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ABSTRACT: The fundamental constants (FCs) of physics are promoted to dynamic
quantities in modern theories. Heretofore, astrophysical observations, atomic clock
experiments, and the Oklo natural nuclear reactor phenomenon all have pointed to small
variations of FCs happening on a cosmologically long time scale. In this paper, we investigate
the novel regime of extreme but transient variations of FCs. We focus on the speed of light (c)
and show that its variation can dramatically change the electronic structure and chemistry of
atoms and molecules. These changes are induced by increased relativistic effects when c is
reduced from its nominal value. To model these changes, we solve the fully relativistic Dirac
equation at different values of c. We show that at extreme variations of ¢, the periodic table is
truncated, the nominal ground states of atoms can change, water fails to serve as a universal

solvent, and the ammonia molecule becomes planar.

fundamental constants (FCs): electron mass m,,
elementary charge e, and Planck constant 7. Relativity brings
in speed light ¢ or, equivalently, fine-structure constant a = ¢*/
(fic). These constants, together with the nuclear parameters,
are fixed in conventional computations to their empirical
(nominal) values. Modern theories, however, generically
promote these FCs to dynamic entities,”” and their small
variations have been previously studied.”" In this paper, we
explore a novel regime of extreme but transient variations that
are motivated by certain clumpy dark matter models.” We find
that strong variations of ¢ afford an abundance of remarkable
effects on the structure of atoms and molecules and, by
extension, on the fundamental conditions for the emergence
and sustainability of life, i.e., the so-called anthropic principle
in cosmology.'”""

The variation of FCs in the nonrelativistic Born—
Oppenheimer (NR-BO) approximation reduces to the
isotropic scaling of all nuclear and electronic coordinates by
the Bohr radius a = 71*/m,e* (see Section I of the Supporting
Information). As a result, molecular bond angles do not
depend on the FCs. Similarly, all of the FC dependence of
energies factorizes out via the Hartree energy, me'/ A% Effects
beyond the NR-BO approximation violate these scaling laws
and lead to changes in the bond angles with varying FCs. For
the sake of concreteness, we focus on the role of relativity and
examine the consequence of varying speed of light ¢. In atomic
units, @ = 1/¢, and variations in « are equivalent to those in ¢
via ¢/cy = ay/a. Here and below, the subscript 0 of a quantity
refers to its nominal value, e.g, oy & 1/137.

Beyond connections to novel theories, there is a practical
utility in artificially enhancing relativity.'> Because an electron

Quantum chemistry primarily depends on a set of three
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near the nucleus of charge Z moves with speed v/c ~ aZ,
relativistic effects are most pronounced in heavy systems.
However, in heavy atoms and molecules, the role of relativity is
often masked by large electron correlations. Reducing ¢
magnifies the role of relativity in molecules comprising light
atoms, where correlations can be treated with much higher
accuracy."* ™" It is worth emphasizing that for small speeds of
light, v/c ~ 1, and one must solve the nonperturbative four-
component Dirac equation.'”'” We find that when ¢ ~ ¢,/10
to ¢o/20, the periodic table shrinks to elements from hydrogen
to sulfur, the Aufbau principle qualitatively changes, noble
gases are no longer inert, water fails to serve as a universal
solvent, and the ammonia molecule becomes planar.

We start by discussing the effect of the varying speed of light
on the electronic structure of a hydrogen-like atom. In atomic
units, its ground state energy can be obtained by solving the
Dirac equation with a point-like nucleus approximation

£, = cz[\/l —(Z/c) - 1] 0

The Dirac equation has two continua: above the ionization
threshold, € > 0, and below the rest-mass gap, € < —2¢2. In the
Dirac sea paradigm,'® the lower continuum is fully occupied by
electrons so an atomic electron cannot spontaneously decay
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into the lower continuum because of the Pauli exclusion
principle. As we decrease ¢, the 1s;,, energy in eq 1 is
decreased toward the Dirac sea until we reach a value of c = Z
whereupon &, = —c% When ¢ < Z, the argument of the

square root, 1 — (Z/c)?, becomes negative and the energy
acquires an imaginary part; the ground state of a hydrogen-like
atom becomes unstable.

The point-like nucleus approximation in eq 1 is, however,
inadequate for determining the critical value of c. This is
because the bound states become unstable when their energies

o . 19,20
“dive” into the Dirac sea,'”* i.e,, at €15, = —2¢% and not at —¢?

as per eq 1. To remedy the failure of the point-like nucleus
approximation, one solves the Dirac equation with finite-size
nuclei numerically (Figure la). As expected, the hydrogen

E(Positive energy continuumﬁ

sy

2p : /
2psn
251 \
-2
——Dirac seaj
1 100 * 200
(b) Reduction in the speed of light, ¢y /c
35/, e—
2D 3/ —
& N .
5] Y
g - —
m

Reduction in the speed of light, ¢y /c

Figure 1. Dependence of the atomic energy levels of a hydrogen-like
atom on speed of light c. (a) Energy levels of atomic hydrogen as a
function of c. The 1s,, level dives into the Dirac sea at c* = ¢,/143.
(b) Change in shell occupation in many-electron atoms with varying
.

atom remains stable until its ground state energy dives into the
Dirac sea. The 1s,/, energy breaches the rest-mass energy gap
at the critical value of ¢* ~ ¢/143. The question of what
happens when ¢ is driven below its critical value ¢* has been
explored in a related problem of determining the critical
nuclear charge with ¢ fixed to its nominal value."””° When ¢ <
c*, the discrete s/, level becomes embedded into the Dirac
sea continuum and, as such, becomes unstable, similar to Fano
resonances in chemical physics.”’ An electron—positron pair is
emitted spontaneously, and the vacuum becomes electrically
charged. The critical value ¢* at which the 1s level in an atom
with charge Z becomes unstable changes with the nuclear
charge as (see Section II of the Supporting Information)
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This remains a good approximation for multielectron systems
as the 1s,/, electrons tend to see the unscreened nuclear charge
with minor correlation corrections to binding energies. In a
molecule, ¢* is determined by the charge of the heaviest
nucleus. For water and ammonia discussed below, c* = ¢,/18.4
and ¢* % ¢,/20.9 are determined by the oxygen and nitrogen
atoms, respectively. From eq 2, we observe that at a given value
of ¢/cg, only elements for which Z < 168c¢/c, are stable. As ¢ is
gradually decreased from its nominal value, the heavier
elements are destabilized and the periodic system is truncated.
If ¢ is reduced 10-fold, only elements for which Z < 16 remain
stable, and the entire periodic table shrinks to elements from
hydrogen to sulfur. If ¢ is reduced to that of a speeding bicycle,
c/co ® 4 X 1078 even the hydrogen atom fails to exist.””

Let us next discuss atomic levels above the 1s electron shell.
The Aufbau principle determines the sequence of how atomic
orbitals are filled with electrons. In the spin—orbital notation,
the sequence is 1s;,,2s,,,2p;/,2pP3/2351/, at ¢ co- In the
ultrarelativistic regime, when ¢ approaches its critical value, we
find that the 2p;,, and 3s;, orbitals change their relative
energy order (Figure 1b). Figure 2 shows the implication of
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Figure 2. Energy spectrum of the neon atom as a function of the
speed of light (co/c = a/a,). Nominal ground state 0° ('S,) is used as
a reference (blue horizontal line). There is a substantial reshuffling of
the sequence of energies near the critical value of il co/14.8. The

ground state of the neon atom becomes the 2° state with the
dominant open-shell configuration 1s3,,2s1/,2p31 /5351 ,2p3/a-

the change in the relative energy order between 2p;,, and 3s,
on the energy spectrum of the neon atom. At nominal values of
¢, the states are labeled using the conventional L—S coupling
scheme.”>** At smaller values of ¢, the states are labeled as )
where ] is the total angular momentum and 7 is the parity of a
state. When ¢ < ¢* ~ ¢,/14, the ground state of neon contains
the configuration 1s}/,2s}/,2p1/,3s1/,2p3/» with the total
angular momentum ] = 2. Thus, neon becomes an open-
shell atom with the 2p;/, shell only half-filled and, as such, is
no longer inert. The valence-shell configuration of the
ultrarelativistic neon, 3s},2p3/, closely resembles that of
carbon at nominal ¢, 2s*2p®. Therefore, at such an extreme
transient variation of ¢, neon is expected to play the traditional
role of carbon.

Our calculations for the second-period atoms with electrons
in the 2p;/, shell (N, O, F, and Ne) demonstrate similar
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nontrivial changes in the nature of their ground states near
their respective critical ¢ (see Section III of the Supporting
Information). Qualitatively, the 2p;,, orbital dives into the
Dirac sea at a ¢ substantially smaller than that for 2p, ,, (Figure
1a). This leads to a giant ~m,c* fine-structure splitting near the
critical value ¢*. For the same reason, there is a large difference
in the relativistic contraction of the 2p;,, and 2p, , shells near
¢*. The 2p,,, and 3s,,, shells become submerged inside the
2p3, shell. This drives a more effective screening of the nuclear
charge by the inner shells, causing an increase in the 2p;/,
orbital energies with a decrease in ¢ in many-electron atoms, a
trend that is the opposite of that in the H-like ions. These
effects also lead to dramatic changes in the geometry of
molecules containing these atoms.

Let us now discuss how extreme variation of the speed of
light affects the structure and properties of molecules. As
examples, we focus on water and ammonia. All known forms of
life use water as a universal solvent for various chemicals and as
an essential component of many metabolic processes.”®
Ammonia is an important source of nitrogen required for the
synthesis of amino acids, for building proteins in living
systems,”® and as an alternative universal solvent.”® The
structural changes induced by the enhanced relativity in these
molecules can be explained by changes in their respective
molecular orbitals (MOs). The formation of MOs requires
energy resonances and overlaps among the constituent atomic
orbitals. Relativity affects the resonances via the different rates
of stabilization of energies and the overlaps via the varying
degrees of contraction of atomic orbitals.

When the speed of light is reduced, the geometry of the
water molecule changes with the initial contraction of the bond
angle and the subsequent complete straightening of the
molecule (Figure 3a—c). We find that when ¢ &~ ¢,/14, the
calculated bond angle in water decreases from the nominal
value of 104.5° to 90°. This corresponds to the dipole moment
of water y increasing from its nominal value of 1.855 D*
2.138 D. When ¢ = ¢,/18, the water molecule becomes linear
and therefore nonpolar (4 = 0 D). These changes in the
molecular geometry are induced by the relativistic stabilization
of the 2s,/, and 3s;/, orbitals with respect to the 2p orbitals of
the oxygen atom, and by increased fine-structure splitting
between the 2p,,, and 2p;/, orbitals. These changes can be
understood using the valence shell electron-pair repulsion
(VSEPR) and MO models.”®

(i) At nominal ¢ = c,, the valence 2s and 2p atomic orbitals
of oxygen mix to form four equivalent sp® (2s,,,2p;/,2ps/2)
hybridized orbitals. Two of the hybrid orbitals overlap with the
hydrogen 1s orbitals, and the remaining two hold two lone
electron pairs. The repulsion between the four electron pairs
on the hybrid orbitals leads to the slightly distorted tetrahedral
arrangement, corresponding to a bond angle of 104.5°.

(ii) At the intermediate ¢ & cy/14, the stabilization of the
2sy/, and 2p,,, orbitals in oxygen breaks down the sp’
hybridization. This results in an energetically isolated 2p;,,
orbital, which can accommodate up to four electrons forming
the oxygen—hydrogen bonds. This stabilizes the molecular
structure, resulting in a 90° bond angle.12 The stabilization of
the 2s,,, and 2p,,, atomic orbitals also changes the
distributions of the electron radial density in water (see
Section IV of the Supporting Information). The computed
radial density distributions of HOMO—-2 and HOMO-3
reduce to those of 2s,,, and 2p,/, atomic orbitals, which no
longer participate in chemical bonding.
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Figure 3. Molecular geometries and orbital diagrams of (a and c)
water and (d and f) ammonia calculated at different values of the
speed of light. At a nominal ¢, the orbitals are labeled and colored
according to their irreducible representations in the C,, (water) and
C,, (ammonia) point groups. When ¢ < ¢,, the spin—orbital notation
is used for atomic orbitals, and only the occupied molecular orbitals
are shown.

(iii) At even smaller ¢ & ¢,/18, lowering the 3s,, and raising
the 2p;, orbitals of oxygen lead to these two orbitals becoming
quasi-degenerate. This induces the ps hybridization between
the half-filled 2p;/, and 3s,,, shells,"* resulting in the linear
molecular geometry. The participation of the 3s;,, orbital in
the chemical bonding is supported by our calculated radial
density distribution for the HOMO—1 of water. Near c*, the
shape of this distribution closely resembles that of the 3s,,,
atomic orbital (see Section IV of the Supporting Information).

The Walsh correlation diagrams of the MO theory provide
more insight into the relation between the electronic structure
and the geometry of the water molecule (Figure 4a—c). These
diagrams show the energies of valence MOs as a function of
the bond angle. Because the total electron energy of a molecule
can be approximated as the sum of MO energies, the Walsh
diagrams can be used to predict the values of the bond angle
that minimize the total energy. When ¢ = ¢, the interplay
between the HOMO—-1 and HOMO-2 energies minimizes
the total electron energy at a bond angle of 104.5°. As ¢
decreases, the 2s,/, orbital stabilizes and its contribution to
HOMO is diminished, leading to the minimum of both
HOMO and total energies at 90°. At an even lower speed of
light, the realistically stabilized 3s, /, orbital starts to contribute
to the HOMO, leading to the linear geometry.

The changes in the molecular geometry of ammonia at a
reduced speed of light resemble those of water and can be
explained by the similarity of the changes in the electronic
structures of the nitrogen and oxygen atoms. At the nominal
speed of light, the VSEPR model predicts formation of four
equivalent sp® hybrid orbitals in nitrogen. Three of these
orbitals form chemical bonds with the hydrogen atoms, while
the fourth orbital holds the lone electron pair, leading to the
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Figure 4. Walsh correlation diagrams of (a—c) water and (d—f) ammonia showing the energies of their respective valence MOs as a function of the
bond angle at different speeds of light. For water, the orbital energies are calculated at (a) ¢ = ¢y, (b) ¢ % ¢,/13.7, and (c) ¢ & ¢,/17.8. For ammonia,
the energies are calculated as (d) ¢ = ¢, (e) ¢ & ¢;/17.8, and (f) ¢ & ¢,/20.6. In panels b, ¢, e, and f, which correspond to ¢ < ¢;/10, the lowest
occupied MO of water (ammonia) is omitted as it reduces to the 2s,/, atomic orbital of oxygen (nitrogen) and does not participate in the chemical
bonding. The arrows indicate the bond angles at which the molecular geometries stabilize. The energies of the MOs at the equilibrium bond angles

correspond to those in Figure 3.

trigonal pyramidal geometry with a bond angle of 106.8°
(Figure 3d). As ¢ decreases, the NH; molecule first becomes
more pyramidal and subsequently flattens at values of ¢ close to
that of ¢*. When ¢ ~ ¢,/18, the bond angle in ammonia
decreases to its minimum value of 87° (Figure 3e). This can be
explained by the break of the sp® hybridization due to the
relativistic stabilization of the 2s,/, atomic orbital of nitrogen.
The reduction of the bond angle results in an increase in the
dipole moment of ammonia g from its nominal value of 1.561
D” to 2.028 D. An ~20-fold decrease in the speed of light
leads to the planar geometry with a 120° bond angle (Figure
3f) and ¢ = 0 D due to the induced quasi-degeneracy between
the 2p;,, and 3s)/, orbitals. These observations are further
supported by the calculated radial density distributions of the
occupied MOs in ammonia (see Section IV of the Supporting
Information).

The striking changes in the geometries of the oxygen- and
nitrogen-containing molecules at reduced speeds of light would
lead to alternative chemistry and biology. For example, in
contrast to the bent water molecules that form three-
dimensional networks of hydrogen bonds, the ultrarelativisitc
linear water molecules could form only two-dimensional
networks. This is anticipated to substantially decrease the
freezing and boiling points of water.””*" In addition, the linear
water molecule would have no dipole moment. Thereby, water
would cease to serve as a universal solvent. Clearly, life as we
know it can happen only in a certain range of values of
fundamental constants (the anthropic principle).'”"" However,
the current anthropic principle constraints on the slow
cosmological-scale variation of FCs can be evaded for certain
clumpy dark matter models that lead to transient variations.”
In these models, the FCs inside and outside of the dark matter
clumps can differ substantially. Encounters of the solar system
with dark matter clumps can be exceedingly rare, while the
laboratory searches for possible encounters with such clumps
so far extend over only a cosmologically short 20-year recent
history.”” Our predicted changes in the geometry of ammonia,
one of the most abundant polyatomic molecules in the

~
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interstellar space,”> can be potentially used in astrophysical
searches for the dark matter clumps. As a clump sweeps
through an interstellar cloud, for example, it would induce
observable changes in the properties of the molecules
comprising the cloud.

B THEORETICAL METHODS

The critical values of the speed of light for the hydrogen atom
and hydrogen-like ions were calculated by solving the Dirac
equation with the finite nucleus models by using both
analytical and numerical methods. The analytical ¢* values
were obtained from solving the transcendental eq S18 for a* =
1/c* under the condition & = —2m,c* (the Dirac sea threshold)
and using the nuclear spherical shell-like charge density
distribution (see Section II of the Supporting Information).
The numerical ¢* values were obtained by solving the four-
component Dirac equation using the Dirac—Hartee—Fock
(DHF) method in DIRAC19.*® The electronic state energies
of N, O, F, and Ne were obtained by using the Kramer
restricted configuration interaction (KRCI) method. The
reference wave functions for the KRCI calculations were
obtained by solving the average-of-configuration open-shell
version of the DHF equation. In the averaging, all
configurations generated by distributing the valence electrons
over the 2s, 2p, and 3s orbitals were included. To accurately
describe the electron density near nuclei and to ensure a
balanced representation of the s and p orbitals needed for
accurate prediction of the state energies at reduced ¢, the
original uncontracted aug-cc-pV6Z basis set’®*” was modified
as follows. We started with 11 s and 11 p functions using the p
exponents of the original basis set for both types of functions.
Then, the basis was augmented by one s and one p function
with the exponents obtained by multiplying the current largest
exponent by a factor of 3.0. The new basis was used to
calculate the critical ¢ for one-electron ions. New pairs of s and
p functions were added until the calculated critical ¢ matched
the solution of the transcendental eq S18. The final basis
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included 19 s and p functions. The number of the higher-
angular momentum functions and their exponents were
unchanged. The molecular geometries of water and ammonia
were optimized at different values of ¢ using the closed-shell
DHF method with the same augmented basis sets (see Section
IV of the Supporting Information). Neglecting the effects of
electron correlation in molecular calculations resulted in the
deviation of the water and ammonia bond angles from their
experimental values by <2%, which is sufficiently accurate for
the purpose of this work. The dipole moments of water and
ammonia were calculated at three selected geometries
corresponding to the nominal, intermediate, and near critical
values of ¢ listed in the legend of Figure 4 by solving the
nonrelativistic Schrodinger equation with scalar relativistic
correction (see Section V of the Supporting Information). This
approach is well justified because dipole moment mostly
depends on molecular geometry, i.e., on the length of polar
bonds and the bond angles, and therefore, the geometry
changes induced by the reduction of the speed of light make
the main contribution to the magnitude of the dipole moment.
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Section I. Invariance of molecular geometry under variation of fundamental
constants in the non-relativistic Born-Oppenheimer approximation

The goal of this section is to prove that the effect of variation of fundamental constants
cause all the molecular bonds to stretch/dilate by the very same scaling factor, leaving the
angles between chemical bonds unaffected, see Figure S1. This statement holds only in the
assumption of (i) non-relativistic approximation, (ii) infinitely-heavy nuclei (Born-
Oppenheimer approximation) and (iii) point-like spin-less nuclei. If either of these assumptions
is broken, chemical bond angles would vary with changing fundamental constants (FCs.)

Figure S1. Scaling all the sides of the triangle by the very same numerical factor does not
affect the value of angle 8 (or of any other angle in the triangle). This example can be
generalized to 3D geometry: angles and thus the molecular geometry are not affected by
scaling of all the inter-nuclear distances by the same factor (isotropic scaling transformation).

Consider an arbitrary molecule containing N,, point-like nuclei and N, electrons. Under the
enumerated assumptions, the non-relativistic Born-Oppenheimer (NR-BO) Hamiltonian reads

Hnno = 3~y 2y ot
NR-BO — ' zme T 2 |ri_rj|
i

i#)

1 ZnZ 1% Z,e? s1)
antn’IRn_Rn,I i IRn_riI.

Here, for clarity, all FCs are retained. Positions of electrons are labeled as r; and those of nuclei
—as R,,. All the terms in Hyg_po have their usual meaning: kinetic energy of electrons, electron
repulsion, nuclear repulsion, and electron-nucleus attraction. Z, are nuclear charges. To
determine the molecular geometry in the Born-Oppenheimer approximation, one solves the
time-independent Schrodinger equation with fixed positions of nuclei,

HNR—BO(reIRn)lP(reIRn) = E(Rn)"p(reIRn)' (SZ)

Here the Hamiltonian H and thus the eigenfunctions W and energies E depend on fundamental
constants: E(R,|m,, h,e). After the potential surfaces E(R,|m,, h,e) are obtained as
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functions of nuclear coordinates, the equilibrium nuclear positions, {Riq}, are determined by

minimizing the energy

?&ir}lE(Rnlme,h, e) = {R}1}. (S3)

We would like to explicitly factor out the dependence on FCs from eq S2. We rescale all the
coordinates by the same factor &: r; = &p;, R, = &p,,. Upon substitution into Hyg_gg, the

h2 . .
A, . and all the electrostatic interaction
Zmefz Pi

potentials are divided by £. We pick the dimension-full pre-factors in the kinetic and potential

kinetic energy term transforms into —Z;Ve

energy contributions to be equal.

h? e?

This particular choice enables factoring out the dependence on the FCs from the Hamiltonian
H. Solving the above equation results in

hZ
§= (S5)

mye?’

which is the Bohr radius a. Then the Hamiltonian is Hyg_go = Eph(pe|ps), where
Ep = h?/m,§* = e?/§ = mee*/h? (S6)

is atomic unit of energy (Hartree). Moreover, the scaled Hamiltonian h(p.|p,) no longer
depends on FCs. Thereby, the solution of the eigenvalue eq S2

h(pelpn)go(pelpn) = g(pn)(p(pelpn) (S7)

does not depend on FCs either. For any value of FCs,

mee*
E(Rnlme' h, e) = ? g(pn)- (88)

Finding equilibrium positions as prescribed by eq S9 also does not depend on FCs,
mine(pn) = {pn’}. (59)

Thereby,
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p%, (510)

where p;,! are FC-independent.

To reiterate, in the non-relativistic Born-Oppenheimer approximation, as FCs are varied
from their nominal values, all the equilibrium positions are scaled by the very same factor,

a

eq
R’ = —R
n n,0*
ay

(S11)
Here and below all the quantities with the subscript O refer to the nominal values. This scaling
of all the coordinates by the same factor belongs to the class of isotropic scaling
transformations; as such it does not affect molecular bond angles, see Figure S1.

The fact that the isotropic scaling does not affect angles in a molecule of arbitrary geometry
can be formally proven as follows. Choose {R,;},n = 1, N to be (equilibrium) position vectors
of all N nuclei in a molecule. The angle 8,;, between a pair of these vectors, R, and Ry, is
given by

(Rq - Ryp)
6., =cos ! [—], S12
o IR,IIR,| (G12)

where we used the conventional definition of scalar products and |R,| = /(R, * R,) is the
length of the vector. Should all the position vectors be scaled by some factor 4, R, — AR,,,
the factors of 4 in eq S12 cancel out. Thereby, the angles between chemical bonds are not
affected by the isotropic scaling. The entire molecule undergoes isotropic stretching or dilation
as the FCs are varied.

In addition, as follows from our derivation, all the electron coordinates undergo the same
isotropic scaling,

a
r,=—
e aO

e.0- (S13)

In particular, it means that the sizes of electronic clouds and atoms are scaled by the same a/a,
ratio. Another point is that all the energies (both atomic and molecular) are scaled by the atomic
unit of energy

E=-"E, (S14)

These observations offer a visualization: as a clump of FCs sweeps through an atom or a
molecule, all the energy states are gently modulated and the atoms and molecules "breathe" in
accordance with the local values of FCs. This picture is valid in the regime of sufficiently large
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and slow FC clumps. The clumps need to be sufficiently large, so there are no gradients of
FCs across individual atoms and molecules. The clumps have to be sufficiently slow, so that
the induced perturbation does not cause transitions between molecular or atomic states. Then
the molecules follow the change in FCs adiabatically.

It is worth emphasizing that our proof heavily relied on the possibility of factoring out all
the dependence on FCs in various contributions to the Hyg_po Hamiltonian. If we were to add
kinetic energies of the nuclei to Hygr_gg, our coordinate scaling procedure would result in the
requirement

h? e? h? h?

(S15)

mE2 & My&?

where M,, are nuclear masses. Generically, these equalities cannot be satisfied simultaneously
by any choice of the scaling parameter ¢.

Our factorization procedure depended on the fact that the Coulomb interactions in the
Hyr-po Hamiltonian exhibited power-law dependence with respect to distances. If the nuclei
have finite size, the Hamiltonian no longer admits simple coordinate scaling. Moreover,
introducing nuclear properties (such as finite-size charge distribution or hyperfine interactions
with nuclear moments) into the problem brings in another FC, m,/Aqcp, where my is the
average mass of up and down quarks and Agcp is the energy scale of quantum chromo-
dynamics.

Similarly, Dirac equation does not admit factoring out all the FCs in the Hamiltonian.
Indeed, even in the simplest case of hydrogen atom with an infinitely-heavy point-like nucleus,
Dirac Hamiltonian contains three terms,

eZ
hp = —ihca -V + fm,c? — - (S16)

Since the 4 x 4 Dirac matrices a and [ are collections of FC-independent complex numbers,
our coordinate scaling procedure results in the requirement

— =m,c? =—. (517)

For arbitrary values of FCs (m,, h, e, and c), these equalities are mutually exclusive. We
conclude that relativity must lead to the breakdown of the isotropic scaling of atomic structure
and molecular geometry with varying FCs. Chemical bond angles vary with changing FCs due
to relativistic effects.

Since the theory of quantum electrodynamics (QED) is built on quantizing relativistic
fields, field-theoretic effects also lead to the breakdown of the isotropic scaling with varying
FCs. This can be easily seen by examining effects of vacuum polarization by the nucleus'. In
QED, a nucleus is immersed into a nuclear-field-polarized cloud of virtual pairs of particles
and anti-particles. Vacuum polarization leads to the replacement of the —Z/r Coulomb
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potential of a point-like nucleus by the Uehling potential. The success of our factorization
procedure depends on the fact that the Coulomb interactions in the NR-BO Hamiltonian
exhibits a power-law dependence with respect to distances. The Uehling potential lacks this
power-law dependence and, thereby, does not admit factoring out FCs in the resulting
Hamiltonian.

Scaling of molecular geometry preserves angles between chemical bonds in the NR-BO
approximation. Molecular geometry '"breathes" with varying FCs. Consider a thought
experiment where we compare lengths of two rulers of different chemical composition.
Suppose at the nominal values of FCs both rulers have the same lengths. As the FCs change,
both rulers are expanding/contracting by the same factor in the NR-BO approximation. The
observer would not be able to tell if FCs have changed. The very same argument applies to
transition frequency comparisons: in the NR-BO approximation, all the dependence of energies
on FCs is governed by the common factor of Hartree energy m,e*/h?. Corrections to the most
basic NR-BO approximation violate this isotropic scaling law: the lengths of two rulers in our
though experiment would differ for varying FCs. Similarly, the ratios of transition frequencies
for two different atoms or molecules would change with varying FCs.

S7



Section II. Critical values of the speed of light for finite-size nuclei

In this section, for convenience we focus on the fine-structure constant a instead of the
speed of light c. The main results inferred for a can be easily converted to those of ¢ via the
reciprocal relation @« = 1/c. The critical value a* of varying electromagnetic fine structure
constant a is determined by the requirement that the energy ¢ of the bound electron becomes
equal to the Dirac sea threshold, € = —2m,c?. Here and below the energy excludes the rest
mass energy. This problem can be solved analytically!?, where the authors were interested in
determining the critical nuclear charge value for the fixed nominal value of a.

The analytical solution can be developed for nuclear spherical shell-like charge density
distribution, pgpen(r) < 8(r —R), where R is the radius of the nuclear charge shell.
Qualitatively, inside the nuclear shell, 7 < R, the potential is constant V (r) = —Ze?/R and
the solution to the Dirac equation is given by the energy-offset free particle solutions. Outside
the nuclear shell, the potential is of the Coulomb character, V(r) = —Ze?/r, and the solution
to the Dirac equation is given by the linear combinations of the regular and irregular Coulomb
wavefunctions. Setting & = —2m,c? and matching the inner and outer solutions at 7 = R leads
to a transcendental equation for a*

Ky ()

NG

= 2(a*Z)cot(a*Z), (518)

where & = \/8ZR/a,, K;,, (&) is the modified Bessel function of the second kind (Macdonald

function) with index v = 2./(a*Z)? — 1 with K, (&) being its derivative with respect to £. Eq
S18 is specific to the nsy /, orbitals. Subsequently increasing roots of this equation corresponds
to larger values of principle quantum number n. Similar equations can be derived for orbitals
of larger total angular momenta.

To solve eq S18, we need to specify the spherical shell radius R. We make the connection
to the more realistic nuclear charge distributions by noticing that for the spherical shell
distribution, the r.m.s. radius R, is identical to R. For proton, we take the 2018 CODATA
recommended value, R.,s('H) = 0.8414(19) fm. For heavier elements, we use an
approximation' R ~ 1.6Z'/3 fm, adequate for our discussions.

From eq S18 we find the critical value of & for hydrogen 1s, /, orbital occurs at a* ~ 1.04
or ¢* = cy/143. One may argue that the spherical shell approximation for the nuclear charge
distributions used in deriving eq S18 is not realistic. To address this question, we solved the
Dirac equation for hydrogen using numerical finite-differencing techniques?; for the uniform
nuclear charge distribution we find a* = 1.042. This is to be compared to the spherical shell
result of 1.040. A similar exercise for Fermium (Z = 100, A = 257, Ry = 7.1717 fm)
shows that 1s, , a* for the spherical shell distribution is 1.20 x 1072 versus 1.18 x 1072 for
both the uniform and the Fermi nuclear charge distributions. Thereby, more realistic models of
charge distributions lead to somewhat smaller values of a* than those resulting from the
spherical shell distribution.
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We notice that Dirac code internally uses Gaussian nuclear charge distributions with Ry
given by the fitting formula’

Ryms = 0.8364/3 + 0.570(40.05) fm. (519)

For a given charge Z we use the most abundant isotope mass number A. This formula results
in the proton R.,s('H) = 1.406 fm which is almost as twice as large than the CODATA
recommended value, R.,s('"H) = 0.8414(19) fm. The simple reason for this discrepancy is
that eq S19 is a fit for atomic mass numbers A > 9.5 If we use the value R.,s('H) = 1.406 fm,
eq S18 results in a*('H) = 1.044, slightly larger than the value of 1.040 obtained with the
CODATA R pns(‘H).
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Figure S2. Phase diagram of periodic system of elements as a function of varying speed of
light. Red and blue curves are the results for critical values of ¢*/c, as a function of nuclear
charge Z for finite-size and point-like nuclei, respectively. To borrow an analogy from
condensed matter physics, « (or ¢) is an order parameter that governs phase transitions.

The results of our calculations are shown in Figure S2. In this plot, the red curve are the
results for critical values of ¢*/c, as a function of nuclear charge Z for finite-size nuclei. Blue
curve is the same dependence but for point-like nuclei, @ = 1/Z. This parameter space can be
interpreted as a phase diagram: any point (c/cy, Z) above the red curve corresponds to unstable
Dirac sea. Here, for comparison, we also plot the critical values for point-like nucleus, Z,;,,x =
1/a*,1.e. Zypax = aoC”/cCo.

Finite-size nuclei critical curve exhibit nearly linear dependence with a fit,

Zoax ~ 168¢/c,. (S20)
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The nearly linear dependence can be understood by examining the graphical solution of
transcendental eq S18, see Figure S3 for hydrogen. Plots for heavier elements are similar. Even
without solving the eq S18, it is apparent that the critical value of a for the 1s, /, orbital occurs
in the vicinity of the first zero of Macdonald function K;,(§), where the Lh.s. approaches
vertical asymptote. The first zero of K;,,(§) is given by In¢ = —m/v +1In2 — Ygyier, Where
YEuler = 0.5772156649... is the Euler constant.® This leads to an analytical estimate

L
@ =7 8

1
2
1. (\2ZR
(VEuler + 71n< a, ) )

The leading 1/Z term can be recognized as the critical value for point-like nucleus. We use

(S21)

the smaller sign (<) because the true value of a* lies below this asymptotic estimate, see Figure
S3. The fractional contribution of the corrective term has a weak logarithmic dependence on
the nuclear charge, In(Z#/3), explaining the nearly linear dependence of maximum allowed
nuclear charge in Figure S2. In approximate eq S21 we also restored the Bohr radius aq,
showing that the dominant dependence is the ratio of nuclear radius R to the characteristic size
of atomic orbital a,/Z. Approximation as per eq S21 tends to overestimate a*. Its relative
accuracy ranges from 2% for hydrogen to 50% for Fermium (Z = 100) as follows from
comparison with our numerical results. Quantum electro-dynamics (QED) corrections to the
1s,/, energy (vacuum polarization and self-energy) tend to cancel', leaving critical values

largely unaffected.

W
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L.h.s. and r.h.s. of eq S18
o
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Critical a

Figure S3. Graphical determination of critical values of fine-structure constant for hydrogen
(Z =1, R = 0.8414 fm). The r.h.s. and the 1.h.s of transcendental eq S18 are drawn as red
and blue curves, respectively. The values of a at the intersection of two curves are critical
values a* of . The lowest a™ is the critical value for 1s;/,, next lowest a* is for 25, /, and so

on.
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For multi-electron systems, the stability of an atom with respect to varying FCs requires
further qualifiers. Indeed, unlike in H-like ions, a Dirac sea electron cannot transition into the
fully occupied 1s;/, orbital due to the Pauli exclusion principle.” Yet, because the rest-mass
energy gap is lowered, background photons can promote Dirac sea electrons into unoccupied
orbitals, i.e., Dirac sea becomes unstable with respect to the interaction with photon bath. As
to the critical values, we computed Dirac-Hartree-Fock energies of 1s,/, orbitals in several
atoms as a function of c. We find that the hydrogen-like ion result per eq 1 of the main text
remains a good approximation for ¢*. Indeed, energies of the deeply-bound 1s,/, orbitals in
atoms and molecules are strongly dominated by the interaction with the nucleus with small
corrections from the interaction with other electrons.
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Section III. Effect of varying speed of light on electronic structure of many-
electron atoms

The atomic spectra of N, O, F, and Ne atoms were calculated at different values of the
speed of light (or ) using the Kramer Restricted Configuration Interaction (KRCI) method, as
implemented in DIRAC19.7® The Dirac-Hartree-Fock (DHF) calculations were first carried
out to obtain the reference wavefunction for the CI step. In the DHF calculations, the 3s,/,
orbital was included in the active space via the average-of-configuration open-shell
framework.” This ensures the balanced description of atomic states at the CI step and allows us
to assess the effects of the relativistic stabilization of the 3s, , orbital. At the nominal c, the
atomic states are labeled in the conventional L-S (Russell-Saunders) coupling scheme: 25*'Ly,
where S is the total spin, L is the orbital angular momentum, and J is the total angular
momentum. At decreased ¢, however, the amplified relativity leads to the breakdown of the LS
coupling scheme, as only the total angular momentum J, J = L + S, is conserved.* Thereby, we
label the states as J*, where J is the value of the total angular momentum and = is the parity of
the state. If there are multiple states of the same J* symmetry, we distinguish them by appending
their sequential number n: J* (n), where the states are enumerated in the order of increasing
energy. In our notation for electronic configurations, for brevity, we suppress the 1s,,, and
251/, shells, as these remain always doubly occupied for our considered low-lying energy
states.

Since the typical distance of an electron from the nucleus decreases with ¢ due to relativistic
contraction, the basis sets used in our calculations needed to be calibrated to accurately describe
the electronic density near the nucleus at reduced c. The calibrating procedure was carried out
by considering the hydrogen-like ions of N, O, F, and Ne as follows. For a selected ion, the
speed of light was gradually lowered until the 1s; ,, ground state dived into the Dirac sea. The
size of the basis set and the largest exponents were chosen to match the critical values of ¢*
obtained using such a basis set with that predicted by solving the transcendental eq S18.
Additionally, the validity of these basis sets was verified by comparing the energy level
orderings they generated with those predicted by the finite-difference solution of the Dirac
equation. To obtain the correct energy ordering, it required to augment standard basis sets with
additional p basis functions.

For example, for N, the eleven p basis functions in the original uncontracted aug-cc-pV6Z
basis set were augmented to a total of nineteen. The exponents of the new functions were
obtained by subsequently multiplying the largest p exponent by 3. For simplicity, the same
exponents were used for the s basis functions. This procedure was carried out until a match
with the solution to the transcendental eq S18 was obtained, while maintaining the correct
ordering of the energy levels. The resulting modified basis thus included nineteen s and
nineteen p basis functions with the largest exponent being 6.9 x 10%. The basis functions of
higher angular momenta were left unchanged. The same strategy was used for O, F, and Ne,
yielding modified basis sets containing also nineteen s and nineteen p basis functions. The
largest exponents were, respectively, 8.8 x 108 for O, 1.1 x 10° for F, and 1.4 x 10° for Ne.
With such modified basis sets, the critical c* values obtained using the DIRAC19 program
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matched those predicted by eq S17, namely, the critical values are ¢ = ¢3/21.1, ¢ =
Co/18.4,cy =~ ¢¢/16.4,and ¢, = cy/14.8.
To avoid the collapse of the many-electron wavefunction into the Dirac sea,’ the so-called

'no-pair' Hamiltonian!'®!! was used in fully relativistic electronic structure calculations

1 1
Huompair = ) ho@ +3 ) Avy—Ass, (22)
i Y

i#j

where the first term is the sum of the Dirac Hamiltonian hp (i) describing an electron i moving
in the potential of a finite-size nucleus and the second term describes the Coulomb repulsion
between the electrons. The e — e interaction is sandwiched between the projection operators
A, which exclude states from the Dirac sea continuum of hyp,.

We have described the methods with which we computed the low-lying energy states of
several second-period atoms, from nitrogen through to neon, at the nominal and reduced speeds
of light. Below, we present the results of our calculations. We find that as ¢ is reduced, the
energies of the excited states of an atom exhibit various interesting features. Relative to the
energy of the 'nominal' ground state (the ground state at nominal c¢), an excited state energy
may rise or fall in the regime ¢ ~ ¢y/10, leading to several crossings of levels. However, as ¢
is reduced further, all excited states eventually stabilize with respect to the nominal ground
state. Even more remarkably, as ¢ nears c*, the energies of some excited states decrease so
much that these states become the 'new' ground states themselves. This phenomenon happens
in all considered atoms, albeit to different degrees: in F, the change in the nature of the ground
state only lasts for a small interval of ¢ around ¢,/15, whereas in N, O, and Ne, the 'usurping’
excited states remain the ground state of their respective atoms until ¢ reaches c*.

We show below that the electron-configuration picture is sufficient for the qualitative
explanation of these phenomena. The lynch-pins of this exposition are the facts that as ¢
decreases, (i) the 2p, /, energy decreases, (ii) the 2p5/, energy increases, (iii) the 3p, /, energy
falls, but with a slower rate than that of 2p, /,, (iv) the 3p3/, energy rises but with a slower rate
than that of 2p3 ,, and (v) all s, /, energies fall. It is worth stressing that the rise in the energy
of 2p3, (and similarly of all other p3,,) orbitals is only present in multi-electron atoms. In a
hydrogen-like atom, although the fine-structure contribution to a 2p3,, energy increases with
decreasing c, the gross-structure contribution decreases (it is a negative quantity whose
magnitude gets larger), leading to an overall decline of the 2p5,/, energy. In a multi-electron
atom, however, the contractions of the inner 1s; /5, 2512, and 2p, /, orbitals with decreasing ¢
leads to more effective screening of the nuclear charge, thus reducing the magnitude of the
gross-structure contribution to the 2p5,, energy. This in turn means that the 2p;,, energy

increases with decreasing c.
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Figure S4. Energy spectrum of a nitrogen atom as a function of the speed of light (or ). The
critical value of ¢y /c is marked with star (x).

We begin our discussion with the nitrogen atom, describing the changes in its eight lowest
energy states induced by varying ¢ (Figure S4). The 2p3 ground electron configuration of the
nitrogen atom produces five states arising from all possible distributions of three valence
electrons over the six spin-orbitals 2p; /5 11/2, 2P3/2,+1/2 and 2psz/; +3,,. The ground state,
labeled as 4S9 /2 at ¢ = g, is the spin quartet with the total orbital angular momentum L = 0.
The left superscript is the spin multiplicity 2S+1, and the right superscript o indicates an odd
parity.

The excited states of the 2p3 configuration at the nominal ¢ are the spin doublet states 2D°
and 2P°, with orbital angular momenta L = 2 and L = 1, respectively. The 2D° and 2P° states
both split into the components with different values of the total angular momentum quantum
number /. Namely, the *D° state splits into *Dg, and D3 ,, whereas *P° state — into the P,
and *Pg), states. The first excited configuration 2p?3s produces the following quartet states of
even parity: *P; ,, *P3/, and *Ps ;.

Atc < ¢y, the eight states are labeled as (3/2)°(1), (5/2)°, (3/2)°(2), (1/2)°, (3/2)°(3),
(1/2)¢, (3/2)¢, and (5/2)¢, respectively, using the /™ notation. Throughout this discussion,
the nominal ground state (3/2)° (1), which corresponds to *SS/, at nominal c, is used as a
reference; and all state energies are reported as the ratio (E — E(3/2)0)/ |E (3/2)° |

This choice does not imply, however, that the energy of (3/2)°(1) remains unaffected as ¢
decreases. In fact, the dominant electronic configuration of (3/2)°(1) changes twice within the
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range ¢* <c < ¢y. In the range ¢,/13 S ¢ <c,, the dominant configurations are
207 122D3/2, 212203, and 2p3 ;. As c decreases, the energy of the 2p; , orbital decreases
while that of 2ps,, increases'® until, at ¢ S ¢,/13, the 2p3,, configuration becomes

energetically unfavorable and no longer contributes to the ground state. Furthermore, since the
3p3/, orbital is further away from the nucleus than the 2p;,, orbital, the former is less

influenced by relativistic effects than the latter (recall that, at least in the regime of small «, the
spin-orbit splitting scales as n* where n is the principle quantum number). As a result, the
2p1 /22p§ /2 configuration eventually becomes less energetically favorable than, and is thus
replaced by 2p? 122D3/2- This happens at ¢ = ¢,/15. We now discuss the behavior of the four
components of the 2D° and *P° doublets with respect to changing c.

For ¢y/13 < ¢ < ¢y, the state (3/2)°(2) has dominant configurations 2p, /22p§ /2 and
2p? 122D3/2 Whereas the ground state contains the extra 2p3 /2~ Since the 2p3 /2 €nergy increases
with decreasing c, this leads to a slight stabilization of (3/2)°(2) with respect to the ground
state. For ¢y/18 S ¢ < ¢y/13, however, the configuration 2p3 /2 drops off from the ground
state and 2p? 12232 drops off from (3/2)°(2), leading to the destabilization of (3/2)°(2). At
c = ¢y/18, however, an avoided crossing happens between (3/2)°(2) and (3/2)°(3), at
which point the dominant configuration of (3/2)°(2) becomes pr/23p3 /2 and remains so
thereafter. This is to be compared with the ground state, whose composition involves
2p? 123D3/2 and 2p? 122D3/2- Since the 3p3/, energy increases at a much slower rate than that
of 2ps ,, this results in the eventual stabilization of (3/2)°(2) with respect to the ground state.

Next, we discuss the state (5/2)°, whose dominant configuration 2p, /, 2p3 /> remains the
same throughout the variation of c. In the regime ¢,/13.0 S ¢ < ¢y, the (5/2)° energy
remains stable relative to that of the ground state (3/2)°(1) due to the balance between the
2p,2p3,, and 2p3,, configurations in the latter. However, as soon as 2p3, drops off from
(3/2)°(1) atc = c¢y/13, the state (5/2)° starts to destabilize relative to the ground state. This
trend continues past ¢ & ¢,/15, where the ground state composition changes to 2p? 12232
and pr/23p3 /2, until ¢ ~ ¢,/18, at which point correlation effects, especially interactions
with higher-lying states of the same J and parity, force the (5/2)° energy down. This results
in the stabilization of (5/2)° relative to the ground state for ¢ < ¢,/18.

Before describing the behavior of the remaining two states of the 2D° and 2P° doublets, we
note that the (5/2)° and (3/2)°(2) states cross at ¢ = ¢,/3. Atthe nominal ¢, (5/2)° is around
8 cm™! lower in energy than (3/2)°(2). Inthe region ¢y /7 < ¢ < ¢, both states are dominated
by the 2p, /, 2p3 /2 configuration. However, the (3/2)°(2) state, due to its lower value of J,
contains a second dominant configuration, 2p? 122D3/2- As ¢ decreases, this extra configuration
is responsible for the stabilization of (3/2)°(2) relative to (5/2)°.

We now turn our attention to the state (1/2)°. In the regime ¢, /15 < ¢ < ¢y, its dominant
configuration is 2p; /, 2p3 /2> the same as for (5/2)°. As aresult, the (1/2)° energy behaves in
a similar way as that of (5/2)°: relative to the ground state energy, it remains stable for
co/13 S ¢ < ¢y and rises for ¢y/15 S ¢ < ¢y/13. At ¢ = ¢y/15, however, the avoided
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crossing with a higher (nominally) S7/, state causes the configuration of (1/2)° to become
2p? /23P1/2,> which results in (1/2)° rapidly stabilizing with respect to the ground state.

Finally, we discuss the state (3/2)°(3). Forcy/6 S ¢ < ¢, the dominant configuration in
(3/2)°(3) is 2p? /22D3/2 With a small mixture of 2p3 /2 As aresult, in this regime, the energy
of (3/2)°(3) remains stable relative to that of the ground state (3/2)°(1). As ¢ decreases
further, the contributions from 2p3 /2 t0 (3/2)°(3) grows and eventually becomes dominant,
leading to a rapid destabilization of (3/2)°(3) with respect to (3/2)°(1). One would expect
this destabilization to accelerate when ¢ decreases past the value c,/13, whereupon 2p3 2
drops off from the ground state configuration. However, at ¢ = ¢,/13, the avoided crossing
between (3/2)°(3) and the higher lying (3/2)°(4) changes the dominant configuration of
(3/2)°(3) to 2pf/23p3/2. This leads to a rapid downturn of the (3/2)°(3) energy relative to
that of (3/2)°(1). As noted above, at ¢ = c¢,/18, another avoided crossing, this time between
(3/2)°(3) and (3/2)°(2), occurs, changing the nature of (3/2)°(3) to 2p;,, 2p§/2. As ¢
decreases, the 'new' state (3/2)°(3) stabilizes further due to correlation effects.

We have described the behaviors of the four lowest excited odd-parity states as ¢ varies.
We now extend our discussion to the three lowest even-parity states (1/2)¢, (3/2)¢, and
(5/2)¢ states, which at the nominal ¢ correspond to *Py /,, *P3 5, and *Ps . For this purpose,
apart from the observation that the 2p, /, energy decreases while the 2p;/, energy increases as
c is reduced, we also need the fact that the 3s; , energy decreases with decreasing c.'?

We begin with the state (1/2)®. Near the nominal c, it comprises of the 2p12/2351 /25
2p3 /235172, and 2py,,2p3/,3s,/, configurations. As c decreases, the destabilizing 2ps,
orbital causes the last two configurations to drop off, at ¢ = ¢,/10. The remaining
configuration 2p? 123512, Which contains only stabilizing orbitals, causes the (1/2)¢ energy
to decline rapidly, until ¢ = ¢,/19, where it falls below the energy of (3/2)°(1) and (1/2)°
becomes the new ground state of nitrogen.

Similarly, at ¢ = ¢y, (3/2)° and (5/2)¢ are mixtures of the 2p§/2351/2 and
2p1/22D3/2351 /2 configurations, with 2p3 /23512 dropping off at ¢ S ¢¢/15. That these two
states have the same dominant configuration for ¢ S ¢,/15 is evident via the near coincidence
of the two corresponding curves in this regime, see Figure S4. That their dominant
configuration for small ¢ still contains the destabilizing orbital 2p3,, also explains why the

(3/2)¢ and (5/2)¢ energies do not decline as fast as that of (1/2)€. As a result, although their
energies do fall below that of the nominal ground state (3/2)°(1), (3/2)€ and (5/2)¢ lose out
in the competition with (1/2)€ to become the new ground state of nitrogen.
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Oxygen (¢c* = c¢,/18.4)
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Figure SS. Energy spectrum of an oxygen atom as a function of speed of light (or ). The
critical value of ¢y /c is marked with star (x).

In this subsection, we turn to the discussion of the oxygen atom, where we consider five
lowest states of even parity, *P,, °P,, 3P,, 'D,, and 'S, originating from the 2p* ground electron
configuration of oxygen, and the two lowest odd-parity excited states 5S9 and *S{, originating
from the 2p33s configuration (Figure S5). The nominal ground state of oxygen, labeled as 3P,
at ¢ = ¢y and 2°(1) for ¢ < ¢y, is used as a reference.

Just like for nitrogen, we begin by describing the behavior of the nominal ground state with
decreasing c. In the regime ¢, /10 < ¢ < c¢,, 2°(1) comprises predominantly 2p7 ,2p3, and
2p1/2 2p3 2- For ¢ < ¢/10.0, the 2p3/, energy rises high enough so that the contribution of
2p1/2 2p3 /2 becomes subdominant. At ¢ = ¢* & ¢,/18.4, the energies of the stabilizing
orbital 3s;/, and that of the destabilizing orbital 2p3,, become nearly degenerate. As a result,
two p-shell electrons may be promoted to the 3s; /, shell and 2p, /,2p3/, 3512/2 emerges as a
dominant configuration in 2°(1). Note that this promotion involves one 2p, ;, and one 2p3,,
electron due to conservation of the total angular momentum and parity.

Next, we concentrate on the excited states. For ¢y /10 < ¢ < c,, the state 0¢(1), which at
¢ = is labeled °P,, is a mixture of 2pf,2p3, and 2p3,. Since 0°(1) contains a
configuration which has a destabilizing orbital 2p;,, quadruply occupied, in contrast to 2°(1),
in whose configurations 2ps3,, is at most triply occupied, 0°(1) destabilizes relative to the
ground state in this regime. For ¢ < c,/10, the contribution 2p3 /2 1s no longer significant,

leaving only 2p? /22p§ /2 as the dominant configuration in the CI expansion of 0°(1), similar to
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2°(1). This explains the flattening out of the 0°(1) curve in the regime ¢,/13 < ¢ < ¢y/10.
For ¢ < ¢y/13, however, the state 0¢(1) begins to stabilize relative to the ground state. This is
due to the avoided crossing with 0° (2), which introduces the configuration 2p7/,3s7/, to the
CI expansion of 0°(1). The doubly-occupied stabilizing 3s; , orbital causes the 0°(1) energy
to decline rapidly and eventually fall below that of 2¢(1) at ¢ = ¢,/17, making 0¢(1) the new
ground state of oxygen.

We now address the state 1¢, which at ¢ = ¢, is labeled *P;. For ¢,/13 S ¢ < ¢, the
dominant configuration of 1° is 2p; /, 2p3 /2, which means that this state destabilizes relative to
the nominal ground state (the rate of destabilization increases after ¢ =~ ¢,/10, when
2p1/2 2p3 /2 18 no longer a dominant contribution to the ground state). However, at ¢ = ¢,/13,
the energy of 3p, /, is lowered enough so that the configuration 2p? 122D3/23P1/2 emerges in
the expansion of 1°. Notice that the transfer of one 2p5,, electron to the 3p;,, shell is
accompanied by the demotion of another 2p; , electron to the 2p; /, shell in order to conserve
total angular momentum. The stabilizing orbital 3p, /, causes the 1° energy to decrease relative

to and eventually become lower than that of the nominal ground state. However, the
stabilization effect of the singly-occupied 3p, , orbital is not as strong as that of the doubly-
occupied 3s, /, orbital so 1° never becomes the new ground state in place of 0°(1).

Before discussing the remaining states, we note that similar to nitrogen, there occurs an
'early’ crossing between the 1€ and 0¢(1) states of the oxygen atom (Figure S5). At ¢ = ¢y,
0¢(1) lies 65 cm! higher in energy than 1°. At ¢ = ¢,/7, the role of 2p§/2 in 0¢(1) starts to
diminish and since the remaining configuration pr/22p§ /2 of 0°(1) is more energetically
favorable than the 2p; /,2p3 , of 1, 0°(1) crosses below 1°.

We continue our discussion with the state 2°(2) which is labeled 'D, at ¢ = ¢,. In the
regime ¢,/10 S ¢ < ¢, 28(2) is made up of 2p{,,2p3,, and 2p;,2p3 ,, similar to the
ground state 2°(1), albeit with different proportions of the configurations. As ¢ decreases, the
2p1/2 2p3 /2 component becomes more and more pronounced in 2°(2) instead of fading out as
in 2°(1). Atc = ¢¢/10, 2p,, 2p3 /2 drops off from the ground state configuration whereas it
becomes the dominant contribution to 2%(2). These two observations are supported by the
upturn of the 2¢(2) curve relative to the ground state baseline. At ¢ = c¢,/13, however, 2°(2)
participates in an avoided crossing with the 2¢(3) (nominally °P,) state, whereupon its
configuration becomes a mixture of 2;912/2 2p3,23p1/2 and 2p, /22p§ /23D1/2- The presence of
the 3p, /, orbital causes 2°(2) to stabilize relative to the ground state, albeit not strongly enough
to drive it below 2¢(1) before c reaches c*.

The last even-parity state in our current discussion of the oxygen atom is 0¢(2), which is
labeled 'S, at ¢ = ¢,. For ¢y/10 S ¢ < ¢, the state 0°(2) comprises of the configurations
2p? /22p§ /2 and 2p3 /2, With the latter causing the 0°(2) energy to rise relative to that of the
ground state. At ¢ = ¢,/10, however, there occurs an avoided crossing between 0°(2) and the
higher lying 0°(3) state (not included in the study), whereupon the dominant configuration in
0°(2) changes to pr/22p3 /23P3/2- As ¢ decreases further, this configuration becomes more

and more dominant in 0¢(2), thus stabilizing this state relative to the ground state, which, to
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reiterate, comprises mainly of 2p? /22p§ /2- At even smaller ¢, more specifically, at ¢ = ¢y/12,
0°(2) becomes involved in another avoided crossing with the same 0°(3). After this second
avoided crossing, the dominant configuration in 0°(2) is now pr/23512/2, which causes its
energy to fall even more precipitously. The state 0°(2) does eventually fall below the nominal
ground state but this happens very close to the critical c*.

Finally, we discuss the two odd-parity states, 2° and 1°, which, at ¢ = ¢, are labeled >SS
and 3S9, respectively. The evolutionary patterns of these two states as ¢ varies are qualitatively
the same, as evident in the congruence of their corresponding curves. They start out as
combinations of 2p7/,2p3 /23512, 2P1/22P5 /23512, and 2p3 5351 ,. For ¢y /6 S ¢ < o, the
competing lowering of the 3s;/, energy and raising of the 2p;,, energy results in a slight
stabilization of 2° and 1° relative to the ground state. However, for ¢ S ¢,/6, the two
configurations with 2p;,, doubly and triply occupied drop off from the CI expansions of 2°
and 1°, leaving only 2p? 122D3/23S1/2 which hastens their stabilization. In fact, the state 2° is
the first to come below the nominal ground state 2°(1), at ¢ = ¢,/16.5, thus acting as a 'new’
ground state in the interval ¢, /17 < ¢ < ¢y/16.5, after which the role of ground state is taken
over by 0°(1). Although the state 1° does cross the nominal ground state, at c = ¢y/17, its
higher energy at ¢ = ¢* means that it never becomes a ground state of oxygen, unlike 2°.
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Fluorine (¢c* = ¢;/16.4)
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Figure S6. Energy spectrum of a fluorine atom as a function of speed of light (or «). The
critical value of ¢, /c is marked with star (*).

In this subsection, we investigate the behavior of atomic fluorine with varying c, limiting
ourselves to the five lowest states, see Figure S6. At the nominal ¢, the 2p°> ground electron
configuration produces two atomic states with odd parities, P/, and *P;’,. From the 2p*3s
first excited configuration of fluorine we consider three low lying states, which are labeled
*Ps /2, *P3/, and *P; /, at ¢ = cy.

Again, the nominal ground state, labeled (3/2)° for ¢ < ¢y, is used as a reference. It
consists of a single dominant configuration pr /22p§ /2 from ¢ = ¢, all the way down to ¢ =
¢o/14 where next possible configuration, 2p7,,2p3/,3s7/, as required by the conservation of
total angular momentum and parity, emerges as another dominant configuration. This fact may
be understood by noting that 2pZ 122D3/2 3512/2 involves transferring a pair of 2p3, electrons
to the higher 3s;/, shell and is thus only possible if the 3s;/, and 2p;/, energies are close
enough to each other.

We now discuss the odd-parity excited states. In the region ¢,/10 S ¢ < ¢, the state
(1/2)° (nominally 2P1°/2) consists primarily of 2p; /, 2p;3 /25 SO its energy rises relative to that
of the ground state (3/2)°. At ¢ < ¢y/14, however, the 2p;,, and 3ps,, energies come close
enough to one another so that the migration of a 2p3,, electron to the 3p;,, shell happens,
accompanied by the filling of the 2p, /, shell with another 2p;,, electron. As a result, (1/2)°
acquires the component 2p;,2p3,,3ps . which causes its energy to slightly lower relative to
the ground state energy. When c is reduced beyond ¢, /14, the energy gaps between 2p; /, and
351/, and between 3p; /, and 3ps3,, become such that its is possible to promote the two 2p3/,
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electrons to 3s;/, while demoting at the same time the 3p3, electron to 3p; /,. As a result, for
¢ S co/14, the state (1/2)° contains the configuration 2p? 2 3s? /23D1/2- The stabilizing 3s, /,
and 3p; /, orbitals cause a rapid decline in (1/2)° as ¢ approaches c”.

We now describe the even-parity states. The behaviors of (5/2)€ and (3/2)¢ (nominally
*Ps/, and *P; 5, respectively) as ¢ varies are very similar. They both start out as combinations

of 2p$/,2p3,,351/, and 2p,,2p3,351/,. The configuration 2p7,,2p3,,3sy/, is responsible
for the stabilization of these two states relative to (3/2)°. This stabilization is gradual at first
but accelerates after ¢ = c¢y/2, when the energetically unfavorable component
2p1/2 2p§/2 354/, drops off from the CI expansion of (5/2)° and (3/2)°. As c is reduced further
toc =~ cy/14, the configuration 2p? 122D3/2 3s? /2 appears in the expansion of the ground state
and, since the 3s; /, energy is still a little higher than that of 2p5 /,, causes the states (5/2)°

and (3/2)°€ to stabilize even faster. In fact, (5/2)¢ briefly replaces (3/2)° as the 'new' ground
state of fluorine. At ¢ = ¢,/15, however, the 3s;/, energy falls below that of 2p;,, and this

explains the upturn at the rightmost ends of the (5/2)€ and (3/2)€ energy curves.
Finally, we discuss the state (1/2)¢ which is labeled *P; ;, at ¢ = ¢o. For ¢y/6 < ¢ < ¢,

its CI expansion contains the configurations 2p12/22p32, 1235172, 2P12 2p; /238172, and
2p;3 /23512- The stabilization of 2p, , and 3s,,, competes with the destabilization of 2ps,,
resulting in a flat pattern of the (1/2)¢ energy relative to the ground state energy. For ¢ below
Co/6, however, the two configurations with 2p3, triply and quadruply occupied become so
energetically unfavorable that they no longer contribute to (1/2)¢. The remaining
configuration 2p? /22p§ /23812 leads to a rapid downturn of the (1/2)° energy. The rise of the
(1/2)¢ energy relative to the ground state for ¢ < ¢,/16 may again be explained by the
crossing of the 2p3, and 3s, /, orbitals.
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Neon (¢* = ¢,/14.8)

The last atom in our consideration is neon. At the nominal ¢ = ¢,, the closed-shell 2p®
ground electron configuration of neon results in a single atomic state with even parity, 'S,. The
2p°3s first excited configuration gives rise to four excited states with odd parity: 2[3/2]9,
2[3/2]19,%[1/2]8, and ?[1/2]%. The second excited configuration, 2p°3p, generates a manifold
of atomic states with even parity, among which we consider the three lowest states, 2[1/2];,
2[5/2]5, and 2[5/2],. We therefore include a total of eight atomic states of neon in our
discussion, see Figure 3 in the main text. At smaller c, these states are labeled, in the order they
are introduced above, as 0°, 2°, 1°(1), 0°, 1°(2), 1°, 3¢, and 2°¢, respectively.

Again, we use the nominal ground state 0°, corresponding to 'S, at nominal c, as a
reference. In the range ¢, /13 S ¢ < ¢, the 0 state retains its closed-shell configuration of
2p7/22p3);. At ¢ = ¢y/13, the 3s;/, and 2p;,, energies become close enough so that
2p? /22p§ /23512/2 emerges as an appreciable contribution in the CI expansion of 0. Note that
two electrons are transferred from 2p5,, to 3s;,, to preserve total angular momentum and
parity. The appearance of the open-shell configuration 2p /22p§ /23512 /2 in the CI expansion of
the nominal ground state indicates that at c < c¢/16, neon is no longer chemically inert.

The fact that lowering c¢ has the effect of 'activating' the naturally inert neon may also be
understood by considering the state 2°, which corresponds to 2[3/2]9 at ¢ = ¢,. The main
configuration for 2° in the regime ¢,/13 S ¢ < cq is 2p? /2 2p3 /23512 containing the orbital
3512 which has the effect of destabilizing 2°. As discussed in the previous paragraph, in the
vicinity of ¢ = ¢y/13, the ground state 0° acquires the component pr/ZZp:f /23512/2. Since
the 3s; /, orbital still lies above 2p3/, in this regime, the 2° energy falls below that of 0° and
2° briefly becomes the 'new' ground state of neon. However, as ¢ nears ¢, /14, the 2p5,, and
354/, orbitals cross, raising 2° back above 0°.

The state 1°(1) (nominally 2[3/2]9) displays a dependence on varying ¢ similar to that of
2°. In the regime ¢4/13 S ¢ < ¢, its CI expansion is dominated by 2p12/22p§/2351/2 and
2p1/2 2p3 /23512 which stabilize its energy relative to the ground state. However, due to the
second configuration where 2ps, is quadruply occupied, the energy of 1°(1) does not lower
as dramatically as that of 2°. In particular, the 1°(1) energy never falls below the ground state
energy. As ¢ approaches then passes ¢, /14, 3s;/, crosses below 2p;/, and 1°(1) destabilizes
relative to 0¢. The rate of destabilization is reduced as ¢ approach c* due to the appearance of
the configuration 2p? 122D3/2 3512/2 451/, in the expansion of 1°(1).

The last odd-parity state included in our discussion is 0° (nominally 2[1/2]3) which, for
co/10 < ¢ < ¢, comprises mainly of 2p /; 2p3 123812 which, similarly to the case of 1°(2),
causes 0° to destabilize relative to the nominal ground state. The energy of 0° rises until
¢ = ¢o/10, where an avoided crossing with a higher state of the same total angular momentum
and parity (not included in this study) changes the configuration of 0° to 2p? /22p§ 123ds3-
Since the 3ds , orbital destabilizes with decreasing ¢ at a much slower rate than 2p3 /,, the 0°

energy experiences a steep downturn relative to the ground state energy for ¢ < ¢,/10.
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Next, we consider the even-parity excited states 1° and 2¢, which correspond to 2[1/2],
and 2[5/2], at ¢ = c,. These states both start out at as combinations of 2p;/,2p3,,3p;, and
pr/ZZpg 123D3/2- As ¢ is reduced, the 3p, /, energy decreases and the 3p;/, energy increases
at a much slower rate than that of 2p; ,. As a result, the states 1° and 2° generally destabilize
with respect to the nominal ground state 0¢. However, the stabilization pattern of 2¢ displays
a peculiar feature. At ¢ ~ c/13, the configuration 2p? /22p§ /23D3/2 1s replaced by
2p3,2p5,35%/, from the CI expansion of 1° and 2°. As a result, the decrease of the 2€ energy
becomes even more precipitous and at ¢ = ¢,/14, it becomes less than the 0°¢ energy, thus
making 2¢ the new ground state of neon.

Finally, we consider the state 3°, which is labeled 2[5/2]; at ¢ = ¢,. The dominant
configuration in state remains 2p;,,2p3,,3ps/, forall c* S ¢ < c,. As aresult, it destabilizes
continuously relative to the ground state, albeit not rapidly enough for it to cross the nominal
ground state anywhere in the interval ¢* S ¢ < ¢,.
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Section IV. Effect of varying speed of light on electronic structure of water
and ammonia

In relativistic picture, the states of atoms and molecules are described by four component

Dirac spinors y = (zpff,lpf ,1p§‘,zp§ )T, where L and S correspond to the large and small
components of the spinor (not to be confused with the total orbital angular and spin momenta),
and a and f describe spin degrees of freedom. The spinor components are in general complex
numbers, so a general collection of four such components has eight degrees of freedom.
However, since the spatial and spin degrees of freedom are coupled, the symmetry of the Dirac
spinors is described by the double groups, where the total spinor transforms under the fermion
irreducible representations spanned by the half-integer spin functions.” Furthermore, the real
and imaginary parts of each spinor component are spanned by boson irreducible
representations, which are the irreducible representations of conventional single point groups.
Therefore, each spinor component can be described by scalar functions, or orbitals.

The symmetries of the ammonia and water molecules are described by the C3,, and C,,
double groups. For example, exploiting the symmetry of the Dirac Hamiltonian, it can be
shown that in the C,, double group, the real and imaginary parts of the large component
transform under (a;, a,) and (b;, b,) boson irreducible representations for f and zpf ,
correspondingly.® At nominal ¢, molecular orbitals of ammonia and water are spanned only by
a real or imaginary part of a single component, neglecting the vanishing contributions from
other components. Therefore, these orbitals are described by a single irreducible representation,
in compliance with results from non-relativistic calculations. At decreased c, however, the
molecular orbitals are spanned by multiple real and imaginary parts of the spinor components.
Therefore, no longer a single irreducible representation can be assigned to molecular orbitals.
For this reason, the symmetry labels in MO diagrams of ammonia and water are presented only
at nominal speed of light, but not for smaller c.

In the MO diagram for water (Figure 3a-c in the main text), the ¢ and ¢* linear
combinations of 1s orbitals of two hydrogen atoms have the a; and b, symmetries. For oxygen
at nominal c, the atomic orbitals 2s;,, and 3s;,, have the symmetry of a; whereas the 2p
orbitals have the symmetries a,, by, and b,. In the ammonia MO diagram (Figure 3d-f), the
three linear combinations Y, Y¥,, and 3 of 1s orbitals belonging to three hydrogen atoms
have a, and doubly degenerate e symmetries. At nominal ¢, the 2s; , and 3s, /, atomic orbitals
of nitrogen have symmetry a,, whereas the 2p orbitals have symmetries a; and e. In atomic
calculations of oxygen and nitrogen, the 3s;,, spinor was included in the average-of-
configuration Dirac-Hartree-Fock method to assess effect of stabilization of higher lying
spinors on molecular bonding. For clearer comparison of diagrams, we keep the energy unit
constant and equal to those at nominal c. To better demonstrate the changes in the electronic
structure of molecules at the decreased speeds of light, we calculated the radial density
distribution in DIRAC19%° for each molecular orbital of water and ammonia as
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p(r) =f do siand<p p(r)r?, (23)

0 0

where p(r) = |W(r)|? is the electron density and W(r) is the MO wavefunction.
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Figure S7. Changes in equilibrium geometry of a water molecule induced by variation of ¢
from nominal to critical value (marked with x on the x-axis): c;= 7.46 (or equivalently c,/cg
= 18.4). The changes in the O-H bond distance and the H-O-H bond angle are shown as
fractional changes.
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Figure S8. Radial density distributions (RDDs) of four MOs of water at different values of c.
The oxygen atom is put to the coordinate origin. The MOs are given in the increasing energy
order: dark blue solid line (HOMO-3), dark red dashed line (HOMO-2), dark green dotted line
(HOMO-1), and magenta dot-dashed line (HOMO). For clearer comparison, distance is given
in unit of unscaled nominal bohr radius.
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Ammonia
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Figure S9. Changes in equilibrium geometry of an ammonia molecule induced by variation of
¢ from nominal to critical value (marked with * on the x-axis): cy= 6.5 (or equivalently ¢, /ci
= 20.9). The changes in the N-H bond distance and the H-N-H bond angle are shown as
fractional changes.
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Figure S10. Radial density distributions (RDDs) of four valence MOs of ammonia at different
values of the speed of light c. The nitrogen atom is put to the coordinate origin. The MOs are
given in the increasing energy order: dark blue solid line (HOMO-3), dark red dashed line
(HOMO-2), dark green dotted line (HOMO-1), and magenta dot-dashed line (HOMO). For
clearer comparison, distance is given in unit of unscaled nominal bohr radius.
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Section V. Dipole moments of water and ammonia at the nominal,
intermediate, and near critical values of the speed of light

The dipole moments of water and ammonia were calculated at the selected four-component
Dirac-Hartree-Fock optimized geometries — W1 (¢ = ¢q, 7on = 0.939 A, 0 =106.3°), W, (¢ ~
Co/13.7, ron = 1.077 A, 6 = 89.0°), and W3 (¢ ~ ¢,/17.8, ron = 1.244 A, 6 = 180.0°) — for
water, and A1 (¢ = ¢q, ' = 0.997 A, 0 = 108.1°, dihedral angle = 116.8°), Az (c = ¢y/17.8,
i = 1.143 A, 6 = 87.0°, dihedral angle = 88.1°), and A3 (¢ ~ ¢/20.6, rnu = 1.180 A, 6 =
120.1°, dihedral angle = 179.8°) — for ammonia. The values of the bond distances are given
unscaled for varying c. The change in the dipole moment at varying ¢ comes predominantly
from the change in the molecular geometry induced by increased relativistic effects, and the
relativistic correction to the electronic structure is considered to be minor. Therefore, the dipole
moments were calculated in the non-relativistic approximation with, however, included scalar
relativistic effects. The calculations were performed in MOLPRO.!3 The dipole moments were
calculated using the internally contracted multireference configuration interaction (IC-MRCI)
method with the single and double excitations with the aug-cc-pCV6Z basis set. The reference
complete active space self-consistent field (CASSCF) wavefunctions for the MRCI step were
obtained by including four electrons and eight orbitals in the active space: CASSCF(4,8). The
electrons of the core 1a; MO of water (ammonia) were not included in the active space but
were correlated as well in the MRCI calculations (no frozen core).

At nominal c, our calculated dipole moment of 1.872 D compares well with the measured
value of 1.855 D.!"* At the 14-fold reduction of ¢ (¢ = ¢y/13.7) the bond angle in water
contracts from 106.3° (104.5°) to 89.0°. This should result in an increased dipole moment;
indeed, our calculations for W predict the dipole moment of 2.138 D. At near critical c, the
water becomes linear and therefore the dipole moment becomes zero. Similar changes are
observed for the dipole moment of ammonia. This is due to similar relative changes in energies
of the 2p4 /2, 2p3 /2, and 35, /, atomic orbitals of nitrogen and oxygen at reduced speed of light.
For A, our calculated dipole moment of 1.482 D is slightly different from the measured value
of 1.561 D." This discrepancy can be explained by the deviation of i = 0.997 A and 6 =
108.1° of Ay from the accepted nu = 1.012 A and 6 = 106.7°. Indeed, the dipole moment of
1.526 D calculated with the accepted values ~u and 6 is much closer to the measured moment.
At the smallest value of 8 = 87.0° (¢ = ¢,/17.8), the dipole moment is increased to 2.028 D.
At ¢ = ¢¢/20.6, ammonia becomes trigonal planar with the zero net dipole moment.
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