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A B S T R A C T   

This paper presents an enhanced 3D heat map for exploratory data analysis (EDA) of open mineral data, 
addressing the challenges caused by rapidly evolving datasets and ensuring scientifically meaningful data 
exploration. The Mindat website, a crowd-sourced database of mineral species, provides a constantly updated 
open data source via its newly established application programming interface (API). To illustrate the potential 
usage of the API, we constructed an automatic workflow to retrieve and cleanse mineral data from it, thus 
feeding the 3D heat map with up-to-date records of mineral species. In the 3D heat map, we developed scien-
tifically sound operations for data selection and visualization by incorporating knowledge from existing mineral 
classification systems and recent studies in mineralogy. The resulting 3D heat map has been shared as an online 
demo system, with the source code made open on GitHub. We hope this updated 3D heat map system will serve 
as a valuable resource for researchers, educators, and students in geosciences, demonstrating the potential for 
data-intensive research in mineralogy and broader geoscience disciplines.   

1. Introduction 

Mineralogy, like many other geoscience disciplines, faces the op-
portunities enabled by the fast-growing open data facilities and data 
science methods (Hazen et al., 2019). For example, in recent years, 
significant data-driven scientific discoveries have been achieved in the 
field of mineral ecology (Hystad et al., 2015, 2019), mineral evolution 
(Hazen and Ferry, 2010; Morrison et al., 2017), as well as the 
co-evolution between geosphere and biosphere (Hazen and Papineau, 
2012; Dong et al., 2022). As a result of these converging efforts, mineral 
informatics (Prabhu et al., 2023a, 2023b) has been proposed as a field 
that leverages cyberinfrastructure, data science, and informatics to 
discover patterns in various datasets relevant to the study of mineralogy. 
A unique topic in mineral informatics is exploratory data analysis (EDA), 
highlighted as an effective way to tackle the challenges caused by big 
open mineral data (Ma et al., 2017; Ma, 2023). EDA aims to gain a quick 
view of target datasets and build plausible insights (Tukey, 1977). In a 
data science workflow, EDA is treated as a functional step for generating 
hypotheses about the dataset under study (Schutt and O’Neil, 2013; Ma 

et al., 2017). EDA employs various data visualization methods, 
including histograms, pie charts, scatter plots, and box plots, alongside 
statistical techniques like linear regression, to facilitate comprehensive 
data analysis. 

The heat map is a standard visualization method for illustrating 
complex relationships among large groups of factors (Wilkinson and 
Friendly, 2009). In recent years it has been increasingly used as an EDA 
method in the research of chemical elements and mineral species (Fel-
trin and Bertelli, 2020; Emami and Emami, 2020; Carvalho et al., 2022; 
Hazen et al., 2023a). In our previous work, an initial three-dimensional 
(3D) heat map (i.e., 3D Klee diagram) has been built by Ma et al. (2017) 
to visualize the correlations in mineralogy, such as the co-existence of 
elements among mineral species and co-occurrence of mineral species 
among localities. Three case studies were then analyzed using the 
mineral species list approved by the International Mineralogical Asso-
ciation (IMA; rruff.info/ima). Overall, the study of Ma et al. (2017) 
demonstrated the potential of using visualization techniques in the EDA 
step of a data science process. 

Nevertheless, that work was based on static datasets of correlations. 
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It could not easily be updated along with the fast-growing IMA mineral 
species list (IMA approves about 100 new mineral species annually). The 
outdated datasets reduce the utility of the demo system built by Ma et al. 
(2017). Moreover, the user interface of the original demo system needs 
to add more flexibility: it merely listed the elements for data selection 
while needing more scientific guidance and explanation from the 
perspective of mineralogy. The 3D heat maps demonstrated the 
co-existence of element triplets among all mineral species, yet more 
scientifically meaningful operations for element selection and 
sub-setting can further facilitate the interpretation of EDA results and 
add more scientific value to the demo system. 

The OpenMindat project (Ma et al., 2023) provides an opportunity to 
solve the outdated mineral data mentioned earlier. Mindat (mindat.org) 
is a crowd-sourced data website that collects and shares records of 
mineral species and their corresponding attributes, such as chemical 
formulas, classification systems, localities, and more. As of February 
2023, Mindat has over 5884 IMA-approved mineral species, over 389, 
000 localities, over 1,463,000 mineral occurrences, and much other 
relevant geology, petrology, and paleontology information. Those 
abundant records make Mindat one of the best resources for retrieving 
mineralogical datasets that match the latest IMA mineral species list. 
The OpenMindat project has established an application programming 
interface (API) that allows users to query and download data. This API 
allows us to construct an automatic workflow to retrieve and cleanse 
up-to-date open mineral data from Mindat and feed them into the 3D 
heat map. 

On the other hand, studies in mineralogy provide many clues and 
resources to address the need for more scientifically-sound operations in 
the demo system. For example, we can obtain structured records of 
mineral classification and mineral-element correlation from the Dana 
Classification (Gaines et al., 1997), Hey’s Mineral Index (Clark, 1993), 
and the recently proposed Evolutionary System of Mineralogy (Hazen, 
2019; Hazen et al., 2023a). Reviewing those geoscience literature re-
sources will help us retrieve mineral species’ structured classification 
and formational contexts. We can also quickly obtain each mineral 
species’ chemical formula and element list. Using those structured, 
scientifically meaningful records, we can establish a list of new opera-
tions at both the demo system’s data selection and visualization stages. 

This paper presents our work on an updated 3D heat map for the EDA 
of open mineral data, highlighting how we solved the earlier issues of 
out-of-date data and scientifically-meaningful data operations. With 
those updates, we hope the demo system will be a long-lasting and 
helpful resource for researchers, educators, and students in geosciences. 
We have also shared the code and data on GitHub for interested re-
searchers to adapt and extend. In the remainder of the paper, Section 2 
describes the workflow and structure of the updated 3D heat map demo 
system, the live data resource from the OpenMindat API, and the new 
data selection and visualization operations. Section 3 presents a detailed 
illustration of the demo system on how EDA of mineral data can be 

performed through the functions provided. This section will utilize two 
use cases, one on igneous minerals and the other on significant elements 
in mineral species. Section 4 discusses the scientific value of this work 
from the perspective of data science and mineral informatics and pre-
sents some thoughts on future extensions. Finally, Section 5 concludes 
the paper. 

2. Methods and datasets 

2.1. Overview of the workflow 

With the live data service from the OpenMindat Data API (Ma et al., 
2023), we designed the workflow for the 3D heat map (Fig. 1). The 
workflow consists of four significant steps: data retrieving, data 
cleansing, data selection, and the visual exploration based on 3D heat 
map results. The last step adapts the code from Ma et al. (2017) and 
extends the new interactive operations on the 3D heat map result, such 
as rendering and filtering. The first three steps are all new developments 
centered on the new data source enabled by the OpenMindat Data API. 
Python was used for data retrieving and cleansing functions, and Java-
Script was used for data selection and heat map generation functions. 

The derived datasets in the workflow and the critical packages used 
are also shown in Fig. 1. The OpenMindat API provides a list of pa-
rameters that can be used as filters to retrieve names and attributes of 
mineral species approved by the International Mineralogical Association 
(IMA). For example, in this study, we have retrieved records of the co- 
existence of elements in mineral species to illustrate the workflow and 
use cases. The obtained raw data from the API are stored in JSON 
(JavaScript Object Notation) format. Then, the raw data are parsed and 
restructured into a specific CSV (Comma-Separated Values) format to 
represent the co-existence of three elements in mineral species. In our 
workflow, we convert JSON to CSV format to align with the technical 
needs of our visualization tools, initially developed for CSV input. This 
transformation also provides a user-friendly format for researchers, 
allowing easier inspection and comparison of element distributions 
within the datasets. 

The structure of the CSV is designed in this way to make it easy for 3D 
heat map visualization. To build interactive data selections from the 
cleansed CSV file, two JavaScript packages, Papaparse.js and Alasql.js, 
are used. Papaparse.js is an effective and convenient CSV parser that can 
load and convert the CSV file into a more interactable data object. The 
structured CSV files enable data selection on a user interface, such as 
using a visualized periodic table or a dropdown list of predefined 
element compositions. After selecting, the picked elements will be 
applied as querying parameters in the Alasql.js package to obtain cor-
responding element subsets from the data object. 

Once the data selection is successfully run, the extracted element 
subsets will be rendered as a 3D heat map using the Three.js package 
(Fig. 2). Each cube in the heat map refers to a triplet of elements (on X, Y, 

Fig. 1. Workflow of the developed 3D heat map for EDA of open mineral data.  
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and Z axes). In Fig. 2a, the initial color rendering corresponds to the 
value in each cube, which is the number of mineral species in which the 
three elements co-exist, with blue for the lowest value and red for the 
highest. Accompanied by Three.js, the Trackballcontrols.js package 
controls the interactive operations on the 3D heat map result. The basic 
operations include changing camera or object positions, tilting camera 
directions, and zooming in and out (Ma et al., 2017). In this study, we 
enhanced the visualization availabilities by extending new interactions, 
such as removing unexpected cubes and featuring the primary ones, 
adjusting the cube opacities, re-rendering the cubes with different al-
gorithms to highlight value variance, and more (Fig. 2b, c, and d). 

2.2. Stable and live mineral data source 

The OpenMindat API data used in this study is sourced from the 
Mindat website, one of the world’s largest crowd-sourced mineral da-
tabases. In recent years, the management team of Mindat has faced fast- 
increasing open data requests from various researchers and organiza-
tions. Although the Mindat website is open and accessible for browsing, 
before the Spring of 2023, there was no machine-readable interface for 
data query and access. The OpenMindat data server addresses those 
needs. OpenMindat is a refactoring version of the Mindat database for 
effective and convenient machine accessibility (Ralph et al., 2022; Ma 
et al., 2023). The work on OpenMindat includes a list of data enriching 
and integration and server construction activities towards a stable and 
live data API that enables machine query and access. From a broad 
perspective, the OpenMindat efforts follow the FAIR principles 

(Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al., 
2016) to facilitate a smooth data science workflow from the machine 
interoperability and accessibility of data sources to the data reusability 
at the users’ end. For this study, the OpenMindat data server provides a 
stable, live, and up-to-date mineral data source that can refresh the 
generated 3D heat map and extend the development of new functions. 
The OpenMindat API, characterized as ’stable’ in this manuscript, re-
flects our commitment to providing a reliable data service. While in-
stances of downtime are inevitable in any online system, we have 
established a rigorous maintenance protocol to ensure these are quickly 
resolved. Our dedication to swift action in the face of such challenges 
underpins our promise of stability to our users. 

The accessible data from OpenMindat API cover a series of subjects, 
including but not limited to mineral species, mineral classification, 
petrological classification, localities, mineral occurrences, and more. 
The corresponding data records can be obtained through a list of 
querying parameters on the API, such as “name (of the mineral species)”, 
“mindat_formula”, “ima_status”, “groupid”, “elements”, “occurrence”, 
and the classification codes from Nickel-Strunz and Dana classification 
systems. The OpenMindat API can fulfill different data queries and 
export data in the open-source JSON format (Ma et al., 2023). Users can 
conduct thematic data query tasks by combining different querying 
parameters and filtering conditions on the OpenMindat API, such as 
retrieving all the IMA-approved mineral species that incorporate copper, 
sulfur, and oxygen into a specific part of the petrological classification 
system. 

A few use cases of data query on OpenMindat API and how the 

Fig. 2. Interactive operations on the 3D heat map. (a) Initial color rendering of selected element subset; (b) Set a cut-off value to remove unwanted cubes; (c) Set 
opacity of cubes based on values; and (d) Re-rendering the color using a logarithmic transformation. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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retrieved data are used to create the 3D heat map will be demonstrated. 
The focus of these use cases is on the element co-existence among all the 
IMA-approved mineral species. So far, a workflow to automatically 
perform the data retrieval and cleansing has been established (see 
Fig. 1). While the IMA-approved mineral species list keeps growing and 
the records on the OpenMindat data server are continuously updating, 
the 3D heat map can always have up-to-date data input through our 
automated data retrieving and cleansing workflow. Moreover, the 
OpenMindat API will also gradually expand the scope and accessibility 
of data subjects from the original Mindat database, enabling more 
exciting scientific topics to be explored through the 3D heat map and 
many other EDA techniques. 

2.3. Scientifically meaningful data operations on the user interface 

The OpenMindat API can output many datasets to illustrate miner-
alogy correlations. So far in this study, we have focused on the co- 
existence of elements in mineral species, and we have generated a list 
of datasets for the updated 3D heat map demo. The datasets consist of all 
73 mineral-forming elements and the 30 primary mineral-forming ele-
ments/element groups. The detailed list of datasets and descriptions are 
made open online, and the links can be found in this paper’s Code and 
Dataset Availability section. Since the publication of Ma et al. (2017), 
we have received many comments suggesting that more interactive, 
visualized, and scientifically-sound operations should be provided for 
users to select a subset of data to visualize in the heat map rather than 
visualize the whole 73^3 or 30^3 matrix. In this study, we have devel-
oped corresponding operations on the user interface to address those 
comments (Fig. 3). 

As depicted in Fig. 3a, the user interface is structured around four 
primary operations:  

a) Dataset Loading: Upon uploading the dataset labeled ‘73_elements’ 
(indicative of its 3D matrix structure of 73^3), elements within it are 
prominently highlighted in black on the periodic table, while non- 
included elements appear grey.  

b) Element Selection via the Periodic Table: Users select elements by 
first clicking an empty box under each axis, then choosing elements 
from the periodic table to populate the axis box. Once all axes have 
their chosen elements, users can either generate a 3D heat map by 
clicking “Visualize Selected Elements” or download the subset data 
as a CSV via “Download Subset Data.”  

c) Element Selection by Mineral Classes: Once the 73^3 dataset is 
selected, a dropdown menu activates, titled “Select Element Com-
binations by Mineral Classes.” This menu primarily lists igneous 
mineral classes. By selecting a mineral class, the relevant element 
combinations will automatically populate an axis. For instance, in 

Fig. 3a, selecting the “oxides” mineral class for all three axes yields 
the heat map shown in Fig. 3b.  

d) Visualization: The 3D heat map, as presented in Fig. 3b, visualizes 
correlations between elements across the X, Y, and Z axes, where 
each colored cell signifies the number of mineral species in which the 
triad of elements co-exist. This heat map offers a potent way to 
discern patterns, especially when axes showcase different mineral 
class combinations. 

For a deeper dive into specific use cases, datasets, and interactive 
operations, readers can refer to Section 3. Here, we will further elucidate 
the system’s capabilities and the scientific insights gleaned from its 
exploratory data analysis (EDA). 

3. Use cases, results and analysis 

Using datasets retrieved from the OpenMindat API, two typical use 
cases were built to demonstrate the utility of the 3D heatmap demo 
system to support EDA in mineralogy. The datasets were collected in 
early February 2023, based on the 5899 mineral species recorded by 
Mindat at that time. A list of eight datasets was cleansed for the use 
cases. As automated workflows were established for the data retrieving 
and cleansing steps, all the use cases can be easily updated with the 
latest OpenMindat datasets. 

3.1. Element co-existence in primary igneous minerals 

The first use case centered on the co-existence of elements among 
igneous minerals. Igneous minerals are a topic of long-term interest in 
mineralogy. 

Bowen (1928) proposed the “reaction series” to study igneous min-
eral co-occurrence, which can be applied to explain and predict the 
fractional crystallization sequence as silicate magma’s temperature de-
creases. For example, the continuous reaction series of olivines → py-
roxenes → amphiboles → biotites indicate well-attested igneous mineral 
serial co-occurrences in many rock varieties. In addition to the fractional 
crystallization caused by temperature, igneous mineral species demon-
strate association patterns based on chemical factors, such as 
quartz-alkali feldspar pair, hornblende-intermediate plagioclase pair, 
and more. We prepared two data objects to further study element 
co-existence among igneous minerals: the igneous mineral list and the 
element-mineral correlation dataset. 

We referred to Hazen et al. (2023a) for the igneous mineral list. 
When determining igneous minerals, their work adopted the Dana 
Classification System for categorizing minerals in this research, a 
method also used by Mindat.org based on mineral chemical composi-
tion. They conducted a co-occurrence analysis of igneous minerals using 

Fig. 3. Scientifically meaningful data operations. (a) User interface for data loading and selection, and (b) The 3D heat map result when X, Y, Z axes are the same list 
of elements from the mineral class “oxides”. 
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a hierarchical clustering heat map. Their results delineated a clear as-
sociation pattern among chemical composition-based mineral classes. 
Noticing that the recognized igneous minerals in the work are related to 
chemistry-based mineral classes, we felt that the element combinations 
of mineral species could be used to explore the correlations between 
mineral species further. Accordingly, we built a table to show the 
element combination of each igneous mineral class (Table 1), and we 
used them in the user interface of the demo system (Fig. 3a). 

In our analysis, the selected element combinations associated with 
igneous minerals aim to highlight the distribution of elements within 
IMA minerals. This method does not strictly categorize minerals based 
on their geological origins but rather investigates potential patterns in 
elemental makeup across various mineral classes, acknowledging the 
diverse geological processes that contribute to the formation of these 
minerals. 

All the 73 mineral-forming elements were sourced from Open-
Mindat, then the information was processed into various 3D matrices. 
OpenMindat’s API offers attributes like “elements”, “sigelements”, and 
“imaformula”, which define the chemical composition of mineral spe-
cies. For example, the “elements” attribute for the mineral species 
“aeschynite-(Ce)” lists as “-Ca-Ce-Fe-Nb-Th-Ti-O-H-”, while the “sigele-
ments”, or major structural site elements, are “-Ce-Ti-O-”. The latter is 
derived from the main dominant elements in lattice positions in the 
chemical formula of Mindat. Documentation for defining API attributes 
can be accessed in the Code and Dataset Availability section. 

We then structured two primary 3D matrices: “73_elements” and 
“73_sigelements”. Both matrices use the same 73 elements on the X, Y, 
and Z axes. Each cell within these matrices indicates the number of 
mineral species with the corresponding X, Y, and Z elements. These 
matrices were generated using the “elements” and “sigelements” attri-
butes from the 5899 IMA-approved mineral species. 

Further, we developed two derived 3D matrices: “normalized 
_73_elements” and “normalized_73_sigelements”. Here, each cell value 
denotes the fraction of mineral species containing the Z element, which 
also simultaneously includes X and Y elements. In mathematical terms, 
it’s represented as (number of species with X, Y, and Z elements) ÷
(number of species with Z element). 

These four datasets can be accessed on our demo system. Users can 
load them to create 3D heat maps as demonstrated in Fig. 4. Specifically, 
Fig. 4a showcases the “73_elements” dataset, visualized as a compre-
hensive 73^3 matrix heat map. The color intensity in each cell corre-
sponds to its value, with a reference color bar situated to the screen’s 
left. However, considering the sheer size of such a matrix, it is more 
practical for users to generate a smaller 3D heat map from a dataset 

subset. Conveniently, we have integrated an igneous mineral list (seen in 
Table 1) into the data selection phase, aiding users in this process. 

Fig. 4a illustrates a 3D heat map comprising the entire list of ele-
ments. Leveraging the dropdown menu featuring igneous mineral clas-
ses, we can swiftly choose element combinations for the X, Y, and Z axes. 
For instance, extending upon Hazen et al. (2023)’s research on primary 
igneous mineral clustering associations, we executed an Exploratory 
Data Analysis (EDA) by selecting elements from carbonates, sulfides, 
and oxides mineral classes for the X, Y, and Z axes, respectively, 
resulting in Fig. 4b. 

The interactive demo allows users to manipulate the 3D heat map, 
offering rotation, zoom, and even a feature to produce a 2D projection 
by selecting an element (the chosen element forms the Z axis). A prime 
example is the right segment of Fig. 4b, focusing on the Z-axis element 
“Fe”. However, Fig. 4a and b reveal that many cells, colored in blue, 
represent minimal or zero values due to sparse element co-existence 
records. To enhance visibility, we can apply a logarithmic trans-
formation (log(value*2)) to each cell, ensuring more apparent distinc-
tions between cells, as depicted in Fig. 4c. 

One challenge is the obscured cells within the 3D heat map’s core. To 
address this, beyond the slicing function demonstrated in Fig. 4b, we can 
increase spacing between cell layers along each axis, as shown in Fig. 4d. 
This adjustment allows for a more precise comparison of patterns, 
highlighting, for example, the pronounced value (red) of the cell where 
the element ‘Fe’ is consistent on all axes. Moreover, by implementing a 
cut-off value, we can prune the 3D heat map, eliminating less significant 
cells. This technique yields Fig. 4e (from the “73_elements” dataset) and 
f (from the “73_sigelements” dataset), both using carbonates, sulfides, 
and oxides for the X, Y, and Z axes. Any cell below the value of 45 is 
omitted, with opacity enhanced for the remaining cells to accentuate 
differences. Notably, Fig. 4e retains more cells than Fig. 4f. The 
“73_sigelements” dataset, focusing on significant elements, reduces the 
count of mineral species with X, Y, and Z element co-existence. Applying 
a consistent cut-off value of 45 to both heat maps results in Fig. 4f having 
more cells removed. 

In Fig. 4e and f, the axes are defined by the elements from the car-
bonates, sulfides, and oxides mineral classes. Notably, the first two axes 
encapsulate the components of the Ca–Mg carbonatite mineral com-
munity. This community integrates 11 of the 13 primary igneous car-
bonates and 5 of the 6 sulfides, as cataloged in the definitive list of 115 
prevalent primary igneous mineral species by Hazen et al. (2023). The 
significance of this arrangement becomes particularly evident when 
scrutinizing the high-frequency elements, where the deep-colored cubes 
act as beacons of chemical association among this mineral community 
and oxides. The pronounced clustering along the sulfides axis in Fig. 4e 
and f provide unequivocal evidence of intrinsic chemical associations 
between the carbonates and oxides classes. 

Contrastingly, the expansive void observed in the anterior segment 
of the oxides axis tells its own compelling story. This noticeable absence 
of prominent triplets signifies chemical element antipathies. A meticu-
lous examination of these visualizations elucidates certain elements in 
the oxides class—specifically, Cr, Y, Zr, Sn, Ta, and Th—that appear to 
be geochemically incompatible with the carbonatite mineral 
community. 

Furthermore, the filtering capability of the model illuminates rare 
triplet combinations within the extensive dataset of 5800 IMA-approved 
mineral species. To illustrate, the unique triplet “Ce, Mo, Fe” has been 
documented only once, associated with the mineral “tancaite-(Ce)”, a 
secondary mineral recently identified in cavities within quartz veins 
(Bonaccorsi and Orlandi, 2020). Such infrequent or entirely absent 
triplets offer an invaluable, data-driven avenue for recognizing 
geochemically improbable element combinations while alerting miner-
alogists to the prospect of discovering novel mineral species. This 
analytical approach is thus promising, not only in showcasing how vi-
sual analytics can contribute to understanding known occurrences, but 
also to the expansion of our mineralogical knowledge base. 

Table 1 
Primary igneous mineral classes and corresponding element combinations.  

Classes of Igneous Minerals (From  
Hazen et al., 2023a) 

Element Combinations 

Native Elements C 
Sulfides S, Fe, Cu, Zn, Mo, Pb 
Oxides H, O, F, Na, Mg, Al, Ca, Ti, Cr, Mn, Fe, Y, Zr, 

Nb, Sn, Ce, Ta, Pb, Th, U 
Halides F, Ca 
Carbonates H, C, O, F, Na, Mg, Ca, Fe, Sr, Y, Ba, La, Ce 
Sulphates O, S, Ba 
Phosphates H, Li, O, F, Al, P, Cl, Ca, Fe, As, Y 
Nesosilicates or Orthosilicates H, Li, Be, O, F, Mg, Al, Si, S, Ca, Ti, Mn, Fe, Y, 

Zr, I, Th 
Sorosilicates or Disilicates H, Be, O, F, Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, 

Fe, Sr, Y, Zr, Nb, Ba, W 
Cyclosilicates H, Li, Be, B, O, F, Na, Mg, Al, Si, Cl, Ca, Fe, Zr, 

Cs 
Inosilicates H, Li, O, F, Na, Mg, Al, Si, Cl, K, Ca, Ti, Mn, 

Fe, Zr, Nb, Cs 
Phyllosilicates H, Li, O, F, Mg, Al, Si, Cl, K, Ti, V, Cr, Mn, Fe, 

Rb, Cs 
Tectosilicates H, C, O, Na, Mg, Al, Si, S, Cl, K, Ca, Fe, Cs  
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3.2. Significant elements in mineral species 

Upon initial analysis, we discerned considerable sparsity in the 73- 
element co-existence dataset, where many matrix cells displayed negli-
gible values. A notable observation was the diminished values exhibited 
by the Rare Earth Elements (REE) cells, in contrast to those representing 
more prevalent mineral-forming elements. This disparity raised con-
cerns over the potential exclusion of REE cells during the filtration op-
erations, despite their intrinsic significance. 

As highlighted by Hazen and Morrison (2022), while the rare 
chemical elements such as REE, platinum-group elements, As, Mo, and 
Sn constitute a trivial fraction of the Earth’s crust (approximately 

0.01%), they are manifest in nearly 40% of identified mineral species. 
This observation underscores the need for a nuanced approach to our 
dataset construction. 

In our second use-case analysis, focusing on the 30 most predomi-
nant elements in IMA-approved mineral species, we gave special 
attention to REEs. While scandium (Sc) is often grouped with REEs, we 
acknowledge its distinct geochemical behavior and rare substitution in 
REE minerals. For the purposes of this study, Sc was included in the REE 
category to demonstrate our methodology’s adaptability. This inclusion, 
particularly regarding scandium, should be seen as an example of flex-
ibility rather than a definitive classification. For instance, in ’shakh-
daraite-(Y)’ denoted as (-Nb-Sc-O-Y-), a format specific to the Mindat 

Fig. 4. Different ways to explore the patterns of element co-existence among igneous minerals. (a) The overview of 73 elements 3D heat map cubes; (b) The 3D heat 
map of carbonates, sulfides, and oxides in the corresponding X (red), Y (green), and Z (blue) axis, with the slicing out of Fe on the Z axis; (c) Re-coloring the cubes 
with the logarithmic values; (d) Expanding the 3D heat map along X axis; (e) Applying the filter function and removing cubes with fewer than 45 values in the 
73_elements dataset; (f) Applying the filter function and removing cubes with fewer than 45 values in the 73_sigelements dataset. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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API, we treated ’-Sc-Y-’ collectively as REEs for simplicity, transforming 
its chemical composition to “-Nb-O-REE-”. Such groupings are adjust-
able in our workflow, and in section 4, we will discuss the contentious 
topic of whether to consider Sc (scandium) and Y (yttrium) as REE. 

Echoing the methodology of our preliminary analysis, we curated 
four datasets, leveraging the attributes “elements” and “sigelements” 
from OpenMindat and implementing appropriate fraction calculations 
to generate normalized datasets. Visualization of these datasets culmi-
nated in Fig. 5, where Fig. 5a presents a 3D heatmap of the “30_ele-
ments” dataset, spotlighting an REE layer (with REE designated to the Z 
axis). Enhanced clarity was achieved through a logarithmic trans-
formation, showcased in Fig. 5b. The resultant heatmap vividly illumi-
nates elements exhibiting heightened co-existence propensities with 
REE. The dominance of O (observed in 386 mineral species), H (219), Si 
(180), Ca (158), and Fe (96) emerges palpably, offering invaluable in-
sights into elemental associations, particularly those embedded within 
the REE framework. 

As elucidated in the preliminary use case, the value encapsulated 
within a specific cell is emblematic of the fraction of mineral species 
harboring Z elements that concurrently contain X and Y elements in the 
normalized datasets. For instance, within the specific context of the cell 
with “X: Si, Y: Ca, Z: REE,” a value of 100 is juxtaposed against a value of 
393 for the cell corresponding to “X: REE, Y: REE, Z: REE.” This 
convention leads to a normalized value of 100/393 for the former cell, 
and a unitary value for the latter. 

Fig. 5c and d, representing the datasets “normalized_30_elements” 
and “normalized_30_sigelements,” are rendered with the REE layers 
selectively extracted and a cutoff value of 0.33 applied, thereby 
removing cells with values falling beneath this threshold. Upon careful 

examination, several intriguing patterns emerge. 
First, the asymmetry on the left side of Fig. 5c and d is conspicuous, 

deviating from the symmetrical pattern observed in the initial use case. 
This distinction arises from the inherent asymmetry of the normalized 
values, as opposed to the original co-existence counts. 

Second, the manifestation of high-value cell clusters indicates the 
prominent elements depicted in Fig. 5b. An illustrative example is the 
demonstration of parallel cell chains in the upper left quadrant of both 
Fig. 5c and d, an indicator of the dominance of mineral species inte-
grating H and O. Furthermore, two inclined cell chains exemplify the 
pair-wise coexistence between H or O and other elements. 

Third, the presence of green cells outside the aforementioned chains 
yields valuable insights into the coexistence patterns of elements inde-
pendent of the H and O influence. Within Fig. 5c and d, where the REE 
layer is sliced, distinct variations between the REE slices become 
apparent. Specifically, in Fig. 5c, the residual cells correspond to Ca, O, 
and REE, whereas in Fig. 5d, all Ca-associated cells are absent. This 
disparity underscores a potential tendency within the Mindat database 
to recognize Ca as significant in the presence of REE within mineral 
species. 

In conclusion, the use cases elucidated herein represent a mere 
fraction of the possibilities latent within the current 3D heat map demo 
system. We invite interested scholars and researchers to explore the 
demo website (refer to the section “Code and Dataset Availability” for 
the link), engaging with diverse data selections and uncovering hitherto 
concealed patterns. The dynamic interplay of these elements, as 
captured by our 3D visualization model, can significantly augment our 
understanding of mineral species and their complex interrelationships. 

Fig. 5. Interactions with the 3D heat map of the 30 common elements among IMA-approved mineral species. (a) Sliced out layer with REE on Z axis; (b) Re-coloring 
cubes based on the logarithmically transformed cell values; (c) The REE slice in normalized_30_elements dataset, with all the cubes having values greater than 0.33; 
(d) The REE slice in normalized_30_sigelements dataset, with all the cubes having values greater than 0.33. 
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4. Discussion 

In previous sections, we presented our work on designing, devel-
oping, and using case analyses of a 3D heat map demo system for EDA of 
mineral data. The results show that EDA methods such as heat maps 
effectively expose patterns of various correlations in mineral data. Data 
visualization techniques such as the 3D matrices used in the demo sys-
tem add more features of interactions in the result interpretation. Those 
techniques and scientific-meaning operations in data cleansing and se-
lection make the resulting 3D heat map demo system a helpful tool for 
data-intensive research in mineralogy. 

Although the work has a scientific focus on mineralogy, the designed 
workflow is an excellent example of addressing the challenges caused by 
the rapid evolution of open big data in geosciences. The open data and 
open science activities (Stall et al., 2019; Gentemann, 2023) have 
resulted in fast-growing records in open data portals. For any data 
visualization or analysis results, if they cannot elaborate on the updated 
datasets, their findings will soon be out of date. IMA approves about 100 
new mineral species annually for the mineral species data alone. 
Accordingly, the Mindat data contributor community (about 7000 
people) (Ma et al., 2023) is doing its best to upload and curate the re-
cords of the new species, integrate them with the existing mineral spe-
cies records, and then make the data machine accessible through the 
Mindat API. With the ever-growing OpenMindat database, new scientific 
questions or ideas can always be explored. The utility of the 3D heat map 
demo system built in this study has been tested through a list of use cases 
to illustrate how EDA can facilitate research on mineralogy. Moreover, 
the workflow built on the live OpenMindat data API (Fig. 1) is effective 
for tackling the velocity of open mineral data. Beyond mineralogy, the 
EDA method and the techniques for correlation visualization can also be 
adapted in other geoscience disciplines, as well as those outside 
geosciences. 

As a reflection, this work’s most noteworthy technical contributions 
are in two parts: the established gateway to the live data source and the 
scientifically-sound data operations on the user interface. Our previous 
work (Ma et al., 2017) built the initial 3D heat map visualization envi-
ronment and constructed a few use cases with separate datasets. Those 
datasets were collected from multiple sources and were cleansed 
manually. Although the 3D heat map results were sound, it is hard to 
extend to other datasets to build new use cases quickly. By elaborating 
on the existing software building blocks, the new developments in this 
study established a framework (Fig. 1) to interconnect live mineral data 
service, meaningful data operations, and interactive heat map results. 
Those new features significantly improve the reusability and extensi-
bility of the resulting demo system regarding both new datasets and data 
operation functions. The OpenMindat API, once fully established, will 
provide accessibility to massive valuable mineral data (Ma et al., 2023). 
The 3D heat map can be used to do an EDA of various correlations in 
mineral data. All the established use cases can be regularly refreshed 
using the live data service from OpenMindat, and the workflow for data 
retrieving and cleansing developed in this study. 

On the other hand, mineralogy has many established and evolving 
knowledge systems. The igneous mineral classes used in this study for 
data selection are part of them, and more such structured knowledge can 
be elaborated in EDA. We aim to continuously maintain and update this 
3D heat map demo system and make it a long-lasting tool and reference 
for research, education, and outreach in mineralogy, mineral infor-
matics, and data science. 

We have planned a list of extensions to the demo website. As the 
technical workflow was established from the live data source to the 
visualization output, we will work on several new datasets and functions 
for the immediate next stage to extend the scientific coverage and the 
utility of the demo system among various users. For example, in this 
study, we showed the use case of igneous mineral classes. We can also 
build use cases for metamorphic and sedimentary minerals and many 
other classes in the Dana Classification (Gaines et al., 1997) and Hey’s 

Mineral Index (Clark, 1993). 
The proposed data retrieval and cleansing workflow boasts remark-

able adaptability to diverse user requirements. The work is particularly 
evident when addressing historical ambiguities, such as the classifica-
tion of scandium (Sc) and yttrium (Y) as REE. While normally, REE 
referred to the lanthanide series, comprising 15 elements from atomic 
numbers 57 (lanthanum) to 71 (lutetium), both Sc and Y, due to their 
association with lanthanides in mineral deposits and similar properties, 
have often been studied together with the lanthanide series and occa-
sionally been regarded as “rare earth elements” by mineralogists 
(Balaram, 2019). Such debates underscore the need for flexible data 
preparation and pre-processing. The proposed workflow ensures that, at 
the early stages of EDA, scientists can handle these variances and 
generate customized datasets. This adaptability establishes a strong 
foundation for varied research aims and requirements. 

The output can be new datasets and drop-down lists at the data se-
lection step of the demo website. Using the OpenMindat API, we can 
obtain mineral species records of certain areas of interest, such as by 
countries or states. A 3D heat map can be built to illustrate the corre-
lations between minerals and elements in each area. We can also update 
the user interface of the demo system to display the heat maps of several 
areas. The inter-comparison of those heat maps has the potential to 
expose other interesting mineralogy patterns across those areas. For all 
the current 3D heat map results, elements are listed along the three axes 
(i.e., the element-wise heat maps). We can also try new data structures 
for mineral-wise heat maps. For a simple example, we can list subsets of 
mineral species on the X, Y, and Z axes, and then in each cell, we can fill 
in the number of localities where the three mineral species co-occur. 
Also, one could examine coexisting minerals associated with the 57 
mineral paragenetic modes (Hazen and Morrison, 2022), or track min-
eral/chemical co-occurrences versus age. 

We can also think about other potential ideas for future work from a 
broad perspective. One idea is to demonstrate the pattern of mineral 
forming temperature and pressure conditions in the 3D heat map. For 
that direction, we need to extend the data structure by considering what 
can be treated as proxy properties for temperature and pressure, for 
example, by considering the attributes of mineral formation modes 
(Hazen et al., 2023b). Many such properties are hidden in the big geo-
science literature data. Text mining may help retrieve them to configure 
an appropriate data structure (Wang et al., 2018). Another idea for 
future updates is to elaborate a 3D virtual globe to show the paleogeo-
graphic distribution of mineral species on the user interface of the 3D 
heat map, such as by using the GPlates API (Müller et al., 2018). In the 
study of mineral evolution (Hazen et al., 2008), an open Mineral Evo-
lution Database was built to record mineral species’ temporal and spatial 
properties (Golden et al., 2019). We can calculate the paleo-coordinates 
of a mineral species by using its age attribute (e.g., its first appearance 
on Earth) and visualize the records with a paleogeographic map (e.g., 
plate tectonics) as background. Once fully established, this will be a 
valuable tool to demonstrate the scientific topics in mineral ecology, 
evolution, and informatics (Hazen et al., 2008, 2015; Hystad et al., 
2019; Prabhu et al., 2023a, 2023b). 

5. Conclusions 

This study demonstrates how exploratory data analysis can effec-
tively discover initial patterns in open and big mineral data with 
appropriate technical developments. As the IMA-approved mineral list 
continuously grows, the crowd-sourced Mindat database rapidly up-
dates, and the OpenMindat API will thus provide a stable, current ser-
vice of mineral data. The automated workflow for data retrieval and 
cleansing built in this study can be adapted to collect various types of 
correlation data from OpenMindat and then conduct exploratory data 
analysis in the 3D heat map. Existing knowledge frameworks in miner-
alogy, such as different parts of the mineral classification systems and 
the recent studies on mineral ecology and mineral evolution, can also be 
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elaborated on the user interface to add scientific meanings to the data 
operations. We have already planned a list of new use cases and func-
tions for the extension of the demo system. However, we firmly believe 
there will be much more innovative scientific topics and data explora-
tion ideas from the geoscience community. The 3D heat map demo 
system, the data retrieval and cleansing workflow, and all the source 
code, datasets, and documentation developed in this study are open 
online. We welcome other researchers to try the existing use cases, adapt 
the code to build their studies, or send requests to us to collaborate on 
new use cases and functions for exploratory data analysis. 

Code and dataset availability 

Name of the code/library: 3D Heat Map Data Preprocessing. 
Contact: Jiyin Zhang: jiyinz@uidaho.edu or Xiaogang Ma: max@u 

idaho.edu; +1 208 885 1547. 
Hardware requirements: No specific requirement. A general laptop 

will work well. 
Program language: Python. 
Software required: No specific requirement. Any programming 

environment support Python will work. 
Program size: About 30 MB (including the sample datasets). 
The source codes are available for download at the link: https://gith 

ub.com/ChuBL/3DHeatmapDataPreprosses. 
The demo system of the 3D heat map is accessible at http://tickmap. 

nkn.uidaho.edu/D3Cube. 
The definition for API attributes: https://github.com/smrgeoinf 

o/How-to-Use-Mindat-API/blob/main/geomaterialfields.csv. 
The Mindat API data used in this study is in alignment with the open 

access policy stated by Mindat.org, which is transitioning to a Creative 
Commons share-alike license. We have adhered to Mindat’s current data 
use guidelines, which allow for this application. Detailed licensing in-
formation is available at Mindat.org’s copyright policy page (https:// 
www.mindat.org/copyrights.php). 
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