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ABSTRACT:

We present a sensing modality using the geometric phase of acoustic waves propagating in an underwater
environment. We experimentally investigate the effect of scattering by a small subwavelength perturbation on a flat
submerged surface. We represent the state of an acoustic field in the unperturbed and perturbed cases as
multidimensional vectors. The change in geometric phase is obtained by calculating the angle between those vectors.
This angle represents a rotation of the state vector of the wave due to scattering by the perturbation. We perform
statistical analysis to define a signal-to-noise ratio to quantify the sensitivity of the geometric phase measurement
and compare it to magnitude based measurements. This geometric phase sensing modality is shown to have higher

sensitivity than the magnitude based sensing approach. © 2023 Acoustical Society of America.
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I. INTRODUCTION

In general, using acoustic waves for sensing relies on
changes in the wave attributes in response of the acoustic field
supporting system or environment to a perturbation of the sys-
tem or environment that supports the acoustic field. Changes in
velocity, frequency, or amplitude are usually used in acoustic
sensing technologies. The geometric phase of acoustic waves
has hitherto been excluded from mainstream sensing
approaches. Incorporating geometric phase in sensing modalities
may create the new field of geometric phase acoustic sensing.
Structured acoustic waves, such as spiral waves, and acoustic
waves supporting orbital angular momentum,' ™ carry phase
information that can be exploited for sensing. For instance,
imaging techniques have been devised using helical wave beams
with phase singularity to beat the classical diffraction limit.>”’
Phase has also been used in conjunction with other imaging
methods to increase resolution and dynamic range in the form
of phase coherence imaging.*'°

The total phase of a wave is the sum of the dynamical
and geometric phases. The former relates to the time an
acoustic wave takes to travel at its velocity along some path
in the space it propagates. The geometric phase depends on
the spatial degrees of freedom of the wave. These degrees of
freedom can be simply discrete or continuous spatial coordi-
nates, or convenient functions of these coordinates, such as
plane waves, or Bloch waves in periodic media, or any other
representation of the spatial distribution of the wave com-
plex amplitude. These degrees of freedom or functions of
degrees of freedom, when forming a complete basis set for
the representation of an acoustic field, also constitute the
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basis of the wave’s Hilbert space. The state of the wave may
then be represented as a multi-dimensional vector in its
Hilbert space. A change in geometric phase is the change in
the angle the direction of the wave state vector makes in its
Hilbert space upon a modification of the wave field due to
some perturbation (e.g., scattering).

For this study, we use the term “sensing” to mean
detecting a change in some environment. Establishing the
ability of a metric to detect a simple change is the first step
towards developing more sophisticated monitoring techni-
ques. In recent studies, we showed that exploiting the sharp
change in geometric phase near resonances can serve as a
sensing modality for the remote, direct, and continuous
monitoring of arctic forested areas using long-wavelength
seismic waves.'""'> We have also demonstrated sensing
using the geometric phase of non-separable superpositions
of acoustic waves, i.e., “classically entangled” elastic waves
in externally driven parallel arrays of coupled one-
dimensional metallic acoustic waveguides.'> The sharp
changes in geometric phase, associated with changes in
superpositions, provide a very sensitive metric for detecting
the presence of a mass scatterer. Finally, parametric explora-
tion of the dynamics of an externally harmonically driven
granular metamaterial leads to time-periodic sharp jumps in
the geometric phase that can be exploited to realize mass
sensors with sensitivity of approximately 10™> times the
mass of one granule.'*

In the present paper, we extend the work on geometrical
phase sensing to detection of scattering perturbations in
underwater environments. We also focus on sensing subwa-
velength perturbations and quantifying the sensitivity of the
geometric phase.

3

© 2023 Acoustical Society of America 2869

LL:21iLe yeoz eunr oL



ll. EXPERIMENTAL SETUP AND METHODS
A. Source setup

A schematic of the experimental setup is given in Fig. 1.
As a source of acoustic waves, we use a coupled array of acous-
tic waveguides composed of three aluminum rods elastically
coupled via epoxy. The rods have a diameter of 1.27 cm and a
height of 60cm. The epoxy extends along their height up to
1.5cm from either ends of the rods. The acoustic properties of
this system have been well explored in Ref. 15. Transducers
(Olympus, Waltham, MA, V133-RM) are attached to one end
of the array using honey as an ultrasonic couplant. Rubber bands
extending from the top of each rod into the lower gaps of the
system apply a consistent pressure to the transducers. The bot-
tom ends of the rods are submerged at a height of 5mm into a
tank of water equipped with a scanning arm (Onda, Sunnyvale,
CA, AIMS 1III) and needle hydrophone (Onda, HNR-1000) to
measure the acoustic field in the water. The tank has a width of
89cm, length of 51 cm, and height of 58 cm. The water was
filled to a height of 35 cm.

The source possesses three normal modes of longitudi-

1 1
nal  vibration: elz\/Lg({), e2=%<01>, and

e = % ( —12) . The e; mode corresponds to the ends of the
rods vibrating with the same amplitude and phase. The e,
mode results in only the two side rods vibrating with the
same amplitude and a phase difference of 180° between
them. For the e; mode, the central rod vibrates with a phase
difference of 180° with the two side rods and twice their
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amplitude. These three modes serve as a complete basis for
describing the displacement at the ends of the rods.

A two-channel arbitrary function generator (BK
Precision, Yorba Linda, CA, 4055B) is used to produce two
pulse signals composed of 10 cycles of a 1 MHz sinusoid
with a peak-to-peak amplitude of 4 V. The time between
pulses was kept constant at 10 ms to allow the rods to come
to rest between pulses. The outputs of the function generator
are then amplified (PiezoDrive, Shortland, Australia PD200-
V0,200) with a gain factor of 20 to increase the peak-to-
peak amplitude of the pulse to 80V before arriving at the
transducers. Each of the three modes can be driven by
adjusting the amplitudes and phase of the two signals. To
excite the e; mode, a single channel of the function genera-
tor was used for all three transducers to have the same nomi-
nal amplitude and phase. To excite the e, mode, a starting
phase of 180° was added to the second channel of the func-
tion generator and given to rod 3, whilst the first channel
excited rod 1. For the e; mode, the first channel drove rods 1
and 3 and the second channel had a peak-to-peak amplitude
of 8V (160V after amplification), a starting phase of 180°,
and excited rod 2. The source emits an acoustic field that is
directional, thus limiting immediate reflections from the
sides of the tank.

B. Perturbation setup

We intend to use the experimental setup described
above to implement a geometric phase sensing modality to
probe the sensitivity of the geometric phase to scattering by
a subwavelength perturbation. For this, the coordinate sys-
tem of the scanning tank had the (0,0,0) position fixed at the

/|
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FIG. 1. (a) Diagram of experimental setup, not to scale. (b) Image of experimental setup showing the three rod source, flat reflective surface, and perturba-
tion in the —15 mm position. The hydrophone held by the scanning arm of the tank is visible on the left side of the image.
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center of the end of rod 2. The hydrophone is used to scan
the underwater acoustic field Smm below the submerged
ends of the rods along a horizontal direction ranging from -
35 mm (left) to +35 mm (right). This scanned line is divided
into 64 equidistant points. These points form a discrete set
of coordinates to describe the spatial state of the acoustic
wave in the vicinity of the source along the horizontal direc-
tion. The position of the axis of revolution of rods 1 and 3
along this line are —15mm and 15 mm, respectively. We
focus on sensing perturbations in echo mode, that is, we
want to detect perturbations sitting on a submerged surface.
To that effect, a block of aluminum was placed 70 mm away
from the submerged ends of the rods that created a flat
reflective surface. The block has a length of 66 mm and
width of 51 mm. The flat surface is considered to be the no-
perturbation case. This block produces a backscattered sig-
nal that allows us to detect, near the source, possible pertur-
bations on the reflecting surface. For that purpose, a
perturbation on the reflecting surface of the block is intro-
duced in the form of a square steel bar with a width of
6 mm, height of 6 mm, and length 55 mm. We vary the loca-
tion of this perturbation from —15, 0, and 15 mm along the
horizontal direction. For both the perturbed and unperturbed
situations, the surrounding environment was kept the same;
thus, the only changes are the presence of the perturbation
and its location. For the purposes of this paper, we are only
interested in ascertaining whether the geometric phase can
detect a perturbation of a given environment.

The hydrophone recorded signals pass through a pre-
amplifier and amplifier (Onda, AH-2010-100) before arriv-
ing at an oscilloscope (Pico Technology, Tyler, TX,
PicoScope 5244D). We record 500 us of data with a sam-
pling frequency of 25 MHz beginning with the start of the
pulse in the function generator. The data are then recorded
and saved using Onda’s Soniq software.

C. Spectral analysis

The hydrophone records the time series of the acoustic
field at the 64 discrete locations, which are Fourier trans-
formed. The complete time series is Fourier transformed,
including the incident and reflected waves. Since the Fourier
transform is linear, the total frequency spectrum is the sum
of the spectra of the incident part and reflected part. Indeed,
let us consider the case of a source of sound emitting an
acoustic pulse into an underwater environment, which
results in an echo. We measure an acoustic field at » discrete
points and obtain time data for each measured point and rep-
resent it as a vector f(z) = (f1(7),...,fu(t)). Let us suppose
we measure the field at the same points with a perturbation
and represent it as g(¢) = (g1(?), ..., g.(¢)). We assume that
the measured signals in f(¢) and g(¢) contain both the same
incident pulse emitted by the source and an echo. These con-
tributions add linearly and can write f(¢) = f(¢) + f.(¢) and
g(t) = gi(t) + ge(1), where the subscripts i and e stand for
incident and echo, respectively. The Fourier transforms of
those signals are also linear combinations of the Fourier
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transform of the incident and echo signals, namely, F(w)
=Fi(w) + F.(w) and G(w) = G;(w) + G,(w). The incident
signal is common to the perturbed and unperturbed systems.
Therefore, we note that F;(w) = G;(w) since f;(t) = g;(¢).
The geometric phase in Sec. II D, which follows, will be cal-
culated from the Fourier spectra of the complete signals. A
change in the geometric phase calculated from F(w) and
G(w) will result from the reflected part of the signal. This
will enable us to avoid the difficult task of separating the
reflected part from the incident part of the time series.

D. Geometric phase sensing

At each discrete location, we obtain a complex ampli-
tude of the acoustic field in the spectral domain. At a given
frequency, we represent the acoustic field as a normalized
complex vector in a multidimensional Hilbert space whose
64 basis vectors correspond to locations in the physical
space. This vector is illustrated as

aj
az

ae3
o4

The components of this multidimensional state vector
are the complex amplitudes of the field at every location in
the physical space. Measuring the acoustic field at discrete
points in the physical space leads to a representation with a
dimension equal to the number of points. In Eq. (1), the
dimension of the Hilbert space is 64. A perturbation of
the physical space that scatters the acoustic wave changes
the complex amplitude of the acoustic field to

!
a;
!
a

s = s )

This scattering results in a rotation of the normalized
vector representation. The angle between the vector repre-
sentation of the acoustic field along the 64 locations in the
unperturbed and perturbed system corresponds to a change
in the geometric phase, ¢, of the acoustic wave. This angle
is calculated from the dot product:

¢ = Sgn(Im(s* - s')) - cos ' (Real(s* - 5')), 3)

where s* is the complex conjugate of s, and Im and Real stand
for the imaginary and real parts of a complex quantity. The
imaginary part in Eq. (3) conveys information about the sign
of the change in geometric phase. So far, we illustrated the
calculation of the geometric phase for 64 locations; however,
this process can be applied to a subset of the 64 locations.
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In that case, one considers a subspace of the complete
Hilbert space with lower dimension. Considering a subspace
of g < 64, we can define a reduced state vector without per-
turbation as

it

Ait+q—2
QAjtq-1

In the presence of a perturbation, the state vector
changes to s’r. At each colocation, i, we can calculate the
change in geometric phase of the reduced state vector,
according to Eq. (3). Note that i < 64 + 1 — ¢. When the
subspace is colocated with a specific physical region, started
at 7, the value of the change in geometric phase calculated
from these reduced representations is dependent on 1.
Variations in the change in geometric phase of a reduced
representation becomes a function of the colocation i. This
approach allows us to calculate a spatial map of geometric
phase change. A perturbation will rotate the colocation-
dependent geometric phase of the reduced representation.

We recall that the complex amplitudes in the vectors of
Egs. (1)-(4) are obtained from the Fourier transform of the
complete time series and include the incident as well as the
reflected signals. As seen in Sec. IIC, the incident part of
the signal for the perturbed and unperturbed system are the
same. A rotation of the state vector occurs only from differ-
ences in the orientation of the reflected signals. In the geo-
metric phase sensing modality, this enables us to not rely on
an arbitrary definition of a reflected signal. That is, we do
not have to identify the reflected part of the time series.
Moreover, the contribution to the state vector from multiple
transits of the wave between the target and source will con-
tribute less to the state vector due to attenuation of the
acoustic wave.

E. Statistical analysis

For each experimental condition, we conduct ten mea-
surements. This produces ten acoustic field state vectors for
experiments with and without perturbations. The calculation
of the colocation dependent change in geometric phase is
performed between all pairs of perturbed and unperturbed
state vectors. This results in 10 x 10 values of the change in
geometric phase at each colocation. The average and stan-
dard deviation are calculated from these 100 values for each
colocation. This is equivalent to first averaging the ten mea-
surements for each experimental condition because we
assume noise is normally distributed about zero and there-
fore, the expectation value and variance are linear opera-
tions. A geometric phase signal-to-noise ratio (SNR) is
calculated as the absolute value of the average divided by
the standard deviation. For comparison, we also calculate
the difference in magnitude of the components of the state
vectors of the perturbed and unperturbed systems. Again,

2872  J. Acoust. Soc. Am. 154 (5), November 2023

there are 100 such differences at each point along the probed
line, enabling the calculation of the average, standard devia-
tion, and magnitude difference SNR.

lll. RESULTS
A. Characterizing the source

The Fourier spectrum of the source in the absence of a
perturbation calculated from the incident and reflected sig-
nals recorded underneath rod 1 is shown in Fig. 2. To test
the geometric phase sensing approach, we select the fre-
quency 144 kHz, which is common to the three modes of
excitation. Waves with this frequency in the water have a
wavelength of approximately 10 mm. Since the perturbation
to detect has a side length of 6 mm, the wavelength of the
chosen frequency is approximately two times the size of the
perturbation.

We calculate the geometric phase between the acoustic
fields generated when driving the e;, e, and e; modes to
characterize how well the modes are excited. To accomplish
this, we select three points directly underneath each rod’s
axis of revolution with which to construct a three-
dimensional state vector for each mode. The geometric
phases between the e; and e, e; and e3, e; and e3 modes
were found to be 50.64°, —-86.94°, and —40.33°, respectively.
In an ideal case, the geometric phases should be 90° since
the spatial modes form a complete basis for the displace-
ment at the ends of the three rods. Phases other than 90°
indicate that the source is producing a superposition of the
three modes. This may be due to the difference in responses
of the transducers to the same applied voltage. We also note
that the transducers do not respond to all frequencies
equally; this may also explain why the peak magnitude does

4 T . . . .
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FIG. 2. Frequency spectrum obtained from the time-series data underneath
the first rod when the source is excited with the e, e;, and e3 modes. The
rods are excited by a 1 MHz pulse. The pulse produces waves within a
wideband of frequencies below 1 MHz. The inset shows frequencies up to
300kHz. The regime of frequencies, where the acoustic wave has a wave-
length greater than the size of the perturbation, is approximately up to
250kHz. All three modes show comparable magnitudes at a frequency of
144 kHz (indicated by arrow).
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not occur at 1 MHz. Using a superposition of modes is
acceptable for geometric phase sensing because we are
interested in the effect of perturbations on the orientation of
the acoustic field state vector. The peak frequency not
occurring at 1 MHz is also not important for the purposes of
this paper since we confine our analysis to 144 kHz.

B. ¢; mode

In Fig. 3, we report the difference in magnitude as a
function of location along the horizontal probe line for the
three positions of the perturbation. The large standard devia-
tion does not allow us to extract any spatial characteristics
of the magnitude difference nor any certainty on the effect
of the perturbation. We calculate a SNR, according to Sec.
IIE. In the three cases, the magnitude difference SNR never
exceeds 2.3. Difference in magnitude is therefore a poor
metric for detecting the presence of a subwavelength
perturbation.

For each mode, we calculate the state vector of the per-
turbed and unperturbed system in a reduced Hilbert space
with ¢ = 11 at each colocation along the 64 point probe line.
We determine the change in geometric phase between these
two state vectors at each colocation. In Fig. 4, we present
the average, standard deviation, and SNR in the change in
geometric phase for the three positions of the perturbation.

Mag, Diff. [V]

Mag. Diff. [V]

0.02 —©
| :
= 0 ,
5-0.02 1
=
004 —
30 20 10 0 10 20 30

Horizontal Position [mm]

In each case, the plots contain sections with large stan-
dard deviations but also sections with very small standard
deviations. The sections with very small standard deviation
correspond to a non-zero change in geometric phase. The
high SNR associated with these finite changes in geometric
phase provides high confidence that they result from the
scattering by the subwavelength perturbation. For instance,
when the perturbation is located at —15mm, a high confi-
dence change in geometric phase of —40° has a SNR of 4.
When the perturbation is centered, we have two regions of
high confidence change in geometric phase of -30° and 46°
with SNR values of 5.3 and 9.2, respectively. The case of a
perturbation at 415 mm gives a change in geometric phase
of -26° and 42° with SNR of 3.8 and 4.1, respectively. The
fact that the result for the perturbation at +15mm is not a
reflection of the result of the —15 mm case indicates that the
source is not responding symmetrically. This is due to the
resulting acoustic wave emitted by the rods being a superpo-
sition of the three modes, as discussed in Sec. IITA.
Compared to a difference in magnitude, a change in geomet-
ric phase in some regions of the colocation along the probed
horizontal line can serve as a significantly better metric for
the detection of the presence of a subwavelength perturba-
tion on the reflecting surface.

To shed light on the origin of the regions with high
standard deviation, we plot the individual values of the

10 @
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FIG. 3. (a)-(c) Average and standard deviation of the calculated difference in magnitude of the components of the acoustic field state vectors of the per-
turbed and unperturbed systems along the 64 points of the probed horizontal line. The perturbation is positioned at (a) —15 mm, (b) 0 mm, (c) 15 mm. (d)—(f)
Magnitude difference (Mag. Diff.) SNR for the three positions of the perturbation.
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FIG. 4. (a)—~(c) Change in geometric phase for the e; mode of the measured acoustic fields with a scatterer on the left, center, and right positions, respec-
tively. (d)—(f) Calculated SNR values for the change in geometric phase shown in the left column.

change in geometric phase as a function of the horizontal
position along the probed line in Fig. 5. This figure shows
clearly that the regions with high standard deviation result
from bimodal distributions of the change in geometric
phase. These bimodal distributions arise from the effect of
the imaginary term in Eq. (3), whose sign can switch readily
with small variations in the orientation of state vectors

180 T T T T T
150
120 1
90

¢ [deg]

_180 1 1 1 1 1
-30 -20 -10 0 10 20 30

Horizontal Position [mm]

FIG. 5. Individual values of the change in geometric phase for the perturba-
tion located in the center position for Fig. 4(b). At each colocation, there
are 100 values.
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relative to each other. The switch in sign is not due to the
imaginary part having a small magnitude, but because the
complex inner product possesses conjugate symmetry. For
example, at the horizontal position of 0 mm, there are two
groups of differences in geometric phase centered on 30°
and —30°. Figure 5 shows the symmetry over the entire hor-
izontal line except the regions with high SNR. These regions
reflect a nontrivial change in orientation of the acoustic field
state vector due to scattering by the perturbation.

C. e> and e3 modes

Similar to the e; mode, the difference in magnitude
does not serve as a good metric for subwavelength detection
as the maximum magnitude SNR is 1.4 for e, (Fig. 6) and
2.2 for e3 (Fig. 7). In contrast though, the change in geomet-
ric phase (Figs. 8 and 9) exhibits features similar to those of
the e; mode. Again, the regions with high standard deviation
result from bimodal distributions associated with the sign in
the difference in phase. The regions of very small standard
deviation correspond to changes in the phase difference
amounting to tens of degrees and large SNR.

In all the geometric phase difference figures, we
observe what appears to be systematic features in terms of
horizontal position. These features take the form of peaks in
the SNR that commonly occur around the positions of the
perturbation, namely, —15, 0, and 15mm. A systematic
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correlation between the position of the perturbation and the
location of the peaks has yet to be identified. However,
according to Fig. 4, these peaks occur where there is a gap
between the positively and negatively signed phase differ-
ences. The evolution from bimodal to unimodal distributions
may result from a complex interplay between the orienta-
tions of multidimensional state vectors that can be illustrated
as follows. Considering the unperturbed system, we have a
bundle of ten state vectors for each colocation. The orienta-
tions of these ten state vectors differ by a small amount due
to experimental noise. The ten state vectors of the perturbed
system have orientations differing by a small amount as
well. In the multidimensional Hilbert space, the mean orien-
tation of these two bundles could be significantly different,
leading to 100 differences in geometric phase with the same
magnitude and sign. In another possible case, the bundles
could have a similar mean orientation while ensuring a
nearly constant magnitude of the geometric phase difference
between the 100 pairs of vectors. In the latter case, one
would expect the calculated difference in geometric phase
to have a mixture of signs.

IV. CONCLUSIONS

We have presented a possible new underwater acoustic
sensing modality, based on the geometric phase of acoustic
waves. This method maps a region of an acoustic field to a
state vector in a multidimensional Hilbert space. By modify-
ing the acoustic field, a local perturbation in the wave sup-
porting medium changes the geometric phase by effectively
rotating the state vector representation of the field. We use a
source that supports three orthogonal spatial modes. We
have shown for these modes that geometric phase sensing is
sensitive to detecting the presence of a subwavelength per-
turbation on a reflective surface. To quantify the sensitivity
of geometric phase sensing, we have compared our new
approach to a method based on measuring a difference in
magnitude resulting from perturbations. The magnitude dif-
ference method shows SNR of at most a value of 2, whilst
changes in the geometric phase have shown regions of SNR
up to a value of 10.

This work serves as a demonstration of a new underwa-
ter sensing methodology exploiting the geometric phase of
acoustic waves. This geometric phase sensing modality is
shown in the case of scattering by a subwavelength pertur-
bation to have higher sensitivity than magnitude based sens-
ing approaches. Future work will focus on extracting
information on the position of the scattering perturbation.
While the geometric phase sensing modality was introduced
for underwater sensing, this approach is general and could
be applied to high-sensitivity detection of defects or changes
over wide ranges of scales in solid materials and structures
as well as the natural and built environments.
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