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This paper presents an enhanced 3D heat map for exploratory data analysis (EDA) of open mineral data,
addressing the challenges caused by rapidly evolving datasets and ensuring scientifically meaningful data
exploration. The Mindat website, a crowd-sourced database of mineral species, provides a constantly updated
open data source via its newly established application programming interface (API). To illustrate the potential
usage of the API, we constructed an automatic workflow to retrieve and cleanse mineral data from it, thus

feeding the 3D heat map with up-to-date records of mineral species. In the 3D heat map, we developed scien-
tifically sound operations for data selection and visualization by incorporating knowledge from existing mineral
classification systems and recent studies in mineralogy. The resulting 3D heat map has been shared as an online
demo system, with the source code made open on GitHub. We hope this updated 3D heat map system will serve
as a valuable resource for researchers, educators, and students in geosciences, demonstrating the potential for
data-intensive research in mineralogy and broader geoscience disciplines.

1. Introduction

Mineralogy, like many other geoscience disciplines, faces the op-
portunities enabled by the fast-growing open data facilities and data
science methods (Hazen et al., 2019). For example, in recent years,
significant data-driven scientific discoveries have been achieved in the
field of mineral ecology (Hystad et al., 2015, 2019), mineral evolution
(Hazen and Ferry, 2010; Morrison et al., 2017), as well as the
co-evolution between geosphere and biosphere (Hazen and Papineau,
2012; Dong et al., 2022). As a result of these converging efforts, mineral
informatics (Prabhu et al., 2023a, 2023b) has been proposed as a field
that leverages cyberinfrastructure, data science, and informatics to
discover patterns in various datasets relevant to the study of mineralogy.
A unique topic in mineral informatics is exploratory data analysis (EDA),
highlighted as an effective way to tackle the challenges caused by big
open mineral data (Ma et al., 2017; Ma, 2023). EDA aims to gain a quick
view of target datasets and build plausible insights (Tukey, 1977). In a
data science workflow, EDA is treated as a functional step for generating
hypotheses about the dataset under study (Schutt and O’Neil, 2013; Ma

et al, 2017). EDA employs various data visualization methods,
including histograms, pie charts, scatter plots, and box plots, alongside
statistical techniques like linear regression, to facilitate comprehensive
data analysis.

The heat map is a standard visualization method for illustrating
complex relationships among large groups of factors (Wilkinson and
Friendly, 2009). In recent years it has been increasingly used as an EDA
method in the research of chemical elements and mineral species (Fel-
trin and Bertelli, 2020; Emami and Emami, 2020; Carvalho et al., 2022;
Hazen et al., 2023a). In our previous work, an initial three-dimensional
(3D) heat map (i.e., 3D Klee diagram) has been built by Ma et al. (2017)
to visualize the correlations in mineralogy, such as the co-existence of
elements among mineral species and co-occurrence of mineral species
among localities. Three case studies were then analyzed using the
mineral species list approved by the International Mineralogical Asso-
ciation (IMA; rruff.info/ima). Overall, the study of Ma et al. (2017)
demonstrated the potential of using visualization techniques in the EDA
step of a data science process.

Nevertheless, that work was based on static datasets of correlations.
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It could not easily be updated along with the fast-growing IMA mineral
species list (IMA approves about 100 new mineral species annually). The
outdated datasets reduce the utility of the demo system built by Ma et al.
(2017). Moreover, the user interface of the original demo system needs
to add more flexibility: it merely listed the elements for data selection
while needing more scientific guidance and explanation from the
perspective of mineralogy. The 3D heat maps demonstrated the
co-existence of element triplets among all mineral species, yet more
scientifically meaningful operations for element selection and
sub-setting can further facilitate the interpretation of EDA results and
add more scientific value to the demo system.

The OpenMindat project (Ma et al., 2023) provides an opportunity to
solve the outdated mineral data mentioned earlier. Mindat (mindat.org)
is a crowd-sourced data website that collects and shares records of
mineral species and their corresponding attributes, such as chemical
formulas, classification systems, localities, and more. As of February
2023, Mindat has over 5884 IMA-approved mineral species, over 389,
000 localities, over 1,463,000 mineral occurrences, and much other
relevant geology, petrology, and paleontology information. Those
abundant records make Mindat one of the best resources for retrieving
mineralogical datasets that match the latest IMA mineral species list.
The OpenMindat project has established an application programming
interface (API) that allows users to query and download data. This API
allows us to construct an automatic workflow to retrieve and cleanse
up-to-date open mineral data from Mindat and feed them into the 3D
heat map.

On the other hand, studies in mineralogy provide many clues and
resources to address the need for more scientifically-sound operations in
the demo system. For example, we can obtain structured records of
mineral classification and mineral-element correlation from the Dana
Classification (Gaines et al., 1997), Hey’s Mineral Index (Clark, 1993),
and the recently proposed Evolutionary System of Mineralogy (Hazen,
2019; Hazen et al., 2023a). Reviewing those geoscience literature re-
sources will help us retrieve mineral species’ structured classification
and formational contexts. We can also quickly obtain each mineral
species’ chemical formula and element list. Using those structured,
scientifically meaningful records, we can establish a list of new opera-
tions at both the demo system’s data selection and visualization stages.

This paper presents our work on an updated 3D heat map for the EDA
of open mineral data, highlighting how we solved the earlier issues of
out-of-date data and scientifically-meaningful data operations. With
those updates, we hope the demo system will be a long-lasting and
helpful resource for researchers, educators, and students in geosciences.
We have also shared the code and data on GitHub for interested re-
searchers to adapt and extend. In the remainder of the paper, Section 2
describes the workflow and structure of the updated 3D heat map demo
system, the live data resource from the OpenMindat API, and the new
data selection and visualization operations. Section 3 presents a detailed
illustration of the demo system on how EDA of mineral data can be
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performed through the functions provided. This section will utilize two
use cases, one on igneous minerals and the other on significant elements
in mineral species. Section 4 discusses the scientific value of this work
from the perspective of data science and mineral informatics and pre-
sents some thoughts on future extensions. Finally, Section 5 concludes
the paper.

2. Methods and datasets
2.1. Overview of the workflow

With the live data service from the OpenMindat Data API (Ma et al.,
2023), we designed the workflow for the 3D heat map (Fig. 1). The
workflow consists of four significant steps: data retrieving, data
cleansing, data selection, and the visual exploration based on 3D heat
map results. The last step adapts the code from Ma et al. (2017) and
extends the new interactive operations on the 3D heat map result, such
as rendering and filtering. The first three steps are all new developments
centered on the new data source enabled by the OpenMindat Data APIL
Python was used for data retrieving and cleansing functions, and Java-
Script was used for data selection and heat map generation functions.

The derived datasets in the workflow and the critical packages used
are also shown in Fig. 1. The OpenMindat API provides a list of pa-
rameters that can be used as filters to retrieve names and attributes of
mineral species approved by the International Mineralogical Association
(IMA). For example, in this study, we have retrieved records of the co-
existence of elements in mineral species to illustrate the workflow and
use cases. The obtained raw data from the API are stored in JSON
(JavaScript Object Notation) format. Then, the raw data are parsed and
restructured into a specific CSV (Comma-Separated Values) format to
represent the co-existence of three elements in mineral species. In our
workflow, we convert JSON to CSV format to align with the technical
needs of our visualization tools, initially developed for CSV input. This
transformation also provides a user-friendly format for researchers,
allowing easier inspection and comparison of element distributions
within the datasets.

The structure of the CSV is designed in this way to make it easy for 3D
heat map visualization. To build interactive data selections from the
cleansed CSV file, two JavaScript packages, Papaparse.js and Alasql.js,
are used. Papaparse.js is an effective and convenient CSV parser that can
load and convert the CSV file into a more interactable data object. The
structured CSV files enable data selection on a user interface, such as
using a visualized periodic table or a dropdown list of predefined
element compositions. After selecting, the picked elements will be
applied as querying parameters in the Alasql.js package to obtain cor-
responding element subsets from the data object.

Once the data selection is successfully run, the extracted element
subsets will be rendered as a 3D heat map using the Three.js package
(Fig. 2). Each cube in the heat map refers to a triplet of elements (on X, Y,

____________ OpenMindat Structured | | Papaparse.js
: Data API CSV File Alasql.js
; : X :
: Y ; Y
Data Retrieving Data Cleansing Data Selection 3D Heat Map
* Python « Element list in » Design of » Operations
. * IMA-approved each mineral user interface on the 3D
OpenMindat minerallist ~ [™®]+ Frequency of [™®]+ Periodictable [ heatmap to
Data Server » Parameters of element co- * Element highlight
API existence group list patterns
Y T y T
' 5 ' ;
1 Three. js i

Trackballcontrols.js

Fig. 1. Workflow of the developed 3D heat map for EDA of open mineral data.
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Fig. 2. Interactive operations on the 3D heat map. (a) Initial color rendering of selected element subset; (b) Set a cut-off value to remove unwanted cubes; (c) Set
opacity of cubes based on values; and (d) Re-rendering the color using a logarithmic transformation. (For interpretation of the references to color in this figure legend,

the reader is referred to the Web version of this article.)

and Z axes). In Fig. 2a, the initial color rendering corresponds to the
value in each cube, which is the number of mineral species in which the
three elements co-exist, with blue for the lowest value and red for the
highest. Accompanied by Three.js, the Trackballcontrols.js package
controls the interactive operations on the 3D heat map result. The basic
operations include changing camera or object positions, tilting camera
directions, and zooming in and out (Ma et al., 2017). In this study, we
enhanced the visualization availabilities by extending new interactions,
such as removing unexpected cubes and featuring the primary ones,
adjusting the cube opacities, re-rendering the cubes with different al-
gorithms to highlight value variance, and more (Fig. 2b, ¢, and d).

2.2. Stable and live mineral data source

The OpenMindat API data used in this study is sourced from the
Mindat website, one of the world’s largest crowd-sourced mineral da-
tabases. In recent years, the management team of Mindat has faced fast-
increasing open data requests from various researchers and organiza-
tions. Although the Mindat website is open and accessible for browsing,
before the Spring of 2023, there was no machine-readable interface for
data query and access. The OpenMindat data server addresses those
needs. OpenMindat is a refactoring version of the Mindat database for
effective and convenient machine accessibility (Ralph et al., 2022; Ma
et al., 2023). The work on OpenMindat includes a list of data enriching
and integration and server construction activities towards a stable and
live data API that enables machine query and access. From a broad
perspective, the OpenMindat efforts follow the FAIR principles

(Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al.,
2016) to facilitate a smooth data science workflow from the machine
interoperability and accessibility of data sources to the data reusability
at the users’ end. For this study, the OpenMindat data server provides a
stable, live, and up-to-date mineral data source that can refresh the
generated 3D heat map and extend the development of new functions.
The OpenMindat API, characterized as ’stable’ in this manuscript, re-
flects our commitment to providing a reliable data service. While in-
stances of downtime are inevitable in any online system, we have
established a rigorous maintenance protocol to ensure these are quickly
resolved. Our dedication to swift action in the face of such challenges
underpins our promise of stability to our users.

The accessible data from OpenMindat API cover a series of subjects,
including but not limited to mineral species, mineral classification,
petrological classification, localities, mineral occurrences, and more.
The corresponding data records can be obtained through a list of
querying parameters on the API, such as “name (of the mineral species)”,
“mindat_formula”, “ima_status”, “groupid”, “elements”, “occurrence”,
and the classification codes from Nickel-Strunz and Dana classification
systems. The OpenMindat API can fulfill different data queries and
export data in the open-source JSON format (Ma et al., 2023). Users can
conduct thematic data query tasks by combining different querying
parameters and filtering conditions on the OpenMindat API, such as
retrieving all the IMA-approved mineral species that incorporate copper,
sulfur, and oxygen into a specific part of the petrological classification
system.

A few use cases of data query on OpenMindat API and how the
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retrieved data are used to create the 3D heat map will be demonstrated.
The focus of these use cases is on the element co-existence among all the
IMA-approved mineral species. So far, a workflow to automatically
perform the data retrieval and cleansing has been established (see
Fig. 1). While the IMA-approved mineral species list keeps growing and
the records on the OpenMindat data server are continuously updating,
the 3D heat map can always have up-to-date data input through our
automated data retrieving and cleansing workflow. Moreover, the
OpenMindat API will also gradually expand the scope and accessibility
of data subjects from the original Mindat database, enabling more
exciting scientific topics to be explored through the 3D heat map and
many other EDA techniques.

2.3. Scientifically meaningful data operations on the user interface

The OpenMindat API can output many datasets to illustrate miner-
alogy correlations. So far in this study, we have focused on the co-
existence of elements in mineral species, and we have generated a list
of datasets for the updated 3D heat map demo. The datasets consist of all
73 mineral-forming elements and the 30 primary mineral-forming ele-
ments/element groups. The detailed list of datasets and descriptions are
made open online, and the links can be found in this paper’s Code and
Dataset Availability section. Since the publication of Ma et al. (2017),
we have received many comments suggesting that more interactive,
visualized, and scientifically-sound operations should be provided for
users to select a subset of data to visualize in the heat map rather than
visualize the whole 73"3 or 30"3 matrix. In this study, we have devel-
oped corresponding operations on the user interface to address those
comments (Fig. 3).

As depicted in Fig. 3a, the user interface is structured around four
primary operations:

a) Dataset Loading: Upon uploading the dataset labeled ‘73_elements’
(indicative of its 3D matrix structure of 73"3), elements within it are
prominently highlighted in black on the periodic table, while non-
included elements appear grey.
Element Selection via the Periodic Table: Users select elements by
first clicking an empty box under each axis, then choosing elements
from the periodic table to populate the axis box. Once all axes have
their chosen elements, users can either generate a 3D heat map by
clicking “Visualize Selected Elements” or download the subset data
as a CSV via “Download Subset Data.”

c) Element Selection by Mineral Classes: Once the 73"3 dataset is
selected, a dropdown menu activates, titled “Select Element Com-
binations by Mineral Classes.” This menu primarily lists igneous
mineral classes. By selecting a mineral class, the relevant element
combinations will automatically populate an axis. For instance, in

b
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Fig. 3a, selecting the “oxides” mineral class for all three axes yields
the heat map shown in Fig. 3b.

d) Visualization: The 3D heat map, as presented in Fig. 3b, visualizes
correlations between elements across the X, Y, and Z axes, where
each colored cell signifies the number of mineral species in which the
triad of elements co-exist. This heat map offers a potent way to
discern patterns, especially when axes showcase different mineral
class combinations.

For a deeper dive into specific use cases, datasets, and interactive
operations, readers can refer to Section 3. Here, we will further elucidate
the system’s capabilities and the scientific insights gleaned from its
exploratory data analysis (EDA).

3. Use cases, results and analysis

Using datasets retrieved from the OpenMindat API, two typical use
cases were built to demonstrate the utility of the 3D heatmap demo
system to support EDA in mineralogy. The datasets were collected in
early February 2023, based on the 5899 mineral species recorded by
Mindat at that time. A list of eight datasets was cleansed for the use
cases. As automated workflows were established for the data retrieving
and cleansing steps, all the use cases can be easily updated with the
latest OpenMindat datasets.

3.1. Element co-existence in primary igneous minerals

The first use case centered on the co-existence of elements among
igneous minerals. Igneous minerals are a topic of long-term interest in
mineralogy.

Bowen (1928) proposed the “reaction series” to study igneous min-
eral co-occurrence, which can be applied to explain and predict the
fractional crystallization sequence as silicate magma’s temperature de-
creases. For example, the continuous reaction series of olivines — py-
roxenes — amphiboles — biotites indicate well-attested igneous mineral
serial co-occurrences in many rock varieties. In addition to the fractional
crystallization caused by temperature, igneous mineral species demon-
strate association patterns based on chemical factors, such as
quartz-alkali feldspar pair, hornblende-intermediate plagioclase pair,
and more. We prepared two data objects to further study element
co-existence among igneous minerals: the igneous mineral list and the
element-mineral correlation dataset.

We referred to Hazen et al. (2023a) for the igneous mineral list.
When determining igneous minerals, their work adopted the Dana
Classification System for categorizing minerals in this research, a
method also used by Mindat.org based on mineral chemical composi-
tion. They conducted a co-occurrence analysis of igneous minerals using

2 )| Xofiet+ |

o ] ]
o Jlsen
XHY: .22, Minera count vke: S0 b

s I
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Fig. 3. Scientifically meaningful data operations. (a) User interface for data loading and selection, and (b) The 3D heat map result when X, Y, Z axes are the same list

of elements from the mineral class “oxides”.
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a hierarchical clustering heat map. Their results delineated a clear as-
sociation pattern among chemical composition-based mineral classes.
Noticing that the recognized igneous minerals in the work are related to
chemistry-based mineral classes, we felt that the element combinations
of mineral species could be used to explore the correlations between
mineral species further. Accordingly, we built a table to show the
element combination of each igneous mineral class (Table 1), and we
used them in the user interface of the demo system (Fig. 3a).

In our analysis, the selected element combinations associated with
igneous minerals aim to highlight the distribution of elements within
IMA minerals. This method does not strictly categorize minerals based
on their geological origins but rather investigates potential patterns in
elemental makeup across various mineral classes, acknowledging the
diverse geological processes that contribute to the formation of these
minerals.

All the 73 mineral-forming elements were sourced from Open-
Mindat, then the information was processed into various 3D matrices.
OpenMindat’s API offers attributes like “elements”, “sigelements”, and
“imaformula”, which define the chemical composition of mineral spe-
cies. For example, the “elements” attribute for the mineral species
“aeschynite-(Ce)” lists as “-Ca-Ce-Fe-Nb-Th-Ti-O-H-", while the “sigele-
ments”, or major structural site elements, are “-Ce-Ti-O-". The latter is
derived from the main dominant elements in lattice positions in the
chemical formula of Mindat. Documentation for defining API attributes
can be accessed in the Code and Dataset Availability section.

We then structured two primary 3D matrices: “73_elements” and
«“73_sigelements”. Both matrices use the same 73 elements on the X, Y,
and Z axes. Each cell within these matrices indicates the number of
mineral species with the corresponding X, Y, and Z elements. These
matrices were generated using the “elements” and “sigelements” attri-
butes from the 5899 IMA-approved mineral species.

Further, we developed two derived 3D matrices: “normalized
_73_elements” and “normalized_73_sigelements”. Here, each cell value
denotes the fraction of mineral species containing the Z element, which
also simultaneously includes X and Y elements. In mathematical terms,
it’s represented as (number of species with X, Y, and Z elements) +
(number of species with Z element).

These four datasets can be accessed on our demo system. Users can
load them to create 3D heat maps as demonstrated in Fig. 4. Specifically,
Fig. 4a showcases the “73_elements” dataset, visualized as a compre-
hensive 73"3 matrix heat map. The color intensity in each cell corre-
sponds to its value, with a reference color bar situated to the screen’s
left. However, considering the sheer size of such a matrix, it is more
practical for users to generate a smaller 3D heat map from a dataset

Table 1
Primary igneous mineral classes and corresponding element combinations.

Classes of Igneous Minerals (From Element Combinations

Hazen et al., 2023a)

Native Elements C

Sulfides S, Fe, Cu, Zn, Mo, Pb

Oxides H, O, F, Na, Mg, Al, Ca, Ti, Cr, Mn, Fe, Y, Zr,
Nb, Sn, Ce, Ta, Pb, Th, U

Halides F, Ca

Carbonates H, C, O, F, Na, Mg, Ca, Fe, Sr, Y, Ba, La, Ce

Sulphates 0, S, Ba

Phosphates H, Li, O, F, Al, P, Cl, Ca, Fe, As, Y

Nesosilicates or Orthosilicates H, Li, Be, O, F, Mg, Al Si, S, Ca, Ti, Mn, Fe, Y,
Zr, 1, Th
H, Be, O, F, Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn,

Fe, Sr, Y, Zr, Nb, Ba, W

Sorosilicates or Disilicates

Cyclosilicates H, Li, Be, B, O, F, Na, Mg, Al, Si, Cl, Ca, Fe, Zr,
Cs

Inosilicates H, Li, O, F, Na, Mg, Al, Si, Cl, K, Ca, Ti, Mn,
Fe, Zr, Nb, Cs

Phyllosilicates H, Li, O, F, Mg, Al, Si, Cl, K, Ti, V, Cr, Mn, Fe,
Rb, Cs

Tectosilicates H, C, O, Na, Mg, Al, Si, S, CL K, Ca, Fe, Cs
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subset. Conveniently, we have integrated an igneous mineral list (seen in
Table 1) into the data selection phase, aiding users in this process.

Fig. 4a illustrates a 3D heat map comprising the entire list of ele-
ments. Leveraging the dropdown menu featuring igneous mineral clas-
ses, we can swiftly choose element combinations for the X, Y, and Z axes.
For instance, extending upon Hazen et al. (2023)’s research on primary
igneous mineral clustering associations, we executed an Exploratory
Data Analysis (EDA) by selecting elements from carbonates, sulfides,
and oxides mineral classes for the X, Y, and Z axes, respectively,
resulting in Fig. 4b.

The interactive demo allows users to manipulate the 3D heat map,
offering rotation, zoom, and even a feature to produce a 2D projection
by selecting an element (the chosen element forms the Z axis). A prime
example is the right segment of Fig. 4b, focusing on the Z-axis element
“Fe”. However, Fig. 4a and b reveal that many cells, colored in blue,
represent minimal or zero values due to sparse element co-existence
records. To enhance visibility, we can apply a logarithmic trans-
formation (log(value*2)) to each cell, ensuring more apparent distinc-
tions between cells, as depicted in Fig. 4c.

One challenge is the obscured cells within the 3D heat map’s core. To
address this, beyond the slicing function demonstrated in Fig. 4b, we can
increase spacing between cell layers along each axis, as shown in Fig. 4d.
This adjustment allows for a more precise comparison of patterns,
highlighting, for example, the pronounced value (red) of the cell where
the element ‘Fe’ is consistent on all axes. Moreover, by implementing a
cut-off value, we can prune the 3D heat map, eliminating less significant
cells. This technique yields Fig. 4e (from the “73_elements” dataset) and
f (from the “73_sigelements” dataset), both using carbonates, sulfides,
and oxides for the X, Y, and Z axes. Any cell below the value of 45 is
omitted, with opacity enhanced for the remaining cells to accentuate
differences. Notably, Fig. 4e retains more cells than Fig. 4f. The
“73_sigelements” dataset, focusing on significant elements, reduces the
count of mineral species with X, Y, and Z element co-existence. Applying
a consistent cut-off value of 45 to both heat maps results in Fig. 4f having
more cells removed.

In Fig. 4e and f, the axes are defined by the elements from the car-
bonates, sulfides, and oxides mineral classes. Notably, the first two axes
encapsulate the components of the Ca-Mg carbonatite mineral com-
munity. This community integrates 11 of the 13 primary igneous car-
bonates and 5 of the 6 sulfides, as cataloged in the definitive list of 115
prevalent primary igneous mineral species by Hazen et al. (2023). The
significance of this arrangement becomes particularly evident when
scrutinizing the high-frequency elements, where the deep-colored cubes
act as beacons of chemical association among this mineral community
and oxides. The pronounced clustering along the sulfides axis in Fig. 4e
and f provide unequivocal evidence of intrinsic chemical associations
between the carbonates and oxides classes.

Contrastingly, the expansive void observed in the anterior segment
of the oxides axis tells its own compelling story. This noticeable absence
of prominent triplets signifies chemical element antipathies. A meticu-
lous examination of these visualizations elucidates certain elements in
the oxides class—specifically, Cr, Y, Zr, Sn, Ta, and Th—that appear to
be geochemically incompatible with the carbonatite mineral
community.

Furthermore, the filtering capability of the model illuminates rare
triplet combinations within the extensive dataset of 5800 IMA-approved
mineral species. To illustrate, the unique triplet “Ce, Mo, Fe” has been
documented only once, associated with the mineral “tancaite-(Ce)”, a
secondary mineral recently identified in cavities within quartz veins
(Bonaccorsi and Orlandi, 2020). Such infrequent or entirely absent
triplets offer an invaluable, data-driven avenue for recognizing
geochemically improbable element combinations while alerting miner-
alogists to the prospect of discovering novel mineral species. This
analytical approach is thus promising, not only in showcasing how vi-
sual analytics can contribute to understanding known occurrences, but
also to the expansion of our mineralogical knowledge base.
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Fig. 4. Different ways to explore the patterns of element co-existence among igneous minerals. (a) The overview of 73 elements 3D heat map cubes; (b) The 3D heat
map of carbonates, sulfides, and oxides in the corresponding X (red), Y (green), and Z (blue) axis, with the slicing out of Fe on the Z axis; (c) Re-coloring the cubes
with the logarithmic values; (d) Expanding the 3D heat map along X axis; (e) Applying the filter function and removing cubes with fewer than 45 values in the
73_elements dataset; (f) Applying the filter function and removing cubes with fewer than 45 values in the 73_sigelements dataset. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)

3.2. Significant elements in mineral species

Upon initial analysis, we discerned considerable sparsity in the 73-
element co-existence dataset, where many matrix cells displayed negli-
gible values. A notable observation was the diminished values exhibited
by the Rare Earth Elements (REE) cells, in contrast to those representing
more prevalent mineral-forming elements. This disparity raised con-
cerns over the potential exclusion of REE cells during the filtration op-
erations, despite their intrinsic significance.

As highlighted by Hazen and Morrison (2022), while the rare
chemical elements such as REE, platinum-group elements, As, Mo, and
Sn constitute a trivial fraction of the Earth’s crust (approximately

0.01%), they are manifest in nearly 40% of identified mineral species.
This observation underscores the need for a nuanced approach to our
dataset construction.

In our second use-case analysis, focusing on the 30 most predomi-
nant elements in IMA-approved mineral species, we gave special
attention to REEs. While scandium (Sc) is often grouped with REEs, we
acknowledge its distinct geochemical behavior and rare substitution in
REE minerals. For the purposes of this study, Sc was included in the REE
category to demonstrate our methodology’s adaptability. This inclusion,
particularly regarding scandium, should be seen as an example of flex-
ibility rather than a definitive classification. For instance, in ’shakh-
daraite-(Y)’ denoted as (-Nb-Sc-O-Y-), a format specific to the Mindat
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API, we treated ’-Sc-Y-’ collectively as REEs for simplicity, transforming
its chemical composition to “-Nb-O-REE-". Such groupings are adjust-
able in our workflow, and in section 4, we will discuss the contentious
topic of whether to consider Sc (scandium) and Y (yttrium) as REE.

Echoing the methodology of our preliminary analysis, we curated
four datasets, leveraging the attributes “elements” and “sigelements”
from OpenMindat and implementing appropriate fraction calculations
to generate normalized datasets. Visualization of these datasets culmi-
nated in Fig. 5, where Fig. 5a presents a 3D heatmap of the “30_ele-
ments” dataset, spotlighting an REE layer (with REE designated to the Z
axis). Enhanced clarity was achieved through a logarithmic trans-
formation, showcased in Fig. 5b. The resultant heatmap vividly illumi-
nates elements exhibiting heightened co-existence propensities with
REE. The dominance of O (observed in 386 mineral species), H (219), Si
(180), Ca (158), and Fe (96) emerges palpably, offering invaluable in-
sights into elemental associations, particularly those embedded within
the REE framework.

As elucidated in the preliminary use case, the value encapsulated
within a specific cell is emblematic of the fraction of mineral species
harboring Z elements that concurrently contain X and Y elements in the
normalized datasets. For instance, within the specific context of the cell
with “X: Si, Y: Ca, Z: REE,” a value of 100 is juxtaposed against a value of
393 for the cell corresponding to “X: REE, Y: REE, Z: REE.” This
convention leads to a normalized value of 100/393 for the former cell,
and a unitary value for the latter.

Fig. 5c¢ and d, representing the datasets “normalized_30_elements”
and “normalized_30_sigelements,” are rendered with the REE layers
selectively extracted and a cutoff value of 0.33 applied, thereby
removing cells with values falling beneath this threshold. Upon careful
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examination, several intriguing patterns emerge.

First, the asymmetry on the left side of Fig. 5c and d is conspicuous,
deviating from the symmetrical pattern observed in the initial use case.
This distinction arises from the inherent asymmetry of the normalized
values, as opposed to the original co-existence counts.

Second, the manifestation of high-value cell clusters indicates the
prominent elements depicted in Fig. 5b. An illustrative example is the
demonstration of parallel cell chains in the upper left quadrant of both
Fig. 5¢ and d, an indicator of the dominance of mineral species inte-
grating H and O. Furthermore, two inclined cell chains exemplify the
pair-wise coexistence between H or O and other elements.

Third, the presence of green cells outside the aforementioned chains
yields valuable insights into the coexistence patterns of elements inde-
pendent of the H and O influence. Within Fig. 5c and d, where the REE
layer is sliced, distinct variations between the REE slices become
apparent. Specifically, in Fig. 5c, the residual cells correspond to Ca, O,
and REE, whereas in Fig. 5d, all Ca-associated cells are absent. This
disparity underscores a potential tendency within the Mindat database
to recognize Ca as significant in the presence of REE within mineral
species.

In conclusion, the use cases elucidated herein represent a mere
fraction of the possibilities latent within the current 3D heat map demo
system. We invite interested scholars and researchers to explore the
demo website (refer to the section “Code and Dataset Availability” for
the link), engaging with diverse data selections and uncovering hitherto
concealed patterns. The dynamic interplay of these elements, as
captured by our 3D visualization model, can significantly augment our
understanding of mineral species and their complex interrelationships.
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Fig. 5. Interactions with the 3D heat map of the 30 common elements among IMA-approved mineral species. (a) Sliced out layer with REE on Z axis; (b) Re-coloring
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(d) The REE slice in normalized_30_sigelements dataset, with all the cubes having values greater than 0.33.
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4. Discussion

In previous sections, we presented our work on designing, devel-
oping, and using case analyses of a 3D heat map demo system for EDA of
mineral data. The results show that EDA methods such as heat maps
effectively expose patterns of various correlations in mineral data. Data
visualization techniques such as the 3D matrices used in the demo sys-
tem add more features of interactions in the result interpretation. Those
techniques and scientific-meaning operations in data cleansing and se-
lection make the resulting 3D heat map demo system a helpful tool for
data-intensive research in mineralogy.

Although the work has a scientific focus on mineralogy, the designed
workflow is an excellent example of addressing the challenges caused by
the rapid evolution of open big data in geosciences. The open data and
open science activities (Stall et al., 2019; Gentemann, 2023) have
resulted in fast-growing records in open data portals. For any data
visualization or analysis results, if they cannot elaborate on the updated
datasets, their findings will soon be out of date. IMA approves about 100
new mineral species annually for the mineral species data alone.
Accordingly, the Mindat data contributor community (about 7000
people) (Ma et al., 2023) is doing its best to upload and curate the re-
cords of the new species, integrate them with the existing mineral spe-
cies records, and then make the data machine accessible through the
Mindat API. With the ever-growing OpenMindat database, new scientific
questions or ideas can always be explored. The utility of the 3D heat map
demo system built in this study has been tested through a list of use cases
to illustrate how EDA can facilitate research on mineralogy. Moreover,
the workflow built on the live OpenMindat data API (Fig. 1) is effective
for tackling the velocity of open mineral data. Beyond mineralogy, the
EDA method and the techniques for correlation visualization can also be
adapted in other geoscience disciplines, as well as those outside
geosciences.

As a reflection, this work’s most noteworthy technical contributions
are in two parts: the established gateway to the live data source and the
scientifically-sound data operations on the user interface. Our previous
work (Ma et al., 2017) built the initial 3D heat map visualization envi-
ronment and constructed a few use cases with separate datasets. Those
datasets were collected from multiple sources and were cleansed
manually. Although the 3D heat map results were sound, it is hard to
extend to other datasets to build new use cases quickly. By elaborating
on the existing software building blocks, the new developments in this
study established a framework (Fig. 1) to interconnect live mineral data
service, meaningful data operations, and interactive heat map results.
Those new features significantly improve the reusability and extensi-
bility of the resulting demo system regarding both new datasets and data
operation functions. The OpenMindat API, once fully established, will
provide accessibility to massive valuable mineral data (Ma et al., 2023).
The 3D heat map can be used to do an EDA of various correlations in
mineral data. All the established use cases can be regularly refreshed
using the live data service from OpenMindat, and the workflow for data
retrieving and cleansing developed in this study.

On the other hand, mineralogy has many established and evolving
knowledge systems. The igneous mineral classes used in this study for
data selection are part of them, and more such structured knowledge can
be elaborated in EDA. We aim to continuously maintain and update this
3D heat map demo system and make it a long-lasting tool and reference
for research, education, and outreach in mineralogy, mineral infor-
matics, and data science.

We have planned a list of extensions to the demo website. As the
technical workflow was established from the live data source to the
visualization output, we will work on several new datasets and functions
for the immediate next stage to extend the scientific coverage and the
utility of the demo system among various users. For example, in this
study, we showed the use case of igneous mineral classes. We can also
build use cases for metamorphic and sedimentary minerals and many
other classes in the Dana Classification (Gaines et al., 1997) and Hey’s
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Mineral Index (Clark, 1993).

The proposed data retrieval and cleansing workflow boasts remark-
able adaptability to diverse user requirements. The work is particularly
evident when addressing historical ambiguities, such as the classifica-
tion of scandium (Sc) and yttrium (Y) as REE. While normally, REE
referred to the lanthanide series, comprising 15 elements from atomic
numbers 57 (lanthanum) to 71 (lutetium), both Sc and Y, due to their
association with lanthanides in mineral deposits and similar properties,
have often been studied together with the lanthanide series and occa-
sionally been regarded as “rare earth elements” by mineralogists
(Balaram, 2019). Such debates underscore the need for flexible data
preparation and pre-processing. The proposed workflow ensures that, at
the early stages of EDA, scientists can handle these variances and
generate customized datasets. This adaptability establishes a strong
foundation for varied research aims and requirements.

The output can be new datasets and drop-down lists at the data se-
lection step of the demo website. Using the OpenMindat API, we can
obtain mineral species records of certain areas of interest, such as by
countries or states. A 3D heat map can be built to illustrate the corre-
lations between minerals and elements in each area. We can also update
the user interface of the demo system to display the heat maps of several
areas. The inter-comparison of those heat maps has the potential to
expose other interesting mineralogy patterns across those areas. For all
the current 3D heat map results, elements are listed along the three axes
(i.e., the element-wise heat maps). We can also try new data structures
for mineral-wise heat maps. For a simple example, we can list subsets of
mineral species on the X, Y, and Z axes, and then in each cell, we can fill
in the number of localities where the three mineral species co-occur.
Also, one could examine coexisting minerals associated with the 57
mineral paragenetic modes (Hazen and Morrison, 2022), or track min-
eral/chemical co-occurrences versus age.

We can also think about other potential ideas for future work from a
broad perspective. One idea is to demonstrate the pattern of mineral
forming temperature and pressure conditions in the 3D heat map. For
that direction, we need to extend the data structure by considering what
can be treated as proxy properties for temperature and pressure, for
example, by considering the attributes of mineral formation modes
(Hazen et al., 2023b). Many such properties are hidden in the big geo-
science literature data. Text mining may help retrieve them to configure
an appropriate data structure (Wang et al., 2018). Another idea for
future updates is to elaborate a 3D virtual globe to show the paleogeo-
graphic distribution of mineral species on the user interface of the 3D
heat map, such as by using the GPlates API (Miiller et al., 2018). In the
study of mineral evolution (Hazen et al., 2008), an open Mineral Evo-
lution Database was built to record mineral species’ temporal and spatial
properties (Golden et al., 2019). We can calculate the paleo-coordinates
of a mineral species by using its age attribute (e.g., its first appearance
on Earth) and visualize the records with a paleogeographic map (e.g.,
plate tectonics) as background. Once fully established, this will be a
valuable tool to demonstrate the scientific topics in mineral ecology,
evolution, and informatics (Hazen et al., 2008, 2015; Hystad et al.,
2019; Prabhu et al., 2023a, 2023b).

5. Conclusions

This study demonstrates how exploratory data analysis can effec-
tively discover initial patterns in open and big mineral data with
appropriate technical developments. As the IMA-approved mineral list
continuously grows, the crowd-sourced Mindat database rapidly up-
dates, and the OpenMindat API will thus provide a stable, current ser-
vice of mineral data. The automated workflow for data retrieval and
cleansing built in this study can be adapted to collect various types of
correlation data from OpenMindat and then conduct exploratory data
analysis in the 3D heat map. Existing knowledge frameworks in miner-
alogy, such as different parts of the mineral classification systems and
the recent studies on mineral ecology and mineral evolution, can also be
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elaborated on the user interface to add scientific meanings to the data
operations. We have already planned a list of new use cases and func-
tions for the extension of the demo system. However, we firmly believe
there will be much more innovative scientific topics and data explora-
tion ideas from the geoscience community. The 3D heat map demo
system, the data retrieval and cleansing workflow, and all the source
code, datasets, and documentation developed in this study are open
online. We welcome other researchers to try the existing use cases, adapt
the code to build their studies, or send requests to us to collaborate on
new use cases and functions for exploratory data analysis.

Code and dataset availability

Name of the code/library: 3D Heat Map Data Preprocessing.

Contact: Jiyin Zhang: jiyinz@uidaho.edu or Xiaogang Ma: max@u
idaho.edu; +1 208 885 1547.

Hardware requirements: No specific requirement. A general laptop
will work well.

Program language: Python.

Software required: No specific requirement. Any programming
environment support Python will work.

Program size: About 30 MB (including the sample datasets).

The source codes are available for download at the link: https://gith
ub.com/ChuBL/3DHeatmapDataPreprosses.

The demo system of the 3D heat map is accessible at http://tickmap.
nkn.uidaho.edu/D3Cube.

The definition for API attributes: https://github.com/smrgeoinf
o/How-to-Use-Mindat-API/blob/main/geomaterialfields.csv.

The Mindat API data used in this study is in alignment with the open
access policy stated by Mindat.org, which is transitioning to a Creative
Commons share-alike license. We have adhered to Mindat’s current data
use guidelines, which allow for this application. Detailed licensing in-
formation is available at Mindat.org’s copyright policy page (https://
www.mindat.org/copyrights.php).
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