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a b s t r a c t

Data exploration, usually the first step in data analysis, is a useful method to tackle challenges caused by
big geoscience data. It conducts quick analysis of data, investigates the patterns, and generates/refines
research questions to guide advanced statistics and machine learning algorithms. The background of this
work is the open mineral data provided by several sources, and the focus is different types of associations
in mineral properties and occurrences. Researchers in mineralogy have been applying different tech-
niques for exploring such associations. Although the explored associations can lead to new scientific
insights that contribute to crystallography, mineralogy, and geochemistry, the exploration process is
often daunting due to the wide range and complexity of factors involved. In this study, our purpose is
implementing a visualization tool based on the adjacency matrix for a variety of datasets and testing
its utility for quick exploration of association patterns in mineral data. Algorithms, software packages,
and use cases have been developed to process a variety of mineral data. The results demonstrate the effi-
ciency of adjacency matrix in real-world usage. All the developed works of this study are open source and
open access.
! 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Data-driven knowledge discovery plays an increasingly effec-
tive role in the advancement of geoscience research. Many scien-
tific discoveries have been published recently, which
demonstrated the enormous potential of geodata science (Hey
et al., 2009; Hazen et al., 2019; Wang et al., 2021; Ma, 2023). As
indicated by Hey et al. (2009), the paradigms of science have
evolved from empirical, theoretical, and computational approaches
to today’s data exploration. Their thoughts resonate with the
methodology of exploratory data analysis initiated by Tukey
(1977), which in our regards is an efficient approach to tackle
the challenges occurred in the era of big data. In the field of miner-
alogy, Xiao and Chen (2012) proposed a fractal projection pursuit
classification (FPPC) model to help identify anomalies for mineral
exploration. Hazen (2014) discussed the applications of explora-
tory data analysis and minted a term ‘‘abductive analysis” for the

general approach. Chen and Xiao (2023) presented a projection
pursuit random forest (PPRF) for exploring the deep hidden fea-
tures in datasets. Very recently, Hazen et al. (2021) and Prabhu
et al. (2023) proposed ‘‘mineral informatics” as a research field that
leverages open data facilities and data science methods to decipher
the patterns and trends hidden in datasets of mineralogy, petrol-
ogy, geochemistry, and many other related disciplines. In mineral
informatics, data exploration helps scientists obtain a quick over-
view of the datasets under study and generate hypotheses for
new discoveries. Accordingly, a lot of methods, algorithms, and
visualization techniques can be developed and used in mineral
data exploration (Yousefi et al., 2021; Zuo et al., 2021; Wang
et al., 2022).

Existing studies of mineral informatics have already shown that
data exploration can lead to efficient pattern recognition, research
hypothesis construction, and exciting scientific discoveries (Ma
et al., 2017; Hazen et al., 2019; Hazen and Morrison, 2022). On
the other hand, massive volumes of data on the chemical and phys-
ical properties, spatial distribution, and evolutionary diversity of
minerals are being made available by research communities, such
as Mindat (Ralph et al., 2022), RRUFF (Lafuente et al., 2015), and
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the Mineral Evolution Database (MED) (Golden et al., 2019). For
instance, the Mindat database has records of over 5,800 mineral
species, over 390,000 localities, and over 1,472,000 mineral occur-
rences by February 2023. Exploration and study of those large min-
eral data resources have a high value in further extending the field
of mineral informatics. Specifically, the associations of minerals
hidden behind the data are of great value to many applications:
(1) They can provide valuable insights into geological processes,
aka, geological understanding, based on understanding how differ-
ent minerals associated with each other (Sadeghi, 2021). For exam-
ple, the link between diamonds and chromium-bearing diopside,
chromspinel, and magnesian ilmenite may be caused by kimber-
lite, an igneous rock, which transported diamonds from the mantle
to the Earth’s surface via volcanic pipes (Field et al., 2008). The
occurrence of these minerals together is used as a primary method
for diamond exploration and indicates the past geological pro-
cesses that occurred in that region. (2) Mineral associations can
guide exploration and mining by indicating the presence of eco-
nomically valuable deposits. This is because the discovery of one
mineral may lead to the discovery of another, more valuable one
(Jowitt et al., 2013). For example, regions with large concentrations
of copper minerals, such as chalcopyrite (CuFeS₂), may also contain
gold deposits. The discovery of the gold deposit was initially as a
byproduct of copper mining in the world’s largest copper and gold
mines, Grasberg mine in Indonesia (Pollard et al., 2005). (3) Under-
standing the mineral associations can also aid in refining industrial
processes, as some minerals can interfere with the processing of
others. For example, plants often employ methods to reduce the
silica (SiO₂) content before refining in the processing of bauxite
to produce alumina. It is because that bauxite ores often also con-
tain various amounts of silica (SiO₂) in the form of quartz or kaolin-
ite, which is not desirable in the alumina production process
(Rayzman et al., 2003).

Although the associations among minerals can lead to new sci-
entific insights that contribute to the fields of crystallography, min-
eralogy, and geochemistry, the process of explorations is often
daunting due to the wide range and complexity of factors involved
(e.g., chemical composition, geologic structure, temperature, pres-
sure, etc.). Many mineral association studies were based on statis-
tical analysis or association rules, and most of them focused on
specific geoscience issues. Keskinen et al. (2022) employed compo-
sitional statistical analysis to analyze the association between ele-
ments and surface-active minerals of organic matter. Morrison
et al. (2023) utilized association rules analysis to predict new min-
eral occurrences. In recent years, an increasing number of data
analysis techniques including cluster diagrams, Klee diagrams,
chord diagrams, and network analyses, have been introduced into
mineral informatics research for mineral association and some
interesting results have been found (Hazen et al., 2019). However,
rapid exploration and visualization of undiscovered patterns from
extensive open mineral data remains challenging. For instance, the
network analysis technique can provide a quantitative visualiza-
tion framework to explore complex patterns in mineral systems
(Morrison et al., 2017). However, network visualization faces chal-
lenges, especially when the network is dense, resulting in overlap-
ping nodes and edge crossings. A large number of cross-links in the
result may raise a confusing visual pattern (i.e., the ‘‘spaghetti” pat-
tern) that masks the topological structure of the network. More-
over, it is difficult to compare two or more random-layout
networks given the densely overlayed nodes and edges in them.
Compared with network analysis, the adjacency matrix is a com-
plementary and sometimes more effective technique for visualiz-
ing networks, especially when dense (Fekete, 2009; Okoe et al.,
2019). This representation allows fast navigation among many
records and is more readable for specific tasks, such as those in
mineral informatics.

This paper aims to present our work of software development
and data exploration on the use of adjacency matrix to study the
associations in mineral data. We have developed workflows in
Python and R languages and an R Shiny application to analyze a
variety of datasets retrieved from Mindat, RRUFF, and MED. A
few representative use cases, such as those on the associations
between chemical elements and mineral species as well as the pat-
terns of mineral–mineral co-existence across localities, are used in
this paper to illustrate the utility of the adjacency matrix for min-
eral data exploration. The presented use cases are just a small part
of the adjacency matrices generated in our study. Yet, we have
made the application, datasets, and source code open access online.
Interested researchers are encouraged to analyze patterns in those
adjacency matrices, reuse the application in their own work, and
adapt and extend the code for other studies. The remainder of
the paper is organized as follows: Section 2 presents the general
method of adjacency matrix and the workflow of software devel-
opment in this study. Section 3 illustrates and analyzes the results
of several use cases, including both small and large datasets. Sec-
tion 4 discusses the highlights of the adjacency matrix for mineral
data exploration, the limitations, and ideas for future improve-
ment. At the end, Section 5 concludes the paper.

2. Methods and datasets

The major result of our work is an R Shiny application that
deploys adjacency matrix to analyze open mineral data. In this sec-
tion, we present a quick overview of the method of adjacency
matrix, the software development process, and the data resources
used in the work.

2.1. Adjacency matrix and the relevant concepts

In the fundamentals of graph theory, an adjacency matrix is an
n ! n square matrix A that represents a finite graph (Fekete, 2009).
For the undirected graph, as shown in Fig. 1a, the adjacency matrix
is symmetric, while for the directed graph, such as Fig. 1d, it is
often not. Fig. 1b and 1e show the numerical values of adjacency
matrices corresponding to the graphs of Fig. 1a and 1d, respec-
tively. In Fig. 1b and 1e, the value of an element in Aij is one when
there is an edge connecting node i to node j, and is zero if the edge
does not exist (Biggs et al., 1993). Fig. 1c and 1f are the visualiza-
tions based on these two adjacency matrices in Fig. 1b and 1e,
respectively, where the round nodes of different colors indicate
that they belong to different communities (generated by a speci-
fied community detection algorithm), and different cell colors indi-
cate different types of connections (edges) between the nodes. The
cell’s color matches the node’s color if the edge is within a commu-
nity; the color is gray if the edge is between communities, and
white if the edge does not exist. This adjacency matrix-based visu-
alization can be easily rearranged according to the nodes’ commu-
nity, name, and some other relevant attributes in the graph, and is
an effective way to facilitate data science discoveries. To better
understand the rearrangements and pattern analyses of the adja-
cency matrix, here is a brief list of several concepts. Suppose a
graph G consists of a collection V of nodes and a collection edges
E, thus G ¼ ðV ; EÞ. Each edge e 2 E join two nodes. If e join
i; j!VðGÞ, i.e., e ¼< i; j >, then node i and j in this case is adjacent.
The distance between node i and j, denoted as dði; jÞ, is the length
of a shortest i; jð Þ-path. For an undirected graph, d i; jð Þ ¼ dðj; iÞ,
but this is usually not the case for a directed graph. The number
of edges with a node i is called the ‘‘degree” of i, normally denoted
as dðiÞ. Loops are counted twice (Diestel, 2017). For the whole
graph G, the sum of all node degrees is twice the number of edges,
that is,
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X

i2VðGÞ
d ið Þ ¼ 2jE Gð Þj ð1Þ

where jE Gð Þj denotes the edge number of graph G. Let us consider
Fig. 1a, the degree of node dð1Þ, dð2Þ, and dð3Þ are 4, 3, and 4, respec-
tively. The sum of the degrees of the nodes in the graph is 26, which
is twice the 13 of total edges. The ‘‘closeness” CcðiÞ of a node i 2 VðGÞ
is defined as

Cc ið Þ ¼ 1=
X

i;j2V Gð Þ;i–j

dði; jÞ ð2Þ

The lower the closeness Cc ið Þ is, the more central a node i is to other
nodes (Bavelas, 1950). Another concept is ‘‘betweenness”, which is
based on a simple idea: if a node lies on many shortest paths con-
necting two other nodes, it is an important node. The removal of
such a node would directly affect the cost of connective between
other nodes (Freeman, 2002). Formally, let Sði; jÞ be the set of short-
est paths between i and j, and S i; v; jð Þ# Sði; jÞ denote the ones that
pass through node v 2 VðGÞ. The betweenness is defined as

Cb vð Þ ¼
X

i–j

jSði; v; jÞj
jSði; jÞj

ð3Þ

For G is connected, the S i; jð Þj j > 0 for all distinct i and j. In addition,
the eigenvalues of the adjacency matrix characterize the topological

structure of the graph (Cvetković et al., 1995; Farkas et al., 2002).
For an undirected graph, since its corresponding adjacency matrix
is real-valued symmetric, all its eigenvalues are real numbers, and
its eigenvectors are mutually orthogonal. Further information about
the eigenvalues of adjacency matrices can be found in the spectral
graph theory (Brouwer and Haemers, 2012).

2.2. Community detection algorithms based on adjacency matrix

A community in a network is generally defined as a group of
nodes that have more and/or stronger connections among them-
selves than with nodes outside the group. It can be detected
through employing specific community detection algorithm, which
is a fundamental technique for uncovering the structure within
graph (network) with the goal of identifying places where the node
connections are tighter or denser than the rest of the network. It’s a
critical tool for finding natural groupings in graphs based on node
connectivity patterns, which helps to understand the underlying
structure and dynamics of complex systems, thus providing
insights into different domains. Table 1 lists four common commu-
nity detection algorithms that have been implemented in our R
software application.

Fig. 1. Adjacency matrix representation of undirected and directed graphs: (a) and (d) undirected and directed graph, respectively; (b) and (e) the numerical values of the
adjacency matrices corresponding to (a) and (d), respectively; (c) and (f) the visualizations of the adjacency matrices corresponding to (b) and (e), respectively. The round
nodes denote the nodes of graphs, and the cells represent the connections (edges) between them. The different colors of cells and round nodes indicated that they belong to
different communities.
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2.3. Adjacency matrix construction and data exploration

To quickly explore the association patterns in mineral datasets,
a workflow was designed and implemented to generate adjacency
matrices on several topics (Fig. 2). First, mineral data were
retrieved via several open data resources, including the mineral
chemistry records of 72 mineral-forming elements from the Min-
dat database, the mineral name list approved by the International
Mineralogical Association (IMA), the mineral classifications such as
igneous minerals dataset from the rruff.info/ima (https://rruff.info/
ima/), etc. The Mindat open data API (Ma et al., 2024) can help us
save a lot of time in collecting datasets from the Mindat database.
For example, the Python script (https://github.com/ChuBL/3DHeat
mapDataPreprosses/blob/main/mindat_data_processor.py) to col-
lect the element-based records from Mindat API. However, at the
time of this work (February 2023), the location-related records in
Mindat database were not available through its API. Alternatively,
we crawled the records of location-based mineral lists and oxides
and spinel minerals from rruff.info/evolution (https://rruff.info/evo
lution/). The Mindat API technical team has made more data avail-
able during the spring and summer of 2023, including part of the
location-based records. The data retrieval step of our work will
become easier once the API is fully established. The element-
based mineral quantity, location-based mineral, igneous mineral
and oxygen spinel minerals records were collected and uploaded
to https://github.com/ChuBL/3DHeatmapDataPreprosses/tree/mai
n/mindat_data and https://github.com/quexiang/Adjacency_Matri
x_4_Mineral_Informatics/tree/main/data. Second, data cleansing
and preprocessing were conducted to generate the nodes list and
the edges list. Using the R package ‘igraph’, these lists can be used

to build graphs and, thus, numerical adjacency matrices. Third,
four community detection algorithms including Spinglass, Random
Walktrap, Edge betweenness, and Optimal Modularity were used
to detect communities based on the lists of nodes and edges gen-
erated in the previous step. All the detected communities, after
being arranged by name or other attributes, can be sent to an R
Shiny software application developed by our team. This application
can handle the settings and then output the visualization results of
the adjacency matrix. Fourth, based on the R Shiny application, one
can quickly browse and explore patterns in the adjacency matrices
by switching community detection algorithms and datasets. If an
interesting pattern is detected, further analysis and new hypothe-
ses can be proposed for in-depth research. Otherwise, users can
rearrange the adjacency matrix for visualization or try other com-
munity detection algorithms.

To generate the nodes and edges lists, the ‘BeautifulSoup40

Python package was used to retrieve the Mindat_ID, Local-
ity_Name, Minerals_count, Minerals_list fields from MED (URL:
’https://rruff.info/mineral_list/MED/minerals_per_locality.php?ele
ment= {}’, where {} should be replaced by the symbol for a specific
mineral-forming element). Then, all the crawled location-based
mineral records were exported to the ‘‘.csv” format file for each
of the 72 mineral-forming elements. Algorithm 1 was used to gen-
erate the nodes and edges list files for each element, in which the
nodes are the mineral species that contain a certain element, and
the weight of each edge represents the number of locations where
two mineral species co-occur. To include all the adjacency matrices
in an online application for quick share and access, we used the R
language for the graph visualization work and the Shiny package to
wrap and present all the results (details in Section 3). The nodes

Table 1
Comparison of four commonly used community detection algorithms.

Name Principle Impacts of edge weights

Random Walktrap
(Pons and Latapy, 2006)

Based on random walks, this algorithm
identifies communities in a network by
exploiting the idea that random walks on
a graph tend to get ‘‘trapped” in densely
connected parts (communities).

(1) Edge weights usually represent the strength or intensity
of the connections.
(2) The paths taken by random walks will be biased towards
stronger connections.

Edge betweenness
(Girvan and Newman, 2002)

This algorithm detects communities by
progressively removing edges with the
highest edge betweenness centrality,
which is a measure of the number of
shortest paths that pass through an edge.

(1) The ‘‘shortest” path is defined in terms of the lowest total
weight, rather than the fewest edges.
(2) If an edge has a high weight (implying a weaker
connection), it is less likely to be part of many shortest paths.
Conversely, lower-weight edges (stronger connections)
might be part of shortest paths and thus have higher
betweenness centrality.
(3) Communities are more strongly connected internally
(with lower-weight edges) and separated by weaker links
(higher-weight edges).

Optimal Modularity
(Brandes et al., 2007)

This algorithm seeks to maximize the
modularity of a network, a measure that
quantifies the strength of division of a
network into modules or communities.

(1) A strong edge (with a high weight) contributes more to
the modularity than a weak edge (with a low weight).
(2) Communities are formed such that the sum of the weights
of the edges within communities is maximized, relative to
what would be expected in a random network.
(3) Nodes with heavily weighted edges are more likely to be
included within the same community.

Spinglass
(Reichardt and Bornholdt, 2006)

Inspired by statistical mechanics,
specifically the spin glass model in
physics. It treats community detection as
an energy minimization problem where
each node is a spin that can be in one of
several states (communities).

(1) The ’energy’ of a configuration (i.e., a particular
assignment of nodes to communities) depends on the
connections between nodes. Heavier weights on edges can be
interpreted as stronger connections or interactions.
(2) Edges with higher weights contribute more significantly
to the energy calculation.
(3) In the process of minimizing the system’s energy to find
communities, the algorithm inherently gives more
importance to heavier (stronger) edges.
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Fig. 2. A workflow for data retrieval, cleansing and software development in mineral data exploration.
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and edges generated in Algorithm 1 were used to construct the
graph objects (as well as the corresponding numerical adjacency
matrix) with the ‘igraph’ package, and the community detection
algorithms were applied to the graph objects to identify mineral
communities of interest.

Algorithm 1 Nodes & edges list generation

1: Specify the folder path of the mineral records files (crawled
by BeautifulSoup4)

2: Iterate over every file in a folder
3: Define an empty mineral species set Species_set,

traverse all mineral records, and obtain a set with unique
mineral names list (list_species)

4: Generate a square matrix (admatrix) with all
elements equal to 0, according to the length of species_set

5: For each row in mineral records
6: Get the mineral list values of the Minerals_list field
7: If the mineral list is not equal to 1 (which means that

there are minerals co-occurring at a same location)
8: for each mineral rrow in the mineral list

for each mineral jrow in the mineral list
if (rrow is not equal to jrow)
find the index numbers of rrow and jrow in the

mineral list
admatrix[rrow, jrow] +=1

9: Define empty from list (list_from), to list (list_to) and
weights list (list_weight)

10: Iterate over each row of the matrix (cur_row)
Iterate over each column of the matrix (cur_col)
If (cur_row >= cur_col) and (admatrix[cur_row,

cur_col] is not equal to 0)
list_from.append(list_species[cur_row])
list_to.append(list_species[cur_col])
list_weight.append(admatrix[cur_row,

cur_col])
11: Output the list_from, list_to, and list_weight as

edges file
12: Output the mineral names list (list_species) as

nodes file

For some specific mineral lists (such as spinel and oxide minerals),
the number of times they co-occur cannot be directly retrieved from
the element-based mineral quantity list records. Because not all the
minerals in the specific mineral list necessarily contain the same
element. Therefore, for a user-specified mineral list, we developed
Algorithm 2 to extract the number of mineral co-occurrences from
the MED_export data set in MED (https://rruff.info/mineral_list/M
ED/exporting/2019_05_22/). To begin the work, Algorithm 2 should
receive a specified mineral list from which we would like to obtain
their paired co-occur counts from the records in MED_export. The
fields of the output file include Mindat_ID_list, location_name_list,
count_list, and specific_minerals_occur_list, where the last field
records the names of minerals that occur at the same location in
the specified minerals list. The Python code for both Algorithms 1
and 2 were shared on GitHub (https://github.com/quexiang/Adja
cency_Matrix_4_Mineral_Informatics/tree/main/DataExtration_
Cleaning).

Algorithm 2 Location-based mineral co-occurrence records
extraction

1: Specify a list of mineral names (specified_minerals_list),
define a list for the fields in the output file; Mindat_ID
(Mindat_ID_list), location name (location_name_list), count
(count_list), and the occurred minerals in the
specified_minerals_list in the location (specific_minerals_
occur_list)

2: Read each line (cur_line) of the MED_export file
Identify and preprocess the whitespace in quotes of

cur_line
3: Split cur_line by whitespace into a list of split

values corresponding to the fields defined by the header of
the MED_export file (med_fields_list)

4: If the location recorded in cur_line is bottom
level*

5: Define an empty list for each field of the
med_fields_list

6: For each value (f_val) in the list of split values
7: append f_val to its corresponding field list
8: If current f_val is corresponding to the

MED_mineral_at_loc_list field
9: Define an empty list c_minerals_list and a

0-count variable cnt
10: Split f_val by comma to get the minerals

list (cur_minerals)
11: for each element (c_mineral) in

cur_minerals
12: if c_mineral is in the

specified_minerals_list
13: append c_mineral to the

c_minerals_list
14: increase cnt by 1
15: if the length of c_minerals_list is

not equal to 0
16: join elements of the

c_minerals_list by comma to get a string (c_minerals_str)
17: append c_minerals_str and

the Mindat_ID, location name, and the count to the
specific_minerals_occur_list, Mindat_ID_list,
location_name_list, and count_list, respectively

18: Output the Mindat_ID_list, location_name_list, count_list,
and the specific_minerals_occur_list to a file

* The bottom level in the dataset refers to whether the address is at
the finest level. If the address is not at the bottom level, the process-
ing of the address and its corresponding records should be ignored.
For example, if the town level is the most fine-grained address,
records of non-bottom addresses such as state records should be
ignored. Otherwise, it will cause issues such as double counting.

3. Use cases and result analysis

With the above-mentioned workflows, we have developed four
use cases to demonstrate the utility of adjacency matrix for rapid
exploratory analysis of open mineral data. The resulting adjacency
matrices for two small datasets (oxide and spinel, and igneous
minerals) and two large datasets (element-based mineral counts
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and location-based paragenetic minerals) were presented in the
online R Shiny application (https://quexiang.shinyapps.io/Adja
cency_Matrix_4_Mineral_Informatics). If the label text of figures
in this section is too small or dense to read, we encourage readers
to use the Shiny application to find corresponding results for better
readability. The datasets and source code for data cleansing and the
Shiny application are shared on GitHub (https://github.com/quex
iang/Adjacency_Matrix_4_Mineral_Informatics).

3.1. Small datasets: Oxide and spinel

This dataset is crawled from MED (https://rruff.info/evolution).
The database was last updated on May 22, 2019. There are 295,584
locations in total, and each location records a list of minerals that
occur there. We first obtained the list of oxide and spinel minerals
from the IMA mineral name list (https://rruff.info/ima/), and then
wrote code to compare the IMA oxide and spinel names with the
mineral species list at each location. Thus, each pair of co-
occurred oxide and spinel minerals at any location can be recorded.
Using the number of co-occurrences as edge weight, an adjacency
matrix was generated. Applying two community detection algo-
rithms Optimal and Spinglass, the results show the same patterns
of two groups (Fig. 3). The first group includes gahnite, dellagius-
taite, guite, magnesiochromite, spinel, chromite, hercynite, and
magnetite; the second group includes deltalumite, maghemite,
cuprospinel, brunogeierite, ahrensite, vuorelainenite, trevorite,
hausmannite, zincochromite, magnesiocoulsonite, galaxite, ther-
maerogenite, hetaerolite, franklinite, qandilite, manganochromite,
cochromite, filipstadite, jacobsite, magnesioferrite, titanomaghe-
mite, ringwoodite, coulsonite, and tegengrenite. A quick explana-
tion/hypothesis is that the former group includes minerals that
are usually found in magmatic and metamorphic rocks with com-
positions of zinc-aluminum spinel, magnesium-chromium spinel,
and chromite. The latter group includes minerals common in sed-
imentary and volcanic rocks, such as copper-iron spinel, iron oxide,
and magnetite.

3.2. Small datasets: Igneous minerals

The adjacency matrices of igneous minerals were generated
using two algorithms for community detection: Walktrap

(Fig. 4a) and Spinglass (Fig. 4b). In Fig. 4a, there are four clustered
groups of minerals. The group in green is the largest, including acti-
nolite, coesite, omphacite, titanite, zoisite, and more. The group in
red is the second largest, including andalusite, biotite, cristobalite,
grunerite, magnetite, and others. Next, most of the minerals in the
light blue group, including tilleyite, spurrite, rankinite, monticel-
lite, merwinite, melilite, larnite, and bredigite, are silicates and
share similarities in crystal structure (i.e., the so-called ‘‘melilite
structure”), chemical composition (i.e., often composed of calcium,
magnesium, aluminum, and silicon), and formation conditions (i.e.,
high pressure, high temperature environments). The other two
species brucite (Mg(OH)2) and periclase (MgO) are included in
the light blue group perhaps due to the metal element magnesium,
and also because they and the other mineral species in the light
blue group are all related to certain types of metamorphic and
igneous rocks. The group in purple includes wollastonite, vesuvian-
ite, tremolite, spinel, serpentine, scapolite, pyrrhotite, phlogopite,
perovskite, humite, grossular, forsterite, feldspathoid, diopside,
calcite, and anorthite. They are minerals that are more widely dis-
tributed on Earth, and they usually contain silicon and other
mineral-forming elements, such as calcium, magnesium, and alu-
minum. Besides variations in occurrence and composition, the
crystal structures of the light blue and purple group are different.
Representative crystal structures of minerals in the light blue
group are chain, ring, and layered structures, while the minerals
in the purple group are primarily octahedral, tetrahedral, and
orthogonal structures. Additionally, the physical properties of min-
erals in those groups were briefly checked in our work. For
instance, the brucite in the light blue group is a soft, brittle mineral,
while the pyrrhotite in the purple group is a harder magnetic min-
eral. A more detailed examination of the physical properties of
those clustered minerals in each group might lead to new insights.

The groups generated by the Walktrap and Spinglass algorithms
show some similar patterns. For example, all minerals in the green
group of the Spinglass result (Fig. 4b) are also in the green group of
the Walktrap result (Fig. 4a). The other minerals present in the
green group of Fig. 4a but not in the green group of Fig. 4b, are also
worth noting. Most of them, such as zircon, staurolite, spessartine,
riebeckite, rhodonite, piemontite, and actinolite, have beautiful
colors and crystal forms, and are widely used in jewelry and orna-
ment making.

Fig. 3. Adjacency matrices of oxide and spinel minerals. Diagrams in (a) and (b) are based on community detection algorithms Optimal and Spinglass, respectively.
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The matrices in Fig. 4a and 4b were further sorted by the eigen-
values, and the results are presented in Fig. 4c and 4d, respectively.
It is interesting that in both figures, spurrite, rankinite, tilleyite, lar-
nite, brucite, and bredigite are clustered in the lower left corner.
These minerals are usually non-metallic, and most are either sili-
cate or carbonate minerals, with similar chemical composition
and crystallographic morphology. Moreover, most of them are
rock-forming minerals that are associated with volcanic activities,

metamorphism, or marine deposition. The colors of these minerals
are usually white, light gray, or yellowish, while the hardness var-
ies, ranging from 2.5–3.5 (brucite) to 5.5–6.5 (larnite).

3.3. Large datasets: Location-based paragenetic minerals

Location-based paragenetic minerals are a research topic of
interest to many researchers. In our work, the dataset was

Fig. 4. Adjacency matrices of igneous minerals. (a) and (b) Results of Walktrap and Spinglass algorithms, respectively. (c) and (d) Results sorted by the eigenvalues of (a) and
(b), respectively.
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retrieved from MED (https://rruff.info/evolution). On that page, an
element in the ‘‘MED localities with an Element (aka Locality Regis-
trar)” field was selected, and then a list of mineral locations con-
taining the element along with its corresponding mineral list can
be obtained. We went through all 72 mineral-forming elements
and collected all the data tables. Then, Algorithm 1 in Section 2
was used to generate the nodes and edges lists for the minerals
of each element, in which the nodes are the mineral species, the
edges represent co-occurrences of minerals, and the numbers of
co-occurrences are used as the weights of the edges.

Based on the resulting large dataset, adjacency matrices of min-
erals corresponding to the 72 elements were generated (see details
in the ‘‘element-mineral” use case of the R Shiny application
https://quexiang.shinyapps.io/adjacency_plot-master/). Many of
them show interesting patterns. Here, we only use the results of
lithium minerals as an illustration. Lithium is an important ele-
ment in many aspects of human society (Karl et al., 2019). Lithium
minerals are diverse, including clay minerals such as hectorite and
pegmatite minerals such as lepidolite, amblygonite, and spo-
dumene (Bradley et al., 2017). In our work (Fig. 5a), all the lithium
minerals were clustered into 11 groups by the Walktrap algorithm.
The opacity of cells can be changed to reflect the number of co-
occurrences between mineral pairs (Fig. 5b). Higher opacity means
a higher co-occurrence number, which further assists pattern dis-
covery in the matrix. Fig. 5a shows four big groups (1-red, 2-
brown, 3-dark yellow, and 4-green) and seven small groups.

The minerals in group 1-red, such as sogdianite, baratovite,
orlovite, and dusmatovite, are silicate minerals containing rare ele-
ments, such as titanium, primarily formed in complex alkaline
magma or hydrothermal deposits. The minerals in group 2-
brown, including oxo-mangani-leakeite, norrishite, ephesite, sug-
ilite, lavinskyite, mangani-dellaventuraite, potassic-mangani-
leakeite, are manganese-containing silicate minerals, and valence
states of manganese are high, ranging from + 2 to + 4. These min-
erals usually form in manganese deposits or metamorphic rocks.
The members in group 3-dark yellow, including neptunite,
manganoneptunite, eliseevite, etc. are silicate minerals, which con-
tain metal elements such as sodium, iron, manganese, magnesium,
cobalt, and copper, and their crystal structures are all in tunnel or
chain forms. The members in group 4-green, including zabuyelite,

ferro-holmquistite, spodumene, sicklerite, etc. are mainly magma
or hydrothermal minerals.

The other seven groups are relatively small, but we also con-
ducted a brief analysis of them. The group 5 includes potassic-
ferri-leakeite and watatsumiite. Both are lithium-bearing mafic
hornblende minerals with similar chemical compositions, and their
crystal structures all belong to the monoclinic system with black to
dark brown colors. Group 6 includes polylithionite, ferri-fluoro-
leakeite, brannockite, and sokolovaite, which are all in the amphi-
bole group. Group 7 includes katayamalite and murakamiite. Both
are copper potassium silicate in the hexagonal crystal system.
Group 8 includes cryolithionite and simmonsite. Both minerals
are based on the monoclinic crystal system. Group 9 includes
balestraite, and nambulite. Both minerals contain elements such
as copper, bismuth, and selenium, and their crystal structures
belong to the trigonal crystal system. The group 10 includes
balipholite, hsianghualite and liberite. They all contain boron,
and their crystal structure belongs to the silicate minerals. The
group 11 includes ferro-ferri-pedrizite, ferri-pedrizite, ferro-
pedrizite, etc. They are iron-containing pedrizite or holmquistite,
where the prefix ferro- means Fe2+ and ferri- means Fe3+. Their
crystal structures all belong to the hornblende minerals.

3.4. Large datasets: Element-based mineral counts

For the large datasets of element-based mineral counts (first
built with records from MED and then updated with records from
mindat.org), a list of 73 adjacency matrices (each is 72 ! 72) was
built to explore patterns. The first matrix consists of 72 ore-
forming elements represented along both the X and Y axes. Each
cell within this matrix indicates the number of mineral species in
which the X and Y elements coexist. Additionally, there are 72
other matrices, each representing an additional element along
the Z-axis. Within these matrices, each cell denotes the number
of mineral species in which the X, Y, and Z elements co-exist. In
other words, the first adjacency matrix shows the associations
between two elements amongst the 5865 IMA-approved mineral
species (in February 2023), while the other 72 matrices reflect
the associations between three elements amongst all the minerals.
By comparing with the first matrix, we can also see the impact of

Fig. 5. Ajacency matrices of co-occurring lithiumminerals. (a) Result of theWalktrap algorithm. (b) Result after changing the opacity of cells in (a) based on the number of co-
occurrences in each cell (i.e., the weight of the edges). Higher opacity means a higher co-occurrence number.
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Fig. 6. Using an interactive periodic table as guide and filter to load adjacency matrices showing correlations of elements amongst mineral species. The demo is accessible at
https://quexiang.shinyapps.io/Adjacency_Matrix_4_Mineral_Informatics/.
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the third element on the relationship between the two original ele-
ments with regard to the number of mineral species.

An interactive periodic table (open-source code from Interactive
Periodic Table in JavaScript version 1.0, https://www.codedrome.-
com/interactive-periodic-table-in-javascript) was integrated into
our R shiny application (Fig. 6) to quickly view the attributes of
the corresponding elements and make selections of adjacency
matrices to see. When an element on the periodic table is clicked,
the corresponding adjacency matrix (with the clicked element on
the Z-axis) will be displayed or switched out at the bottom of the
page. Using the controls on the left of the periodic table, some spe-
cial elements, such as alkaline earth metal elements including Be,
Mg, Ca, Sr, Ba, and Ra, can be filtered out and highlighted in the
periodic table to help users narrow the scope of elements to select
and explore. Using controls below the periodic table, i.e., the drop-
down lists in the ‘‘Plot adjacency matrix by selected element” box,
users can switch community detection algorithms to generate an
adjacency matrix, and change the opacity of cells based on the
number of minerals in each cell (i.e., weight of the edge). With
those controls, users can quickly bring up adjacency matrices and
explore the association patterns hidden in them.

This use case has produced many adjacency matrices. Here, we
take results with sulfur (S) on the Z axis as an example to illustrate
the data exploration. Fig. 7a–e shows the adjacency matrices with-
out sulfur (S) on the Z-axis, and Fig. 7as–es illustrates the results
after the inclusion of S. In a simplified understanding, Fig. 7a–e
shows the ‘‘friendship” of two elements amongst mineral species,
and Fig. 7as–es shows the updated ‘‘friendship” after the inclusion
of S.

Seven groups were clustered in Fig. 7as, comprising three big
groups (1-red, 2-brown, 3-green) and four small groups. Group
1-red is the largest, and the minerals in this group are various,
including sulfate minerals such as alunite and kaolinite, sulfide
minerals such as connellite and chalcocite, carbonate minerals
such as calcite and dolomite, phosphate minerals such as apatite,
pyromorphite and nitrate minerals such as niter and sodium
nitrate, and more. The elements H and O are in this group, and
there are about 546 IMA-approved minerals that contain H, O,
and S.

The group 2-brown in Fig. 7as contains elements Be, Cr, Fe, Zn,
Ga, Ge, and W. Minerals composed of these elements and S share
certain similarities in structures and properties, including (1) Min-
erals in this group are typically sulfides. S usually exists in the form
of divalent anions (S2-), bonding with metal or metalloid atoms
through ionic or covalent bonds. For example, Zn and S are found
together in the mineral sphalerite (ZnS), while Fe and S are found
together in the minerals pyrite (FeS2) and pyrrhotite (Fe(1-x)S). (2)
These minerals have diverse crystal structures, such as cubic, mon-
oclinic, or hexagonal systems. (3) Minerals in this group can dis-
play a range of colors and may possess unique optical properties.
For instance, germanium sulfide and gallium sulfide are applied
in infrared optical materials. (4) These sulfide minerals generally
exhibit good thermal stability at higher temperatures, although
their melting points may differ due to variations in composition
and crystal structure. (5) Some minerals in this group may exhibit
electrical conductivity or semiconductor behavior, such as germa-
nium sulfide and gallium sulfide. (6) The solubility of these sulfide
minerals is generally low in water, contributing to the formation of
ore deposits in the Earth’s crust. Under specific geochemical condi-
tions, these sulfides may dissolve and migrate, forming new ore
deposits. Moreover, this group is consistent with geologic observa-
tions of the S-containing ore body. For example, the most common
Fe and S mineral, pyrite, is in this group. Pyrite is a common min-
eral that appears in a variety of geological settings. It forms under a
wide range of conditions, from sedimentary rocks to hydrothermal
veins, and is often associated with other sulfide minerals such as

Fig. 7. Adjacency matrices showing the impacts of S on the element correlations
amongst minerals. Matrix (a) is the original matrix without S on the Z axis, clustered
with the Optimal algorithm, and (b) to (e) are results of resorting (a) by closeness,
degree, betweenness, and eigen, respectively. Matrix (as) is the result when S joins
on the Z axis, and (bs) to (es) are results of resorting (as) by closeness, degree,
betweenness, and eigen, respectively.
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galena and chalcopyrite. In sedimentary rocks, pyrite is commonly
found in organic-rich shales and coal seams, where it forms
through the decay of organic matter under reducing conditions.
In hydrothermal veins, pyrite is often found along with other sul-
fide minerals in veins that have been deposited by hot fluids that
have migrated through fractures in the rock. It can also be found
in metamorphic rocks, particularly in those that have undergone
regional metamorphism, such as schist and gneiss.

Group 3-green is the second largest, containing elements such
as Cu, Pd, Ag, Os, Au, Ir, Pt, Pb, and others. Minerals formed by these
elements and S share some similarities: (1) High density: The sul-
fide minerals in this group usually have high densities. (2) Conduc-
tivity: Sulfide minerals containing metal ions, particularly those
with highly conductive metal elements such as Cu and Ag, possess
specific conductivity due to the presence of these metal ions. (3)
Higher melting point: Sulfide minerals in this group typically have
higher melting points due to the stronger chemical bonds formed
between the metal ions and the S ions. In addition, minerals in this
group may come from a variety of deposits, such as (1) Magmatic
deposits: metal elements combine with S, and during the crystal-
lization of magma, sulfide deposits are formed. Examples include
porphyry copper-nickel sulfide deposits and porphyry gold depos-
its; (2) Hydrothermal deposits: hydrothermal fluids are rich in
metal elements and S, which cool and precipitate at the surface
or underground, forming sulfide deposits. Examples include
hydrothermal gold and copper deposits.

Another interesting pattern in Fig. 7as is that there are no min-
eral species formed between S and some rare earth elements: Rb,
Pr, Sm, Er, Yb, Hf, and Ta (see the blank cells in the top and right
parts of Fig. 7as). This can also be verified by checking the IMA
mineral name list via https://rruff.info/ima.

The adjacency matrices can also be rearranged to do more com-
parisons and illustrate new patterns. Fig. 7b–e and Fig. 7bs–es are
the resorted results of Fig. 7a and Fig. 7as, respectively. Through
pairwise comparison between Fig. 7bs–es and Fig. 7b–e, it can be
found that the addition of S changes the order of elements in the
original matrices. The elements O, H, Fe, and Cu are always the
top four most ‘‘friendly” to S minerals (Fig. 7bs–es). While in the
natural environment, the elements O, As, Fe, S, and H are most clo-
sely connected amongst all minerals. Moreover, as Fig. 7bs–es has a
lot more blank cells compared with Fig. 7b–e, it indicates that the
presence of S may have affected the pairing of many elements in
mineralization.

4. Discussion

Data exploration is a method of quickly analyzing data and dis-
covering potential relationships, characteristics, and laws through
visualization, statistics, and many other techniques. Mineralogy
studies the composition, properties, and distribution of minerals.
With vast amounts of open mineral data, such as Mindat, RRUFF,
and MED, data exploration plays an increasingly influential role
in data-intensive mineral informatics studies. As presented in
Morrison et al. (2017), Ma et al. (2017), and Hazen et al. (2019),
as well as the use cases of this study, data exploration has been
successfully applied to understand mineral properties, identify
mineral associations, and discover mineral occurrence patterns.
Data exploration enables researchers to analyze the properties of
minerals and their variations, such as chemical compositions, crys-
tal structures, physical properties, and more. By analyzing large
datasets, researchers can identify minerals that tend to coexist or
associate with each other, leading to the discovery of previously
unrecognized mineral associations. One interesting example is
the potential relationship between rare earth minerals. For
instance, there might be close associations in minerals containing

neodymium and dysprosium, which were identified by using
machine learning methods (Jahoda et al., 2021; Morrison et al.,
2023). Further, by analyzing spatial and temporal data, researchers
can discover the presence of minerals in specific regions or under
certain geological conditions. Moreover, the observed association
patterns from data exploration provide a valuable starting point
for further in-depth study. Researchers can formulate new ques-
tions about mineral properties, occurrences, associations, and evo-
lution, guiding them in designing experiments, collecting new
datasets, and deploying advanced statistical analyses and machine
learning algorithms.

In data exploration, various techniques of visualization can be
utilized to represent mineral data as charts, images, and interactive
diagrams, which help researchers browse data more intuitively
and discover patterns such as relationships or trends in them.
Many statistical and data mining techniques, such as spatial anal-
ysis, association rule mining, and prediction, can also be incorpo-
rated to boost the data exploration process. This study, to our
knowledge, is the first time that adjacency matrix is applied to
explore a large amount of mineral data. Our work illustrates that
many interesting patterns can be found in the large element-
based mineral count datasets and the location-based mineral co-
existence datasets through the many community detection algo-
rithms and visualization techniques in adjacency matrices. The
results prove that adjacency matrix is a complementary method
to other ways of data exploration and analysis in mineral informat-
ics, especially in terms of network visualization. Together with
workflows that retrieve, integrate and cleanse multi-source open
mineral data and platforms that quickly deploy and share visual-
ization results, adjacency matrix can significantly contribute to
data-driven discovery in mineral informatics, helping researchers
discover new mineral associations, improve the accuracy of min-
eral identification and classification, and possibly even predict
undiscovered minerals at specific locations.

Besides the examples illustrated in Section 3, the R Shiny appli-
cation provides interactive browsing of adjacency matrices for
many other datasets in the four use cases. With the periodic table
and other lists and controls on the graphical interface, users can
quickly make a selection to obtain the adjacency matrix and then
analyze it. The clear layout of cells in the adjacency matrix can
effectively avoid node overlapping and edge crossings in the net-
work visualization, especially when the network becomes dense.
Moreover, it provides a variety of interactive operations for rear-
ranging the matrix (e.g., using communities, closeness, degree,
betweenness, and eigen), allowing users to observe changes and
patterns in the adjacency matrix from different perspectives.

Although the Shiny application has the above-mentioned
advantages, it is still in the preliminary stage and has some limita-
tions that can be addressed in future work. First, the current appli-
cation does not support automatic data updates and can only
support data input in two formats: csv and RData. Data acquisition
and integration still depend on web crawling and data file parsing.
The minerals in the IMA mineral list are constantly updating, and
our current results of adjacency matrices cannot catch up with
the increasing list. In late spring and summer of 2023, the Mindat
open data API (Application Programming Interface) had achieved a
solid progress (Ma et al., 2024). In June 2023, The Mindat API was
able to provide most of the datasets mentioned in our study, except
location-based mineral lists. As more data subjects are released on
the Mindat API, we believe it can be used to construct an automatic
data pipeline for building adjacency matrices. Second, the current
application only supports limited community detection algo-
rithms. There are many other and increasing number of commu-
nity detection algorithms such as the Louvain (Blondel et al.,
2008), Infomap (Rosvall and Bergstrom, 2008), Fast Greedy
(Clauset et al., 2004), Clique Percolation Method (CPM) (Palla
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et al., 2005), and Label Propagation Algorithm (LPA) (Raghavan
et al., 2007), etc., and some of themmay be well suited for the com-
munity detections of mineral associations. Third, the current appli-
cation only built the adjacency matrices of four use cases. In fact,
there are still many association patterns in the mineral data that
can be explored and analyzed using the adjacency matrix method.
With the established Mindat API, we should be able to retrieve new
datasets to make a long list of other use cases to explore. Fourth,
the current application lacks rich filtering rules and operations to
assist in browsing the adjacency matrices. Although many adja-
cency matrices were generated in this study and we were able to
resort cells in the matrices by different ways, all the results are sta-
tic images. A potential update is to make the matrix and data more
interactive, such as using some visualization packages in Java-
Script. The ideal situation is to interactively filter out some ele-
ments or minerals for better pattern recognition. Fifth, the
current adjacency matrices are two-dimensional, and there should
be ways to build three-dimensional matrices to illustrate the asso-
ciations amongst minerals, elements, and localities (e.g., Zhang
et al., 2024). Another alternative way is to build a set of two-
dimensional adjacency matrices, each illustrating a certain part
of the associations in a complex dataset. Those two- and three-
dimensional matrices can be used together with other visualiza-
tion methods, such as maps and timelines, for an even better data
exploration experience.

5. Conclusions

Facing the increasing open mineral data, data exploration is an
efficient method to analyze patterns in the data and initiate
research questions for further studies. This paper focuses on apply-
ing adjacency matrix to explore a variety of associations in mineral
properties and occurrences. Our work includes algorithms for open
mineral data extraction and cleansing, visualization techniques for
adjacency matrix creation and resorting, and an R Shiny applica-
tion that shares and presents all the results online. An interactive
periodic table and other controls have been created on the Shiny
application to help users browse the results of interest. Besides
the examples introduced in this paper, the Shiny application has
many other adjacency matrices from the two big datasets men-
tioned in Sections 3.3 and 3.4. All the datasets and source code
are also shared online (see Section 6). Researchers are welcome
to reuse the Shiny application and adapt the code and datasets
for their own works. Both the open mineral data environment
and the data exploration techniques are quickly evolving. We are
aware of those new opportunities and have planned a list of action
items for future work, such as those listed in Section 4. We also
welcome researchers in mineralogy and geoinformatics to send
their feedback and collaborate on the future extension of the Shiny
application, which includes automated data pipelines, new use
cases, new visualization techniques, and more.

6. Computer code availability

Name of the code/library: Adjacency matrix for mineral
informatics

Contact: Xiang Que (xiangq@uidaho.edu) or Xiaogang Ma
(max@uidaho.edu), +1 208 885 1547.

Hardware requirements: CPU - Apple M1, Memory % 32 GB (or
similar setting).

Program language: R and Python
Software required: R Studio for coding. Web browser such as

Safari or Chrome for running the R Shiny application.
Program size: 48 MB (including datasets).

The source codes (R and Python scripts) and datasets for both
data cleansing and the R Shiny application are shared on GitHub
at: https://github.com/quexiang/Adjacency_Matrix_4_Mineral_
Informatics.

The deployed R Shiny application for all the adjacency matrix
results is accessible at: https://quexiang.shinyapps.io/Adjacency_
Matrix_4_Mineral_Informatics.

CRediT authorship contribution statement

Xiang Que: Conceptualization, Methodology, Software, Writing
– original draft, Writing – review & editing. Jingyi Huang: Concep-
tualization, Methodology, Validation, Writing – review & editing.
Jolyon Ralph: Data curation, Resources, Writing – review & edit-
ing. Jiyin Zhang: Validation, Writing – review & editing. Anirudh
Prabhu: Validation, Writing – review & editing. Shaunna Mor-
rison: Validation, Writing – review & editing. Robert Hazen: Vali-
dation, Writing – review & editing. Xiaogang Ma: Methodology,
Funding acquisition, Validation, Writing – original draft, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the U.S. National Science Founda-
tion (Grant No. 2126315). The authors thank the discussion with
Dr. Chengbin Wang and many other colleagues during the 2022
Mineral Informatics Datathon at the Earth and Planets Laboratory,
Carnegie Institution for Science. The authors also thank three
anonymous reviewers for their constructive comments on an ear-
lier version of the paper.

References

Bavelas, A., 1950. Communication patterns in task-oriented groups. J. Acoust. Soc.
Am. 22 (6), 725–730.

Biggs, N., Biggs, N.L., Norman, B., 1993. Algebraic Graph Theory (2nd Edition).
Cambridge University Press, New York, p. 216.

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008 (10), P10008.

Bradley, D.C., McCauley, A.D., Stillings, L.M., 2017. Mineral-deposit model for
lithium-cesium-tantalum pegmatites. U.S. Geological Survey Scientific
Investigations Report 2010–5070–O, Reston, VA, 48 p. doi: 10.3133/
sir20105070O.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.,
2007. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20 (2), 172–188.

Brouwer, A.E., Haemers, W.H., 2012. Spectra of Graphs. Springer, New York, p. 245.
Chen, M., Xiao, F., 2023. Projection pursuit random forest for mineral prospectivity

mapping. Math. Geosci. 55 (7), 963–987.
Clauset, A., Newman, M.E., Moore, C., 2004. Finding community structure in very

large networks. Phys. Rev. E 70, (6) 066111.
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