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ABSTRACT:

We present a sensing modality using the geometric phase of acoustic waves propagating in an underwater

environment. We experimentally investigate the effect of scattering by a small subwavelength perturbation on a flat

submerged surface. We represent the state of an acoustic field in the unperturbed and perturbed cases as

multidimensional vectors. The change in geometric phase is obtained by calculating the angle between those vectors.

This angle represents a rotation of the state vector of the wave due to scattering by the perturbation. We perform

statistical analysis to define a signal-to-noise ratio to quantify the sensitivity of the geometric phase measurement

and compare it to magnitude based measurements. This geometric phase sensing modality is shown to have higher

sensitivity than the magnitude based sensing approach.VC 2023 Acoustical Society of America.
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I. INTRODUCTION

In general, using acoustic waves for sensing relies on

changes in the wave attributes in response of the acoustic field

supporting system or environment to a perturbation of the sys-

tem or environment that supports the acoustic field. Changes in

velocity, frequency, or amplitude are usually used in acoustic

sensing technologies. The geometric phase of acoustic waves

has hitherto been excluded from mainstream sensing

approaches. Incorporating geometric phase in sensing modalities

may create the new field of geometric phase acoustic sensing.

Structured acoustic waves, such as spiral waves, and acoustic

waves supporting orbital angular momentum,1–4 carry phase

information that can be exploited for sensing. For instance,

imaging techniques have been devised using helical wave beams

with phase singularity to beat the classical diffraction limit.5–7

Phase has also been used in conjunction with other imaging

methods to increase resolution and dynamic range in the form

of phase coherence imaging.8–10

The total phase of a wave is the sum of the dynamical

and geometric phases. The former relates to the time an

acoustic wave takes to travel at its velocity along some path

in the space it propagates. The geometric phase depends on

the spatial degrees of freedom of the wave. These degrees of

freedom can be simply discrete or continuous spatial coordi-

nates, or convenient functions of these coordinates, such as

plane waves, or Bloch waves in periodic media, or any other

representation of the spatial distribution of the wave com-

plex amplitude. These degrees of freedom or functions of

degrees of freedom, when forming a complete basis set for

the representation of an acoustic field, also constitute the

basis of the wave’s Hilbert space. The state of the wave may

then be represented as a multi-dimensional vector in its

Hilbert space. A change in geometric phase is the change in

the angle the direction of the wave state vector makes in its

Hilbert space upon a modification of the wave field due to

some perturbation (e.g., scattering).

For this study, we use the term “sensing” to mean

detecting a change in some environment. Establishing the

ability of a metric to detect a simple change is the first step

towards developing more sophisticated monitoring techni-

ques. In recent studies, we showed that exploiting the sharp

change in geometric phase near resonances can serve as a

sensing modality for the remote, direct, and continuous

monitoring of arctic forested areas using long-wavelength

seismic waves.11,12 We have also demonstrated sensing

using the geometric phase of non-separable superpositions

of acoustic waves, i.e., “classically entangled” elastic waves

in externally driven parallel arrays of coupled one-

dimensional metallic acoustic waveguides.13 The sharp

changes in geometric phase, associated with changes in

superpositions, provide a very sensitive metric for detecting

the presence of a mass scatterer. Finally, parametric explora-

tion of the dynamics of an externally harmonically driven

granular metamaterial leads to time-periodic sharp jumps in

the geometric phase that can be exploited to realize mass

sensors with sensitivity of approximately 10�5 times the

mass of one granule.14

In the present paper, we extend the work on geometrical

phase sensing to detection of scattering perturbations in

underwater environments. We also focus on sensing subwa-

velength perturbations and quantifying the sensitivity of the

geometric phase.a)Email: tlata157@arizona.edu
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II. EXPERIMENTAL SETUPAND METHODS

A. Source setup

A schematic of the experimental setup is given in Fig. 1.

As a source of acoustic waves, we use a coupled array of acous-

tic waveguides composed of three aluminum rods elastically

coupled via epoxy. The rods have a diameter of 1.27 cm and a

height of 60 cm. The epoxy extends along their height up to

1.5 cm from either ends of the rods. The acoustic properties of

this system have been well explored in Ref. 15. Transducers

(Olympus, Waltham, MA, V133-RM) are attached to one end

of the array using honey as an ultrasonic couplant. Rubber bands

extending from the top of each rod into the lower gaps of the

system apply a consistent pressure to the transducers. The bot-

tom ends of the rods are submerged at a height of 5mm into a

tank of water equipped with a scanning arm (Onda, Sunnyvale,

CA, AIMS III) and needle hydrophone (Onda, HNR-1000) to

measure the acoustic field in the water. The tank has a width of

89cm, length of 51cm, and height of 58 cm. The water was

filled to a height of 35cm.

The source possesses three normal modes of longitudi-

nal vibration: e1 ¼ 1
ffiffi

3
p

1
1
1

 !

, e2 ¼ 1
ffiffi

2
p

1
0
�1

 !

, and

e3 ¼ 1
ffiffi

6
p

1
�2
1

 !

. The e1 mode corresponds to the ends of the

rods vibrating with the same amplitude and phase. The e2

mode results in only the two side rods vibrating with the

same amplitude and a phase difference of 180� between

them. For the e3 mode, the central rod vibrates with a phase

difference of 180� with the two side rods and twice their

amplitude. These three modes serve as a complete basis for

describing the displacement at the ends of the rods.

A two-channel arbitrary function generator (BK

Precision, Yorba Linda, CA, 4055B) is used to produce two

pulse signals composed of 10 cycles of a 1MHz sinusoid

with a peak-to-peak amplitude of 4V. The time between

pulses was kept constant at 10ms to allow the rods to come

to rest between pulses. The outputs of the function generator

are then amplified (PiezoDrive, Shortland, Australia PD200-

V0,200) with a gain factor of 20 to increase the peak-to-

peak amplitude of the pulse to 80V before arriving at the

transducers. Each of the three modes can be driven by

adjusting the amplitudes and phase of the two signals. To

excite the e1 mode, a single channel of the function genera-

tor was used for all three transducers to have the same nomi-

nal amplitude and phase. To excite the e2 mode, a starting

phase of 180� was added to the second channel of the func-

tion generator and given to rod 3, whilst the first channel

excited rod 1. For the e3 mode, the first channel drove rods 1

and 3 and the second channel had a peak-to-peak amplitude

of 8V (160V after amplification), a starting phase of 180�,
and excited rod 2. The source emits an acoustic field that is

directional, thus limiting immediate reflections from the

sides of the tank.

B. Perturbation setup

We intend to use the experimental setup described

above to implement a geometric phase sensing modality to

probe the sensitivity of the geometric phase to scattering by

a subwavelength perturbation. For this, the coordinate sys-

tem of the scanning tank had the (0,0,0) position fixed at the

FIG. 1. (a) Diagram of experimental setup, not to scale. (b) Image of experimental setup showing the three rod source, flat reflective surface, and perturba-

tion in the �15mm position. The hydrophone held by the scanning arm of the tank is visible on the left side of the image.
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center of the end of rod 2. The hydrophone is used to scan

the underwater acoustic field 5mm below the submerged

ends of the rods along a horizontal direction ranging from -

35mm (left) to þ35mm (right). This scanned line is divided

into 64 equidistant points. These points form a discrete set

of coordinates to describe the spatial state of the acoustic

wave in the vicinity of the source along the horizontal direc-

tion. The position of the axis of revolution of rods 1 and 3

along this line are �15mm and 15mm, respectively. We

focus on sensing perturbations in echo mode, that is, we

want to detect perturbations sitting on a submerged surface.

To that effect, a block of aluminum was placed 70mm away

from the submerged ends of the rods that created a flat

reflective surface. The block has a length of 66mm and

width of 51mm. The flat surface is considered to be the no-

perturbation case. This block produces a backscattered sig-

nal that allows us to detect, near the source, possible pertur-

bations on the reflecting surface. For that purpose, a

perturbation on the reflecting surface of the block is intro-

duced in the form of a square steel bar with a width of

6mm, height of 6mm, and length 55mm. We vary the loca-

tion of this perturbation from �15, 0, and 15mm along the

horizontal direction. For both the perturbed and unperturbed

situations, the surrounding environment was kept the same;

thus, the only changes are the presence of the perturbation

and its location. For the purposes of this paper, we are only

interested in ascertaining whether the geometric phase can

detect a perturbation of a given environment.

The hydrophone recorded signals pass through a pre-

amplifier and amplifier (Onda, AH-2010-100) before arriv-

ing at an oscilloscope (Pico Technology, Tyler, TX,

PicoScope 5244D). We record 500 ls of data with a sam-

pling frequency of 25MHz beginning with the start of the

pulse in the function generator. The data are then recorded

and saved using Onda’s Soniq software.

C. Spectral analysis

The hydrophone records the time series of the acoustic

field at the 64 discrete locations, which are Fourier trans-

formed. The complete time series is Fourier transformed,

including the incident and reflected waves. Since the Fourier

transform is linear, the total frequency spectrum is the sum

of the spectra of the incident part and reflected part. Indeed,

let us consider the case of a source of sound emitting an

acoustic pulse into an underwater environment, which

results in an echo. We measure an acoustic field at n discrete

points and obtain time data for each measured point and rep-

resent it as a vector f tð Þ ¼ f1 tð Þ;…; fn tð Þð Þ. Let us suppose

we measure the field at the same points with a perturbation

and represent it as g tð Þ ¼ g1 tð Þ;…; gn tð Þð Þ. We assume that

the measured signals in f ðtÞ and g tð Þ contain both the same

incident pulse emitted by the source and an echo. These con-

tributions add linearly and can write f tð Þ ¼ fi tð Þ þ fe tð Þ and
g tð Þ ¼ gi tð Þ þ ge tð Þ, where the subscripts i and e stand for

incident and echo, respectively. The Fourier transforms of

those signals are also linear combinations of the Fourier

transform of the incident and echo signals, namely, F xð Þ
¼ Fi xð Þ þ Fe xð Þ and G xð Þ ¼ Gi xð Þ þ Ge xð Þ. The incident
signal is common to the perturbed and unperturbed systems.

Therefore, we note that Fi xð Þ ¼ Gi xð Þ since fi tð Þ ¼ gi tð Þ.
The geometric phase in Sec. II D, which follows, will be cal-

culated from the Fourier spectra of the complete signals. A

change in the geometric phase calculated from FðxÞ and

G xð Þ will result from the reflected part of the signal. This

will enable us to avoid the difficult task of separating the

reflected part from the incident part of the time series.

D. Geometric phase sensing

At each discrete location, we obtain a complex ampli-

tude of the acoustic field in the spectral domain. At a given

frequency, we represent the acoustic field as a normalized

complex vector in a multidimensional Hilbert space whose

64 basis vectors correspond to locations in the physical

space. This vector is illustrated as

s ¼

a1
a2

.

.

.

a63
a64

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (1)

The components of this multidimensional state vector

are the complex amplitudes of the field at every location in

the physical space. Measuring the acoustic field at discrete

points in the physical space leads to a representation with a

dimension equal to the number of points. In Eq. (1), the

dimension of the Hilbert space is 64. A perturbation of

the physical space that scatters the acoustic wave changes

the complex amplitude of the acoustic field to

s0 ¼

a01
a02

.

.

.

a063
a064

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

: (2)

This scattering results in a rotation of the normalized

vector representation. The angle between the vector repre-

sentation of the acoustic field along the 64 locations in the

unperturbed and perturbed system corresponds to a change

in the geometric phase, /, of the acoustic wave. This angle

is calculated from the dot product:

/ ¼ Sgn Im s� � s0ð Þð Þ � cos�1 Real s� � s0ð Þð Þ; (3)

where s� is the complex conjugate of s, and Im and Real stand

for the imaginary and real parts of a complex quantity. The

imaginary part in Eq. (3) conveys information about the sign

of the change in geometric phase. So far, we illustrated the

calculation of the geometric phase for 64 locations; however,

this process can be applied to a subset of the 64 locations.
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In that case, one considers a subspace of the complete

Hilbert space with lower dimension. Considering a subspace

of q < 64, we can define a reduced state vector without per-

turbation as

sr ¼

ai
aiþ1

.

.

.

aiþq�2

aiþq�1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (4)

In the presence of a perturbation, the state vector

changes to s0r. At each colocation, i, we can calculate the

change in geometric phase of the reduced state vector,

according to Eq. (3). Note that i � 64þ 1� q. When the

subspace is colocated with a specific physical region, started

at i, the value of the change in geometric phase calculated

from these reduced representations is dependent on i.

Variations in the change in geometric phase of a reduced

representation becomes a function of the colocation i. This

approach allows us to calculate a spatial map of geometric

phase change. A perturbation will rotate the colocation-

dependent geometric phase of the reduced representation.

We recall that the complex amplitudes in the vectors of

Eqs. (1)–(4) are obtained from the Fourier transform of the

complete time series and include the incident as well as the

reflected signals. As seen in Sec. II C, the incident part of

the signal for the perturbed and unperturbed system are the

same. A rotation of the state vector occurs only from differ-

ences in the orientation of the reflected signals. In the geo-

metric phase sensing modality, this enables us to not rely on

an arbitrary definition of a reflected signal. That is, we do

not have to identify the reflected part of the time series.

Moreover, the contribution to the state vector from multiple

transits of the wave between the target and source will con-

tribute less to the state vector due to attenuation of the

acoustic wave.

E. Statistical analysis

For each experimental condition, we conduct ten mea-

surements. This produces ten acoustic field state vectors for

experiments with and without perturbations. The calculation

of the colocation dependent change in geometric phase is

performed between all pairs of perturbed and unperturbed

state vectors. This results in 10� 10 values of the change in

geometric phase at each colocation. The average and stan-

dard deviation are calculated from these 100 values for each

colocation. This is equivalent to first averaging the ten mea-

surements for each experimental condition because we

assume noise is normally distributed about zero and there-

fore, the expectation value and variance are linear opera-

tions. A geometric phase signal-to-noise ratio (SNR) is

calculated as the absolute value of the average divided by

the standard deviation. For comparison, we also calculate

the difference in magnitude of the components of the state

vectors of the perturbed and unperturbed systems. Again,

there are 100 such differences at each point along the probed

line, enabling the calculation of the average, standard devia-

tion, and magnitude difference SNR.

III. RESULTS

A. Characterizing the source

The Fourier spectrum of the source in the absence of a

perturbation calculated from the incident and reflected sig-

nals recorded underneath rod 1 is shown in Fig. 2. To test

the geometric phase sensing approach, we select the fre-

quency 144 kHz, which is common to the three modes of

excitation. Waves with this frequency in the water have a

wavelength of approximately 10mm. Since the perturbation

to detect has a side length of 6mm, the wavelength of the

chosen frequency is approximately two times the size of the

perturbation.

We calculate the geometric phase between the acoustic

fields generated when driving the e1, e2, and e3 modes to

characterize how well the modes are excited. To accomplish

this, we select three points directly underneath each rod’s

axis of revolution with which to construct a three-

dimensional state vector for each mode. The geometric

phases between the e1 and e2, e1; and e3, e2 and e3 modes

were found to be 50.64�, –86.94�, and –40.33�, respectively.
In an ideal case, the geometric phases should be 90� since

the spatial modes form a complete basis for the displace-

ment at the ends of the three rods. Phases other than 90�

indicate that the source is producing a superposition of the

three modes. This may be due to the difference in responses

of the transducers to the same applied voltage. We also note

that the transducers do not respond to all frequencies

equally; this may also explain why the peak magnitude does

FIG. 2. Frequency spectrum obtained from the time-series data underneath

the first rod when the source is excited with the e1; e2, and e3 modes. The

rods are excited by a 1MHz pulse. The pulse produces waves within a

wideband of frequencies below 1MHz. The inset shows frequencies up to

300 kHz. The regime of frequencies, where the acoustic wave has a wave-

length greater than the size of the perturbation, is approximately up to

250 kHz. All three modes show comparable magnitudes at a frequency of

144 kHz (indicated by arrow).
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not occur at 1MHz. Using a superposition of modes is

acceptable for geometric phase sensing because we are

interested in the effect of perturbations on the orientation of

the acoustic field state vector. The peak frequency not

occurring at 1MHz is also not important for the purposes of

this paper since we confine our analysis to 144 kHz.

B. e1 mode

In Fig. 3, we report the difference in magnitude as a

function of location along the horizontal probe line for the

three positions of the perturbation. The large standard devia-

tion does not allow us to extract any spatial characteristics

of the magnitude difference nor any certainty on the effect

of the perturbation. We calculate a SNR, according to Sec.

II E. In the three cases, the magnitude difference SNR never

exceeds 2.3. Difference in magnitude is therefore a poor

metric for detecting the presence of a subwavelength

perturbation.

For each mode, we calculate the state vector of the per-

turbed and unperturbed system in a reduced Hilbert space

with q ¼ 11 at each colocation along the 64 point probe line.

We determine the change in geometric phase between these

two state vectors at each colocation. In Fig. 4, we present

the average, standard deviation, and SNR in the change in

geometric phase for the three positions of the perturbation.

In each case, the plots contain sections with large stan-

dard deviations but also sections with very small standard

deviations. The sections with very small standard deviation

correspond to a non-zero change in geometric phase. The

high SNR associated with these finite changes in geometric

phase provides high confidence that they result from the

scattering by the subwavelength perturbation. For instance,

when the perturbation is located at �15mm, a high confi-

dence change in geometric phase of –40� has a SNR of 4.

When the perturbation is centered, we have two regions of

high confidence change in geometric phase of -30� and 46�

with SNR values of 5.3 and 9.2, respectively. The case of a

perturbation at þ15mm gives a change in geometric phase

of -26� and 42� with SNR of 3.8 and 4.1, respectively. The

fact that the result for the perturbation at þ15mm is not a

reflection of the result of the �15mm case indicates that the

source is not responding symmetrically. This is due to the

resulting acoustic wave emitted by the rods being a superpo-

sition of the three modes, as discussed in Sec. III A.

Compared to a difference in magnitude, a change in geomet-

ric phase in some regions of the colocation along the probed

horizontal line can serve as a significantly better metric for

the detection of the presence of a subwavelength perturba-

tion on the reflecting surface.

To shed light on the origin of the regions with high

standard deviation, we plot the individual values of the

FIG. 3. (a)–(c) Average and standard deviation of the calculated difference in magnitude of the components of the acoustic field state vectors of the per-

turbed and unperturbed systems along the 64 points of the probed horizontal line. The perturbation is positioned at (a) –15mm, (b) 0mm, (c) 15mm. (d)–(f)

Magnitude difference (Mag. Diff.) SNR for the three positions of the perturbation.
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change in geometric phase as a function of the horizontal

position along the probed line in Fig. 5. This figure shows

clearly that the regions with high standard deviation result

from bimodal distributions of the change in geometric

phase. These bimodal distributions arise from the effect of

the imaginary term in Eq. (3), whose sign can switch readily

with small variations in the orientation of state vectors

relative to each other. The switch in sign is not due to the

imaginary part having a small magnitude, but because the

complex inner product possesses conjugate symmetry. For

example, at the horizontal position of 0mm, there are two

groups of differences in geometric phase centered on 30�

and �30�. Figure 5 shows the symmetry over the entire hor-

izontal line except the regions with high SNR. These regions

reflect a nontrivial change in orientation of the acoustic field

state vector due to scattering by the perturbation.

C. e2 and e3 modes

Similar to the e1 mode, the difference in magnitude

does not serve as a good metric for subwavelength detection

as the maximum magnitude SNR is 1.4 for e2 (Fig. 6) and

2.2 for e3 (Fig. 7). In contrast though, the change in geomet-

ric phase (Figs. 8 and 9) exhibits features similar to those of

the e1 mode. Again, the regions with high standard deviation

result from bimodal distributions associated with the sign in

the difference in phase. The regions of very small standard

deviation correspond to changes in the phase difference

amounting to tens of degrees and large SNR.

In all the geometric phase difference figures, we

observe what appears to be systematic features in terms of

horizontal position. These features take the form of peaks in

the SNR that commonly occur around the positions of the

perturbation, namely, �15, 0, and 15mm. A systematic

FIG. 4. (a)–(c) Change in geometric phase for the e1 mode of the measured acoustic fields with a scatterer on the left, center, and right positions, respec-

tively. (d)–(f) Calculated SNR values for the change in geometric phase shown in the left column.

FIG. 5. Individual values of the change in geometric phase for the perturba-

tion located in the center position for Fig. 4(b). At each colocation, there

are 100 values.
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FIG. 6. Same as Fig. 3 but for the e2 mode.

FIG. 7. Same as Fig. 3 but for the e3 mode.
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FIG. 8. Same as Fig. 4 but for the e2 mode.

FIG. 9. Same as Fig. 4 but for the e3 mode.
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correlation between the position of the perturbation and the

location of the peaks has yet to be identified. However,

according to Fig. 4, these peaks occur where there is a gap

between the positively and negatively signed phase differ-

ences. The evolution from bimodal to unimodal distributions

may result from a complex interplay between the orienta-

tions of multidimensional state vectors that can be illustrated

as follows. Considering the unperturbed system, we have a

bundle of ten state vectors for each colocation. The orienta-

tions of these ten state vectors differ by a small amount due

to experimental noise. The ten state vectors of the perturbed

system have orientations differing by a small amount as

well. In the multidimensional Hilbert space, the mean orien-

tation of these two bundles could be significantly different,

leading to 100 differences in geometric phase with the same

magnitude and sign. In another possible case, the bundles

could have a similar mean orientation while ensuring a

nearly constant magnitude of the geometric phase difference

between the 100 pairs of vectors. In the latter case, one

would expect the calculated difference in geometric phase

to have a mixture of signs.

IV. CONCLUSIONS

We have presented a possible new underwater acoustic

sensing modality, based on the geometric phase of acoustic

waves. This method maps a region of an acoustic field to a

state vector in a multidimensional Hilbert space. By modify-

ing the acoustic field, a local perturbation in the wave sup-

porting medium changes the geometric phase by effectively

rotating the state vector representation of the field. We use a

source that supports three orthogonal spatial modes. We

have shown for these modes that geometric phase sensing is

sensitive to detecting the presence of a subwavelength per-

turbation on a reflective surface. To quantify the sensitivity

of geometric phase sensing, we have compared our new

approach to a method based on measuring a difference in

magnitude resulting from perturbations. The magnitude dif-

ference method shows SNR of at most a value of 2, whilst

changes in the geometric phase have shown regions of SNR

up to a value of 10.

This work serves as a demonstration of a new underwa-

ter sensing methodology exploiting the geometric phase of

acoustic waves. This geometric phase sensing modality is

shown in the case of scattering by a subwavelength pertur-

bation to have higher sensitivity than magnitude based sens-

ing approaches. Future work will focus on extracting

information on the position of the scattering perturbation.

While the geometric phase sensing modality was introduced

for underwater sensing, this approach is general and could

be applied to high-sensitivity detection of defects or changes

over wide ranges of scales in solid materials and structures

as well as the natural and built environments.
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