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Zuo et al. 2019). ML is a branch of artificial intelligence 
that involves developing algorithms and statistical models 
for computers to learn from data and make predictions (Bot-
tou 2011; Bishop et al. 2006; Karpatne et al. 2019). These 
algorithms learn patterns and relationships in data, allow-
ing them to make informed decisions without explicit pro-
gramming. DL, a subfield of ML, utilizes artificial neural 
networks inspired by the brain’s structure and function to 
process and analyze complex data such as audio, images, 
and text. By training on extensive data, DL algorithms can 
identify patterns and make predictions with high accuracy 
(Battaglia et al. 2018; Bengio 2009; Lample et al., 2019; 
Lecun et al. 2015). NSAI, also known as Hybrid AI, is a 
subfield of artificial intelligence that combines symbolic 

Introduction

In recent years, there has been a notable increase in the 
adoption of machine learning (ML) and deep learning (DL) 
methods within the realm of geoscience (Ayranci et al. 
2021; Irrgang et al. 2021; Okada et al. 2020; Trauth 2022; 
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Abstract
The integration of machine learning (ML) and deep learning (DL) into geoscience has experienced a pronounced uptick in 
recent years, a trend propelled by the intricate nature of geosystems and the abundance of data they produce. These com-
putational methods have been harnessed across a spectrum of geoscientific challenges, from climate modeling to seismic 
analysis, exhibiting notable efficacy in extracting valuable insights from intricate geological datasets for applications such 
as mineral prediction. A thorough analysis of the literature indicates a marked escalation in AI-centric geoscience research 
starting in 2018, characterized by a predictive research orientation and a persistent focus on key computational terms. The 
thematic network and evolution analyses underscore the enduring prominence of “deep learning” and “machine learning” 
as pivotal themes, alongside progressive developments in “transfer learning” and “big data”. Despite these advancements, 
other methodologies have garnered comparatively lesser focus. While ML and DL have registered successes in the realm 
of mineral prediction, their amalgamation with domain-specific knowledge and symbolic reasoning could further amplify 
their interpretability and operational efficiency. Neuro-Symbolic AI (NSAI) emerges as a cutting-edge approach that syn-
ergizes DL’s robust capabilities with the precision of symbolic reasoning, facilitating the creation of models that are both 
powerful and interpretable. NSAI distinguishes itself by surmounting traditional ML constraints through the incorporation 
of expert insights and delivering explanatory power behind its predictive prowess, rendering it particularly advantageous 
for mineral prediction tasks. This literature review delves into the promising potential of NSAI, alongside ML and DL, 
within the geoscientific domain, spotlighting mineral prediction as a key area of focus. Despite the hurdles associated with 
infusing domain expertise into symbolic formats and mitigating biases inherent in symbolic reasoning, the application of 
NSAI in the realm of critical mineral prediction stands to catalyze a paradigm shift in the field. By bolstering prediction 
accuracy, enhancing decision-making processes, and fostering sustainable resource exploitation, NSAI holds the potential 
to significantly reshape geoscience’s future trajectory.
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reasoning with neural network-based learning (Garcez et al. 
2015; Hassabis et al. 2017; Riegel et al. 2020; Yi et al. 2018; 
Yu et al. 2021). This approach aims to build more power-
ful and versatile AI systems by integrating the strengths 
of both symbolic AI and DL. Symbolic AI uses explicit 
rules and representations to solve problems, while DL 
uses data-driven, end-to-end learning to identify patterns 
in data. Combining these approaches with NSAI allows 
solving tasks ranging from perception and pattern recogni-
tion to reasoning and problem-solving (Garcez et al., 2020; 
Hassabis et al. 2017). ML and DL techniques have revo-
lutionized how geoscientists analyze, interpret, and model 
geoscientific data. With the advancements in computational 
power and the availability of large-scale geoscientific data, 
become a popular choice for solving complex problems and 
improving our understanding of natural phenomena. ML 
and DL techniques have impacted many sub-disciplines of 
geoscience, including seismology, climate science, geology, 
and remote sensing.

Geology, a sub-discipline of geoscience that focuses 
on the study of rocks, minerals, and geological processes, 
has utilized ML and DL techniques for mineral prospect-
ing, identifying geological features, and modeling geologi-
cal processes (Ayranci et al. 2021; Karpatne et al. 2019). 
For example, ML and DL techniques in mineral prospect-
ing have enabled the discovery of new mineral deposits 
that were previously unknown, while identifying geologi-
cal features using ML and DL techniques has enabled the 
identification of new geological structures and formations. 

As the field of geoscience continues to generate increas-
ingly complex and diverse datasets, the application of ML 
and DL techniques is expected to grow (Dikshit et al. 2021; 
Dramsch 2020; Mai et al. 2022; Morgenroth et al. 2019; 
Tariq et al. 2021).

Mineral prediction, also referred to as mineral resource 
prediction or mineral deposit modeling, plays a pivotal role 
in geology by estimating and forecasting the presence and 
characteristics of mineral resources within a given geologi-
cal area. Although ML and DL methods have gained wide-
spread adoption in mineral prediction, there are limitations 
associated with their handling of uncertainty, lack of trans-
parency, and interpretability of results. ML and DL meth-
ods struggle to unveil hidden relationships between data 
from different sources. For example, utilizing ML and DL 
methods with varying data types (such as geochemical and 
geophysical data) within the same area can yield divergent 
or even contradictory results. Similar discrepancies may 
arise even when using the same data type but from different 
sources.

NSAI presents a promising solution to overcome these 
limitations. By integrating symbolic reasoning with neural 
networks, NSAI can address uncertainty, explain its rea-
soning, and offer interpretable results. It can incorporate 
domain knowledge from experts into its models and adapt 
symbolic reasoning methods suitable for different data 
types (Fig. 1). NSAI can interpret and learn from various 
geological data types, such as mineral associations from 
geochemical data, structural details from geophysical data, 

Fig. 1 Advantages of NSAI with 
respect to model efficiency and 
interpretability. Neuro-symbolic 
AI seamlessly integrates sym-
bolic reasoning and deep learn-
ing, yielding a high-level model 
with enhanced efficiency and 
interpretability
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and properties from geothermal data. Its ability to apply 
consistent rules across data types from different sources 
is particularly useful in dealing with diverse and uncertain 
geological data, which can challenge traditional ML and 
DL methods. NSAI involves a pre-model training phase of 
symbolic reasoning, where rules represent domain expertise 
and facts represent data-driven parts. Depending on the data 
type, NSAI models can include corresponding rules, sum-
marizing diverse data and contributing to model improve-
ment. For uncertain data, rules provide constraints and 
supplements, offering new solutions to problems that tra-
ditional ML and DL methods might not resolve. However, 
NSAI’s effectiveness is contingent on data availability; it 
struggles with extremely sparse data but thrives when suf-
ficient data (facts) are present, allowing for a balanced inter-
play between data-driven elements and domain expertise. 
The advantages of utilizing NSAI in mineral prediction are 
manifold. It can handle incomplete or uncertain data, which 
is common in geology, and provide probabilistic estimates 
(Sen et al. 2021). Furthermore, it offers transparency and 
trustworthiness by explaining its reasoning and providing 
interpretable outcomes. Consequently, NSAI emerges as a 
promising research topic in mineral prediction. While NSAI 
exhibits substantial potential, it is still a relatively nascent 
field, and its applications in mineral prediction are yet to 
be fully explored. Nonetheless, recent research has dem-
onstrated promising results, and ongoing investigations are 
being conducted to unlock the full potential of this technol-
ogy (Ciregan et al. 2012; Ciresan et al. 2012; Harmon et al. 
2022; Karpatne et al. 2019; Zhang et al. 2022a).

The central objective of our study is to delve deeply into 
the utilization of NSAI within the realm of mineral predic-
tion. This exploration is directed towards elucidating the 
synergistic potential of advanced AI techniques in augment-
ing the methodologies employed in geoscience. By meticu-
lously reviewing current literature and data trends, the study 
endeavors to illuminate the transformative impact of NSAI 
in refining traditional approaches to mineral exploration, 
while also casting light on prospective research trajecto-
ries and the integration of sophisticated AI in geoscience 
disciplines.

The structure of this article is organized as follows. Sec-
tion 2 introduces the concepts of mineral prediction, mineral 
exploration and NSAI. Section 3 uses bibliometric analy-
sis to illustrate the latest work in the fields of ML, DL and 
NSAI in geoscience and demonstrates interconnections. 
Section 4 shows the state-of-the-art application of ML, 
DL and NSAI techniques in solving a range of problems 
in geoscience. Section 5 discusses a few potential research 
directions of NSAI in mineral prediction in the next decade. 
Finally, Sect. 6 concludes NSAI, ML and DL techniques in 
mineral prediction.

Related concepts and methods

Concept of mineral prediction and exploration

Mineral prediction and exploration involve using geological 
and geophysical data to identify and assess potential mineral 
deposits (Yang et al. 2022a; Zhao et al. 2022; Cudahy 2016). 
Prediction focuses on identifying likely mineral-rich areas 
based on geological settings, rock types, and geochemical 
signatures. It employs geophysical surveys to detect anoma-
lies indicating mineral presence, size, and shape, alongside 
geochemical analysis for element distribution and isotopic 
composition (Zhao et al., 2008; Zhao 1992). Exploration 
builds upon these predictions, combining fieldwork, analy-
ses, drilling, and other techniques to confirm and evaluate 
the presence and quality of minerals, determining their com-
mercial viability. This integrated approach aims to locate, 
validate, and assess mineral resources effectively (Gonza-
lez-Alvarez et al. 2016; Yousefi et al. 2019, 2021). Table 1 
shows A comparative overview of their distinctions.

ML and DL modeling in mineral prediction

ML and DL have become powerful tools for extracting 
valuable insights from large and complex geological and 
geophysical datasets, making them an increasingly attrac-
tive option for mineral prediction. ML and DL models are 
capable of identifying patterns and relationships between 
different variables, which has the potential to revolutionize 
the way mineral exploration is conducted. By analyzing vast 
amounts of data, including geological maps, geophysical 
surveys, and geochemical assays, these models can create 
detailed models of mineralization and identify areas of high 
mineral potential. The use of ML and DL models in mineral 
prediction offers several advantages over traditional meth-
ods. Traditional geological and geophysical methods can 
be time-consuming, costly, and subjective, while ML and 
DL models can automate many of the processes involved 
in mineral prediction, reducing both the time and cost of 
exploration. In addition, ML and DL models can integrate 
multiple datasets, leading to a more comprehensive under-
standing of the geological and geophysical characteristics of 
an area. Another advantage of ML and DL models in min-
eral prediction is their ability to learn from data and improve 
over time. By training the models on new data, they can 
become more accurate and reliable, leading to more suc-
cessful mineral exploration campaigns. Furthermore, ML 
and DL models can identify previously unknown relation-
ships between different variables, leading to the discovery 
of new mineral deposits that traditional exploration meth-
ods may have missed. Table 2 systematically catalogs a 
spectrum of AI methodologies, meticulously outlining their 
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requirements and selecting appropriate algorithms, we can 
utilize ML to improve our understanding of the geology of 
an area and make informed predictions about the presence, 
quantity, and quality of minerals.

NSAI in mineral prediction

Neural networks are a type of artificial intelligence algo-
rithm that is modeled after the structure and function of the 
human brain. The development of NSAI is an interdisciplin-
ary field that involves contributions from multiple areas of 
expertise, including computer science, mathematics, philos-
ophy, cognitive psychology, and neuroscience. A variety of 
research directions has influenced the field and has evolved 
over time to meet the challenges of increasingly complex AI 
problems. It can be traced back to the early days of artificial 
intelligence research, when researchers first explored the 

respective applications in the domain of mineral prediction, 
complemented by pertinent scholarly citations. Despite 
these advantages, there are also some challenges associated 
with the use of ML and DL models in mineral prediction. 
One of the biggest challenges is the quality and quantity 
of data. ML and DL models require large amounts of high-
quality data to function correctly, and it can be challenging 
to obtain this data in many mineral exploration projects.

Despite these challenges, the use of ML and DL models 
in mineral prediction is rapidly growing, and many mining 
companies are investing in these technologies to improve 
the efficiency and effectiveness of their exploration cam-
paigns. With continued development and refinement, ML 
and DL models have the potential to significantly enhance 
our understanding of mineralization and revolutionize the 
way we explore mineral deposits. By leveraging the power 
of ML, we can unlock new insights into the complex geo-
logical processes that shape our planet and discover new 
mineral resources that will help meet the growing demands 
of our global economy. ML and DL modeling is a power-
ful tool that can significantly enhance the accuracy and 
efficiency of mineral prediction. By meeting the necessary 

Table 1 Differences between mineral prediction & mineral exploration
Category Mineral Prediction Mineral Exploration
Focus Assessing likelihood 

of mineral occurrences
Actively searching 
for and evaluating 
deposits

Data Usage Existing geological 
and geophysical data

New data collected 
through fieldwork

Timing Before/at early stages 
of exploration

Occurs after min-
eral prediction

Certainty Provides likelihood 
assessment, not 
definitive

Aims to obtain 
concrete evidence 
of mineralization

Scale Regional or large-scale 
assessment

Site-specific 
investigation

Objective Identify areas with 
high mineral potential

Discover new 
deposits and deter-
mine their viability

Methods Geophysical model-
ing, statistical analysis, 
geological data

Field surveys, 
sampling, drill-
ing, geophysical 
exploration

Results Predictive maps or 
models of potential 
mineral occurrences

Direct evidence of 
mineral presence 
and quality

Investment Lower cost compared 
to exploration

Higher cost due to 
fieldwork, drilling, 
and analysis

Risk Lower risk as it relies 
on existing data and 
modeling

Higher risk as it 
involves direct 
exploration and 
sampling

Decision-making Guides exploration 
efforts and target 
selection

Determines whether 
to develop or aban-
don a site

Table 2 Selected AI methods in mineral prediction
Technology/Tool Description Application in 

Mineral Prediction
Citations

Support Vector 
Machine (SVM)

A supervised 
learning model 
used for clas-
sification and 
regression 
analysis.

Applied for clas-
sifying geologi-
cal features and 
predicting mineral 
occurrences based 
on geological 
data.

Du et al. 
2021
Azizi et al. 
2020
Zhang et 
al. 2018

Decision Trees A decision 
support tool 
using a tree-
like model of 
decisions.

Used for creat-
ing hierarchical 
models that seg-
ment geological 
data into different 
mineralization 
zones.

Fan et al. 
2022
Ozturk et 
al. 2023

Random Forest An ensemble 
learning 
method based 
on decision 
trees.

Employed for 
more robust and 
accurate predic-
tions by aggre-
gating multiple 
decision trees.

Yang et al. 
2022b
Zhang et 
al. 2023
Rodriguez 
et al., 2014

Neural Networks Comprises 
algorithms 
modeled on the 
human brain 
to recognize 
patterns.

Utilized for 
complex pattern 
recognition 
in geological 
datasets, aiding in 
predictive mineral 
modeling.

Theer-
thagiri et 
al. 2024
Ding et al. 
2022

Convolutional 
Neural Networks 
(CNN)

A deep learn-
ing algorithm, 
especially 
effective for 
analyzing 
visual imagery.

Applied in 
interpreting geo-
logical and remote 
sensing images 
for mineral 
exploration.

Yang et al. 
2021
Yang et al. 
2023

Recurrent Neural 
Networks (RNN)

A class of neu-
ral networks 
for processing 
sequential 
data.

Used for analyz-
ing temporal 
data in mineral 
deposit formation 
processes.

Yin et al. 
2022
Luo et al. 
2017
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approaches can be combined to create more accurate and 
interpretable models of mineral potential.

Trends reflected in literature data

Data source

Annual Scientific Production data was sourced from Web of 
Science, utilizing specific filters encompassing terms asso-
ciated with AI, including NSAI, neuro-symbolic AI (both 
NSAI and neuro-symbolic AI are focused on combining 
neural networks with symbolic AI techniques), ML, DL, 
hybrid AI, and educated AI, along with geoscience and min-
eral prediction. Seven hundred forty-three papers used in 
this analysis comprises annual scientific production data in 
the field of geoscience, focusing on various research topics 
ranging from geology and engineering to computer science, 
geochemistry, geophysics, remote sensing, environmental 
sciences, mining, mineral processing, mineralogy and water 
resources.

The papers, all written in English, were selected based 
on specific inclusion criteria. In the title, keywords, and 
abstracts of each paper, elements from two distinct filter 
groups had to be contained: one related to computer science 
methods such as AI, ML, DL, CNN, and the other to the geo-
science domain, including terms like Mineral, Geochemi-
cal, Geophysics, and Climate Change. The entire dataset 
of 743 papers, encompassing titles, keywords, abstracts, as 
well as methods and conclusions sections, was thoroughly 
reviewed. This review was conducted to ensure that the use 

idea of combining symbolic reasoning with neural network-
based learning. In the 1980 and 1990 s, the field of neural 
networks experienced a resurgence, leading to significant 
advances in developing DL algorithms. In recent years, 
the growing success of DL algorithms in a wide range of 
applications has led to renewed interest in NSAI (Sheth et 
al. 2023). Researchers are now exploring new ways to inte-
grate symbolic reasoning with DL, using techniques such 
as knowledge graph embeddings, differentiable logic, and 
graph neural networks. NSAI has evolved to tackle complex 
AI challenges, influenced by the resurgence of neural net-
works and the success of DL algorithms (Luus et al. 2021; 
Jiang et al. 2021).

ML is a branch of Artificial Intelligence, which focuses 
on methods that learn from data and make predictions on 
unseen data. DL is a specific type of ML that uses multiple 
neural layers for learning data representations, it is effec-
tive at learning patterns without human-designed features 
and NSAI is a subfield of AI that combines both symbolic 
reasoning and DL (Bengio 2009; Lecun et al. 2015; Zhang 
et al. 2022bFig. 2). In mineral prediction, NSAI uniquely 
addresses limitations of traditional ML models by inte-
grating expert geological knowledge and neural network 
learning. This amalgamation results in sophisticated, inter-
pretable AI models capable of handling geological data 
effectively (Kimura et al. 2021; Fagin et al. 2022). For 
example, neural networks can be trained on large datasets of 
geological and geophysical data, while rule-based reasoning 
systems can be used to incorporate expert knowledge about 
mineral deposits and geological environments. These two 

Fig. 2 Relation between AI, 
ML, DL And NSAI. NSAI is a 
subfield of AI that combines both 
symbolic reasoning and DL
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Annual scientific production

Analyzing the annual scientific production data (Fig. 3), 
a discernible upward trend in research output becomes 
evident. The number of articles published demonstrates a 
consistent growth from 2010 to 2023, with occasional fluc-
tuations. Starting with only two articles in 2010, the annual 
production gradually increased, with substantial growth 
observed from 2018 onwards. Particularly remarkable is the 
surge in publications in 2021, reaching one hundred sev-
enty-one articles, and peaking in 2022 with an impressive 
two hundred fifty-two articles. However, it is important to 
note that the data for the year 2023 only covers the period 
from January to May, offering a partial representation of the 
articles published within that year. This surge in scientific 
production indicates a burgeoning interest in AI applica-
tions, ML, DL, and their integration into geoscience and 
mineral prediction research. The exponential growth in pub-
lications underscores the expanding significance of these 
areas and highlights the dynamic interdisciplinary nature of 
geoscience research.

The substantial increase in research output indicates the 
evolving landscape in geoscience, as researchers increas-
ingly harness AI techniques and advanced methodologies to 
explore diverse facets of the field. The utilization of AI, ML, 
and DL approaches hold great promise in enhancing the 
understanding of geological phenomena, optimizing min-
eral prediction models, and improving resource exploration 
strategies. Furthermore, the inclusion of computer science 
and interdisciplinary domains like engineering reflects the 

of AI techniques in the geoscience domain was accurately 
represented in the papers.

The dataset, comprising 743 papers including articles, 
review articles, conference papers, and proceeding papers, 
showcases a global perspective with contributions from 
a wide array of countries across continents such as Asia 
(China, India), North America (USA, Canada), and Europe 
(Germany, France). However, the predominance of papers 
from certain countries, notably China and the USA, may 
suggest a regional focus or possible over-representation. 
An analysis of the top three countries of the corresponding 
authors—China, the USA, and Korea—reveals interesting 
aspects of the dataset’s geographical diversity. China leads 
with 288 articles, predominantly Single Country Publica-
tions (SCP) at 217, against 71 Multiple Country Publications 
(MCP). The USA follows a similar trend, with 55 SCPs out 
of 78 articles. In contrast, Korea presents a more balanced 
profile with its 45 articles, evenly split between SCP (22) 
and MCP (23). This pattern indicates a stronger national 
research focus in China and the USA, whereas Korea’s equal 
emphasis on SCP and MCP suggests a more international or 
collaborative research approach. The skewed distribution of 
SCP and MCP, especially in the top contributing countries, 
might impact the dataset’s overall analysis, potentially bias-
ing it towards the specific research trends and priorities of 
these regions, particularly China and the USA.

Fig. 3 Annual scientific production trends in the integration of AI and geoscience. (2023 only covers the period from January to May, offering a 
partial representation of the articles published within that year).
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words in the network represent the co-occurrence between 
them. Thicker or darker lines indicate stronger co-occur-
rence between words, while thinner or lighter lines indicate 
weaker co-occurrence (Aria and Cuccurullo 2017). Our 
analysis of the thematic network using the criteria of cen-
trality and density provides valuable insights into the land-
scape of the domain. Higher centrality and density identify 
hot topics that are well-developed and relevant. Higher cen-
trality and lower density define basic topics significant for 
the domain. Lower centrality and density indicate peripheral 
topics, while lower centrality and higher density represent 
niche topics that are strongly developed but marginal in the 
domain (Aria et al. 2022).

By examining the interconnections between key con-
cepts through co-occurrence patterns, we gain insights into 
the development and significance of various themes over 
time. In Fig. 5, the thematic network analysis illustrates the 
conceptual structure of AI in geoscience, highlighting the 
prominence of “deep learning” and “machine learning” as 
central themes, indicated by larger nodes and thicker con-
nections. The strong connections between “deep learning” 
and “machine learning” highlight their close integration and 
mutual relevance, reflecting the foundational role of these 
techniques. The “convolutional neural network” node within 
the “deep learning” cluster demonstrates foundational sig-
nificance, and “remote sensing” is closely related, as shown 
by their proximity and connecting lines. The proximity of 
“convolutional neural network” and “remote sensing” sug-
gests that deep learning methods are particularly influential 

growing recognition of the need for collaboration between 
diverse fields to address complex geoscience challenges.

Word frequency over time

The word frequency data (Fig. 4) reveals a notable increase 
in the frequency of the term “prediction” over time, indi-
cating a growing emphasis on prediction-related research. 
The terms “classification,” “neural networks,” and “model” 
also exhibit an upward trend in frequency over the years, 
indicating sustained interest and research in these areas. 
Notably, “classification” demonstrates a substantial increase 
from 2015 onwards. The terms “random forest,” “machine,” 
and “support vector machine” show a relatively consistent 
frequency over time, with some fluctuations. These terms 
likely represent ongoing areas of focus within the research 
field, maintaining a certain level of relevance.

Thematic network

The application of thematic network analysis allows us to 
unravel the conceptual structure within the domain under 
investigation. In Fig. 5, the color of the points indicates dif-
ferent themes within the network. Each cluster or theme is 
assigned a specific color (red & blue in this case) to visually 
distinguish them from one another. The size of the points 
represents the centrality of a word within its respective clus-
ter. Larger points indicate higher centrality, while smaller 
points indicate lower centrality. The lines connecting the 

Fig. 4 Temporal trends in word frequency: Focus on prediction and related concepts
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is observed, includes 561 papers. The final phase covers 
January to May 2023, comprising 102 papers, showcasing 
the latest developments. This thematic evolution map thus 
offers a comprehensive visualization of the growth trends 
and shifts in research focus over these periods, underpinned 
by the Keywords Plus data.

In Fig. 6, the labels beside the vertical bars denote topics 
derived from “Keywords Plus,” with the length of the col-
ored bars representing the frequency of these topics within 
designated time frames. A bar’s length is proportional to the 
number of publications associated with its respective key-
word or theme within that interval. For instance, a lengthier 
red bar labeled “Machine Learning” during the 2019–2022 
period, relative to other time segments, indicates a higher 
incidence of “Machine Learning” in the scholarly articles 
published in those years.

Based on the analysis of Thematic Evolution data 
(Fig. 6), the following trends can be observed:

1. From 2010 to 2018, the term “convolutional neural net-
works” (CNNs) was frequently mentioned, but from 
2019 to 2022, “deep learning” gained prominence and 
replaced CNNs. These terms were primarily associated 
with applications in seismic data and remote sensing, 
with relatively low occurrence.

2. Between 2010 and 2018, there was significant men-
tion of “extreme learning,” which was then replaced by 
“receiver operating” from 2019 to 2022. These terms 
were linked to mineral prospectivity and geochemical 
data, respectively.

3. The term “machine learning” maintained consistent 
usage throughout the entire period, often accompanied 
by related terms such as learning techniques, algorithms, 
and methods. Its applications encompassed various 
areas, including neural networks, prediction accuracy, 
prediction models, and support vector machines.

in remote sensing applications. Themes such as “transfer 
learning” signal ongoing advancements in the domain, and 
“big data” is represented as a specialized but integral part of 
the landscape. “Transfer learning” represents an emerging 
trend, indicating the adaptation of established techniques to 
new domains. Meanwhile, “big data” occupies a specialized 
niche but maintains connections with other themes, signify-
ing its importance in data-driven geoscience research. The 
visualization captures the interplay and co-occurrence of 
key concepts, reflecting their development and centrality in 
the research domain.

Thematic evolution

Thematic Evolution analysis was employed to examine the 
development, prominence, and decline of themes, subjects, 
or concepts over time.

Figure 6 illustrates a thematic evolution map created 
using bibliometrix, where ‘Keywords Plus’ data is analyzed. 
‘Keywords Plus’ refers to a feature in Web of Science that 
generates additional keywords from the titles of cited arti-
cles in a paper. This method expands the scope of keyword 
analysis, encompassing a wider range of interconnected 
research themes.

The time frame for the analysis begins in 2010, a starting 
point chosen due to the presence of only two papers prior 
to this year. The year 2018 is identified as a key node in 
the timeline, not because of the sheer number of papers, but 
due to it having the highest ratio of growth in the number of 
papers, marking a significant increase in research activity. 
The timeline concludes in 2023, the latest year in the data-
set, providing a view of the current research landscape. The 
analysis is segmented into three distinct phases, each repre-
senting different stages of development in the research field. 
The first phase (2010–2018) includes 75 papers, reflecting 
the early stage of research. The second phase (2019–2022), 
where the most notable growth in the ratio of paper numbers 

Fig. 5 Thematic network visu-
alization. (“Deep learning” and 
“machine learning” are central, 
while “convolutional neural 
networks” and “transfer learn-
ing” stand out. “Big data” has its 
specialized niche)
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A synthetic analysis of ML, DL, and NSAI 
applications in geoscience

The complexity of geosystems and the vast amounts of 
data generated in geoscience make it an ideal area for the 
application of ML and DL techniques (Mahoob et al. 2022; 
Mishra 2021; Sahimi et al., 2022; Saldana et al. 2022). In 
recent years, there has been growing interest in using ML 
and DL techniques in geoscience to solve a wide range of 
problems (Fig. 7), including climate modeling, seismic sig-
nal analysis, and geophysical modeling(Gomez-Flores et al. 
2022; He et al. 2022; Mousavi et al., 2022; Savelonas et 

4. “Prediction accuracy” and “prediction models” were 
frequently discussed within the context of machine 
learning, focusing on utilizing them for predicting rock 
types.

5. “Support vector” and “random forest” received moder-
ate attention, with associations to neural networks, arti-
ficial intelligence, and vector machines.

In conclusion, the trends suggest a noticeable shift towards 
deep learning and machine learning, with a diverse range of 
applications and associated terms receiving increased atten-
tion. In contrast, other techniques and domains received 
relatively less focus during the analyzed period.

Fig. 7 ML, DL and NSAI application in geoscience

 

Fig. 6 Thematic evolution map. 
(Figure highlights key trends 
over time: a)”Deep learning” 
replaced “convolutional neural 
networks.” b)”Receiver operat-
ing” replaced “extreme learning”. 
c)”Machine learning” remained 
constant. d)”Support vector” and 
“random forest” had moderate 
attention. The trends suggest a 
shift towards deep learning and 
machine learning, with diverse 
applications.)
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Seismic signal analysis

Seismic signal analysis is a crucial area of research in geo-
science, as it provides valuable insights into the Earth’s 
interior structure and processes. However, analyzing seis-
mic signals can be challenging, as they often contain com-
plex and noisy data. DL methods, particularly CNNs, have 
shown promise in improving seismic signal analysis (Yan 
et al. 2022; Nie et al. 2023). CNNs can automatically learn 
features from the data and identify patterns that are difficult 
for humans to discern. DL methods have enabled research-
ers to detect and locate seismic events more accurately and 
efficiently than traditional methods. DL methods have also 
been used to analyze other types of geophysical data, such 
as magnetic field data, gravity data, and remote sensing 
data. These techniques have facilitated a more comprehen-
sive understanding of the Earth’s structure and dynamics, as 
well as the potential for predicting natural hazards such as 
earthquakes and volcanic eruptions. However, there are still 
challenges that need to be addressed, such as developing 
interpretable models and addressing issues related to data 
quality and quantity. Nonetheless, the success of ML and 
DL in seismic signal analysis and other geophysical applica-
tions highlights the potential of these techniques in advanc-
ing geoscience research.

Geophysics

In recent years, the hybrid modeling strategy, which com-
bines physical knowledge with DL, can potentially improve 
the geoscientific awareness of artificial intelligence (AI) 
systems. Although it is developing but remains under inves-
tigated. Some studies in geoscience have attempted this 
strategy by introducing physical constraints into the loss 
function in the DL as a penalty term (Karpatne et al. 2017; 
Zhao et al. 2019) or wrapping analytical solutions of physi-
cal representations in DL as NN layers (De Bézenac et al. 
2019; Wang et al. 2020). Existing approaches require physi-
cal knowledge to be expressed in a closed form, which is 
impossible for highly dynamic systems like the Earth. Jiang 
et al. (2020) proposed a novel neural network architecture 
called the physical process-wrapped recurrent neural net-
work (P-RNN), which incorporates non-analytically solv-
able ordinary differential equations (ODEs) into DL models, 
highlights the benefits of a symbiotic integration between 
DL and physical approaches in advancing geoscience and 
demonstrates that AI can acquire physical knowledge if 
taught appropriately.Specifically, the P-RNN model showed 
a significant improvement in runoff prediction. The results 
indicated an increase in Nash-Sutcliffe efficiency from 
0.65 to 0.75 when compared to a traditional neural net-
work model, and an impressive ability to generalize across 

al. 2022; Shirmard et al. 2022; Sun et al. 2022; Yu and Ma 
2021; Zhang et al. 2022b; Zuo 2017; Zuo et al. 2019).

Climate modeling

Climate models generate vast amounts of data, making it 
challenging to analyze the outputs effectively. ML and DL 
techniques can be used to analyze and make predictions 
from this data, enabling researchers to gain insights into 
complex climate processes such as atmospheric circula-
tion, cloud formation, and ocean dynamics (Brenowitz et 
al. 2020.; Gettelman et al. 2021; Seifert et al., 2020). The 
ability to analyze vast amounts of data generated by climate 
models using ML and DL techniques has facilitated more 
accurate and robust climate predictions, which are vital in 
addressing the pressing issue of climate change (Neumann 
et al. 2019).

In addition to ML and DL techniques, integrating sym-
bolic reasoning with neural networks can lead to a more 
interpretable and transparent model, which is critical in cli-
mate science, where the models’ transparency is necessary 
for policymakers to make informed decisions. NSAI allows 
for the incorporation of expert knowledge and physical laws 
into the model, which can help improve the accuracy and 
interpretability of the model’s outputs.

For instance, a hybrid AI climate modeling approach 
has been proposed to facilitate scientific discovery in cli-
mate research (Sleeman et al. 2023). This innovative 
method combines deep neural networks and mathematical 
techniques to model dynamic systems. By incorporating a 
neuro-symbolic language it enables interpretability and the 
ability to answer questions about the learned information. 
The approach has been applied to predict climate tipping 
points, such as the collapse of the Atlantic Meridional Over-
turning Circulation (AMOC), with high accuracy using a 
surrogate climate model. Additionally, preliminary findings 
demonstrate the efficacy of the neuro-symbolic method in 
translating between natural language queries and symboli-
cally learned representations. This AI methodology shows 
great promise in accelerating climate tipping point research, 
enabling faster advancements that were previously compu-
tationally infeasible.

Another example of the application of NSAI in climate 
modeling is the use of NS Methods to identify the drivers of 
climate variability. These methods can integrate large-scale 
climate data with other sources of information, such as eco-
nomic data and historical records, to identify the underlying 
factors contributing to climate variability. By incorporating 
both numerical and symbolic data, these models can provide 
a more complete understanding of the complex processes 
driving climate change.
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Irrgang explains that the dynamic exchange of informa-
tion between the ML component and physical equations 
can enhance the performance of the NESYMs. However, 
innovative interfaces will also be necessary to control the 
exchange of information (Irrgang et al. 2021).

Using ML, DL, and NSAI techniques in the realm of 
earth science has demonstrated significant potential across 
various domains, albeit with limited application in min-
eral prediction. ML and DL methods have found success 
in climate modeling, seismic signal analysis, geophysics, 
and geosystem dynamics. These applications have proven 
their ability to analyze intricate climate processes, enhance 
the precision of seismic event detection, deepen our under-
standing of Earth’s structure and dynamics, and aid in 
weather forecasting and climate data analysis. Notably, the 
amalgamation of symbolic reasoning with neural networks 
holds promise for creating more interpretable and transpar-
ent models, incorporating expert knowledge, and adhering 
to physical laws. However, the application of NSAI, spe-
cifically in the field of mineral prediction, remains largely 
unexplored. This gap underscores the necessity for further 
research and development to harness the potential of NSAI 
in accurately forecasting mineral occurrences and unravel-
ing the underlying factors driving mineralization events. By 
leveraging the strengths of ML and DL techniques and sym-
bolic reasoning, NSAI can revolutionize mineral prediction, 
facilitating more efficient and sustainable mining practices.

Potential applications of NSAI in mineral prediction

The potential applications of NSAI in mineral predic-
tion represent a compelling avenue for advancing geosci-
ence and fundamentally transforming mineral exploration. 
Drawing from the well-established successes of ML, DL, 
and NSAI within various Earth science domains, it becomes 
apparent that NSAI can seamlessly extend its capabilities 
to enrich mineral exploration, offering predictions that are 
both more comprehensive and accurate.

A pivotal strength of NSAI resides in its innate capacity 
to adeptly integrate a multitude of diverse data sources, a 
quality of immeasurable significance within the domain of 
mineral prediction. Through the amalgamation of geologi-
cal, geophysical, geochemical, and historical data, NSAI 
establishes a comprehensive foundation for predictive mod-
eling. This innovative approach empowers geoscientists 
to attain a profound understanding of the intricate factors 
influencing mineral occurrences, transcending traditional 
methodologies reliant on limited data sources. Incorporat-
ing expert geological knowledge into mineral exploration 
is paramount, and NSAI seamlessly integrates this wealth 
of human expertise into its models. This harmonious fusion 
of human and machine knowledge ensures that predictions 

different regions  . This level of performance, especially the 
robust transferability in runoff modeling, underscores the 
advantages of combining deep learning with physical geo-
science approaches, exemplifying the benefits of symbiotic 
integration.

Further, Jiang et al.‘s approach aligns with the principles 
of Neuro-Symbolic Artificial Intelligence (NSAI), where the 
integration of symbolic reasoning and neural network-based 
learning can solve complex problems more effectively. The 
P-RNN’s ability to incorporate geochemical data and sym-
bolic representation of physical processes demonstrates the 
potential of NSAI in addressing intricate challenges in vari-
ous fields, particularly in geosciences  . This study stands as 
a compelling example of how AI can be taught to assimilate 
and utilize physical knowledge, leading to advancements in 
scientific research and applications.

Geosystem dynamics

ML has been used for a wide range of tasks in geosystem 
dynamics, such as improving weather prediction, analyz-
ing climate data, and predicting clustered weather patterns. 
Unlike covariance-based spatial analysis, ML can map non-
linear processes. However, ML methods lack actual physi-
cal process knowledge and rely solely on identifying and 
generalizing statistical relations. ML has been increasingly 
adopted for data analysis, serving as surrogates and meth-
odological extensions for Earth System Models (ESMs) 
over the past several years. Combining ML with process-
based modeling is a crucial distinction from previous data 
exploration efforts. ML has also been used in conjunction 
with ESMs and Earth System Observations (ESOs) for vari-
ous tasks, including determining global ocean heat content, 
recovering high-resolution terrestrial water storage from 
satellite gravimetry, and upscaling carbon flux measure-
ments for global carbon monitoring systems (Irrgang et al. 
2019; Watt-Meyer et al. 2021.; Yuval and O’Gorman 2020). 
ML has shown success in representing subgrid-scale pro-
cesses and other parameterizations of ESMs, and several 
studies highlight the potential for ML-based parameteriza-
tion schemes to gradually remove biases and simplifica-
tions of ESMs (Bolton and Zanna 2019; Jung et al. 2020; 
Tramontana et al. 2020). Overall, while some well-trained 
ML tools and simple hybrids have shown higher predictive 
power than traditional process-based models, there is still 
much to be explored and understood about the use of ML in 
earth and climate science. Irrgang et al. (2021) discussed the 
potential benefits of combining artificial intelligence (AI) 
techniques with ESMs and ESOs to create Neural Earth 
System Models (NESYMs). The NESYMs can improve the 
accuracy of climate change predictions, particularly in deal-
ing with non-stationary training data and extreme events. 
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traditional ML and DL, NSAI’s automation, especially in 
its symbolic reasoning component, plays a critical role in 
enhancing model efficiency and accuracy. Opportunities for 
addressing these challenges lie in harnessing advances in 
automated methods for encoding domain knowledge. This 
involves leveraging natural language processing (NLP) to 
extract knowledge from textual data, thus facilitating a more 
automated and efficient process (Socher et al. 2012). Addi-
tionally, the drive for creating more transparent and inter-
pretable models provides an opportunity to develop tools 
that empower researchers to understand and rectify poten-
tial biases and errors more effectively. These advancements 
can drive the successful integration of NSAI into geoscience 
and mineral prediction research, unlocking its full potential 
for improving accuracy and efficiency in these domains.

Delineating the advantages of NSAI over XAI in 
mineral prediction

While NSAI’s strength in interpretability is well-recog-
nized, similar assertions exist for XAI methods like SHAP 
and LIME. This necessitates a detailed comparative analy-
sis to justify the selection of NSAI in our research. NSAI’s 
distinct advantage lies in its innate integration of inter-
pretability within the learning framework, as opposed to 
the post-hoc transparency approach typical in XAI. This 
intrinsic feature of NSAI allows it to effectively incorporate 
symbolic reasoning, a vital aspect for domains such as geo-
science where deep domain knowledge and interpretability 
are critical. Our preference for NSAI is further reinforced by 
its capability to blend established domain rules with empiri-
cal data, exemplified in applications like mineralization pat-
tern prediction. Here, NSAI not only assimilates established 
mineralization models but also enriches them with concrete 
data, ensuring a learning process that is both transparent and 
rooted in practical evidence. This dual assimilation provides 
a level of clarity and traceability in the learning mechanism 
that is paramount in fields like mineral prediction.

In contrast, while XAI methods like SHAP and LIME 
excel in offering post-hoc interpretability, their integration 
into NSAI frameworks could potentially enhance the over-
all interpretability and robustness of AI models in mineral 
prediction. This combination could lead to a more compre-
hensive and understandable approach to AI-driven deci-
sions in geoscience, effectively marrying NSAI’s inherent 
interpretability with the analytical depth of XAI. Such an 
integrative approach is envisioned to yield models that are 
not only accurate but also provide meaningful insights into 
their decision-making processes.

are not solely data-driven but are also enriched by the 
invaluable insights and wisdom contributed by geologists 
and mineralogists. The outcome is a set of predictions that 
are notably more accurate, well-informed, and practically 
applicable.

Furthermore, NSAI exhibits a remarkable capability in 
symbolically representing the intricate geological processes 
underlying mineralization events. These events are often 
governed by complex physical and chemical interactions 
that elude capture through purely statistical methodolo-
gies. NSAI excels in encoding these geological processes 
symbolically, thus elevating the AI’s comprehension of 
the foundational mechanisms dictating mineral formation. 
This depth of understanding ensures that predictions are 
grounded not merely in correlations but in a profound grasp 
of the geological intricacies at play.

Although the direct applications of NSAI in mineral pre-
diction are still in their nascent stages, the undeniable poten-
tial it holds is remarkable. Building upon the fundamental 
principles and successes of ML, DL, and NSAI in diverse 
Earth science domains, NSAI stands poised to redefine the 
future of mineral exploration, offering an avenue toward 
more efficient, precise, and sustainable mining practices.

Discussion and future development

The integration of NSAI into geoscience has been marked 
by advancements and exemplary applications across vari-
ous domains. While it has demonstrated great potential, it 
also poses challenges, yet these challenges are accompa-
nied by exciting opportunities for future development. This 
discussion explores the implications of NSAI in the con-
text of mineral prediction and geoscience, in light of the 
trends revealed by the Thematic Evolution analysis. It also 
draws upon examples mentioned in the application section, 
emphasizing the pivotal role of Neuro-Symbolic models 
like Logical Neural Networks (LNNs) and presents them as 
a solution (Lu et al. 2021).

Challenges, limitations, and opportunities

The integration of NSAI into geoscience and mineral pre-
diction presents a range of challenges and limitations. 
Encoding domain knowledge into symbolic representations 
requires researchers to possess domain expertise and cod-
ing skills. While a small amount of domain knowledge is 
insufficient, introducing extensive domain knowledge is 
time-consuming, necessitating automation through coding. 
Balancing the proportion of domain knowledge with actual 
data is crucial to mitigate potential biases introduced by 
symbolic reasoning, posing a challenge for NSAI. Unlike 
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Conclusions

Integrating ML and DL techniques with NSAI presents sig-
nificant potential for advancing geoscience research and 
applications. While data-driven approaches have demon-
strated success in certain cases, the incorporation of domain 
knowledge and symbolic reasoning can further enhance the 
interpretability, robustness, and efficiency of ML and DL 
models. This paper elucidates the promising prospects of 
ML, DL and NSAI techniques in geoscience applications, 
specifically focusing on mineral prediction. The literature 
analysis reveals significant trends that research output in 
AI-related geoscience has substantially increased, with 
notable growth from 2018 onwards. There is a growing 
emphasis on predictive research, along with sustained inter-
est in terms like “classification,” “neural networks,” and 
“model.” Thematic network analysis highlights the domi-
nance of “deep learning” and “machine learning” as central 
themes, reflecting their foundational role, while themes like 
“transfer learning” and “big data” indicate ongoing devel-
opments and specialization. Thematic evolution suggests a 
shift towards “deep learning” and “machine learning,” with 
diverse applications, while other techniques received rela-
tively less focus during the analyzed period. Furthermore, 
ML and DL techniques have exhibited noteworthy achieve-
ments in various geoscience domains. ML algorithms have 
played a pivotal role in climate modeling by facilitating the 
assimilation of vast amounts of observational data and the 
development of more accurate climate models. DL tech-
niques, such as CNNs, have revolutionized seismic signal 
analysis through automated feature extraction and pattern 
recognition, thereby improving earthquake detection and 
characterization. Geophysics has also witnessed advance-
ments through the adoption of ML and DL, with hybrid 
modeling strategies that integrate physical knowledge and 
data-driven approaches, yielding enhanced predictions and 
profound insights into the dynamics of Earth.

Despite advancements, challenges persist in applying 
NSAI in geoscience, such as acquiring high-quality datas-
ets and ensuring model interpretability. LNNs address these 
challenges by seamlessly combining neural networks and 
symbolic logic. LNNs offer interpretable rules, precise fit-
ting of complex data, and extendibility to first-order logic. 
The integration of neural network learning with symbolic 
logic makes LNNs valuable for mineral prediction research, 
enhancing accuracy and reliability. By harnessing the 
capabilities of NSAI, we can unlock novel insights into 
Earth’s geological processes and unearth untapped mineral 
resources. Continued research and development in this field 
will pave the way for more effective and sustainable geo-
science practices. The application of NSAI in geoscience 
harbors the potential to revolutionize the field, empowering 

Solution: LNNs and beyond

LNNs emerge as a solution, offering a powerful approach to 
seamlessly merge neural networks and symbolic logic. They 
excel in providing interpretable rules, a precise fit for com-
plex data, and extendibility to first-order logic. Their disen-
tangled representation allows for omnidirectional inference, 
accommodating logical reasoning, and supporting theorem 
proving. LNNs are particularly valuable for integrating neu-
ral network learning with symbolic logic in mineral predic-
tion research.

Beyond LNNs, the future holds possibilities for hybrid 
models that unify neural networks with other symbolic 
reasoning engines. These models facilitate handling both 
numerical and symbolic data representations, ultimately 
enabling more interpretable and explainable predictions. 
Advancements in NLP techniques, like extracting knowl-
edge from geological literature and reports, present oppor-
tunities to broaden the knowledge base.

Future development and applications

The exciting developments in the application of NSAI in 
geoscience extend to the prediction of geodynamic events 
and offer explanatory results. The opportunities in integrat-
ing NSAI techniques with the analysis of geochemical, 
magmatic, seismic, and geophysics data for mineral predic-
tion are immense. The synergy between DL algorithms and 
symbolic reasoning enhances the accuracy of mineral pre-
dictions and empowers geologists and mining professionals 
with profound insights into geological processes.

As the field continues to evolve, we anticipate numerous 
breakthroughs that will redefine mineral prediction. Future 
developments include refining and optimizing existing 
techniques, developing new methods for encoding domain 
knowledge, and advancing symbolic reasoning. The inte-
gration of emerging technologies, like natural language 
processing and computer vision, into NSAI for mineral 
prediction, is also a part of this evolution. Collaborations 
between AI researchers and domain experts will be pivotal 
in ensuring that models are constructed on precise domain-
specific knowledge. The application of NSAI in mineral 
prediction within geoscience presents a dynamic landscape 
of challenges and opportunities. The fusion of neural net-
work learning and symbolic logic, exemplified by LNNs, 
opens doors to more accurate, interpretable, and explainable 
models. As we look to the future, the development of NSAI 
in mineral prediction holds the potential to revolutionize 
mineral exploration and mining, leading to more efficient 
and sustainable practices and a deeper understanding of the 
Earth’s geology and mineral resources.
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