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1.  INTRODUCTION 

Dispersal of reproductive propagules (e.g. larvae or 
spores) plays a fundamental role in the population 
dynamics of many marine species, particularly those 
with sessile or sedentary adults. Suitable habitat for 
these species is often patchily distributed, resulting in 
discrete subpopulations demographically connected 
by pelagic propagules (Cowen & Sponaugle 2009). 
Metapopulation theory has proven to be a powerful 
tool for describing the dynamics of such populations, 

providing insight into how dispersal among habitat 
patches influences persistence and extinction risk 
(Grimm et al. 2003, Sale et al. 2006, Dedrick et al. 
2021). However, a complete understanding of meta-
population dynamics requires consideration of more 
than demographic connectivity. Spatial heterogene-
ity in factors affecting patch quality (e.g. resource 
availability, predation pressure) can lead to variation 
in rates of recruitment and reproduction, altering 
local dynamics and patch contribution to the broader 
metapopulation (Caselle et al. 2003, White & Sam-
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houri 2011, Burgess et al. 2014). As marine environ-
ments become increasingly impacted by anthropo-
genic activities, knowledge of the drivers of hetero-
geneity in patch quality will be essential for the 
effective management of threatened populations 
across spatial scales (Gouhier et al. 2013). 

Many determinants of local habitat conditions are 
themselves influenced by spatial processes (Massol 
et al. 2011, Guichard 2017). For example, a growing 
body of research has highlighted how the transport of 
non-living resources (e.g. detrital material, inorganic 
nutrients) can modify local environments via effects 
on productivity and trophic interactions (Polis et al. 
1997, Loreau et al. 2003, Spiecker et al. 2016). Meta-
ecosystem theory, which combines concepts from 
metapopulation and metacommunity theory (organ-
ismal movement) with landscape ecology (spatial 
flows of materials), provides a unified framework for 
describing these dynamics (Loreau et al. 2003, Gou-
nand et al. 2018). In contrast to metapopulations, 
which typically arise from demographic connectivity 
among similar habitats, material flows can couple dis-
tinct types of ecosystems. Most empirical meta-
ecosystem studies focus on these cross-ecosystem ex -
changes (Sitters et al. 2015, Peller et al. 2021), such as 
the well-documented transport of macrophyte wrack 
from kelp or seagrass beds to beaches (Hyndes et al. 
2022). However, theoretical meta-ecosystem models 
predict that patterns of material flows can alter local 
dynamics (for example, by creating patches that are 
nutrient sources or sinks) even without underlying 
ecosystem heterogeneity (Loreau et al. 2003, Gravel 
et al. 2010, Marleau et al. 2014). To date, few of these 
models have been applied to natural systems, result-
ing in a disconnect between empirical and theoretical 
meta-ecosystem research and a lack of concrete 
examples of how metapopulation dynamics may be 
altered by material flows among their component 
patches (Gounand et al. 2018, Peller et al. 2021). Here, 
I began to address this gap by using a combination of 
mechanistic modeling and statistical analyses to 
explore the effects of detrital transport within a single 
marine ecosystem: kelp forests. Specifically, I investi-
gated whether the metapopulation dynamics of a 
focal species (giant kelp) were influenced by detrital 
exchange among patches and, if so, how this ad di -
tional form of connectivity mediated the effects of 
demographic connectivity on the metapopulation. 

Kelp forests are highly productive and diverse eco-
systems found on temperate coasts throughout the 
world. Perhaps the most iconic kelp forests are those 
formed by the foundation species giant kelp Macro-
cystis pyrifera. Giant kelp strongly regulates the 

structure and function of kelp forest communities 
(Miller et al. 2018, Castorani et al. 2021), and its pop-
ulation dynamics are therefore of both ecological and 
conservation interest. Like many marine macroalgae, 
giant kelp produces microscopic spores that are pas-
sively transported by currents (Schiel & Foster 2015). 
Although these spores have short pelagic durations 
(settling within hours to days of release; Gaylord et al. 
2006) and typically travel no more than a few kilo-
meters (Reed et al. 2004, Gaylord et al. 2006), spore 
dispersal can still be sufficient to connect neighbor-
ing reefs (Reed et al. 2006). In southern California, 
researchers have found relationships between demo-
graphic connectivity (spore dispersal) and kelp patch 
colonization–extinction dynamics, which, together 
with genetic analyses, suggest that kelp forests in this 
region function as a metapopulation (Alberto et al. 
2010, Castorani et al. 2015, 2017). Connectivity 
among patches within this metapopulation appears to 
promote kelp colonization and persistence; however, 
local factors could potentially influence the magni-
tude of these effects (Castorani et al. 2015). 

One major local driver of kelp dynamics is herbi-
vory. Overgrazing by sea urchins can denude reefs of 
kelp and inhibit recolonization, resulting in ‘urchin 
barrens’ (Ling et al. 2015). Whether reefs exist in kelp 
forest or barren states can depend on the availability 
of detrital material, as urchins generally function as 
cryptic detritivores when detritus (their preferred 
food source) is plentiful but switch to destructive 
grazers of living kelp when demand for detritus ex -
ceeds supply (Harrold & Reed 1985, Rennick et al. 
2022). Most detrital material in kelp forests is drift 
kelp (hereafter referred to as drift) produced by giant 
kelp itself (Harrold & Reed 1985) — a consequence of 
this species’ remarkably high productivity and turn-
over rates (Rassweiler et al. 2018). This introduces the 
potential for self-reinforcing feedbacks, whereby 
higher kelp biomass reduces grazing pressure by in -
creasing drift production (Karatayev et al. 2021). 
Under such conditions, recruitment of externally pro-
duced spores could promote kelp persistence in well-
connected patches by increasing kelp population size 
and thus local drift supply. However, these dyna mics 
assume that locally produced drift is retained within a 
patch. While rates of drift export from kelp forests are 
generally poorly quantified, the large in puts of drift 
observed in adjacent ecosystems (e.g. >500 kg wet wt 
m–1 yr–1 on southern California beaches; Dugan et al. 
2011) indicate that export could be fairly high (Krum-
hansl & Scheibling 2012). If some of this exported drift 
is transported to other kelp patches, local drift avail-
ability could depend not only on local production but 
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also on input from neighboring patches. Although 
this has not been explicitly tested in Macrocystis for-
ests, a study of Ecklonia radiata-dominated reefs in 
Australia found that urchins were subsidized by drift 
that was produced on reefs over 2 km away (Vander -
klift & Wernberg 2008), suggesting that patch-to-
patch exchange of drift is possible and could play a 
key role in local kelp dynamics. 

In this study, I used process-based and statistical 
models to ask how spore and drift connectivity in -
fluence kelp–urchin interactions and kelp metapop-
ulation dynamics in southern California kelp forests. 
First, I built and analyzed an ordinary differential 
equation (ODE) model to explore the theoretical 
 conditions under which connectivity of kelp spores 
and/or drift can promote the kelp forest state. I then 
validated my model using empirical data collected 
by the Santa Barbara Coastal Long Term Ecological 
Re search site (SBC LTER) and Channel Islands 
National Park Kelp Forest Monitoring Program 
(CINP KFMP) and tested its sensitivity to connectiv-
ity parameters to gain insight into the mechanisms 
underlying ob served kelp metapopulation dynamics. 
The results of these analyses suggest that by increas-
ing the availability of alternative food for urchins, the 
exchange of drift among kelp patches reduces graz-
ing on new recruits and adult plants and can therefore 

play a significant role in local and metapopulation-
scale kelp forest dynamics. 

2.  ODE MODEL 

2.1.  Model description 

In order to mechanistically explore the effects of 
kelp spore and drift connectivity on kelp forest eco-
system state, I built an ODE model of giant kelp 
(meta) population dynamics (Fig. 1). In this section, 
I describe the main components of this ODE model, 
starting with the dynamics of a single patch and 
then introducing a 2-patch system. Details on estima-
tion of model parameters are provided in Table S1 in 
the  Supplement at www.int-res.com/articles/suppl/
m726p049_supp.pdf. 

2.1.1.  Giant kelp stage structure 

Giant kelp has a heteromorphic life cycle. A micro-
scopic haploid gametophyte generation alternates 
with canopy-forming diploid sporophytes, each of 
which consists of rope-like buoyant fronds attached 
to the sea floor by a single holdfast. Following Detmer 
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Fig. 1. Conceptual diagram of the ordinary differential equation (ODE) model. Adult sporophytes (A) produce spores that de-
velop into gametophytes (G), which in turn produce juvenile sporophytes (J) that mature into the next generation of adult spo-
rophytes. Urchins consume drift (either locally produced or imported) but begin to graze all kelp life stages if drift supply is 
limited. (a) Single-patch model with constant external supply of spores and/or drift. (b) Two-patch model with exchange of 
spores and drift between patches. Image credits: Jane Thomas (giant kelp), Tracey Saxby (sea urchin); Integration and Applica- 

tion Network, University of Maryland Center for Environmental Science (https://ian.umces.edu/imagelibrary/)
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et al. (2021), I accounted for this complex life cycle by 
including 3 life stages in my model: gametophytes, 
juvenile sporophytes (defined as sporophytes with 
fronds <1 m tall), and adult sporophytes. 

Gametophytes, G, arise from externally and locally 
produced spores. External spores enter the patch at a 
rate εs (see Table 1 for all ODE model parameters and 
their values). Spores are also produced locally by 
adult sporophytes at a per-biomass rate ρ (Neushul 
1963). I calculated total patch biomass (kg adult kelp 
m–2) as the product of biomass per kelp individual, b 
(representing average individual biomass across 
adults in the patch) and the density of adult sporo-
phytes, A (ind. m–2). Thus, the total rate of local spore 
production is given by ρbA. A fraction ls of these 
spores are transported out of the patch, while the re -
maining fraction (1 – ls) are retained. Gametophytes 
recruit to the sporophyte stage at a per capita rate rG 
and experience background mortality at a density-
dependent rate µG (Reed 1990), meaning their per 
capita background mortality rate is µG G. Finally, they 
experience mortality from sea urchin herbivory at a 
per capita rate HG (described in Section 2.1.2 below). 
The change in gametophyte density over time is 
therefore given by:  

                                                                                           (1) 

Juvenile sporophytes, J, arise from the recruitment 
of gametophytes (rG G ). Given that my model tracks 
densities of individuals, and it takes one male and one 
female gametophyte to produce a single sporophyte, 
I multiplied this rate by 0.5 (male and female gameto-
phytes appear to occur in equal ratios; Reed 1990). 
Juvenile sporophytes mature into adults at a rate rJ. 
They experience background mortality at a density-
dependent rate µJ and urchin herbivory at a rate HJ: 

                                                                                           (2) 

The density of adult sporophytes, A, increases at a 
rate dependent on juvenile maturation as well as the 
availability of limiting resources (e.g. benthic space and 
light; Graham et al. 1997) in the patch. The maximum 
adult density the patch can support is given by the car-
rying capacity K. Adults experience background mor-
tality at a rate µA and urchin herbivory at a rate HA. The 
change in adult density over time is thus described by: 

                                                                                           (3) 

In this formulation, density-dependent mortality 
occurs during the transition from the juvenile to adult 

sporophyte stage (e.g. if adults are at carrying capac-
ity, maturing juveniles die due to lack of space, light, 
or other resources), and additional adult background 
mortality — such as death at end of lifespan — is as -
sumed to be density-independent. For all life stages, 
mortality from disturbance was modeled by reducing 
initial densities (see Section 2.2). 

Adult sporophytes produce drift (e.g. senesced 
blades and fronds) at a per-biomass rate, d. This rate is 
multiplied by patch biomass density bA to obtain the 
total rate of drift production (I assumed that drift pro-
duction by juvenile sporophytes is negligible). Simi-
lar to spores, a fraction ld of this drift is exported from 
the patch, while a fraction (1 – ld) is retained. Exter-
nally produced drift kelp enters the patch at a rate εd. 
Thus, the rate of drift supply from external and local 
sources can be expressed as: 

                                                                                           (4) 

2.1.2.  Urchin grazing 

In my model, sea urchin density (u) is assumed con-
stant, as urchin populations typically fluctuate over 
longer time scales than kelp and exhibit sporadic 
recruitment dynamics dependent on large-scale cli-
matic conditions (Shears et al. 2012, Okamoto et al. 
2020). I allowed urchins to feed on both drift (detriti-
vory) and live kelp (herbivory). I assumed that urchins 
consume drift at a constant per capita rate gd; thus, 
the total rate of drift consumption is gdu. Urchins con-
sume living adult sporophytes, juvenile sporophytes, 
and gametophytes at maximum per capita rates g, 
qJ g, and qG g, respectively; the coefficients qJ and qG 
scale the maximum grazing rates on juvenile sporo-
phytes and gametophytes relative to that of adults, 
with values greater than one accounting for the 
higher vulnerability of early life stages to herbivory 
(Dayton et al. 1984). 

There is strong evidence that urchins preferentially 
consume drift but begin to actively graze live kelp 
when drift supply becomes limited (Harrold & Reed 
1985, Rennick et al. 2022). This behavioral switch 
has previously been modeled using a Type IV func-
tional response (Koen-Alonso 2007) in which the per 
capita rate of urchin herbivory declines with increas-
ing drift availability (Karatayev et al. 2021). Recent 
work suggests that the ratio of drift production to 
urchin drift consumption (rather than the absolute 
amount of drift per se) is a strong determinant of 
 grazing pressure on living kelp (Rennick et al. 2022). 
I therefore modeled urchin behavior (i.e. the pro -
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portional change in herbivory rate relative to the 
maximum rate, g) using a function B(u,A), which 
incorporates this ratio into a modified Type IV func-
tional response (Eq. 5; note that unlike Karatayev et 
al. 2021 and Rennick et al. 2022, which focused on the 
scale of individual reefs, here I consider both local 
and external drift production). When there are no 
urchins, B(u,A) = 0. For urchin densities >0, B(u,A) 
depends on the ratio of rates of drift production and 
consumption, as well as a scaling factor p that con-
trols how rapidly urchins switch to detritivory with 
increasing drift availability (Fig. S1). 

       (5) 

Rates of urchin herbivory on each kelp life stage are 
calculated as the products of the maximum rates of 
herbivory and the value of behavioral function B(u,A): 

                                  HG = qG guB(u,A)                              (6) 

                                   HJ = qJguB(u,A)                               (7) 

                                     HA = guB(u,A)                                (8) 

When urchins are present and there is no drift pro-
duction, B(u,A) = 1 and herbivory occurs at its maxi-
mum rate. As the ratio of drift production to con-
sumption increases, urchins are increasingly satisfied 
by feeding on drift, and B(u,A) (and thus herbivory) 
declines towards zero. 

2.1.3.  Two patches and patch connectivity 

To extend my model to 2 patches, I kept local dyna -
mics the same but altered the external input terms to 
allow for connectivity between patches (Fig. 1b). The 
fractions of spores and drift that leave patch i and suc-
cessfully disperse to patch j are given by the connec-
tivity parameters cs (for spores) and cd (for drift). Both 
cs and cd range from 0 (no connectivity be  tween 
patches) to 1 (everything that leaves one patch goes 
to the other). I assumed that imported spores and drift 
are evenly distributed in the recipient patch and that 
both patches have the same area, so rates of spores 
and drift settlement are equal to the product of pro-
duction rates in the source patch (which are per m2; 
Table 1) and the fraction of this production trans-

ported to the recipient patch. Thus, import rates in 
patch i are calculated as cslsρbAj for spores and 
cdlddbAj for drift. The full equations for patch i  in the 
2-patch model are shown in Eqs. (9) to (12). 

                                                                                           (9) 

                                                                                         (10) 

                                                                                         (11) 

                                                                                                 

                                                                                               (12) 

2.2.  Model analyses and results 

To investigate the effects of spore and drift connec-
tivity on kelp forest–urchin barren dynamics, I first 
used the single patch version of the ODE model to 
evaluate how external spores and drift influence the 
system’s stability. Here and throughout the study, 
I simulated scenarios in which there was external 
input/connectivity of (1) spores only, (2) drift only, 
and (3) spores and drift together. This allowed me to 
distinguish the effects of spores versus drift on system 
dynamics and to bracket a range of possible con -
nectivity scenarios, from fully decoupled (spores or 
drift only) to fully coupled (spores and drift). I calcu-
lated the equilibrium abundance of adult kelp as a 
function of urchin density and external supply of 
spores and/or drift. Rates of external input ranged 
from minima of zero to maxima equal to the equilib-
rium export rates of an isolated, urchin-free source 
patch (i.e. lsρbA*source for spores and lddbA*source for 
drift, where A*source is the equilibrium adult sporo-
phyte density in the source patch). Thus, these simu-
lations can be thought of as an island–mainland sce-
nario in which varying fractions of spores and drift 
produced in a fixed ‘mainland’ patch disperse to a 
dynamic ‘island’ patch. 

The model exhibits a region of bistability in which 
both high and low kelp population states can exist at 
the same density of urchins (Fig. 2). If kelp density is 
initially high, the system equilibrates at the high kelp 
state because urchins are satisfied by drift supply; 
however, if kelp density is initially low or declines, 
starving urchins exert strong grazing pressure that 
keeps the kelp population in the low (barren) state. 
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Fig. 2. Effect of urchins and external input of spores and drift kelp on equilibrium kelp density. The x-axis is the density of urchins 
(u) and the y-axis is the equilibrium density of adult kelp sporophytes (A*). Solid and dashed lines indicate stable and unstable 
equilibria, respectively. Line color represents external supply rate of (a) spores (εs), (b) drift (εd), or (c) both spores and drift. External 
inputs are expressed as a fraction, f, of export rates from an isolated urchin-free source patch at equilibrium; i.e.εs = flsρbA*source 
and εd = flddbA*source, where f is equal to 0 (dark blue), 0.2 (light blue), or 1 (red). In (a), there is no input of drift (εd = 0 in all 
cases), and in (b) there is no spore input (εs = 0). Equilibria and their stability were calculated using Mathematica v13.0

                               Description                                                                                                                                Units                          Default  
                                                                                                                                                                                                                            value 
 
State variable 
G                            Density of giant kelp gametophytes                                                                               ind. m–2                                          – 
J                              Density of juvenile giant kelp sporophytes                                                                  ind. m–2                            – 
A                             Density of adult giant kelp sporophytes                                                                        ind. m–2                            – 
t                              Time                                                                                                                                             Days                                – 
Parameter 
rG                                         Gametophyte maturation rate                                                                                               d–1                                               0.05 
µG                                        Gametophyte mortality rate                                                                                               G–1 d–1                                           0.6 
rJ                                           Juvenile sporophyte maturation rate                                                                                   d–1                               0.004 
µJ                                          Juvenile sporophyte mortality rate                                                                                   J–1 d–1                            0.01 
K                            Adult sporophyte carrying capacity                                                                                ind. m–2                              1 
µA                                         Adult sporophyte mortality rate                                                                                            d–1                               0.002 
b                             Biomass per adult sporophyte                                                                                          kg ind.–1                                           7 
ρ                             Adult sporophyte spore production rate                                                                 spores kg–1 d–1                                10 
d                             Adult sporophyte drift production rate                                                                  kg drift kg–1 d–1                  0.024 
u                             Urchin density                                                                                                                       ind. m–2                                    Varied 
gd                            Rate of drift consumption by urchins                                                                       kg drift u–1 d–1                  0.0011 
g                             Max. grazing rate on adult sporophytes                                                                     ind. u–1 d–1                                  0.025 
qG                           Grazing vulnerability of gametophytes relative to adults                                             –                                  1.2 
                                (max. grazing rate = qG g) 
qJ                                         Grazing vulnerability of juvenile sporophytes relative to adults                                –                                  1.2 
                                (max. grazing rate = qJ g) 
p                             Reduction in grazing (relative to max.) if rates of drift production                            –                                  0.1 
                               and consumption are equal 
εs

                                          Rate of external spore inputa                                                                                       spores m–2 d–1                           Varied 
εd

                                         Rate of external drift inputa                                                                                        kg drift m–2 d–1                 Varied 
ls                                           Fraction locally produced spores that leave patch                                                           –                                  0.5 
ld                                           Fraction locally produced drift that leaves patch                                                             –                                  0.5 
cs

                                          Fraction spores leaving patch i transported to patch j b                                                  –                              Varied 
cd

                                         Fraction drift leaving patch i transported to patch j b                                                      –                              Varied 
aParameter appears only in 1-patch model; bParameter appears only in 2-patch model

Table 1. Ordinary differential equation (ODE) model state variables and parameters. Details on estimation of parameter values  
are provided in Table S1
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External input of either spores or drift decreases the 
bistable region and shifts it to higher urchin densities, 
but this effect is smaller for spores (Fig. 2a) than for 
drift (Fig. 2b). High enough levels of drift input cause 
the region of bistability to disappear, and kelp state 
depends only on urchin density. Although drift input 
expands the region where only non-zero kelp den-
sities are stable, drift alone does not enable an ini-
tially barren patch to recover (A* = 0 is always an 
unstable equilibrium in Fig. 2b) because external 
spores are needed for kelp to recolonize. These more 
subtle effects of spores are apparent when there is 
external input of both spores and drift (Fig. 2c). While 
the system’s dynamics are generally similar to the 
drift-only case, the high kelp state stabilizes at higher 
kelp densities and there is no longer an unstable zero-
kelp equilibrium. 

The range of urchin densities over which the system 
exhibits bistability is also sensitive to local para -
meters (Figs. S2 & S3). For in stance, increasing bio-
mass per kelp plant (b) allows kelp to persist at higher 
urchin densities due to greater local drift and spore 
production, while reducing drift retention (ld) (e.g. 
representing patches with low substrate complexity; 
Randell et al. 2022) causes the barren state to be 
stable at lower urchin densities (Fig. S2). However, 
regardless of local conditions, ex ternal drift always 
had a larger effect on kelp stability than external 
spore input (Fig. S3). 

Having considered a constant external supply of 
spores and drift in the 1-patch model, I next used the 
2-patch model (Fig. 1b) to study the effects of feed-
backs between metapopulation dynamics and the 
supply of spores and drift. I first explored how the 
level and type of connectivity influence kelp recovery 
from disturbance events (e.g. winter storms; Reed et 
al. 2011) across a range of urchin densities. Here, con-
nectivity is represented as the fractions of spores (cs) 
and drift (cd) transported out of one patch that enter 
the other. For simplicity, I assumed cs and cd were the 
same for both patches (connectivity is symmetric) and 
that the fractions of spores and drift leaving a patch (ls 
and ld, respectively) were the same for both patches. 
Such a scenario is unlikely to apply to natural reefs; 
however, it is useful for developing a basic theoretical 
understanding of this model’s dynamics. I again con-
sidered spore only (cd = 0, 0 ≤ cs ≤ 1), drift only (cs = 
0, 0 ≤ cd ≤ 1), and both spore and drift (0 ≤ cs ≤ 1, cd = 
cs) connectivity scenarios. Both patches were given 
identical parameters, and I focused on the dynamics 
of Patch 1 (hereafter referred to as the focal patch). 

For each combination of connectivity values and 
urchin densities, I determined whether (1) only the 

high kelp state was stable (kelp recovers even if 
starting from low initial conditions; i.e. A0 = 0), (2) 
only the barren state was stable (kelp goes to the 
barren state even if starting at high initial con-
ditions; i.e. A0 = A0high), or (3) the system was bis-
table. When the system was bistable, I calculated 
the lowest initial kelp density (representing kelp 
density immediately following a disturbance) that 
the focal patch could tolerate before it failed to 
recover to the high state within 2000 d. The 2000 d 
cutoff was chosen both to reduce computational 
time and because longer recovery times are less rel-
evant for kelp forests, where disturbance fre quency 
is generally <5 yr (1825 d; Byrnes et al. 2011). For 
each value of A0 tested, I calculated the correspond-
ing initial densities of G and J as a function of dis-
turbance severity (measured as A0 / A0high, the pro-
portional reduction in adult density if the patch had 
been at the high kelp equilibrium pre-disturbance). 
I assumed these early life stages were also disturbed, 
but to a lesser degree than adult sporophytes (see 
Table S2 for initial conditions used). I repeated 
these analyses for local disturbances (affecting only 
the focal patch; non-focal patch starts at high initial 
conditions) and regional disturbances (affecting 
both patches equally; both patches have the same 
initial conditions). I recorded the state of both 
patches at the end of each simulation. All simula-
tions here and in the rest of the study were per-
formed using deSolve (v1.31; Soetaert et al. 2010) in 
R (v4.0.5; R Core Team 2021). 

The effect of connectivity on kelp recovery from 
disturbance depended on both the type of connectiv-
ity and the scale of the disturbance event (Fig. 3). 
Exchange of drift (and, to a lesser extent, spores) 
between patches increased the maximum urchin den-
sity for which kelp could exist in the high state (upper 
black lines in Fig. 3). Below this maximum urchin 
density, connectivity — especially of drift — allowed 
kelp to withstand greater levels of disturbance with-
out tipping to the barren state; however, the magni-
tude of this effect differed between local and regional 
disturbances. For regional disturbances, higher con-
nectivity was effectively the same as greater self-
retention, as the 2 patches were identical. Conse -
quently, connectivity could not promote recovery 
from disturbances that fully removed kelp from the 
system. When disturbances were localized, the undis-
turbed patch remained a source of spores and/or 
drift. Connectivity therefore expanded the range of 
urchin densities for which kelp recovery was always 
possible, with drift again having a larger effect than 
spores (Fig. 3a–c). 
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Local disturbances produced more complex inter-
patch dynamics than regional disturbances. When the 
system was bistable, a disturbance that tipped the 
focal patch into the barren state could also cause the 
undisturbed neighboring patch to collapse due to a re-
duction in spore and/or drift supply (Fig. S4a). For the 
case with only spore connectivity, these dynamics oc-
curred at all urchin densities between the upper 
boundaries of the bistable region in the absence and 
presence of connectivity (dashed and upper solid 
black lines in Fig. 3a). For cases with drift connectivity 
(Fig. 3b,c), an additional scenario emerged in which 
the region where only the high kelp state was stable 
extended past the upper bistability boundary of an iso-
lated patch. Here, initially high drift input from the un-
disturbed patch ensured that the recovery of the dis-
turbed patch was rapid enough for the undisturbed 
patch to persist, and both were able to return to the 
high kelp state (Fig. S4b). 

In kelp forests, many disturbance events (e.g. storms, 
marine heatwaves) occur over spatial scales larger 
than the distances between connected kelp patches. 
Such events are better represented in my model as re-
gional disturbances (Fig. 3d–f). I therefore explored 
the system’s ability to recover from re gional disturb-
ance in greater detail by investigating how spatial vari-
ation in urchin density (e.g. due to differences in re-
cruitment; Okamoto et al. 2020) altered the effects of 
connectivity on patch recovery. I ran simulations with 
various combinations of urchin densities in Patch 1 
and Patch 2 and, for each combination, calculated the 
stability of high kelp and barren states in each patch 
(indicating recovery potential; see above). I repeated 
this process with no connectivity between the patches 
and with high connectivity of spores and/or drift. 

When patches were interconnected, reducing the 
density of urchins in one patch relative to the other 
could benefit kelp populations in both patches (expan-
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Fig. 3. Impacts of disturbance on 2 kelp patches with varying levels of connectivity and urchin densities. Connectivity is either 
of spores only (cs, left column), drift only (cd, middle column), or both (cs = cd, right column). Purple denotes regions where 
both patches are always in the barren (low kelp) state. Black solid lines border the range of urchin densities for which the focal 
patch is bistable; within this region, green shading indicates the maximum disturbance severity (= minimum adult kelp den-
sity; referred to as the threshold kelp density in the figure) the focal patch can withstand and still recover to the high kelp state. 
In (a–c), disturbances are local (impact only the focal patch), while in (d–f) they are regional (both patches equally disturbed). 
The dashed line in (a–c) shows the upper boundary of the region of bistability for an isolated patch (i.e. when cd = cs = 0). 
Where the region of bistability of the coupled 2-patch system extends above this line, collapse of the kelp population in the 
focal patch causes the undisturbed patch to also flip to the barren state, while below this line the undisturbed patch remains in  

the high kelp state
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sion of regions 1 and 4 in Fig. 4b–d relative to Fig. 4a). 
For example, if urchin densities were near zero in 
Patch 1, connectivity increased the range of ur chin 
densities for which Patch 2 could recover from dis-
turbance because the stable kelp population in Patch 
1 served as a source of spores or drift for Patch 2. Sim-
ilarly, when urchin densities in Patch 1 were within 
the range for which this patch was bistable in the 
absence of connectivity, adding connectivity in -

creased the range of urchin densities for which Patch 
2 was bistable rather than always barren. Connectiv-
ity also enabled both patches to be bistable at combi-
nations of urchin densities that would have caused 
them to be barren if in isolation (replacement of part 
of region 6 with region 4 in Fig. 4). Recall that bistabil-
ity means that kelp can recover only if disturbances 
are not severe enough to tip the patch into the barren 
state; thus, for regions in which one or both patches 
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Fig. 4. Effect of connectivity between patches with different urchin densities on kelp stability (and thus recovery potential). 
The x- and y-axes are the densities of urchins in Patch 1 and Patch 2, respectively. Regions of patch stability are labeled as fol-
lows: (1) only the high kelp state is stable in both patches, (2) only the high kelp state is stable in one patch and the other patch 
is bistable, (3) only the high kelp state is stable in one patch and only the barren (low kelp) state is stable in the other, (4) both 
patches are bistable, (5) one patch is bistable and only the barren state is stable in the other, and (6) only the barren state is 
stable in both patches. (a) No connectivity between the patches (cs = cd = 0), (b) high spore connectivity only (cs = 1, cd = 0),  

(c) high drift connectivity only (cs = 0, cd = 1), and (d) high connectivity of both spores and drift (cs = cd = 1)
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are bistable, kelp could exist in either high or low 
(barren) states depending on past disturbance re -
gimes. The effects of connectivity described above 
were stronger for drift than spores (Fig. 4b vs. 4c) but 
had the greatest impact when there was connectivity 
of both (Fig. 4d). 

3.  EMPIRICAL ANALYSES 

The results of the above analyses provide mech-
anistic insight into how different forms of connectiv-
ity may influence kelp forest dynamics. I next asked 
whether my ODE model’s theoretical predictions 
were consistent with published data from southern 
California kelp forests. In the following sections, I 
briefly introduce these data, describe my statistical 
analyses, and use the statistical results to validate my 
ODE model and address uncertainty in connectivity 
parameters. 

3.1.  Empirical data 

The goal of my empirical analyses was to explore 
how observed local (within-patch) relationships be -
tween urchins and giant kelp are influenced by con-
nectivity among kelp forest patches. At the local 
scale, the SBC LTER site and CINP KFMP provide 
annual estimates of giant kelp and sea urchin den-
sities in permanent transects in and around the Santa 
Barbara Channel (Fig. S7). I used transect-level ur -
chin densities (summed across the 2 most common 
species, Strongylocentrotus purpuratus and Mesocen-
trotus franciscanus, and averaged across quadrats 
within each transect) as my measure of within-patch 
urchin abundance. For giant kelp, I classified a tran-
sect as being in either a high kelp state (>0.05 ind. 
m–2) or a low kelp state, as this binary categorization 
is better aligned with my ODE model predictions than 
continuous densities. The threshold density of 
0.05 ind. m–2 represents the 15th density quantile of 
ob servations with kelp and has previously been used 
as the cut-off for a kelp-dominated state in the Chan-
nel Islands (Karatayev et al. 2021). More details on 
these data are given in Section 3 of the Supplement. 
For full descriptions, see Kushner et al. (2013) and 
SBC LTER et al. (2022a,b). 

For metrics of connectivity, I used giant kelp meta-
population data published by Castorani et al. (2017). 
These data include the location and area of every kelp 
patch in southern California (as identified by Cava-
naugh et al. 2014; Fig. 5a), as well as satellite-derived 

estimates of kelp canopy biomass in each patch (Cav-
anaugh et al. 2019, Castorani et al. 2022b). The 
authors also used Regional Oceanic Modeling Sys-
tem (ROMS) solutions for the Southern California 
Bight to estimate average dispersal times of Lagran-
gian particles between all pairs of patches (Castorani 
et al. 2022c; see Castorani et al. 2015, 2017 and Sec-
tion 3 of the Supplement for more details). Both patch 
biomass and dispersal times were averaged over each 
semester (Jan–Jun and Jul–Dec) between 1996 and 
2006. To convert interpatch dispersal times into mea-
sures of propagule connectivity, I followed the ap -
proach used in Castorani et al. (2015). Briefly, I as -
sumed that propagules are lost (e.g. due to mortality 
or settlement en route) at a constant daily propor-
tional rate, λ. For any semester S with an average dis-
persal time of tij,S days, the probability of successful 
dispersal from patch i to j is given by: 

                                   Pij,S = (1 – λ)tij,S                             (13) 

These dispersal times account for asymmetry in cur-
rents; in general, tij ≠ tji. I chose a default value of λ = 
0.9 d–1 (Castorani et al. 2015) but also calculated con-
nectivity for a range of λ values to evaluate the sensi-
tivity of my statistical analyses to this parameter. 
I note the ROMS dispersal times used here may be 
more representative of spore dispersal than transport 
of drift kelp. Much less is known about the latter, 
which I address in a later section. 

Eq. (13) provides an estimate of potential connectiv-
ity between a source and destination patch. Total real-
ized patch connectivity (i.e. the amount of propagules 
or material arriving in the destination patch) is also 
dependent on production in each source patch. Pro-
duction of spores and drift are proportional to kelp 
biomass (Neushul 1963, Schiel & Foster 2015, Rennick 
et al. 2022); thus, realized connectivity from patch i to 
j in semester S can be approximated as the product of 
the average canopy biomass in patch i, bCi,S, and the 
potential connectivity, Pij,S. Total realized connectivity 
(hereafter referred to as patch connectivity) of a patch 
j in semester S is given by the sum of its realized con-
nectivities with each source patch i ≠j: 

                                                                                         (14) 

where n is the total number of patches in the meta-
population. 

The metapopulation data cover a greater spatial ex -
tent and narrower time period than the benthic mon-
itoring data. To integrate these datasets, I selected 
patches containing transects and the transects within 
these patches. For each patch–transect combination, 

patch connectivity b 1–, ,j S
i j

n
Ci S

t ,ij Sm=
!
/ ^ h
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I only used data from years for which there were both 
urchin abundance data and kelp connectivity esti-
mates. To produce a single set of observations for 
each year, I used values of patch connectivity from 
the semester prior to each annual survey date (repeat-
ing the statistical analyses below with shorter and 
longer lags in connectivity confirmed this one-
semester lag was most predictive). The resulting data 
set contained 25 patches, 52 transects (1–8 transects 
patch–1), and 2–11 yr of data for each patch–transect 
combination (Fig. 5). 

3.2.  Statistical analyses and results 

I used the empirical data described above to ask 
whether metapopulation characteristics and urchin 
abundance influence the probability of a transect 
being in the high kelp state. The data have a nested 
structure (transects within patches), repeated mea-
sures (multiple observations at each location), and a 
binary response variable (kelp state). I therefore ad -
dressed my question using a binomial GLMM with a 
logit link function. I included patch connectivity, 
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Fig. 5. (a) Study region, with dark blue regions indicating locations of giant kelp metapopulation patches. Focal patches con-
taining benthic transect data on kelp and urchin densities are marked with light blue diamonds. (b) Urchin densities in focal 
transects in the high (>0.05 ind. m–2) and low (≤0.05 ind. m–2) kelp states; note these values were log transformed for the gen-
eralized linear mixed effects model (GLMM) fitting but are shown here on the raw scale. Each point corresponds to an observa-
tion in a transect in a single year. (c) Patch connectivity (log + 1 transformed) of the patches containing focal transects in the 
high and low kelp states. The boxplots in (b) and (c) show the 25th, 50th, and 75th percentiles of the data, with the whiskers ex-
tending 1.5× the length of the inter-quartile range past the box edges (or to the end of the range of the data, if that comes first). 
The insets in (b) and (c) show the estimated coefficients, bootstrapped 95% confidence intervals, and associated p-values for 
the effects of urchin density and patch connectivity on the high kelp state in the fitted GLMM described in the main text
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patch area (which has been shown to play a signifi-
cant role in giant kelp patch dynamics; Castorani et 
al. 2015, 2017), and transect-level urchin density as 
fixed effects. Transect and year were used as random 
intercept effects. Patch was not included as a random 
effect because it had near-zero variance that caused 
convergence and singularity issues; removing it 
improved fitting and had no effect on model results. I 
specified a priori a series of GLMMs with all combina-
tions of my 3 fixed effects as well as an explicit urchin 
density–patch connectivity interaction (Table S3). 
The full model is given by: 

kelp_stateijk ~ Binominal(1, pijk) 
logit(pijk) = urchin_densityij  

+ patch_connectivityjk + urchin_densityij 

              × patch_connectivityjk + patch_areak          (15) 
+ transecti + yearj transecti ~N(0, σ2

transect) 
                                   yearj ~N(0, σ2

year)                                    

where kelp_stateijk is the state of the kelp population 
(high or low) in transect i, patch k, and year j, and all 
fixed effects are log or (log +1) transformed to 
improve model fitting. Fitting was done using the 
‘lme4’ package (v1.1.28; Bates et al. 2015) with maxi-
mum likelihood estimation by the Laplace approx-
imation (Bolker et al. 2009). After fitting, I assessed 
model parsimony using Akaike’s information crite-
rion (AIC) and ∆AIC values, checked that the best-
fitting model met GLMM assumptions (no multicol-
linearity, independence and lack of patterns in re -
siduals, normally distributed random effects; Zuur et 
al. 2009), and evaluated the significance of fixed ef -
fects using the Wald χ2 test. 

The most parsimonious model contained urchin 
density, patch connectivity, and patch area as in -
dependent fixed effects, all of which were signifi-
cant (p = 6 × 10–8, 0.0013, and 0.02, respectively; 
Table S3, Fig. S15). The effect of urchin density on 
the high kelp state was negative (Fig. S15). Patch con-
nectivity and patch area both had positive effects 
(Fig. S15), consistent with previous studies of this 
metapopulation (Castorani et al. 2015, 2017). This 
model generally conformed well to assumptions 
(Figs. S9–S11), although the re si du als showed several 
outliers (4 of 349 data points). Some of these were 
likely due to high sand cover (Figs. S13 & S14), while 
the others were possibly due to interannual kelp 
cohort dyna mics (Fig. S14). Re- fitting the models 
without these outliers improved residuals (Fig. S12) 
and generally had minimal effects on model selection 
and final output (the most parsimonious model 

remained the same, with p = 2 × 10–7, 0.0015, and 
0.02 for effects of urchins, connectivity, and area, 
respectively; Table S3, Figs.  S15–S17, Fig. 5). I 
therefore used the model fitted without outliers for 
further analyses, but report results for both versions 
in the supplement. Model selection and predictions 
were robust to the value of the loss rate (λ) used 
to calculate patch connectivity (Fig. S18) as well as 
the threshold kelp density for the high kelp state 
(Fig. S19). 

I used the best-fitting GLMM to predict the prob-
ability of kelp being in the high state as a function of 
urchin density and patch connectivity. I repeated this 
across a set of urchin densities between 0 and 50 
 ur chins m–2 (a range that captures 90% of observed 
den sities in the dataset) and the 10 and 90% quantiles 
of patch connectivity (representing patches with low 
and high connectivity, respectively). Patch area was 
set to its mean value, and the random effects of tran-
sect and year were set to zero. 

4.  MODEL VALIDATION 

In this section, I parameterized my single-patch 
ODE model (Eqs. 1–8) for the study region, used it to 
generate probabilities of observing kelp in the high 
state, and compared these predictions to those of the 
GLMM model described above. These analyses 
served 2 purposes. First, they enabled me to validate 
the ODE model by demonstrating that it could pro-
duce predictions similar to those of the GLMM. Sec-
ond, by repeating the ODE simulations for different 
types of kelp connectivity (spores, drift, or both) and 
seeing which scenario most closely matched the 
GLMM’s predictions, I gained insight into the extent 
to which spore and/or drift connectivity underlies the 
positive effect of patch connectivity identified by the 
GLMM. 

4.1.  Validation methods 

Parameterizing the ODE model required relating 
ODE model parameters to the fixed and random 
effects used to generate the GLMM’s predictions. To 
do this, I focused on 2 groups of ODE parameters: 
fixed effect parameters, representing the GLMM’s 
fixed effects (urchin density, patch connectivity, and 
patch area), and random effect parameters, whose var-
iability could contribute to the GLMM’s random ef-
fects of year and transect (Table 2). Starting with the 
fixed effects, urchin density was simply equivalent to 
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the ODE parameter u (Table 2). Connectivity was less 
straightforward—unlike the GLMM, the ODE model 
distinguishes between the input of spores (εs) and drift 
(εd). To relate observed values of patch connectivity to 
εs and εd, I explicitly calculated connectivity of spores 
and drift as a function of dispersal times and source 
patch biomasses. These calculations required a 
number of intermediary parameters whose values 
were uncertain (indicated in bold in Table 2). To ac-
count for the compounding effects of this uncertainty, 
I used an ensemble approach in which I stochastically 
generated values of each intermediate parameter 
(using available data to inform their probability distri-
butions when possible) and calculated the resulting 
values of εs and εd (see Section 5 in the Supplement for 
more details). This produced distributions of εs and εd 
estimates for each value of patch connectivity, en-
abling me to capture a range of possible relationships 
between this GLMM fixed effect and levels of spore 
and drift connectivity in the ODE model. 

To represent random effects in my ODE model, I 
focused on parameters that serve as proxies for kelp 
productivity, recruitment conditions, and disturb-
ance regimes (Table 2), as all of these are likely to 
underlie observed ‘random’ variability in kelp dyna -
mics across transects and years (Reed et al. 1996, Gra-
ham et al. 1997, Castorani et al. 2022a). I set random 
effects equal to 0 when generating GLMM predic-

tions, meaning that the outputs reflect impacts of the 
fixed effects on kelp state in an otherwise average 
transect and year (Zuur et al. 2009). To replicate these 
average conditions in the ODE model, I first used 
available data to estimate the frequencies at which 
different values of my random effect parameters (e.g. 
favorable recruitment conditions, severe storm dis-
turbances, etc.) occurred across the transects and years 
in the GLMM dataset (Table S5). Then, for a given 
set of fixed effect parameters — urchin density (u) and 
the connectivity parameters  (εs and εd) (Table 2) — I 
repeated my ODE simulations (de scribed below) with 
multiple combinations of random effect parameter 
values and weighted the outputs by the likelihood of 
each combination occurring (see Section 5 of the Sup-
plement for more details). This re sulted in a single 
ODE prediction representing a weighted average of 
predictions for different possible environmental con-
ditions (i.e. combinations of random effect param-
eters) across the study region (Fig. S20). One assump-
tion of this approach is that there is no covariation 
between random effect parameters; e.g. the probabil-
ity of kelp plants having high biomass in a given year 
is independent of the probability of that patch ex -
periencing good recruitment conditions. While this 
is an oversimplification, I verified that it is a reason-
able as sumption in the majority of observed cases 
(Fig. S22). 
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               GLMM inputs                                      Corresponding ODE parameters 
               Fixed effects                                                Fixed effect parameters 
Effects                                   Calculation or value                                      Parameter                                    Calculation or value 
 
Urchin density                   log(urchins m–2 + 1)                                              u                                                     Urchins m–2 

Patch connectivity                                                                                    εs and εd                                                        

                                                                                                                                                                                                     

Patch area                                         arealm
 

               Random effects                                        Random effect parameters 
Effects                                   Calculation or value                                      Parameter                                    Calculation or value 
 
Transect, year                                       0                                          b, G0, J0, rG, rJ, µG, µJ, Istorm                          Estimate distributions of  
                                                                                                                                                                         values across transects or years;  
                                                                                                                                                                           calculate weighted average of  
                                                                                                                                                                     ODE predictions for different values
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Table 2. Correspondence between the generalized linear mixed effects model (GLMM)’s fixed and random effects and para -
meters of the ordinary differential equation (ODE) model. For patch connectivity, bCi is the canopy biomass in source patch i, λ is 
the loss rate (default value = 0.9 d–1), and tij is the Regional Oceanic Modeling System dispersal time from source patch i to des-
tination patch j. λsi, λdi, tsij, and tdij are loss rates and dispersal times for spores and drift, respectively. θi, ωsi and ωdi are error terms 
representing uncertainty in source patch biomass and spore and drift self-retention, and ρ and d are spore and drift production 
rates, respectively. Bold indicates intermediary parameters whose values were drawn stochastically (Table S4 in the Supple-
ment). Patch area was set to the mean of the log-transformed values in the data set (arealm); this was converted back to the origi-
nal scale for calculations of εs and εd. Random effect parameters are as defined in Table 1, except Istorm which is a binary  

indicator of whether a severe storm occurs during the simulation (see Table S5)
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I used my parameterized ODE model to predict 
probabilities of observing kelp in the high state (the 
GLMM’s response variable) as a function of the fixed 
effect parameters. For a given set of parameters, I first 
calculated the minimum initial kelp density A0min 
above which kelp would be in the high state (as de -
fined for the GLMM) at the end of one year. Then, I ap-
proximated the probability that kelp would initially be 
above A0min — and thus in the high state 1 yr later — as 
the proportion of observed kelp densities greater than 
A0min (Fig. S21). The 1 yr cut-off was chosen to match 
the annual timescale of the data used to fit the GLMM. 
Each simulation began and ended in late summer (to 
match empirical surveys), with seasonality represented 
by an increase in background kelp mortality µA during 
winter months to account for moderate-intensity winter 
storms. This process was repeated for the different 
fixed and random effect parameter combinations de -
scribed above to generate probabilities of high kelp as 
a function of urchin density and patch connectivity. 

Altogether, the above methods enabled me to pro-
duce results from my ODE model that were compa-
rable to the GLMM’s statistical predictions. I used 
this approach to confirm that the models predict sim-
ilar probabilities of high kelp in low-connectivity sce-
narios (i.e. the 10% quantile of patch connectivity). 
Having thus validated the ODE’s ability to reproduce 
local dynamics, I used it to explore the mechanistic 
underpinnings of the positive effect of high patch 
connectivity predicted by the GLMM. In particular, 
I was interested in whether drift kelp plays an impor-
tant role in promoting the high kelp state, as sug-
gested by my earlier ODE analyses (Figs. 2–4). To 
answer this question, I ran the ODE model with no 
connectivity (εs and εd = 0), external spores only (εd = 
0), external drift only (εs = 0), and both spores and 
drift (εs and εd > 0) for urchin densities between 0 and 
50 ind. m–2. I repeated these simulations with multi-
ple values from the distributions of εs and εd estimates 
corresponding to the 10 and 90% quantiles of patch 
connectivity, and compared the results to GLMM 
predictions for these same values of patch connectiv-
ity and urchin density. 

4.2.  Validation results 

When patch connectivity was low, the type of con-
nectivity (spores, drift, or both) generally had minimal 
effects on ODE model results, as most values of εd and 
εs were negligibly small (Fig. 6a–c). The ODE’s pre-
dictions were consistent with those of the GLMM, with 
both models predicting a steep decline in the probabil-

ity of kelp being in the high state as urchin density in-
creased. Differences between the ODE and GLMM 
models became apparent when patch connectivity was 
high (Fig. 6d–f). Given that the 2 models produced 
similar results when patch connectivity was negligible, 
these differences were likely due to effects of ODE 
connectivity parameters εs and εd (whose exact values 
were uncertain, as reflected in the wide range of ODE 
predictions in Fig. 6d–f) rather than the ODE model 
being a poor representation of local dynamics. Recall 
that the GLMM represents the empirically based ef -
fect of patch connectivity on kelp state. Greater over-
lap between GLMM and ODE predictions indicates 
that the values of εs and εd are closer to the ‘true’ rates 
of external spore and drift input underlying empirical 
observations; thus, comparing the 2 models helps to 
identify the relative importance of spore and drift con-
nectivity in driving the patch connectivity effect in the 
GLMM. For all but the lowest urchin densities, assum-
ing only spore connectivity in the ODE model (εd = 0) 
resulted in probabilities of high kelp in well-connected 
patches that were much lower than the GLMM’s pre-
dictions (Fig. 6d). Including external drift input re-
sulted in greater probabilities of kelp being in the high 
state that, in contrast to the spore-only scenario, 
largely overlapped with the GLMM. This overlap oc-
curred in both the drift-only and drift and spore sce-
narios but was greater in the latter (Fig. 6e,f). Together, 
these results indicate that at intermediate to high 
urchin densities, spore connectivity alone is insuffi-
cient to produce the positive effect of patch connec -
tivity suggested by the empirical data. The results also 
suggest that exchange of drift kelp may play a role in 
promoting the high kelp state (both on its own and by 
amplifying the effects of spores). 

5.  DISCUSSION 

Many of the ocean’s most productive and biodiverse 
ecosystems are characterized by patchily distributed 
habitat, with demographic connectivity among these 
patches playing a key role in the local and regional 
dynamics of resident species (Kritzer & Sale 2006, 
Cowen & Sponaugle 2009). The impacts of demo-
graphic connectivity on local population growth can 
depend on additional spatial processes (e.g. move-
ment of other species or non-living re sources) that 
produce variation in community and ecosystem struc-
ture across habitat patches (White 2007, Gounand et 
al. 2017). In this study, I applied a meta-ecosystem 
framework to interconnected kelp forest patches to 
explore the roles of multiple types of spatial connec-
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tivity in this system. By analyzing a mechanistic ODE 
model and comparing its predictions to those of a sta-
tistical model fit to empirical data, I was able to inves-
tigate how both demographic (spore) and material 
(drift) connectivity influence the population dynamics 

of an important foundation species, giant kelp. My re-
sults suggest that the relative effects of these forms of 
connectivity depend on local grazing pressure, with 
material connectivity having a greater impact on kelp 
stability at higher urchin densities. This work provides 
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Fig. 6. Comparison of generalized linear mixed effects model (GLMM; black) and ordinary differential equation model (ODE; 
brown) predictions. The top and bottom rows show results for low and high connectivity scenarios (corresponding to the 10% and 
90% quantiles of patch connectivity, respectively). The x-axis is the local density of urchins, and the y-axis is the probability of 
kelp being in the high state (>0.05 ind. m–2). Black lines and gray shaded areas represent the mean and 95% confidence intervals 
of the GLMM predictions, respectively. Confidence intervals were estimated using parametric bootstrapping (n = 1000 simula-
tions; Bolker et al. 2009). ODE predictions (brown lines) are shown for the median of simulated values of εs (εd = 0; a and d), εd (εs = 
0; b and e), and both εs and εd (c and f). Brown shaded regions denote the range of ODE predictions for the central 70% (15–85% 
quantiles) of simulated values of εs (a and d), εd (b and e) or both εs and εd (c and f). Additional intervals are shown in Fig. S23
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an example of how local trophic interactions and ma-
terial transport can mediate metapopulation dyna -
mics, highlighting the utility of a meta-ecosystem per-
spective in studies of demographically connected 
populations (Gounand et al. 2018). 

My ODE model suggests that the connectivity of 
drift kelp enables kelp populations to persist at 
higher urchin densities and increases kelp resilience 
to disturbance (Figs. 2–4). These results arose from 
the key role of drift in mediating kelp–urchin inter -
actions (Harrold & Reed 1985, Karatayev et al. 2021, 
Rennick et al. 2022): by subsidizing the food supply of 
urchins, external drift reduced local grazing pressure, 
which in turn promoted recruitment from spores 
(whether locally or externally produced) that may 
otherwise have suffered high grazing mortality. By 
comparing the ODE model’s predictions to those of a 
GLMM, I was able to draw conclusions about the 
impacts of connectivity that were both mechanistic 
and grounded in empirical data. At moderate to high 
urchin densities, nearly all ODE predictions without 
drift input were outside the GLMM’s confidence 
inter vals (Fig. 6d), suggesting that external spores 
alone could not produce the positive effect of connec-
tivity predicted by the GLMM at these levels of graz-
ing. Rather, both spores and drift connectivity seem 
necessary, although I cannot rule out unknown pro-
cesses correlated with patch connectivity that could 
instead contribute to its effects in the GLMM. Thus, 
assuming that an appreciable interpatch exchange of 
drift is possible (see later discussion), this work sug-
gests that drift connectivity can be an important spa-
tial process in kelp forest systems. 

Material coupling between ecosystems of the same 
type (i.e. homogeneous ecosystems) has not been 
widely explored in meta-ecosystem literature, particu-
larly in marine systems (Peller et al. 2021). For in-
stance, while the fate of drift kelp has been widely 
studied, most of this work has been on the role of ex-
ported drift in subsidizing low-productivity beach and 
offshore benthic ecosystems (Vetter & Dayton 1998, 
Britton-Simmons et al. 2009, Hyndes et al. 2022). This 
focus on cross-ecosystem coupling may in part be due 
to the difficulty of visually distinguishing external 
subsidies from local production within a single ecosys-
tem (Peller et al. 2021). As demonstrated here, apply-
ing mechanistic models to empirical systems can be a 
useful tool to address this challenge and may reveal 
that homogeneous material flows are more common 
than previously acknowledged. This has important im-
plications for both metapopulations and metacommu-
nities, as it suggests that their dyna mics can be in-
fluenced by an exchange of materials (e.g. detritus, 

inorganic nutrients) among component patches, as 
predicted by theoretical models (Marleau et al. 2010, 
Gravel et al. 2016). For example, using a meta-ecosys-
tem model, Spiecker et al. (2016) showed differences 
in rates of material transport and organismal dispersal 
among local coral reefs modified the strength of local 
and regional trophic cascades, which in turn deter-
mined the optimal design of marine re serve networks 
for target species. Similarly, in this study, I found that 
by altering local trophic interactions, material connec-
tivity influenced local grazing pressure and thereby 
mediated the potential for demographic connectivity 
to support local kelp populations. 

An important part of the phenomenon described 
above is the coupled connectivity of propagules and 
detritus. This has the potential to occur in kelp forests 
for 2 reasons. First, the production of spores and drift 
are both proportional to kelp biomass within patches 
(Neushul 1963, Schiel & Foster 2015, Rennick et al. 
2022). Second, both are transported by oceano-
graphic circulation, albeit in potentially different 
ways depending on buoyancy and pelagic duration or 
degradation rates. While data for quantifying the 
relationship between spore and drift connectivity are 
currently lacking, Fig. 6 suggests a positive correla-
tion (at least over interannual timescales), as ODE 
simulations in which patches received both spores 
and drift (Fig. 6f) were more closely aligned with 
empirical predictions than when spore and drift con-
nectivity were decoupled (Fig. 6d,e). Such correlation 
between different forms of connectivity is unlikely to 
occur in all ecosystems. For example, while detrital 
material from terrestrial forests can be transported to 
adjacent ecosystems (e.g. rivers or lakes), these 
material flows are unlikely to follow the same patterns 
as the wind- or animal-driven seed dispersal connect-
ing tree subpopulations (Gounand et al. 2018). Never-
theless, in marine systems, where currents are the 
 primary mode of transportation for both passive pro -
pagules and non-living material, metapopulations 
whose patches are connected both demographically 
and by movement of detrital resources may be some-
what common (Spiecker et al. 2016). Whether propa-
gules and detritus both have large impacts on ecosys-
tem dyna  mics will depend on the study system, and 
future work should investigate the extent to which 
the results of the present study apply to other marine 
systems characterized by productive foundation 
 species. 

Another key finding of this study was that demo-
graphic (spore) connectivity alone can have limited 
ef   fects on patch dynamics. This result was a conse -
quence of a common but often overlooked feature of 
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meta-ecosystems: the stage-specificity of organismal 
dispersal and species interactions. In marine meta-
populations, dispersal is often restricted to larvae or 
spores (Kritzer & Sale 2006, Marshall & Morgan 2011). 
These reproductive propagules recruit to early life 
stages that, in many cases, interact differently with 
local communities than older and larger individuals 
(Calado & Leal 2015). In the kelp forest system, giant 
kelp’s dispersive spores and subsequent gameto-
phyte and juvenile sporophyte stages must survive 
and mature in order for spores to contribute to pop-
ulations of drift-producing adults. Early kelp life 
stages are vulnerable to grazing (Leonard 1994, Ng & 
Micheli 2022); thus, when urchins are unsatisfied by 
drift supply, there is a low chance of newly settled 
spores eventually resulting in recruitment of adult 
sporophytes (Dayton et al. 1984). Ignoring develop-
mental stages in my model (i.e. assuming adults dis-
perse) would have resulted in unrealistically strong 
effects of demographic connectivity, as new individ-
uals would immediately increase local availability of 
drift and reduce grazing pressure. Such stage- or size-
specific interactions are prevalent in ecosystems 
worldwide (Miller & Rudolf 2011), yet few existing 
studies incorporate the stage structure of dispersing 
species into metacommunity or meta-ecosystem 
models (Gounand et al. 2018, Guzman et al. 2019). My 
results for the kelp forest system suggest that this 
omission can hinder our understanding of conditions 
under which demographic connectivity benefits focal 
populations. 

Although the impacts of spore connectivity in my 
ODE model were generally minimal compared to drift, 
these predictions were dependent on recruitment 
para meters and local grazing pressure. Increasing 
rates of spore production (ρ) and maturation of early 
life stages (rG and rJ) strengthened the effects of spore 
dispersal across urchin densities (Fig. S5). These pa-
rameter values resulted in unrealistically fast kelp dy-
namics when assumed constant; however, they could 
be plausible if occurring over short time intervals 
(Fig. S6). On natural reefs, high spore production and 
recruitment rates are often restricted to periods of fa-
vorable oceanographic conditions (Reed et al. 1996, 
1997). In well-connected patches, the large numbers 
of spores received during these periods — together 
with their rapid development upon settlement —
could allow early life stages to escape grazing, result-
ing in observable benefits of spore connectivity on 
adult kelp densities (Harrold & Reed 1985). My simu-
lations suggest that the potential for such dynamics is 
strongly determined by grazing pressure. At low ur -
chin densities (less than ~5 urchins m–2), spore input 

was the main driver of increased probabilities of high 
kelp in well-connected patches, and drift played an in-
creasingly important role as urchin densities increased 
(Fig. 6d vs. 6e). Average urchin densities in each of the 
25 focal kelp patches in this study were below 5 
urchins m–2 in 38% of annual surveys over the past 2 
decades (Fig. S8) but tended to be lower in mainland 
than island patches (<5 urchins m–2 in 57 and 26% of 
observations, respectively). Thus, for many of the 
patches examined here, and particularly those on 
mainland reefs, spore connectivity alone could still 
have a significant effect on kelp population dynamics 
(Castorani et al. 2015, 2017). Future work that synthe-
sizes observations of urchin densities across a larger 
subset of the metapopulation would provide valuable 
information on the proportion of kelp patches whose 
dynamics are likely to be influenced by drift subsidies 
rather than spore connectivity alone. 

By demonstrating the potential importance of drift 
connectivity among kelp forest patches, this study 
highlights the need for empirical studies that can pro-
vide more conclusive evidence than the modeling ap -
proach used here. GPS tracks of detached kelp plants 
along the Santa Barbara coastline (Ohlmann 2019) do 
demonstrate plant transport among kelp patches 
(Figs. S24 & S25); however, to become available to ur -
chins, these plants would need to sink to the bottom. 
Alternatively, imported drift could mainly consist of 
fragments that already lost their buoyancy and were 
moved along the seafloor (Britton-Simmons et al. 
2009), which would likely occur over shorter distances 
than surface transport. Whatever the mechanism, it is 
important to consider whether such drift connectivity 
is consistent with the high spatial heterogeneity in 
kelp forest systems. Adjacent urchin barren and kelp 
forest states are commonly observed, with drift abun-
dance in barrens often markedly lower than in neigh-
boring forested areas (Mattison et al. 1977, Harrold & 
Reed 1985, Konar & Estes 2003). Al though this sug-
gests that drift production is not ex ported to barren 
patches, low standing stocks of drift kelp in barrens 
could also be due to high turnover rates. Depending 
on local hydrodynamics and substrate characteristics, 
imported drift may move through without getting en-
trapped (possibly explaining higher barren pre -
valence in areas with low substrate complexity; Ran-
dell et al. 2022), and any drift that is retained is likely 
to be rapidly consumed by actively foraging urchins 
(Kriegisch et al. 2019). Indeed, several studies have 
found evidence of drift transport to nearby barrens 
(reviewed in Krumhansl & Scheibling 2012). As long 
as external subsidies do not satisfy urchins’ energetic 
requirements, barren patches would still be expected 
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to have poorly nourished urchins and remain in a de-
nuded state (Rennick et al. 2022). Greater empirical 
quantification of the magnitude and spatial scales of 
interpatch drift transport, as well as studies that trace 
the source of drift consumed by urchins within 
patches, will be necessary to make definitive conclu-
sions about the role of drift connectivity in kelp forest 
dynamics. 

The existence of neighboring barren and forested 
patches could indicate that the benefits of drift con-
nectivity on kelp dynamics depend on a patch’s initial 
state. A number of mechanisms beyond reduced drift 
supply can maintain urchin barrens, such as in creased 
per capita consumption rates in barren patches (due 
to urchin starvation and/or lower predation risk; Dean 
et al. 1984, Matassa 2010, Smith et al. 2021). Thus, 
even if drift connectivity promotes persistence of in-
tact kelp forests (e.g. by buffering local fluctuations in 
drift production), it may have limited effects once 
patches are in the barren state. Due to sample size lim-
itations, I did not distinguish between kelp coloniza-
tion (i.e. recovery from the low kelp state) and persis-
tence in my statistical analyses. However, previous 
studies of this metapopulation found that patch con-
nectivity had stronger effects on kelp persistence than 
colonization, suggesting that the magnitude of the 
benefits of connectivity de pends on whether a patch is 
initially barren or forested (Castorani et al. 2015). This 
has important management implications, particularly 
in the context of kelp forest restoration (Morris et al. 
2020). For example, a recent modeling study found 
that establishing favorable initial conditions (through 
urchin removal and outplanting of mature kelp) was 
key for the successful restoration of bull kelp on 
northern California reefs, as kelp spores were unable 
to recolonize re gions where urchins were above a 
threshold density (Arroyo-Esquivel et al. 2023). This 
threshold in creased with kelp outplanting intensity 
(Arroyo-Esquivel et al. 2023); my model suggests that 
drift connectivity can impact the threshold in a similar 
way (lower black lines in Fig. 3). However, additional 
barren-maintaining feedbacks not included in my 
model may reduce the magnitude of this connectivity 
effect. Future empirical and modeling studies that ex-
plore conditions under which drift transport among 
natural reefs promotes kelp expansion into barren re-
gions should help inform restoration strategies. 

Future studies on spatial connectivity in kelp forest 
systems could build upon the ODE model analyzed 
here by relaxing some of its assumptions about kelp 
and urchin dynamics. For example, due to the temporal 
resolution of empirical data, I ignored potential intra-
annual variation in most model parameters (discussed 

in Section 5 of the Supplement). For simplicity, I as-
sumed that local and externally produced drift are of 
comparable — and constant — nutritional value and 
thus contribute equally to satisfying urchins’ con-
sumptive demands. In reality, urchins may selectively 
feed on drift based on its state of degradation, which 
could impose limits on the length of time (and 
distance) drift can travel and still subsidize urchins in 
recipient patches. I also assumed that urchin densities 
were constant. Given urchins’ long lifespans and spo-
radic recruitment (Okamoto et al. 2020), this was a rea-
sonable assumption for the short (1 yr) simulations 
used here for comparison with empirical data. Ho-
wever, over longer timescales, the dependence of 
urchin reproduction on drift kelp (Claisse et al. 2013) 
could result in complex spatial interactions between 
kelp and urchin populations. For example, by serving 
as sources of urchin larvae, patches with high rates of 
drift production and/or import could promote barren 
formation in less productive or more isolated reefs (Ka-
ratayev & Baskett 2020). Urchins have a longer pelagic 
larval duration than kelp spores; thus, incorporating 
their dynamics into my model would require being ex-
plicit about spatial scales of urchin and kelp dispersal 
(as well as drift transport) and defining what a ‘patch’ 
represents for each species (Massol et al. 2011, Guzman 
et al. 2019). Such a model could then be used to explore 
how flows of drift kelp and urchin–kelp metacommu-
nity dynamics influence community state across spa-
tiotemporal scales, providing insight into longer-term 
consequences of patterns of drift connectivity. 

6.  CONCLUSIONS 

This study shows that flows of detrital material 
(drift) between kelp forests may influence the extent 
to which demographic connectivity benefits popula-
tions of the foundation species giant kelp. These re-
sults highlight the potential for meta-ecosystem pro-
cesses that couple homogeneous ecosystems to shape 
population and community dynamics. Here, ef fects of 
material connectivity arose due to local feedbacks in 
which drift subsidies reduced grazing pressure on liv-
ing kelp; however, future work should explore ad-
ditional ways in which material coupling may impact 
local interactions in both kelp forests and other eco-
systems. Mechanistic models like my ODE model can 
be a useful tool for these types of studies, helping to 
disentangle the roles of empirically intractable pro-
cesses and provide insight into drivers of statistical re-
lationships. This approach is most powerful when 
 extensive data exist for model parameterization and 
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validation, reinforcing the value of long-term and 
publicly available data sets like those used in this 
study. 
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