicly,
are sampled at 1000 samples per second and recorded ∼40 TB of
data in 15 days (Coleman,2016).The dataset recorded micro-
seismic activities thathave been previously studied and cata-
loged (Liand Zhan,2018).We take advantage of the existing
workflow and resulting catalog to compare the detectability
of events and arrival times in various types of compressed data.

Computational Experiments
Errors are expected in lossy compressed seismic data, and these
errors can affect the quality of the data as wellas the results
obtained from seismic processing workflows. These errors can
cause distortions in the seismic waveforms and may propagate
through the seismic processing workflow, affecting subsequent
steps such as imaging and inversion.Ultimately, this can lead
to interpretation errors based on seismic properties,imaging,
and inversion results. Therefore, it is crucial to carefully evalu-
ate the effects of lossy compression on seismic data and the
extent to which these propagate through processing workflows.
Here, we present several experiments designed to explore how
errors from varying compression types and ratios propagate
into (1) the level of noise in the data,(2) the distribution of
error across frequency ranges,and (3) errors in key metrics
for microseismic event detection.

Norm of error in data
To investigate the level of noise introduced by different com-
pression schemesat various compression rates,we studied
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10 days of data from the FORESEE urban projectrecorded
from UTC 23:51:35 on 04/09/2019 to UTC 00:07:35 on
04/21/2019.We selected this particulartime range because
it contains a diverse range ofrecorded signals thatwe wish
to preserve when compressing passive seismic data.For each
compression scheme,the comparison workflow is as follows:

1. Begin with data D ∈ RNc×Nt .
2. Compress D.

3. Reconstruct compressed dataD̃ ∈ RNc×Nt .
4. Compute the normalized Frobeniusnorm error defined

as ∥D −D̃∥F=∥D∥ F.

The results of this test are presented in Figure 2. Among the
three modes of zfp compression, fixed accuracy maintains lower
errors than fixed precision and fixed rate at similar compression
factors. This can be attributed to the fixed accuracy mode encod-
ing as many bit planes as necessary to achieve a specific absolute
error; the other modes encode a fixed amount of bit planes irre-
spective of error level. The drawback to the fixed accuracy mode
is that it requires complete knowledge of the range of values in
the data to provide an absolute error tolerance, making it unsuit-
able for some on-the-fly compression of streaming data. When
comparing 2D and 1D wavelet compression, it is observed that
2D wavelet compression results in a lower error atthe same
compression rate.This improved performance could be attrib-
uted to the additional dimension available forcompression,
which allows for more effective use of space and time redun-
dancy (Villasenor et al.,1996).

Regarding how the differentcompression schemes com-
pare, we found that the three modes of zfp compression intro-
duce the least noise up to a compression rate of ∼15×, followed
by SVD,2D wavelet,and then 1D wavelet compression in the
same range.However,at higher compression rates,zfp com-
pression begins to incur errors at a higher rate, with only fixed
accuracy mode maintaining lower errors than SVD and 2D
wavelet compression. The errors incurred by wavelet compres-
sion may be attributed to its denoising quality.However,at

Figure 2. Frobenius norm of noise introduced in data at various
levels of compression for compression with wavelet decompo-
sition, singular value decomposition, and zfp floating point
compression (three modes—fixed accuracy, fixed precision, and
fixed rate). The color version of this figure is available only in the
electronic edition.

Figure 1. Data from the Penn State Fiber-Optic foR Environment
SEnsEing (FORESEE)-urban project. (a)An example of 60 s of
continuous data recorded at 03:33:35 on 15 April 2019. This
shows recordings of multiple thunder earthquakes starting at 10
and 40 s. It also shows some traffic noise around 1000 m from 0
to 25 s. (b) Twenty min data used for frequency preservation
experiment recorded from UTC 00:00:04 to 00:20:04 on 1
August 2019. The coherent signals here are traffic noises
between 1500 and 2500 m along the fiber. These visualrep-
resentations provide valuable insights into the characteristics of
the recorded data, offering us a better understanding of what to
anticipate during the analysis and interpretation of the com-
pressed data. The color version of this figure is available only in
the electronic edition.

1678 SeismologicalResearch Letters www.srl-online.org • Volume 95 • Number 3 • May 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/95/3/1675/6385331/srl-2023314.1.pdf
by Colorado School of Mines user



higher compression rates,compression may be depleting the
real signals to some extent.SVD produces errors thatgrow
at a nearly linear rate relative to the log of the compression

factor.The factors governing the error bound is an area that
may be explored in future studies.

To facilitate meaningful comparisons, we selected a specific
mode for wavelet compression and zfp compression, assuming
that the various modes within each compression method yield
comparable error characteristics. For wavelet compression, we
opted for the 2D mode because ofits observed tendency to
introduce a lower norm of noise, as evidenced by the previous
analysis. On the other hand, for zfp compression, we chose the
fixed precision mode instead of the fixed accuracy mode,
despite the latter’s exhibiting the least norm of noise. The fixed
precision mode allows for relative error controland can be
applied to unexplored datasets without requiring specific
fine-tuning for optimal tolerable error and compression ratio.
This consideration becomes crucial if the selected compression
method is intended for use on data as they are being gathered.

Errors in frequency content
To assess the extent to which the frequency content of the data
is preserved following lossy compression,a methodology was
used whereby the proportion of the power spectrum retained at
each frequency was calculated and then averaged across
frequencies. The step-by-step process is as follows for each file
containing a window of data in time:

1. Obtain D̃ previously defined by compression and sub-
sequent decompression of D.

2. Identify the power spectrum,P D̃ of D̃ in predetermined
time windows, Tw (5 s for this experiment) such
that P D̃ ∈ N c × Nt=2 × Nt=Tw.

3. Divide the power spectrum at each frequency by the original
power spectrum,that is, PD̃=D

P D̃
PD .

The outcome was a 3D data cube for P̃D=D that captured
information across time windows of size Nt=Tw, frequencies
of size Nt=2,and channels Nc. Weighted averaging was then
performed along each dimension to investigate the patterns of
frequency preservation across the various dimensions.

The data obtained by averaging the ratios of the compressed
to original energy across all frequencies can be represented in
two dimensions (time by channels), revealing the variations in
frequency preservation.As depicted in Figure 3,the patterns
observed in this 2D matrix closely resemble the trends in
the data shown in Figure 1. In the case of wavelet and low-rank
compression, a general reduction in energy can be attributed to
the thresholding operation used in both the compression
methods. In addition, whereas wavelet decomposition exhibits
better preservation of small events, SVD compression tends to
preserve mostly high-amplitude events. On the other hand, zfp
compression leads to a general increase in energy but preserves
the energy around the identified events to levels close to pre-
compression levels.This may be due to the spurious frequen-
cies introduced at multiples of a quarter of the sampling rate as

Figure 3. Frequency preservation with respect to compression for
(a) wavelet compression, (b) zfp compression, and (c)singular
value decomposition (SVD) compression. These images are
Nt =Tw × Nc data in time and channel, respectively, obtained by
averaging P̃D=D along the frequency axis. The color version of this
figure is available only in the electronic edition.
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depicted in Figure 4.This effect can be attenuated when there
are other strong frequencies corresponding to events but tends
to be exaggerated in noisy parts when there are not many other
strong frequencies.In contrast,such false frequencies are not
observed in wavelet or low-rank compression.

Finding a low-rank approximation of the data can result in
varying levels of representation fidelity for different channels
(i.e., columns of the data matrix). This discrepancy may
explain the observed trend of certain channels exhibiting bet-
ter-preserved frequency characteristics compared with others
when those channels have high-amplitude events (e.g.,
vehicles).Notably, the channelsthat were better preserved
through compression as evaluated in the time domain also
showed improved representation in the frequency domain.
Despite compression being applied in smaller time windows,
the channels thatdemonstrated good preservation remained
consistent throughout the entire time period under consider-
ation (i.e.,well-preserved channels continued to be well-pre-
served in most other time windows). This consistency
suggests that these specific columns likely account for a signifi-
cant portion of the overall variation of the data. However,
when many spatially distributed ray paths are needed (e.g.,
many source–receiver pairs for imaging),normalization prior
to compression may be required to ensure that many channels’
compressed data are high quality.

Changes in template matching event detection
Template matching enables the detection of similar events by
comparing known seismic events, referred to as templates, with
continuously recorded seismic data.The underlying principle
of template matching involves calculating the cross-correlation

coefficient of the template waveform and recorded seismic data
at different time intervals.This correlation coefficient is nor-
malized to account for variations in signal amplitude and noise
levels and provides a quantitative measure of similarity
between the template and the recorded data.The significance
of template matching lies in its ability to enhance the detection
capability for microseismic events.By applying cross-correla-
tion analysis,even weak events that may be buried within the
background noise can be identified and accurately located
(Gibbons and Ringdal,2006).

To evaluate the impact of noise introduced by different
lossy compression schemes on event detection,we conducted
a series of experiments using a template matching workflow. In
particular,we investigate two questions:

1. To what extent is the array-wide detection significance of
varying-size events impacted?

2. Are there biases or increases in the variability of event times
picked across the array as higher compression ratios are
used for any types of compression?

To test microseismic event detection via template matching,
we use the Brady’s Hot springs data. This dataset has been pre-
viously studied,and various microseismic activities have been
cataloged providing a baseline catalog for comparison (Li and
Zhan, 2018).Our goals in this study are to apply a similar
workflow as outlined by Li and Zhan (2018) and to compare
the performance of event detection at various compression
rates for 2D wavelet, zfp, and SVD compression. By analyzing
the results of these experiments,we can gain valuable insights
into the trade-off between compression rates and event detec-
tion performance for the compression schemes considered.

To provide a detailed view of the template matching proc-
ess,we calculated the normalized cross correlation ofeach
channel’s recording ofthe template eventin Figure 5 with
its recording of the noise from UTC 14 March 2016 beginning
at 08:39:13.The resulting array-wide normalized cross corre-
lation is shown in Figure 5.

Typically, template matching would be carried out on small
collections of point sensors,with large amplitude normalized
cross correlations being considered a possible event and poten-
tially a voting system among sensors to ensure multiple sensors
detected the same possible event.With thousands of sensors,
we use a simple metric:calculating the array-wide average of
the normalized cross correlations at each time, then calculating
the envelope of the resulting time series. Despite time delays in
the original event as it moves across the array, if a similar event
occurs in the same location,the large normalized cross corre-
lations across the array are expected to occur at the same time
lag.Thus,averaging across all sensors does not cause destruc-
tive interference.

The average envelope for each type of compression at multi-
ple compression levels is shown in Figure 6. Three events were

Figure 4. Frequency preservation with respect to compression for
zfp compression.This image is constructed from Nt =Tw × Nt =2
data in time and frequency, respectively, obtained by averaging
PD̃=D along the channel axis. The color version of this figure is
available only in the electronic edition.
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detected, even though these events were barely distinguishable
in the raw data. We refer to the first event (between 1 and 2 s)
as event 1, which is the midsize event, the second event
(between 2 and 3 s) as event 2, which is the small event,
and the third event (between 22 and 23 s) as event 3,which
is the largest event. We see that for all three types of compres-
sion, the three events appear to be largely distinguishable from
the background noise level. 2D wavelet compression maintains
a more constant peak amplitude across compression ratios (1×
original, 5×, 10×,20×,50×,and 100×) than do zfp and SVD
compression,although there is a smallamount of amplitude
loss at higher compression ratios(noticeable at 20×, 50×,
and 100×).The zfp compression shows some amplitude loss
in the events, which particularly makes it difficult to

Figure 6. The envelope of the average normalized cross correla-
tions during three events in Figure 5 shows that the event picks
are largely similar for various levels of compression.This was
tested with (a) 2D wavelet-compressed data, (b) zfp-compressed
data, and (c) SVD-compressed data. The color version of this
figure is available only in the electronic edition.

Figure 5. (a) An example template event recorded at Brady Hot
Springs at 08:39:05.24 on 14 March 2016. (b) The array-wide
template matching results show the normalized cross correlation
of each channel’s continuous recording with its template event
recording. Vertical lines indicate many channels with high simi-
larities at a particular time. The color version of this figure is
available only in the electronic edition.
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distinguish event 2,but events 1 and 3 are clearly above the
noise levelat all compression levels (1× original,10×, 22×,
34×, and 45×). The SVD compression leadsto significant
energy loss, particularly at the higher compression ratios

(e.g.,the peak of events 1 and 3 for 100× compressed data
are less than half their originalamplitudes).

As in Li and Zhan (2018), we use the detection significance of
each event pick to provide a single array-wide value to quanti-
tatively compare the preservation of each event when using vari-
ous compression schemes and ratios. The detection significance
is defined asCCi−M

MAD for a value CCi on the array-wide average of
the normalized cross correlations at the ith time sample. M is the
median of CC and MAD is the median absolute deviation
defined as medianjCC − Mj. We set a detection significance
minimum threshold of 9, which was set to provide a reasonable
bound on false detections following Liand Zhan (2018).The
detection significance for each of the three events across all com-
pression schemes and compression ratios is shown in Figure 7.
All three compression schemes preserve events 1 and 3 (the
midsize and large events) as picked events above the threshold,
even at high-compression ratios (e.g.,45× and 50× for all,and
100× for wavelet and SVD). The SVD-compressed data have the
largestdrop in detection significance relative to 2D wavelet-
compressed and zfp-compressed data.At 100× SVD compres-
sion,midsize event 1 is barely above the detection significance
threshold.Even in the originaluncompressed data,the small
event 2 starts out very close to the detection threshold.With
SVD compression at20× and higher compression and with
2D wavelet compression at the 100× level,event 2 drops sub-
stantially below the threshold for detection significance.It is
not surprising thata barely detectable eventin the raw data
could be lost in some of the highly compressed data.Although
all events compressed with SVD show a drop in detection sig-
nificance,the 2D wavelet compression and zfp compression of
the large event 3 data actually show an uptick in detection sig-
nificance at high-compression ratios,likely indicating some
denoising occurring to further emphasize this largest event dur-
ing the compression process.

Figure 8 shows the event detected using the template match-
ing workflow discussed in the original data.When compressed
data are used for allthe events in this catalog,we see similar
trends to the one explained by the small-scale case.The results
of this are summarized in Figure 9 showing the variation in
detection significancewith compression.In these plots, we
expect a trend with a slope of 1 in the situation in which there
are not any changes in detection significance. For wavelet com-
pression (Fig. 9a), we have a lot of points close to this trend even
at high-compression rates,although points with smaller detec-
tion significance show a slight decrease,and points with high-
detection significanceshow some increaseindicating some
denoising effect.This leads to smaller events eventually being
missed at higher compression rates. SVD compression (Fig. 9c)
shows a similar trend but shows more reduction in detection
significance for the mid- and small-size events.The image
for zfp (Fig. 9b) shows less predictability;some smallevents
increasein detection significanceeven though most events
are observed to be reducing in detection significance.

Figure 7. Change in detection significance with compression rate
for (a) 2D wavelet-compressed data, (b) zfp-compressed data,
(c) low-rank SVD-compressed data. The color version of this
figure is available only in the electronic edition.
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To address the question of whether event pick times are reli-
able,we need to quantify the distribution of how each event’s
pick times change throughoutthe array of compressed data
compared with the event pick times on the originaldata.In
particular,we need to know if the median pick time shift is
staying very close to 0 (indicating there is no substantial
array-wide bias) and compare the rate at which the minimum,
Q1, Q3, and maximum values are spreading apart for higher
compression ratios. For each type of compression and for each
compression ratio,we created a box and whiskers plot for the
distribution of each event’s changes in pick times across all
channels,which is shown in Figure 10.For each type of com-
pression, these boxplots are overlaid for all three events (color
coded) so that the spread for a small, midsized, and large event
can be compared easily.

There is not an apparent median bias for any of the events
or compression typeswith a compression ratio <100×. At
100×, there appear to be a slightly (<0.05 s) late median of
picks in SVD compression and a positive skew distribution
(based on investigation of min,max, Q1, and Q3) to the picks
in 2D wavelet compression at 100×,though the median of the
wavelet distribution appears to be unbiased. We see that for all
types of compression,the extremes and quartiles spread out
more with higher compression ratios.In the range of 5×–
15× compression, all three compression schemes perform rea-
sonably well,with 5× 2D wavelet,14× zfp,5× and 10× SVD
compression all yielding distributions for all three events that
are completely contained within a ±0.1 second shift.Among
these low-ratio compression schemes,2D 10× waveletcom-
pression does perform the worstwith the largestspread for
all three events,and the smallevent2 distribution only has
its inner quartile range (Q1–Q3) contained within ±0.1 s,

Figure 9. Trends in detection significance and events detected as
compression rate is increased for (a)2D wavelet, (b) zfp, and
(c) SVD compressions. The color version of this figure is available
only in the electronic edition.

Figure 8. Catalog of events detected by template matching using
the uncompressed data. The color version of this figure is
available only in the electronic edition.
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whereas its extremes have errors bounded by 0.3 s. In the range
20×–35×,we see that zfp at 22× has the only distributions for
all three events that are completely contained within ±0.1 s,
although both 2D waveletand SVD perform similarly well
at 20× compression for the large event 3.In the range 45×–
50×,we see that 2D wavelet at 50× and zfp at 45× have very
compact distributions for the large event 3,whereas SVD at
50× has a substantial spread in event pick shifts. All three com-
pression schemes in this compression ratio range perform sim-
ilarly for events 1 and 2, with extremes that exceed ±0.4 s and
interquartile ranges that are bounded within ±0.2 s. The zfp did
not allow higher compression ratios, but 2D wavelet and SVD
compression were tested at the 100× ratio.2D wavelet com-
pression outperformed SVD compression on the large event
3 in the sense of providing a more compact distribution of time
shifts,although 2D wavelet’s distribution of pick time shifts is
skewed to have larger positive shifts. Both schemes performed
similarly at the 100× levelon events 1 and 2,with extreme
shifts around ∼±0.6 s.

Discussion
Overall,we see that although zfp has the lowest data errors at
lower compression ratios,waveletcompression (especially in
2D) has lower errors at higher compression ratios, and low-rank
SVD has an error growth that sits in between zfp and wavelets.
Wavelets strongly improve broadband representation of strong
events over quiet noise, and SVD tends to have better broadband
representation of louder signals,but zfp tends to more evenly
distribute errors in the frequency content across loud and quiet
events.Using a microseismicity dataset,we could see that after
feeding compressed data through a template matching work-
flow, all types of compression could preserve the eventsat
smaller compression ratios.SVD compression tended to have
the largest drop in detection significance at high-compression
ratios,although it still preserved the detection significance of
a midsize and large event even at 100× compression.The
unbiased picks with increasing variability caused by higher com-
pression ratios from Figure 10 suggest the opportunity to design
a postprocessing scheme thatpromotes spatialcoherency in
eventpicks across the array.In this way, more reliable picks
can be used from any highly compressed data,particularly as
an input to the event location or for tomographic imaging using
microseismic events.This analysis workflow was extended to a
36-hour period recording with 52 events of varying detection
significance,and we found that wavelet compression preserved
the detection significance better than zfp and SVD compression
at similar compression ratios and tended to increase detection
significance for larger events and higher compression ratios (i.e.,
emphasizing and denoising large events). Zfp compression typ-
ically led to a reduction in detection significance across all event
sizes.SVD compression tends to reduce detection significance
for smaller to midsize events and tends to increase detection
significance for larger events,with more decrease or increase

Figure 10. Boxplots show the distribution across allchannels in
the array of picked event times from template matching applied
to the (a) 2D wavelet-compressed data, (b) zfp-compressed data,
and (c) low-rank SVD-compressed data. These are shown at
various compression ratios for three events. The color version of
this figure is available only in the electronic edition.
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in significance for higher compression levels.Ultimately,SVD
and wavelet representations have been integrated into a larger
number of analysis workflows that can operate on data directly
in their compressed representation, which may lead us to prefer
these in some contexts, but zfp is being increasingly used in sci-
entific computing,so algorithms incorporating zfp may be on
the horizon in the coming years. Beyond the scope of this study,
further analysis should be done on the effects of lossy compres-
sion in ambient noise interferometry for imaging.

Conclusions
New technologies to continuously collect high-resolution seis-
mic data for long periods of time are pushing us to consider
lossy compression as a means of reducing data movement time,
archival requirements,and processing or visualization time
(particularly when interactive workflows are desirable).In this
report, we compare the benefits and drawbacks of wavelet com-
pression,zfp compression,and SVD compression at compres-
sion ratios ranging between 5× and 100×.These are tested on
two public DAS datasets: an urban dark fiber experiment as well
as a geothermalfield microseismicity monitoring experiment.
We see that different compression schemes have the lowest
errors at low-compression rates versus high-compression rates,
and we compare these errors because they propagate through an
entire template matching microseismicity detection workflow.

Data and Resources
The Penn State Fiber-Optic foR Environment SEnsEing (FORESEE) data
are publicly available on PubDAS, which can be accessed through Globus
Spica et al. (2023). The Brady’s Hot springs data are publicly available on
the U.S. Department of Energy’s Geothermal Data Repository, which is
provided alongside example code notebooksfor accessing the data
through Amazon Web Services (AWS) discussed by Coleman (2016)
and Feigl et al. (2016). The Python software to reproduce tests and fig-
ures from this article is publicly available at https://github.com/aissah/
Issah-SRL-compression-2023.git and is archived at https://zenodo.org/
badge/latestdoi/505936568 in its presentform. This software is built
using the following open-sourcepackages:PyWavelets(Lee et al.,
2019), ZFPy (Lindstrom, 2014), Numpy, Matplotlib, and h5py. The sup-
plemental material contains more detailed representations of the com-
pressed data for the various compression types considered in the article.
These include the time domain data from the Errors in frequency con-
tent section reconstructed after lossy compression and the channelwise
normalized cross correlation ofeach channel’s continuous recording
with its template event recording used in the event detection analyses.
These are pictured for all three compression types considered here.All
websites were last accessed in September 2023.
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