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Exploiting Trust for Resilient Hypothesis Testing
with Malicious Robots
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Abstract—We develop a resilient binary hypothesis testing
framework for decision making in adversarial multi-robot
crowdsensing tasks. This framework exploits stochastic trust
observations between robots to arrive at tractable, resilient decision
making at a centralized Fusion Center (FC) even when i) there exist
malicious robots in the network and their number may be larger than
the number of legitimate robots, and ii) the FC uses one-shot noisy
measurements from all robots. We derive two algorithms to achieve
this. The first is the Two Stage Approach (2SA) that estimates the
legitimacy of robots based on received trust observations, and provably
minimizes the probability of detection error in the worst-case malicious
attack. For the Two Stage Approach, we assume that the proportion of
malicious robots is known but arbitrary. For the case of an unknown
proportion of malicious robots, we develop the Adversarial Generalized
Likelihood Ratio Test (A-GLRT) that uses both the reported robot
measurements and trust observations to simultaneously estimate the
trustworthiness of robots, their reporting strategy, and the correct
hypothesis. We exploit particular structures in the problem to show that
this approach remains computationally tractable even with unknown
problem parameters. We deploy both algorithms in a hardware
experiment where a group of robots conducts crowdsensing of traffic
conditions subject to a Sybil attack on a mock-up road network. We
extract the trust observations for each robot from communication
signals which provide statistical information on the uniqueness of
the sender. We show that even when the malicious robots are in the
majority, the FC can reduce the probability of detection error to
30.5% and 29% for the 2SA and the A-GLRT algorithms respectively.

Index Terms—Multi-Robot Systems, Sensor Networks, Networked
Robots, Distributed Estimation.

I. INTRODUCTION

Distributed sensing, involving a team of robots that sense their
environment and combine their data to discern events of interest,
is critical to many robotics applications such as coordinated
coverage where robots seek to maximize their ability to sense
events of interest [2]-[4], share target information for coordinated
tracking [5]-[7], or merge map information to provide a global
understanding of the environment [8]-[10]. However, these
distributed sensing algorithms are vulnerable to manipulation by
malicious attacks, where adversaries aim to skew the system’s
estimation regarding the event of interest. A notable example is in
crowdsensing tasks such as traffic prediction, where a server uses
GPS data to infer if a particular roadway is congested or not [11] (see
Fig. 1). Unfortunately, this process is susceptible to manipulation
by malicious robots [12], [13]. Prior works have shown that a Sybil
attack—where an attacker creates and uses fake entities to feed false
information to the system— can cause crowdsensing applications
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such as Google Maps to incorrectly perceive traffic conditions,
resulting in erroneous reporting of traffic flows [14], [15].

In this work, we are interested in the problem where robots
estimate the presence of an event of interest. Each robot relays
its measurement to a Fusion Center (FC) that makes an informed
binary decision on the occurrence of the event. An unknown subset
of the network consists of malicious robots whose goal is to increase
the likelihood that the FC makes a wrong decision [13], [16], [17].
This problem can be cast as an adversarial binary hypothesis testing
problem, with relevance to a broad class of robotics tasks that rely on
distributed sensing with possibly malicious or untrustworthy robots.

The problem of binary adversarial hypothesis testing has been
previously studied within the context of sensor networks [18]-
[20]. Many of these approaches use data, such as a history
of measurements and hypothesis outcomes, to assess the
trustworthiness of the robots [21]-[24]. For example, if a robot
consistently disagrees with the final decision of the FC, then the FC
can flag that robot as potentially adversarial. However, the success
of these methods often hinges upon a crucial assumption that more
than half of the robots in the network are legitimate. A growing body
of work investigates additionally sensed quantities arising from the
physicality of cyberphysical systems such as multi-robot networks,
to cross-validate and assess the trustworthiness of robots [2],
[25]-27]. This could include using camera feeds, GPS signals,
or even the signatures of received wireless communication signals
to acquire additional information regarding the trustworthiness of
the robots [27]-[29]. Importantly, this class of trust observations
can often be obtained from a one-shot observation, independent
of the transmitted measurement. The works in [30]-[32] use
trust observations to recover resilient consensus and distributed
optimization even in the case where more than half of the network
elements are malicious. In this paper we wish to derive a framework
for adversarial hypothesis testing that exploits trust observations to
arrive at a similar level of resilience, such that a FC can conceivably
reduce its error probability, even in the one-shot scenario and
where legitimate robots do not hold a majority in the network.

To this end, we derive algorithms for achieving resilient
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Fig. 1: Malicious robots can perform a Sybil Attack to try to force a FC to incorrectly
perceive traffic conditions on a road. The FC can aggregate measurements and trust
values from robots to accurately estimate the true traffic condition of the road despite
the attack.
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hypothesis testing by exploiting stochastic trust observations
between the FC and a group of robots participating in event
detection. We exploit one-shot trust observations, hereafter called
trust values, to arrive at tractable, closed-form solutions when
the majority of the network may be malicious and the strategy of
the malicious robots is unknown — a challenging and otherwise
intractable problem to solve in general [33].

For the case where an upper limit on the proportion of malicious
robots is known, we develop the Two Stage Approach (2SA) for
hypothesis testing. The first stage of this algorithm uses trust values
to determine the most likely set of malicious robots. In the second
stage it applies a Likelihood Ratio Test (LRT) only over the trusted
robots identified in the first stage. We show that this approach
minimizes the error probability of the estimated hypothesis at
the FC for a worst-case attack scenario. For the case where an
upper bound on the proportion of malicious robots is unknown,
we develop the Adversarial Generalized Likelihood Ratio Test (A-
GLRT) algorithm, which uses both stochastic trust values and event
measurements to jointly estimate the trustworthiness of each robot,
the strategy of malicious robots, and the hypothesis of the event. Our
A-GLRT algorithm is based upon a common approach for decision
making with unknown parameters, the Generalized Likelihood
Ratio Test (GLRT), which replaces the unknown parameters with
their maximum likelihood estimates (MLE) [34]. We show that the
addition of trust values allows us to decouple the trustworthiness
estimation from the strategy of adversaries, allowing us to calculate
the exact MLE of unknown parameters in polynomial time, instead
of approximating them as in previous works [33], [35]. Our
simulations show that the A-GLRT yields a lower probability of
error than the 2SA under a worst-case attack, but at the expense
of higher computational cost. Finally we conduct a hardware
experiment based on crowdsensing traffic conditions using a group
of robots under a Sybil Attack to validate our results and assess the
effectiveness of our methods in a practical setting.

This paper extends the results of its conference version [1] in
several ways. For the Two Stage Approach algorithm, additional
analysis is provided regarding the probability of error for a fixed
proportion of malicious robots as the number of robots in the
network increases. In particular, we show that if the probability of
trusting a legitimate robot is much higher than the probability of
trusting a malicious robot, then the probability of error from using
the 2SA will decay at least exponentially as the number of robots
in the network increases. Additionally, we investigate the limiting
behavior of the 2SA as the proportion of malicious robots increases.
We show that if there are too many malicious robots in the network,
the 2SA will resort to rejecting all information received, and choose a
decision purely based on the prior probability of the event in question
occurring. We also characterize the critical proportion of malicious
robots that will cause this behavior as a function of the probability of
trusting legitimate and malicious robots. For the A-GLRT algorithm,
we introduce two different modifications to the algorithm given
additional information. One modification utilizes knowledge of
prior legitimacy probabilities, i.e., the probability any robot chosen
at random will be legitimate or malicious. The other modification is
helpful if there is a known upper bound on the number of malicious
robots in the network. We investigate the behavior of the A-GLRT
as the quality of the trust values improves, where a high quality
trust value corresponds to a lower probability of misclassifying a

legitimate robot as malicious, and vice versa. We show asymptotic
results in the observation quality; i.e., as the trust values approach
the true legitimacy with probability 1, the A-GLRT converges to the
LRT using only the legitimate measurements. Finally, we include all
proofs that were excluded from the conference paper due to space.

II. RELATED WORKS

The system where a group of sensors detect an event locally and
convey their binary measurements to the FC is well-studied in the
literature [34], [36]. The LRT minimizes the probability of error in
the FC given that the probability of false alarm and missed detection
for all sensors as well as the prior probability of the event is known
by the FC [34]. However, these distributed sensor networks are
known to be susceptible to adversaries, as demonstrated by many
previous works [12], [16], [17]. In the presence of adversaries, the
assumption of knowing the probability of false alarm and missed
detection of all sensors in the network no longer holds. Since
the identities of the sensors in the network and the strategy of
adversaries are unknown to the FC, the LRT cannot be employed.

The problem of decision making with unknown parameters is
known as composite hypothesis testing [37]. A common approach in
composite hypothesis testing is to apply the GLRT, which replaces
the unknown parameters with their MLEs [34]. The previous
works in [33], [35] approach the problem from this perspective
by jointly determining the true hypothesis and estimating the
unknown parameters in the system. The authors in [33] use an
expectation-maximization algorithm to approximate the MLEs of
the unknown parameters iteratively. At each iteration, the algorithm
estimates sensor identities using the previous false alarm and missed
detection probability estimations, then refines its estimation of these
probabilities using the new identity estimation. After convergence,
the LRT is applied using the estimated parameters. Similarly, the
authors in [35] propose a likelihood-based estimation algorithm for
determining the identities of the sensors and their corresponding
false-alarm and missed detection probabilities. The algorithm fixes
all unknowns in the system but one, and then optimize over that
free parameter. The proposed algorithm improves the computational
complexity over [33], yet it still generates approximations to
the MLEs. The A-GLRT algorithm we present is also based on
the GLRT. It incorporates the trust observations into the GLRT
framework. Moreover, our algorithm finds the exact MLEs, instead
of approximating them as was done in previous works.

Another common way to anticipate the effect of adversaries in
the network is to try to identify explicitly which robots are malicious.
Previous works such as [22], [23] identify malicious sensors using a
reputation-based approach. In these approaches the FC compares the
information received from each of the sensors with the final decision
it arrives at over the course of several hypothesis tests. During this
comparison, if the FC notices that certain sensors are consistently
sending information that disagrees with the final decision, then those
sensors can be flagged as potentially malicious. Other common ways
to identify malicious sensors involve leveraging specific communica-
tion network structures. For example, the authors in [38] pair the sen-
sors in groups of two. They implement an architecture where each
sensor sends its information to the FC and also to the other sensor
in its group. Then, each sensor also relays the information from its
group member to the FC so the FC can examine the information for
inconsistencies. In our work we also look to identify which sensors
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are potentially malicious in order to use that information to make
a more informed decision. However, most of the related literature
identifies malicious sensors by exploiting specific network structures
or by referring to previous observations. This either restricts the net-
work architectures that can be used or allows the FC to be susceptible
for some time before it can develop a strategy to defend against the
attack. We propose a different approach without these shortcomings

In our approach we utilize physical properties of the robot
network that may elucidate some additional information as to the
trustworthiness of a particular robot, as has been done in previous
works. For example, in [39], [40] the robots physically interact
with each other and each interaction has an expected outcome.
The authors show that robots can determine the trustworthiness
of neighboring robots by rating the outcome of their interaction
as either successful or unsuccessful. The works in [27]-[29] use
physical properties of wireless transmissions to thwart Sybil attacks.
They show that by analyzing the wireless profiles from incoming
transmissions, certain transmissions can be determined to be mali-
cious if their signal profiles are dishonest or too similar to another,
hinting that the robot may be performing a spoofing attack. In all of
these methods, it can be shown that the ability to confidently discern
trust of a neighboring robot increases as more observations are made;
however, useful information from even a single observation can be
made. Moreover, the authors in [30] showed that since their method
uses physical information that is independent of the information the
robots transmit, the system can even handle scenarios where more
than half of the robots in the network are malicious. We seek to
leverage the benefits of these physical trust observations in order to
improve the performance of a FC performing a binary hypothesis
test in the presence of adversarial robots.

III. PROBLEM FORMULATION

‘We consider a network of NV robots, where each robot is indexed
by some 7 € A" and N = {1,...,N}, that is deployed to sense an
environment and determine if an event of interest has occurred.
The event of interest is captured by the random variable =, where
=Z=1if the event has occurred and = =0 otherwise. Each robot ¢
uses its sensed information to make a local decision about whether
the event has happened or not, captured by the random variable
Y;, where its realization g; = 1 if robot ¢ believes the event has
happened and y; =0 otherwise. We denote by H; the hypothesis
that ==1 and H the hypothesis that == 0. Each robot forwards
its local decision to a centralized fusion center (FC).

‘We consider the scenario where some robots are malicious and
may manipulate the data that they send to the FC, with the goal
of increasing the probability that the FC makes the wrong decision.
We denote the set of malicious robots by M C A. The set of robots
that are not malicious are termed legitimate robots, denoted by
L CN, where LUM =N and LNM ={). Since we consider a
one-shot detection, both these sets and the total number of robots
N are allowed to vary over time (per hypothesis test), provided
our assumptions hold consistently. This flexibility in our model
contrasts with common assumptions in methods dependent on
historical data, which often necessitate static numbers of robots and
unchanging sets of legitimate and malicious robots. Additionally,
we define the true trust vector, t € {0,1}", where t; =1 if i € £
and t; =0 if i € M. We note that the true trust vector is unknown
by the FC, but we are interested in estimating it.

We assume the following robot behavioral models:

Definition 1 (Legitimate robot). A legitimate robot ¢ measures the
event and sends its measurement Y; to the FC without altering it.
We assume for each legitimate robot i € L, the measured bit Y is
subject to noise with the following false alarm and missed detection
probabilities

P]:AJ' ZPI‘(K = 1|E=O,tz = 1) :PFA,La
Pup,i=Pr(Y;=02=1,t;=1)=Pupy,

where Pea1. € (0,0.5) and Pypy. € (0,0.5) without loss of generality.
We assume that all legitimate robots have the same probability of
false alarm and missed detection. Moreover, we assume that the
measurement of a legitimate robot is independent of all other robots,
and identically distributed given the true hypothesis. Finally, we
also assume that Py 1 and Py are known by the FC.

M

‘We note that the nonzero probabilities of missed detection and
false alarm, Fyp and Fgs respectively, capture the the realistic
assumption for robot systems that legitimate robots have imperfect
information due to noisy sensors.

Definition 2 (Malicious robot). A robot is said to be a malicious
robot if it can choose to alter its measurements before sending it
to the FC. We assume that a malicious robot i € M can flip its
measurement with probability p€ [0,1] after making an observation,
i.e.,, measures y; = 1 but sends y; = 0, or vice versa, and that
all malicious robots flip their bit with the same probability. Let
PraysPup m € [0,0.5) be the probability of false alarm and missed
detection of a malicious robot before altering the bit. We assume
that all malicious robots have the same probability of false alarm
and missed detection. The effective probabilities of false alarm and
missed detection of a malicious robot after altering the bit are:

PFA,M = PI‘(YL = 1|E = O,tl = O)
= (1=pr)-peam+pr- (1—pram),
PMD’M:PI'(Y; :0|E: ].,ti :0)
=(1—pr)-pmom+ps(1—pvpm)-
We assume that a measurement coming from a malicious robot
is independent of other measurements given the true hypothesis.
Furthermore, we assume that pea m, pPvp,m, and the strategy of
the malicious robots, which is the flipping probability ps, are not

known by the FC. This implies that the FC does not know P m
and Pyp m either.

@

In our attack model, malicious robots cooperate to set
the probability of flipping their bit, p;. Then, attacks are
carried out independently where each malicious robot flips
its bit independently of the others. This setup allows for initial
coordination in determining p, but avoids the complexities of further
collaboration during the attack, which would necessitate additional
communication infrastructure and computational resources. This
attack model is consistent with common assumptions in the field
[12], [17], [19], [20], [33], [41]-[43].

We assume that each measurement is tagged with a trust value
a; € R. Specifically, we consider the class of problems where the
FC can leverage the cyber-physical nature of the network to extract
an estimation of trust about each communicating robot. We assume
that these estimations are obtained as “side information” through
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the network’s physicality, and are available independently of the
robots’ measurements.

Definition 3 (Trust Value ;). A trust value «; is a stochastic
variable that captures information about the true legitimacy of a
robot i. We denote the set of all possible trust values (aka sample
space) by A and denote a realization for robot i by a;.

To illustrate how to derive trust values, consider a system under a
Sybil attack where robots communicate with the FC using wireless
signals. In this scenario, each robot’s signal, acting as a unique
“spatial fingerprint”, is compared with others to generate a similarity
or uniqueness score, forming the basis for their trust values. A
higher similarity score indicates a lower trust value, as it suggests
potential spoofing [28]. We also use this method to obtain trust
values in our hardware experiment (see Section VI).

Assumption 1. We assume that the set A is finite and that the
trust value distributions are homogeneous across all legitimate
robots i € L. To this end, we denote the probability mass function
of the trust values of robots by p,(alt). We assume the probability
mass functions are known or can be estimated by the FC.' We
assume that the trust values are i.i.d. given the true legitimacy of
the robot. Moreover; the trust values are assumed to be independent
of the measurements, Y;, and the true hypothesis. Finally, to omit
trivial or noninformative cases, we assume that p,(alt=0) € (0,1),
pal(alt=1)€(0,1), and p,(alt=0)#pa(alt=1) for all a € A.

‘We do not impose any restrictions over the conditional probability
distributions p, (alt = 1) and p, (alt = 0). However, for the trust
values to be meaningful, they should have different probability
mass functions, i.e., p, (alt=1) #pq (alt=0). How distinguishable
the two probability mass functions are is termed the guality of the
trust value, where a better quality corresponds to a larger distinction
between the distributions p,,(a|t = 1) and p,(a|t = 0). Based on
these definitions, we provide the objective of the FC.

A. The objective of the FC

Denote the vector of all measurements with Y = (Y7,...,Yy)
and its realization y = (y1,...,yn~ ), and the vector of stochastic trust
values by @ = (g ,...,av ) and its realization by a = (ay,...,an ). Let
Dy and D; be the decision regions at the FC. That is, (a,y) € Dy if
the FC chooses hypothesis # whenever it measures the pair (a,y).
Similarly (a,y) € D; if the FC chooses hypothesis ;. To simplify
our notations we denote D:={Dy,D; }.

Denote by FPra and Pyp the false alarm and missed detection
probabilities of the rule used by the FC, that is

Fea (Dt Peam)

= Z Pr(a=a,Y =y|[Ho,t,Pram),
(a,y)eD1

Pup(D,t,Pypm)

= Z Pr(a=a,Y =y|H1,t,Pspm)-
(a,y)€Do

©))

4)

! Example of a trust value o;: One example of such trust values comes from the works
in [28]-[30]. In these works, the trust values ; € [0,1] are stochastic and are determined
from physical properties of wireless transmissions. We measure and use these trust values
in our hardware experiment in Section VI where we discretize the sample space by letting
A=1{0,1} and find the probability mass functions to be p, (a; = 1|t; =1) =0.8350 and
Ppa (a; =1|t; =0) =0.1691. Other examples of observations can be found in [25], [44], [45].

Note that these probabilities are affected by the strategy of the
malicious robots, i.e., Pram and Pyp .

If the FC knows the true trust vector, i.e., the vector ¢, and the
probabilities Feay and FByp v, it could optimize the regions Dy
and D; to minimize the expected error probability:

P.(Dt,Peam,Pipm) =
Pr(E=0) P (Dt Pram) +Pr(E=1) Py (Dt. Pupm).-

In this case, the vector of trust values o« would not affect the
optimal decision rule, and it would only depend on the vector of
measurements Y. We note that the goal of minimizing the expected
error probability in (5) can be easily generalized to minimizing
the expected loss, where constants can be added as coefficients
to Pea(D, t, Peam) and Pup(D, t, Pypym) that represent costs
corresponding to Type I errors (false alarm) and Type II errors
(missed detection). We focus on minimizing the expected error
probability to simplify the exposition.

There are two main obstacles to the optimization of the
probability of error (5), namely:

1) The FC does not know the identity of the malicious robots,

and thus it does not know the correct vector t. Therefore, the
FC needs to estimate the true trust vector, where the estimated
trust vector is denoted by ¢.

2) The FC does not know how the malicious robots alter their
measurements before sending them. In our setup, this means
that the FC does not know the values Psaym and Pypm.
Therefore the FC needs to estimate them, where the estimates
are denoted by IADFA,M and ]ADMD,M.

The FC needs to make a decision with these unknown parameters,
which is known as the composite hypothesis testing problem. Since
the minimization of (5) is not tractable, we explore different ways
to circumvent this issue. One way is to start by estimating the
legitimacy of the robots using trust values only and assuming that
the upper bound on the number of malicious robots in the network is
known in order to make (5) tractable. Then, we can ignore the mea-
surements from robots deemed to be malicious and choose the deci-
sion regions Dy and D; using the measurements from the remaining
robots. This approach leads us to the formulation in Problem 1.

®

Problem 1. Assume that the FC first estimates the identities of the
robots in the network, i.e., it determines t, solely using the vector of
trust values o. Then, the FC makes a decision about the hypothesis
using only the vector of measurements Y, from robots it identifies
as legitimate. Given an upper bound m € (0,1) on the proportion
of malicious robots in the network, we wish to determine a strategy
for the FC that minimizes the following worst-case scenario under
these assumptions:

min max
D Baam,Pvpm;t:d " o prti SN

P.(D,t,Peam,Pypm)- (6)

The definition in Problem 1 requires an approach that estimates
the trustworthiness of a robot ¢ using only the trust value a;
associated with that robot, while assuming a known upper bound
on the proportion of malicious robots. However, it is natural to seek
additional information about the trustworthiness of the robots that
can be obtained from the random measurement vector y. Following
this intuition, we seek a decision rule that estimates the unknown
parameters in the system, which are £, Fgam, and Bypm as well
as the hypothesis H, or #; jointly, without requiring any known
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upper bound on the proportion of malicious robots. A common
approach to hypothesis testing with unknown parameters is to use
the generalized likelihood ratio test [34], that is

p(z;01,H1) 7%1 Pr(==0) S
p(z:00,Ho) 2, PrE=1) ’

where él is the maximum likelihood estimator (MLE) of the

unknown parameter 01 assuming ==1 and 90 is the MLE of 6, as-
Hi

suming ==0. The operator % is interpreted as choosing H; when

@

the left-hand side (LHS) of t’iﬁg expression is greater than the right-
hand side (RHS), and choosing H, when the LHS is less than or
equal to the RHS. For our problem, z=(a,y), 61 =(t,Pypm), and
6o = (t,Pram), which results in the following formulation of the test

MaXee (0138, Ayyel0,1]PT(a,y[H b, Pupm)

YoLrr-  (8)
maXtE{O,l}N,PFA,ME[O,l]Pr(a7y|%07t7PFA,M) ’}fo

Note that in this setup the vector ¢ is a parameter, thus, we do
not make any prior assumption on its distribution. Calculating the
MLE in the numerator and denominator in (8) is not trivial, since
the unknown % is a discrete multidimensional variable while Fypm
and Ppa M are continuous variables. This leads us to the formulation
in Problem 2.

Problem 2. Find a computationally tractable algorithm that
calculates the GLRT in (8) with unknown t, Pyp y and Pgy .

We now put our problem in the context of a running example
that we will use throughout for clarity of exposition, and that forms
the basis of our hardware experiment in Section VI.

Example 1 (Crowdsourced Traffic Detection). Consider a traffic
detection scenario where robotic agents are driving on a roadway,
and a service (the FC), e.g., Waze, Google Maps, etc., aims to
estimate the current state of traffic to inform users. The service
relies on crowdsourced information from the robots on the road
to detect the state of traffic. This is akin to simplifying traffic
detection into a binary decision where N robots assist the server
in determining if there is significant traffic present on a road or
not. Each robot senses the traffic locally and transmits y; = 1 to
the server if it believes there is traffic, or y; = 0 otherwise. The
server’s decision corresponds to the hypothesis Hg (no traffic)
or Hy (traffic), which ideally matches the true state of the event,
represented by ==0 (no traffic) or Z=1 (traffic). We assume the
traffic information that robots gather from their sensors can be
noisy. This can lead to a legitimate robot detecting that there is
traffic when there, in fact, is not, characterized by the probability
of false alarm, P 1, or that there is not much traffic when there
actually is, characterized by the probability of missed detection,
Pyp 1. Malicious robots also estimate the current state of traffic,
but may intentionally send the wrong information to the server (FC).
The probability that a malicious robot sends the wrong information
to the server is characterized by the probabilities Pry pr and Pyp u.

We emphasize that the derived framework and results of this
paper hold for general hypothesis testing problems, and that
Example 1 is not meant to limit the scope of the work.

In the next sections we propose two different approaches: one
approach to solve Problem 1 and another to solve Problem 2. Then,

we investigate the performance of both methods in Section VI, and
conclude the paper in Section VII. A table of common notation can
be found in Table 1.

Yy Measurements a,a Trust Values
LM Legitimate, Malicious t True Legitimacy
Ho,H1 Hypothesis N Number of Robots
FA False Alarm MD Missed Detection
7V, YGLRT TS Decision Thresholds P Probability of Error

TABLE I: COMMON NOTATION

IV. TWO STAGE APPROACH

The first approach, called the Two Stage Approach (2SA), finds
the optimum decision rule that solves Problem 1.

A. Two Stage Approach Algorithm

In this section we present an approach where we separate the
detection scheme into two stages where 1) a decision is made about
the trustworthiness of each individual robot ¢ based on the received
value o, and then 2) only the measurements Y; from robots that
are trusted are used to choose Hq or H;.

a) Detection of Trustworthy Robots: We utilize the Likelihood
Ratio Test (LRT) to detect legitimate robots. This test is guaranteed
to have minimal missed detection probability (i.e., detecting a
legitimate robot as malicious) for a given false alarm probability
[34, Chapter 3].

The FC decides which robots to trust using the LRT

Nt =1) Li=1
Palaslti=1) Bt
palailti=0) ;=
where ~; is a threshold value that we optimize. Note that when
v =1, (9) is equivalent to a maximum likelihood detection.

The FC decides who to trust and stores it in the vector £, where
t; = 1 if the FC chooses to trust the robot, and ¢; = 0 otherwise.
In the case of equality, a random decision is made where the FC
chooses #; =1 with probability p; and the FC chooses #; =0 with
probability 1 —p;, where p; is another parameter to be optimized.
This leads to the following trust probabilities, where Pyyser(74,0¢)
is the probability of trusting a legitimate robot, and Py m(7e,0t)
is the probability of trusting a malicious robot:

&)

pa(ai|ti:1)
P (vepr) =Pr( P4bi= D g
trst,L(%pt) r(pa(ai|t7;:0) VYt
a(aifti=1
‘H%Pr(p(a | ) =" tizl)»
Palai|t;=0)
Palailti=1) (19
Pius pr) =P ol — 7/ t:=0
mt,M('Ytpt) r<pa(ai|ti:0) Yt )
Palailti=1)
Pr| ————=v%[t;,=0).
+p r(pa(ai|ti=0) Ve

The error probability Ps(D,t, Peam, Pupm) at the FC in (5) is
affected by the trustworthiness classification. That is, if a legitimate
robot 7 is classified as malicious, the FC discards its measurement
Y;, which increases the error probability since fewer measurements
are used in the FC decision making. On the other hand, if a
malicious robot is classified as legitimate, it can increase the error
probability by sending falsified measurements to the FC. For that
reason, we look to optimize the trustworthiness classification to

Authorized licensed use limited to: Princeton University. Downloaded on July 02,2024 at 22:45:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2024.3415235

balance these two conflicting scenarios. Determining the best ;
and p; to minimize the overall error probability of the hypothesis
detection by the FC is the main focus of this section.

b) Detecting the Event Z: To determine a hypothesis H on the
event =, the FC only considers the measurements it receives from
robots that it classifies as legitimate in the first stage, i.e., i: ii =1.
Equivalently, the FC discards all the received measurements of
robots it classifies as malicious. Then, the FC uses the following
decision rule:

[Ti,—1y At (1= Pup ) %1 Pr(E=0) exp(yrs), (11)
PV < Pom =exp(71s);
[Tigi—1y (1= Bean) ¥ Bis 1 57, Pr(E=1)
where exp(yrs) = ggjl); is the exponential function with

respect to rs, and it is a constant decision threshold. We set
g(%jg = exp(71s) so that when we take the logarithm in later
expressions we can express the resultant decision threshold as ~rg
for ease of exposition. This decision rule is commonly used in
standard binary hypothesis testing problems where no malicious
robots are present, and will be referred to as the standard binary
hypothesis decision rule. The standard binary hypothesis decision
rule is optimal in a system with no malicious robots, i.e., M =),
and thus we attempt to approximate the standard binary hypothesis
decision rule by first removing information from all robots deemed
to be malicious. However, since there may be detection errors in
the first stage which classifies legitimate and malicious robots, the
threshold ~, and tie-break probability p, should balance the need
to exclude malicious robots from participating in the test (11) with
the need to allow legitimate robots to participate in the test (11) and
contribute their truthful measurements to decrease the probability of
error resulting from (11). In what follows we show how to optimize
the threshold y; and tie-break probability p; by first computing the
probability of error of the FC using the 2SA.

Recalling the Neyman-Pearson Lemma [34], we have that (9)
minimizes the missed detection probability for a desired false alarm
probability. This false alarm probability dictates the value of the
threshold ;. After the FC discards measurements that it does not
trust, the decision rule (11) leads to the following false alarm and
missed detection probabilities,

Pea (,08,%,Peam)
N
=Pr (Zti [wi,Lyi —woL(1—y:)] 2715
i=1

‘Ho,%7pt7t7p FA,M>7

(12)
Bup (Ve,pe:t,Pupm)
N
=Pr (ZE (w1 Ly —wo,L(1—yi)] <¥rs
i1
‘Hl a’YtaptatvaD,M) ;
where wy L = log (1;1:%)’ and wor, = log (1;5:‘1*)

Consequently, the overall error probability at the FC is:

P (ve,pe,t, Peam,Pupm) =Pr(E=0)Ppa (v¢,pt,t, Pram)

+Pr(Z= I)PMD(%,ptat,PMD,M)-B
(13)

We seek to minimize the probability of error (13) for the decision

rule (11) by minimizing the false alarm and missed detection
probabilities. Any sequence of 0’s and 1’s can occur for the detected
trust vector t, each yielding a different error probability, so the error
probability must be calculated for each possible vector t, along
with each possible vector of observations y. Unfortunately, this
computation scales exponentially with the number of robots, V.
Furthermore, the true trust vector t and the probabilities of false
alarm and missed detection of the malicious robots are unknown, i.e.,
FBea v and Pyp v, therefore, they cannot be used in minimizing (13).

To this end, we derive analytical guarantees regarding the error
probability of the overall detection performance of the two-stage
approach as follows. We find the worst-case probability of error of
the FC by considering all the possible trust vectors t € {0,1}"" and
false alarm and missed detection probabilities Fsanm and Pupwm,
respectively, in the interval [0,1], and choosing the t, Pra v, and
Bup M that maximize (13). Then, we minimize this worst-case error
probability by choosing the best threshold -, i.e., choose v =f
and tie-break probability p, =p; where

max  Pe(ve,pe,t,Peam,Pupm).  (14)

* % .
(vf,p;) =argmin
t, Beam, Pvpm

YtPt

To this end, we must first determine the Pranm, Pvpwm,t that
maximize F.. In the remainder of this section, we assume that the
proportion of malicious robots in the network, denoted by m, is
known, or we choose an upper bound for it (772).

Referring back to Example 1, the server (Waze, Google Maps,
etc.) gathers each robot’s binary decision of the traffic condition
along with a trust value corresponding to each robot’s likely
trustworthiness. With the 2SA method, the server uses the trust
information to decide which robots’ information should be trusted
using (9), and discards the rest. Then, it makes a decision based
on the remaining information, assuming it all to be legitimate
information, using (11). Assuming the 2SA is used, in Lemma 1
we analytically determine what strategy the malicious robots should
employ to increase the error probability. Subsequently, in Lemma 2
we derive the worst-case proportion of malicious robots that will
lead the server to arrive at the wrong binary decision about the
occurrence of traffic with the highest probability.

Lemma 1. If Fap < 0.5 and Pypr < 0.5, then the probability
of false alarm and missed detection of the FC (12) is maximized
for the Two Stage Approach when malicious robots choose
Praayi=Pupm=1, for any vector t € {0,1}V.

Proof. Recall the false alarm and missed detection probabilities
for the FC using (9) and (11) that lead to the overall false alarm
and missed detection probabilities stated in (12).

Next, we show that the false alarm probability (12) is maximized
when Fpam = 1. The proof for Bypw is analogous. In order to
maximize Pga in (12) the summation must be maximized. We
rewrite the summation by separating it into the terms affected by
legitimate robots that were trusted and those affected by malicious
robots that were trusted

>

i:{#;=1,t;=0}

>

i{ti=1,t;=1}

{t: =

[w1,Ly; —wo,(1—y;)]+

15)
[wl,Lyi*wo,L(lfyi)]-

Any robot j 0} can maximize (15) by
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maximizing [wiry; — wor(l — y;)]. Note that when
PFA,L < 0.5 and PMD,L < 0.5 then wiL > 0 and wo,L > 0.
Thus, [wy Ly; — wo,(1 —y;)] is maximized when y; = 1 since
Y; €{0,1}. Given the true hypothesis is #, the measurement ¥; =1
occurs when robot j reports a false alarm. Therefore, the probability
that robot j reports Y; = 1 is maximized when the probability of
false alarm is maximized, i.e., Pr(Y; =1|Ho) = Pam=1. O

Lemma 2. Let t be the worst-case vector t, ie., the vector
t that maximizes the probability of error (13). If Peap < 0.5,
Pupr <0.5, and Peam = Pypm =1, then the probability of error
P, (74,pt,t,1,1) is maximized when t contains the maximum number
of malicious robots, i.e., Y, \ti=N—mN.

Proof. By Lemma 1 the probability of false alarm and missed detec-
tion (12) are maximized when a robot is trusted and its measurement
reports the wrong hypothesis, i.e., y; = 1 when the true eventis ==

or y; =0 when the true event is Z=1. Since the optimal policy for
malicious robots is to report the wrong hypothesis with probability 1
(Lemma 1), any robot increases the false alarm and missed detection
probability of the FC when it is malicious instead of legitimate.
Thus, the probability of error P.(v¢,pe,t,1,1) is maximized when
the proportion of malicious robots, m, is maximized, i.e., when
t has MmN malicious robots, where 77 is the upper bound on the
proportion of malicious robots in the network. O

Intuitively, the results of Lemmas 1 and 2 show that since the
2SA trusts all information that passes the first stage, the probability
of error will be maximized when the proportion of malicious robots
is maximized and they always send the wrong information. This
maximizes the probability of misinformation reaching the second
stage and affecting the final decision.

Utilizing Lemma 2, we calculate the exact probability of error
for the FC for the worst-case attack where there are 72/ malicious
robots and Fra m = Pypm =1. In order to compute the probability
of error exactly, we must compute the probability of false alarm and
missed detection using (12). Let k. € K be the number of legiti-
mate robots trusted by the FC, where K = {0,...,(1—m)N}. Sim-
ilarly, let ky € Km be the number of malicious robots trusted by the
FC, where Ky ={0,...,mN}. Let Sy represent the left side of the
inequalities in (12) given by Sy= Zf\;lii [wiLyi—woL(1—yi)]-
Using the law of total probability, the false alarm probability is

Fea(ve:0e,1) =37 e i e sy T = h)Pr(Ky =ky)
~Pra (Sn > y1s[Ho kL hm ).

Similarly, the probability of missed detection of the FC is

Pup (y,pe,m,1) = ZkLEKL,kMeKMPr(KL =kp)Pr(Km=km)
-Pyp (S <yrs|Hi,kLkwm)-

The probability of false alarm for a particular instantiation of kj,

and ky; can be written as a function of the binomial Cumulative
Distribution Function:

Pea(Sn>yrs[Hosk.km)

—k ki
P (X gy > T g ),
—k k
—1-F, <|—7TS MW1,L+ LwO,L—| —1;PFA,L,]€L>,
Wo,L+wW1,L
(16)

where Fy(g;p,n) = 37 ()p'(L—p)" " =Pr(3 L,y <g) is
the binomial Cumulative Distribution Function evaluated at g for
n variables and success probability p. Similarly, for the probability
of missed detection, we have
Bup (S <yrs|Hi ke km) =
k ki
j2l <[7Ts+ MWo,L+ Lwo,L~| _1;1_PMD,L7kL> .
wo,L+W1 L

Recall (10). We note that these probabilities depend on the
distribution of the robot’s trust values a. Then, we have that

Pr(Kp =k )=Pr (Zt = k;L)

€L
- fb(kL;RruSt,L(’yhpt)a(l _m)N)7

(7

PI‘(KM = kM) =Pr Z %’i = :ZCM
ieM
= fo (knt; Prustm (2,0t) N ),
where fy(g;p,n) = (7)p?(1 —p)" ™9 = Pr(XZi_ yi=g) is the
binomial probability distribution function evaluated at g for n
variables and success probability p. Thus, the probability of false
alarm and missed detection are

Bea(¢:pe,m,1)

>

kL€ Ky fni€ Ko
Jo (ks Prustm (201 ) ;N )-
Pea (SN > yrs|Ho ke km),

Jo(kL; PrustL (V6,02 ),(L=m2) N )-

_ (18)
By (Ve,pe,m,1)
= Z So(kL; Prusir. (e:pe),(L=M)N)-
kLeKi,kmEKm
Jo(km; Brusom () AN )-
Py (Sn <7yrs|HakL.km).
Therefore, we define the error probability in the worst-case
Pe(ye.p6m,1,1) £Pr(E=0) Bea (y2,p¢,m, Paam = 1)+ (19)

Pr(E=1)Pup(vs,pe,m,Papm=1),

and we can choose the thresholds +; and p, that minimize the
expression. Once we choose the thresholds ; and p;, the rest of
the 2SA becomes a standard binary hypothesis test.

Lemma 3. Denote T, := {%} , where {}aca
represents a set consisting of all possible valzies ofa€ Aand A
Sfollows Assumption 1. Then, the minimal value of (14) with respect
to ¢ can be achieved by v € T'y.

Proof. The proof follows directly from the finiteness of the set A
and since p; can take values in the interval [0,1]. O

Let '), := {0,0p,20,,...,1} with a discretization constant d,,.
Algorithm 1 explains the Two Stage Approach step-by-step.
Algorithm 1 takes a set I'; as input. Then, for each 4, € I'; and
each P, € I';, we compute Prusir(9,Dt), Pruscm (32, D), as well
as Pra (%4, pt,m,1) and Pyp (%%, ¢, M, 1). Then we compute the
probability of error at the FC for the given 4; and p;. The 4; and
Py that yields the minimum probability of error is then used in the
decision rule in (9) to determine which robots to trust or not trust
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Algorithm 1 Two Stage Approach
IIlplltZ PFA,L, PMD,L, PFA,M :PMD,M = ]., PI‘(E:O), PI‘(E: 1), Yy,
a,m, I, 6,
Output: Decision Hg or H1
1: SetI',={0,6,,20p,...,1}.
2: Set YVt temp — 0, Pt temp = 0, Pe,temp =2.

3 forall 4, €Ty, p, €T, do

9% Compute probability of error for each ~;,p; (lines 4-6)
4 Compute Pt (5¢,D¢)s Prustm (52:0¢) by (10).
5: Compute P (,pt,1,1), Pup (3¢,p¢,,1) by (18).
6: Compute Pe(%,p:,mm,1,1) by (19).
7: if Pe (’?t ,ﬁt ,m,l,l) < -F)e,lemp then

% Store the current min values in s jemp Pt temprFe.temp
8 Set ('Ytﬁemp >pﬂemp) = (’AYt 7]Ajt)~

9: Set F)e,temp =P, (’A}/t ,]A?t ,m,l,l).
10: Set (Ve,t) = (Ve,temp»Pt.temp)- %o Set i, py to the values that
vielded the lowest probability of error
11: Determine the vector t using (9). % Estimate trust
12: Determine decision using (11). % Perform the standard
hypothesis test using measurements from the trusted robots
13: Return decision Hg or H;.

(vector t). Finally, we use the chosen vector t to make a decision
using the standard binary hypothesis decision rule (11).

Determining the threshold value +; and tie-break probability
p¢ requires computing the probability of error |I'y| - |T'| times,
where |- | represents the cardinality. However, this only needs to
be computed once, and then the returned +; and p; can be used to
run each subsequent hypothesis test. With a given ~; and p;, the
hypothesis test requires O(N') comparisons.

Theorem 1. Assume that the FC uses the decision rule in (9) to
detect malicious robots, and then uses the decision rule (11). Then
Algorithm 1 chooses the threshold value ~; and tie-break probability
¢ that minimize the worst-case probability of error of the FC up
to a discretization distance

d((sp) ::pngfr‘l ﬁe(rﬂk 3pt;m7171) _P€(7: ,p: 7m71a1)'
Furthermore, d(6,) —0 as 6, —0.

Proof. The goal is to minimize the worst-case probability of error
of the FC, i.e.,

min - max  Fe(ye,pe,t,Bram, A m)-

YesPtt, Paam, Pupm

Using the results from Lemmas 1, 2 and (18) we upper bound the
error probability using the worst-case error probability:
i P, Pream, P
mm, | max o e (V52656 Pea M, P M)

= minmaxpe(’Yt vptvta]-v]-)a
Vepe b

= minﬁe (’Yt Pt 7m7 1 ) 1) .
Yt,Pt

The equality in the first line directly follows from Lemma 1. The
second line follows from the first by inserting the worst-case
vector t, with 77 malicious robots, as the one that maximizes the
probability of error P, (Lemma 2).

Additionally, by Lemma 3, it is sufficient to optimize -y, over the
set I';. Now, since we optimize p; using a line search, we may not

necessarily find an optimal pair (v;",p; ). However, we can express
the distance from the optimal solution by:

Pe(’yhptvavl)_Pe(’yfvpz‘7m7171)

min
Y€, €Ty
S min FC(’Y; apt7malal) _FC(’Y: 7pj£< 7m71a1) = d((sp)
pt€ly
For every fixed -y, the function P, (v;,p¢,/m,1,1) is a polynomial
function of p;, therefore, it is continuous in p; (over the interval
pi €]0,1]). Consequently, d(d,) —0 as 6, — 0. O

B. Error Bounds for the Two Stage Approach

In this section we characterize the behavior of the 2SA as the
number of robots in the system increases. Namely, we show that
when the probability of the FC trusting a legitimate robot in the first
stage of the 2SA (9) is much greater than the probability of the FC
trusting a malicious robot, that the overall worst-case probability
of error at the FC decreases towards 0 as the number of robots in
the network increases.

Let Sv € (0,1) and B € (0,1) denote the proportion of malicious
(resp. legitimate) robots that are trusted by the FC after the first
stage. The terms Gy and (G are purely for analytical purposes.
They will be utilized to split the probability of error analysis into
four separate events, corresponding to differing numbers of trusted
legitimate and malicious robots.

Recall that m is the upper bound on the true proportion of
malicious robots in the network. Assume 72 € (0,1). Let us consider
a given threshold value +; and tie-break probability p; at the first
stage, and let Pygm(Ve,0t) and Pyg (4,04 ) be the resulting prob-
ability of trusting a malicious (resp. legitimate) robot. Furthermore,
let us consider a given Sy and [, such that Sy > Prusom (Vt,0¢)
and 1, < PrystL(Ve,pt)- Intuitively, the values Byrygm(7e,p:) and
Pyuser.(74,p¢) correspond to the expected proportion of malicious
and legitimate robots that will be trusted by the FC under the 2SA
algorithm. Consequently, when we consider Oy > Prusem (72, 0t)
and B, < PusL(7t,pr) we are representing undesirable regions
where more than the expected proportion of malicious robots are
trusted and less than the expected proportion of legitimate robots are
trusted. Finally, assume (L|L| >> max{fu|M]|,1}. This means
we consider scenarios where many more legitimate robots than
malicious robots are trusted by the FC. This is likely to occur when

Prust(78:0¢) >> Prustm (250t -
We summarize the assumptions used here for convenience:

Assumption 2. (a) We denote by 5y € (0,1) and B € (0,1) sam-
ple proportions of malicious (resp. legitimate) robots that are
trusted by the FC after the first stage of the 2SA for analytical
purposes. We analyze undesirable scenarios where many
malicious and few legitimate robots are trusted, i.e., scenarios
that satisfy 6M > R‘ruxt,M(’Yt 7pt) and BL < R‘mst,L(’yt ,Pt)-

(b) We assume that G| L] >>max{fy|M|,1}, which is likely to
occur when Py 1 (Ve,0t) >> Prusm (Ve,0t)-
(c) We assume m € (0,1).

Recall that & and ky; denote the actual number of legitimate
and malicious robots trusted by the FC. In what follows, we upper
bound the worst-case probability of error by examining four cases,
each considering a different regime with respect to the number of
trusted legitimate and malicious robots:
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Case 1) kr <pL|L], km < Bm|M|,
Case 2) kr <pL|L], km > Bm|M|,
Case 3) kL > OL|L], km > Bu| M|,
Case 4) kp > BL|L|, km < Bm| M.

In words, these cases correspond to scenarios where 1) few
legitimate and malicious robots are trusted after the first stage of
the 2SA, 2) few legitimate robots but many malicious robots are
trusted, 3) many legitimate and malicious robots are trusted, and

4) many legitimate robots but few malicious robots are trusted.

Intuitively, Cases 1, 2, and 3 will contribute the most to the
detection error probability since they contain either many malicious
robots or few legitimate robots, whereas the fourth event is the
most desirable since it contains many legitimate robots and few
malicious robots. In what follows, we investigate scenarios where
the probabilities corresponding to Cases 1, 2, or 3 occurring decay
at least exponentially as the number of robots increases, then
show that the probability of error given Case 4 also decays at least
exponentially as the number of robots increases. In other words, we
show that Cases 1, 2, and 3 are unlikely to occur under the assumed
conditions, leaving Case 4 as the most likely case. Finally, we show
that the probability of error is low when Case 4 occurs.

Recall that yrs = log (gigz?g) is the decision threshold used

in the second stage of the 2SA (11), i; denotes the outcome of
the first stage which tests the trustworthiness of robot ¢, and
Sno= SN Efwiiy: — worL(1 — w;)], is the left side of the
inequalities in (12). The probability of a particular case occurring
corresponds to the probability of trusting k;, and ky; robots that fall
into the region described by the particular case. These probabilities
are conditioned upon the chosen threshold values 7, and p;, but
we omit these threshold values from the case probabilities for
ease of exposition. With these four cases, we can upper bound the
worst-case probability of error by using the union bound:

Pe(vt,pem,Peam=1,Pmm=1)
SPr(kLSBdﬁDPT(kM<ﬁM|MD max ﬁe(kLakM)
kL<pBL|L],
km<Bu| M|
+Pr(ky <BL|L])Pr(kv > Bu|M])) max D, (kr.km)
kL<pBL|L],
kn > Bu| M|

max p,(kr,k
5, Pelkusk)
km>Bum| M|

+Pr(kL>6L\E\)Pr(kM <6M‘M|) max ﬁe(k}L,kM),
k> Bu|L],
km< v M|

+Pr(ky > BL|L])Pr(km > Bl M)
(20)

where

Pe (kv k) £ Pr(E=0) Paa (Sn > yrs[Ho ke .kw)

+Pr(Z2=1)Pup (Sn <rs|H1,ke.km),
represents the probability of error for a given ki and ky
corresponding to a particular case. Intuitively, (20) shows how we
can upper bound the worst-case probability of error by the sum
of the worst-case probabilities of error for each of the 4 cases.
Note that P, (kv,km) <1 for any k. and k. Consequently, we can
simplify (20) to

ﬁe(’yhpt?mJal) S Pr(kL Sﬁ[JﬁDPI‘(kM <ﬁM|MD

+Pr(k, < AL Pr(kw > BulM])| 1

+P1"(]€L >ﬂL‘£DPI‘(k’M ZﬂM‘Ml)l

+Pr(kL>BL‘£DPr(kM <ﬁM‘M|) max ﬁe(kL,]fM).
kL>BL|L],
km< v M|

2h

We utilize the upper bound P, (kr,kn) <1 for the cases where few
legitimate robots are trusted, k, < 5 |£|, or many malicious robots
are trusted, ky > Ov| M|, to simplify the analysis, i.e., we upper
bound the error probabilities that are likely to be high by 1. We
intend to show that the probability of these cases occurring decays
at least exponentially as the number of robots increases. Let

Pr(Case 1) £ PI‘(kL < ﬁL|E|)PI'(]€M < ﬁM ‘M |),
Pr(Case 2) 2 Pr(ky < B|L|)Pr(kym > Bu| M),
Pr(Case 3) 2 Pr(k. > BL|L])Pr(km > Bu| M),
Pr(Case 4) 2 Pr(kp. > BL|L])Pr(km < Bu| M),
be the probability of Case 1, Case 2, Case 3, and Case 4 occurring,
respectively. We are interested in characterizing how the probability
of error in (21) is affected when the number of robots increases
while keeping the proportion of malicious robots the same. To see

this more clearly, we rewrite (21) using (22), and then analyze each
term separately:

Pe(ye,pt;m,1,1) < [Pr(Case 1)+Pr(Case 2)]
+Pr(Case 3)+Pr(Case 4)-

22

max ﬁe(kLakM) . (23)
kL>BLIL] k< Bu| M|

We derive our upper bound (23) on the error probability by
examining its terms. To this end, we utilize the following upper
bound [46] which is derived from the Chernoff bound

Pr(X <g)=Fy(g;n,p) <exp (—HD(%HP)),

where we assume X to be a binomial distribution, 7 is the number
of trials, p is the success probability, i.e., the probability a trial
results in a 1, and

Dipllo)=rios( 2 ) +(1-piog 12 )

is the Kullback-Leibler (KL) divergence between a Bernoulli
random variable with success probability p and a Bernoulli random
variable with success probability q. The Chernoff bound (24) pro-
vides an upper bound for the lower tail of the cumulative distribution
function for Pr(X <g), and is valid when £ € (0,p). The Chernoff
bound can also provide an upper bound for the upper tail of the
cumulative distribution function for Pr(X > g) for £ € (p,1).

Next, we analyze the terms within (23). Specifically, for Cases 1-3
we show that the probability of them occurring decays at least expo-
nentially as the number of robots increases. Then, we show that the
probability of Case 4 occurring approaches 1, but the corresponding
probability of error for Case 4 decays at least exponentially.

Referring again to Example 1, we want to show that if the
proportion of robots that are malicious is held constant and the
trust values received by the server are likely to yield the correct
trustworthiness of each of the robots, then the most likely case
is that the server will trust mostly legitimate robots in making its
traffic condition estimation. Thus, the probability of the server
making the correct estimation will be high.

a) Cases 1 and 2: Cases 1 and 2 correspond to cases where

few legitimate robots are trusted. We show that the probability
of them occurring decays at least exponentially as the number

24
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of robots increases. First, we simplify the probability of them
occurring using the law of total probability:

Pr(Case 1)+Pr(Case 2)
=Pr(kL <BL|IL])Pr(km < Su|M])
+Pr(kL < BL|L])Pr(kw = S| M)
=Pr(k. <BL|L]).
Next, obs§3rve that the number of trusted legitimate robots, i.e.,
kL = Zie rtis 18 distributefl according to a binomial distribution
with the probability for ¢;, = 1 equal to the probability of

trusting a legitimate robot ¢ € L. Therefore, the upper bound on
Pr(k <Bi|L]) can be written by

Pr(kL <exp(—(1—m)ND(BL|| PrustL.(Ve501)))- (25

The Chernoff bound is valid here since we consider the region where
BL < PuustL(Ve:p¢) (Assumption 2.a). It can be seen from (25) that
the upper bound on the probability of Case 1 or Case 2 occurring
decays exponentially with a rate of (1—772) N D(BL|| PrustL(Ve,2t))
assuming 7 # 1 (Assumption 2.c). This is guaranteed to be
an exponential decay because the KL divergence is always
non-negative, 5,7 Prust.(Ve,pt), and N >0.

b) Case 3: Case 3 corresponds to the case where many
legitimate robots are trusted by the FC, but also many malicious
robots are trusted. Similar to Cases 1 and 2, we show that the
probability of Case 3 occurring decays at least exponentially as the
number of robots increases. Recall that

Pr(Case 3) =Pr(k. > 8| L])Pr(km > Bu|M]).

For Cases 1 and 2 we showed in (25) that Pr(ky, < B|L])
decays toward O at least exponentially as N increases. Since
Pr(ky > fBL|L]) =1—Pr(k < BL|L]) <1, we conclude by the sand-
wich theorem [47] that Pr(k. > 5L|L|) approaches 1 as N tends
to infinity. However, observe that the number of trusted malicious
robots, i.e., ky = Zie Mﬂ-, is distributed according to a binomial
distribution with the probability for ¢; =1 equal to the probability of
trusting a robot 4 given that ¢ € M. Then, using the Chernoff bound
(24), the upper bound on Pr(ky > Buv|M|) can be written by

Pr(kyv > pv|M|) <exp(—=N D(Bu|| Prustm (V:pt))).— (26)

The Chernoff bound is valid here since we consider the region
where Ov > Brusum(7Ve,pe) (Assumption 2.a). It can be seen from
(26) that the upper bound on Pr(ky > Bu|M|), and thus the
probability of Case 3 occurring, decays exponentially with a rate
of N D (Bum|| Prustv (Ve,p¢)) assuming 72 # 0 (Assumption 2.c).
Again, this is guaranteed to be an exponential decay because the KL
divergence is always non-negative, Oy 7 Pyustm (72,0t ), and N > 0.

c) Case 4: Case 4 is the ideal case, where many legitimate
robots are trusted by the FC and few malicious robots are trusted.
We show that the probability of Case 4 occurring approaches 1 as
the number of robots increases, and the corresponding probability
of error decays at least exponentially. Recall that

Pr(Case 4) =Pr(k. > 8| L])Pr(km < Bu|M]).

We already showed that Pr(ky > 5 |£]) — 1 as N — oo. Similarly,
Pr(km < Bm|M|)—1 as N — oo since Pr(ky > fu|M|) — 0.
For Case 4 we must also upper bound the probability of error,
which requires upper bounding the probability of false alarm and
missed detection for a given number of trusted legitimate, ki , and

malicious robots, ky;. For both of these, we use the Chernoff bound.
First, we analyze the false alarm. Recall (16) which allows us to
write the upper bound as

Pea(Sn>yrs[Hosk.km)

,k k
:Pr<2i:{i¢:1,ti:1}yi2 o whfffit;:w“ Ho,kL,kM>
<exp(—kLD (Fra (kL,km)|| PraL)),
27

where
1 ~yrs—kvmwyL+kLwo L

kL (wo,L+w1L)

is the threshold on the RHS of the inequality in (16) and (27)
normalized with respect to k.

Similarly, the probability of missed detection given ki, and ky
is upper bounded by

Pup (SN <~yrs|Ha kL k)
<exp(—kLD(Anrp (kL.km)||1—Pypy)),

_ 1 vyrsthmwo,L+kLwo,L
where (L k) = g 0, LT

The Chemoff bounds in (27) and (29) are valid whenever
Ara (kL,km) € (Pear,1) and Avp (kr,km) € (0,1—Pyp)-

From here we upper bound the probability of error corresponding
to Case 4 by noticing that our upper bound on the probability of
error is maximized when the least legitimate robots are trusted
and the most malicious robots are trusted. Define ki = 8y |L]+ 1
and Ky = Bu|M| — 1 to be the minimum number of legitimate
robots within the region k> (i |£|, and the maximum number of
malicious robots within the region &y < Ou|M ]| that can be trusted,
respectively. The following lemma formulates this observation.

Ve (kL fom) := , (28)

(29)

Lemma 4. Consider Case 4 where many legitimate robots are
trusted by the FC and few malicious robots are trusted. Without
loss of generality, assume Pr(2=1)>Pr(E=0). If Y (kr,kn) €
(Pm1,1) and Ayp (ki ,ku) € (0,1 — Pyp,r), then the probability of
error for a given ki and ky; within Case 4 can be upper bounded by

max  p,(kr.km)

kL>BL| L],

ky<Bu| M|

<Pr(2=0) i r>nﬁa>‘<| Pra(Sn = vrs|Hoskr,km) (30)
Fy<Bu| M|

+Pr(E=1) max_ Pyp(Sy<7rs|H1,kr.kum).
kr>BL|L],
kM<BM‘M‘

Additionally, assume Bp|C] >> max{fy|M|, 1}. Then,

there exists values ki, > Br|L|, and ky < BulM| such that
e (kpokemr) € (Pear,1) and np (kr k) € (0,1—Pup r).

Proof. The proof of Lemma 4 can be found in Appendix A. [

From Lemma 4 we have that
De (kL Fm)

<Pr(E=0)¢gea+Pr(E=1)gmp,

max
FL>BL| L] k< Bu| M|

where

GrA = e(—(ﬂL(l—m)N-ﬁ-l)D(’?FA(ﬁL(l—m)N-H,BMﬁN—l)\\PFA.L))
and
gup = e~ (ALA=M)N+1) DGnep (Au(1=m)N+1,6umN—1)|[1—Fupv))
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Intuitively, Lemma 4 allows us to upper bound the worst-case prob-
ability of error under Case 4 by two terms consisting of Pr(Z=0)
and Pr(Z=1), which are constants, and ggs and gyp. Therefore, if
we show that gra and gvp both decay exponentially with N, then
so does the upper bound for the worst-case probability of error for
Case 4. Indeed, we see that the upper bound for the probability of
error when Case 4 occurs decays exponentially with a rate of

(bLA=T)N +1)-
mm{D(ﬁ/FA(ﬁL(l—m)N—&— 1, MmN—l)HPFA’L),
D(Amp(BL(1—m)N+1,0umN —1)||1— Pupp) }-

We summarize the main result of this section with the following
proposition.

Proposition 1. Assume Assumptions 2.a - 2.c hold. Then the
worst-case probability of error, Pe(v;,ps,m,1,1) in (19), decays
towards zero at least exponentially as the number of robots in the
network increases.

Proof. This result follows from the results of Sections IV-B.a
- IV-B.c, which show that [Pr(Case 1) + Pr(Case2)] — 0,
Pr(Case 3) =0, Pr(Case 4) — 1 as N — 0o, and the upper bound
on the probability of error corresponding to Case 4, B, (k. Jm) —0,
as IV — oo. Since all upper bounds exhibit exponential decay rates,
we conclude that the probability of error decays towards 0 at least
exponentially as the number of robots in the network increases. [

C. Analyzing the Limits of the Two Stage Approach

If the proportion of malicious robots in the network, i.e., m,
is high enough, the probability of error for the 2SA will plateau.
Intuitively, this is due to the fact that if there are too many malicious
robots it becomes more beneficial for the FC to guess between
Ho or H; using the prior probabilities Pr(= = 0) and Pr(E=1)
rather than utilize any measurements from robots. In the context of
Example 1, this would correspond to a scenario where most, if not all
of the robots on the road are sending malicious information. In this
case, the server likely has a better chance of correctly estimating the
traffic conditions by making an informed guess based on previously
known traffic patterns. In this section, we wish to find the critical
proportion of robots on the road that need to be malicious for this
to happen. We note that since trust values are used, the proportion
of malicious robots that causes the 2SA to plateau is not necessarily
the typical = 0.5. We formally state and prove this observation
with the following lemma. Recall that Algorithm 1 chooses the
classification threshold v; and tie-break probability p, by computing

the probability of error in the presence of a worst-case attack over
Pa(alti=1)
pa(alti:()) a€A
I',={0,6,,20p,...,1}, and ¢, is a given discretization.

>

all values 4, € T; and jy € T, where T, = {

Lemma 5. If the worst-case probability of error for every choice
of 4 and Py is no better than performing event detection with no
information, i.e.,

Pe(31,pe,m,1,1) >min{Pr(£=0),Pr(E=1)},

for all 4y € T'y and all p, € T, then the optimal worst-case
probability of error becomes the probability of the less likely event
between ==0 and E=1 occurring, i.e.,

Pe(v; .pim.1,1) =min{Pr(2=0),Pr(E=1)}.

Furthermore, the Two Stage Approach chooses thresholds

v and p; that lead to not trusting any robots, Ii.e.,
o(ailti=1
¥ :mmaiea{%} and p; =0.
A Pa(ai|ti=1) A :
Proof Let Yt = MaXgca {m} and Pt = 0. This

corresponds to the scenario where the measurements from all
robots will be discarded by the FC in the first stage. Discarding all
measurements simplifies the decision rule (11) to

i Pr(E=0)

5, Pr(E=1)
If Pr(E=0) >Pr(E=1) then the FC chooses H, which leads to
an error probability of Pr(Z2=1). If Pr(E=0) < Pr(E=1) then
the FC chooses 7, which leads to an error probability of Pr(E=0).
Therefore, the probability of error

P.(3,pt,;m,1,1) =min{Pr(2=0),Pr(E=1)}.
By Algorithm 1 if the probability of error is greater for all other 4, €

peesi=3 L and p; =0. O

Ft and th S Fp, then ’)/; =MaXg,; ca { Pa(@i]t;=0)

This lemma formally shows that if at some point the probability
of error when trusting any robots is always greater than the
probability of error from using the prior probabilities Pr(==0) and
Pr(E=1) then Algorithm 1 chooses ~; and p} such that no robots
are ever trusted. This reduces to the case where the hypothesis test
is done using the event probabilities.

Let m* denote the critical proportion of malicious robots that
causes the 2SA to reject all information in the first stage, i.e., for all
m>m* we have Pe(v;,p},m,1,1) =min{Pr(2=0),Pr(=Z=1)}.
Next we develop an understanding of how m* is affected by the
quality of the trust values, i.e., as a function of the probability
of trusting legitimate and malicious robots, Pyusr(7t, pt) and
Pyrustm (71,0t )- In order to do so, we assume as a simplification that
there is no noise in the sensor measurements of legitimate robots,
i.e., Pear, = Pup. =0. This allows us to simplify the probability of
false alarm in (16) by considering y; to be a deterministic variable
with respect to the legitimacy of robot i:

Pra(Sn>yrs|Ho) =Pr(—Kpwo + Kvw > vrs[Ho),  (31)

where K1 € {0,1,...,(1 —m)N} and Ky e{0,1,..,mN} are
random variables that represent the possible number of trusted
legitimate and malicious robots, respectively. When Pra1, = BupL
we have that wo 1 =wq 1. Then (31) becomes

Pea (S > yrs|Ho) =Pr(Kv— KL > 0[H), (32)

where we use the fact that wg 1, — oo and wq 1, — 00 as Bpay, —0
and Pypr — 0. Similarly, the probability of missed detection
becomes

PMD(SN <’YT5|H1):PI‘(KM—KL>O‘H1). (33)

The variables K}, and Ky are distributed according to binomial
distributions:

K ~BIN((1-m)N,Pyse1.), Km ~BIN(TN, Pruscm )

where BIN(n,p) corresponds to a binomial distribution with n
trials and success probability p.

Define Z £ Ky — K to be a discrete random variable
corresponding to the difference of the two binomial random
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variables Ky and Kj. We are interested in Pr(Z > 0) for the
probability of false alarm (see (32)), and Pr(Z > 0) for the
probability of missed detection (see (33)). Then, m* could be found
by finding the minimum 772 such that

Pr(E=0)Pr(Z>0)+Pr(E=1)Pr(Z>0)
>min{Pr(E=0),Pr(E=1)}.
where Pr(Z > 0) and Pr(Z > 0) are a function of Pyysr(7,0t),
Prrustm(Ve:pe), ™, and N.

When N is large the distribution of 7 is approximately normal
with mean and variance

M :mN(Pﬁust,L+Pmsl,M) *Nptrust,L;

(72 :mNPtrust,M(l—Ptrust,M)‘i‘(l—m)NPnust,L(l—Ptmst,L),

respectively. The mean is found using the linearity of expectation,
and the variance is found by utilizing the fact that the binomial
random variables K and K are statistically independent, given
PirustL, Prustm, T, and V. Then, we can approximate the probability
Pr(Z > z) using the complement distribution function Q(g) =
\/% J; exp—(u?/2)du where g= *_*. Utilizing this, we have

Pr(Z>O)%Q(;M)

—Q N Puustl, =N (PrrustL+ Prrustm)
/TN Prugint (1= Prusint) +(1=72) N Prugi.(1— Prusir) )
(34)
for the probability of missed detection. The probability of false
alarm can be upper bounded by Pr(Z > —1/2) using the continuity
correction [48, Ch 4] and computed similarly.

1) Simulation study for m*: We conclude this section by
running a simple simulation study where we compute m* by
varying m from 0 to 1 and choosing the first value such that

P.(%,pt,m,1,1) >min{Pr(E=0),Pr(E=1)}. We also compare
this to an estimation of m*, denoted by m*, done by approximating
Pup(Sx <71s|H1) by Pr(Z > 0) in (34) and Pra(Sx >1s|Ho)
by Pr(Z > —1/2). We compare the results for a case where
we set N = 50 and Pr(2 = 0) = Pr(E = 1) = 0.5, and vary
]Dtrust,L(’Ytapt) € [0-170-9] with Rrust,M(’Ytapt) =1- Brust,L(’Ytapt)
From Fig. 2 it can be seen that our method of using the normal
approximation to estimate m* closely matches the true value. It
can also be seen that a fairly linear relationship exists between
the probability of trusting legitimate and malicious robots and
the critical proportion m*. Moreover, for the special case where
Pr(E=0)=Pr(==1) this relationship can be estimated by

% R trust,L(% 7pt)

m* = )
Prrusit. (Ve50¢) + Prustm (Ve:Dt)

V. ADVERSARIAL GENERALIZED LIKELIHOOD RATIO TEST

In this section, we introduce our second approach, called
the Adversarial Generalized Likelihood Ratio Test (A-GLRT).
The A-GLRT uses both the trust values and measurements
simultaneously to arrive at a final decision while estimating the
unknown parameters using the maximum likelihood estimation rule.
The A-GLRT approach addresses Problem 2.

Critical Proportion of Malicious Robots as a
Function of Trust Probability

09ff—m
—_m

0.7 [ Maliciousrobots in
T the majority
05f-=-=-===--—--
m” varies approximately]
linearly with Pyyse

Legitimate rébots

in the

majority

Proportion of Malicious Robots

1
0.1 0.3 0.5 0.7 0.9
Probability of Trusting a
Legitimate Robot (Pm,sud)

Fig. 2: Case study to compare m* with m*, an estimate of m* using the normal
approximation. The estimate closely matches m*, and there is a linear relationship
between the probability of trusting legitimate robots and m*.

A. A-GLRT Algorithm

The main purpose of this section is to construct an efficient
algorithm that implements the GLRT in (8). We can simplify (8)
by recalling that given the true trustworthiness of a robot ¢; and the
true hypothesis H, the trust value o; and the measurement Y; are
statistically independent. Thus,

Pr(a,y|H1.t.Ppm)
=Pr(a|H1,t,Pwm)Pr(y[Hit, Puom),
Pr(a,y|Ho.t,Pram)
=Pr(alHo,t,Peam)Pr(y|Ho,t, Peam)-
Furthermore, the trust value «; is independent of the true hypothesis
H. Thus,

PI‘(CL|H1,t,PMD’M) ZPI‘(CL|H0,t7P]:A,M) = Pr(a|t)

Hence, we obtain
Pr(a|t)Pr(y|’H1 at7PMD,M) Hy

> yoirr. (35
Pr(alt)Pr(y[Ho.t, Poan) o3, 0 (35)

max
te{0,1}N, Pupm€[0,1]

max
te{0,1}N , Piam€[0,1]

Pr(E=0) .
We choose YgLrr = Pi(::I) since we do not assume that we have

the prior distribution of ¢. In Example 1, using the GLRT method,
the server initially assumes traffic presence on a roadway (the
hypothesis ;) and determines the strategy of malicious robots and
the trustworthiness of all robots that maximize the likelihood of the
observed trust information and robot measurements. Subsequently,
the server performs a similar calculation assuming no traffic on the
roadway (the hypothesis Hg). The traffic condition is then deduced
by comparing the likelihoods calculated under both assumptions.

The challenging part of using the GLRT in this problem is
calculating the MLEs for both the numerator and denominator. The
unknown t is a discrete multidimensional variable while Fypm
and Pga M are continuous variables restricted to the domain [0,1].
Therefore, calculating the MLE is not trivial. Due to symmetry in
the calculation of the numerator and denominator in (35), we focus
only on the numerator.

Using Assumption 1 regarding independence of trust values,
we obtain Pr(alt) :Hiliﬂ’a (a;|t;). Additionally, we obtain the

Authorized licensed use limited to: Princeton University. Downloaded on July 02,2024 at 22:45:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2024.3415235

following using the i.i.d. assumption about measurements:
Pr(y|[H:.t,Pupm) = H (1—Pupp)" Pypy:
:t;=1
. ploy;
. H (1—PMD,M)y7’ .PMD,!IIVI‘
2:t;=0
Using these equations, we write the numerator as:

I pelailts) Pyt (1= Bupr)”
=1

1 palailts) Pupta(1— Pupw) }

i:ti =0

te{O 1}N PMDME[O 1]{
(36)

Since there is no clear way to optimize (36) over variables ¢ and
BupM at the same time, we reformulate the problem as two nested
optimizations using the Principle of Iterated Suprema [49, p. 515],
that is:

sup{f(z,w):z€ ZweW} ::22{525\;{f(z,w)}}
= sup {sup{f(z,w)}},

weW z€Z

where f: ZxW—R, and Z,W CR% By the Principle of Iterated
Suprema we can calculate the maximization in (36) in two ways.
We rewrite the maximization problem as:

max a t
te{071}N{PMDMe 0,1 { Hlpa ilti)
11 polailts) Pupia(1—Pom)” } }

1:t;=0

Pus vt (1= Bm)”

With this formulation, one possible way to calculate the
maximization is iterating over all vectors ¢ in the set {0,1}"V; then
for each t, calculating the inner maximization. We calculate the
inner maximization in the following lemma.

Lemma 6. Let t and y be given vectors in {0,1}. Assume that
Dala;|t;) is known both t; =0 and t; =1, and that Y 1>0.
Then,

i:t; =0

H Palailt)) Pypy (1= Pupp )Y+
e - | 37)
1 palailts) Punta(1— Pupw)*

i:t; =0

721‘5:](;”” Additionally, if

t; = 0}| = 0, any choice Pypy €[0,1]

is maximized by Pypm =

ol =0, ie, |fi:

maximizes (37).

Proof. First, observe that given the vector ¢, (37) is maximized by
the MLE of [ [, _opa(ailt:) MDM( — Pypm)Yi. Furthermore,
since

[T pataslti) Pippa(1— Bupm)”

2:t;=0
( H Palaslt; ) ( 11 P&giz(l—PMD,M)%>,
2:t;=0

vt =

it follows that (37) is maximized by the MLE of | |
Pupm)Y.

1 i
2:t; =0 MDZIJ\/I(1

This is a well-known estimation problem [50, Problem 7.8], that
together with the invariance property of the MLE [50, Theorem 7.2]

leads to the optimal estimator PMD M= W Note, that this
estimator is equal to the empirical missed detection probability of the
measurements sent by the malicious robots. Finally, it is easy to vali-
date that if |{i:t;=0}| =0, any Pyp. € [0,1] maximizes (37). [

Unfortunately, since the set {0,1}" grows exponentially with the
number of robots in the network, this approach is computationally
intractable for large robot networks. Therefore, we look for
an alternative solution. Another equivalent formulation of the
maximization problem in (36) that is obtained by the Principle of
Iterated Supremum is

max max (it PEYi(1— B Yi
PMD.ME[O,l]{tE{O,l}N{Z_:glp ( | ) MD,L( MD,L)

Hpa a[t;) Pupa(1— PMDM)?“}},

1ty =

(38)

where the order of Vamables that the maximization is taken over
is flipped. Since the variable Pypm belongs to an uncountably
infinite set, it is impossible to perform the maximization with this
formulation. However, assuming that we have a given Fyp y, the
inner maximization can still be calculated. The following lemma
calculates the inner maximization.

Lemma 7. Let Pypwm, a, and'y be given. Additionally, assume
that pe(a;|t;) is known for both t; =0 and t;=1. Let

i =Palailt:) MDL(l Pup)”',
CM,i =DPa (ai|ti)P1\1/[B§\Z(1*PMD,M)yi-

If the estimated robot identity vector t is constructed by choosing
=1 if el >cm, and t; =0 otherwise, where t; is the it" compo-
nent of t, then, t is a vector that maximizes the expression (37). More-
over, maximization with this approach requires O(N) comparisons.

Proof. First, we reformulate (37) as:

N

[ [ wa(a:lt:) Bip i (1= Pap)¥ )

i=1

(poc(ai|ti)P]\1/[B,7]J\;[(1_PMD,M)yi)1_ti7

where the product is calculated by going through all robots
rather than going through legitimate and malicious robots
separately. We define cp; =pq(ailt;) MDL(l Pypy)Yi, and
e =Dala; |tz)P]\1,[Df{V[(l Pupm)Yi. Then, (39) becomes:

HCL’L Mz .

Let Olog0 =1, thus 0° = 1. Then, the expression (40) is maximized
when choosing ¢; =1 if ¢r,; > ca; and t; = 0 otherwise. Since
this comparison needs to be performed for every ¢ € N, O(N)
comparisons need to be performed. O

(39

(40)

Now, we consider these two perspectives together to introduce an
efficient calculation of the numerator of the GLRT given in (36). By
Lemma 6, we can see that the optimum value of Pyp\ has a special
structure. Exploiting this knowledge, we can restrict the set that
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Bup M belongs to in (38). Then, the inner maximization can be calcu-
lated using Lemma 7. The following theorem builds on this intuition
to provide an efficient calculation of (36). First, we define the set P:

PA{TIL}
Ta T, €40,....Ta}, Tac{1,...,N}

Theorem 2. Assume that (t*, Py, ) attains the maximization in
(36). Then, for each vector of measurements 'y and trust values
a, Py belongs to the set P where |P| < N?+1. Moreover; the
maximization in (36) can be calculated by iterating over O(N?)
different values in P and performing O(N) comparisons.

Proof. First, we will approach the problem by rewriting it as (38)
using the Principle of Iterated Suprema:

o (a]t:) Pas ¥ (1— Pupy )Y -
PMiﬁ?[%,l]{te{O 1}N{ Hlp a| ) MDL( MDL)

By Lemma 7, we can calculate the inner maximization for a given
Bupm. Notice that, since the calculation requires a comparison
for each robot, O(N') comparisons need to be performed for this
maximization. Now, consider the other formulation of the problem
given by (V-A). From Lemma 6, we can see that the optimal Pypm
only depends on the number of ones and zeros of malicious robots
for a given t. Moreover, the permutation of ones and zeros of
malicious robots for a given ¢ does not change the optimum; only
the total number of ones and zeros does. We will restrict the set that
the outer maximization process iterates over in (38) based on this
observation. It follows from the Lemma 6 that for each value £ in the
outer maximization of (V-A), except the case where ¢ consist of all
ones, the optimal value of Pypm belongs to the set P. Moreover, in
the case where ¢ consists of all ones, any choice of Pyp v maximizes
the expression. Hence, without loss of generality, it suffices to
look for an optimizer Fypm of (V-A) in the set P. Observe that
|P| < N2 +1. Therefore, there are only O(IN?) possible values that
the optimal Pypm can take. Thus, we can reformulate (38) as:

ot Pup) (1— P
Pﬁﬁép{ter{%?ﬁzv{ ]._Lp (alti) Pypy: (1= P )"

)

Therefore, this maximization can be calculated by iterating over
O(N 2) different values of Fypm and for each value, performing
O(N) comparisons. A similar approach can be adapted for
calculating the denominator as well. O

11 palailt) Pip%i(1—Puom)

i:t; =0

LT paailts) Pups (1= Bupm)¥
1:t;=0

Now, using Theorem 2, we introduce the A-GLRT algorithm,
which makes a decision based on the GLRT in (35).

Corollary 2.1. The GLRT given by (35) can be calculated by
Algorithm 2 which is referred to as the A-GLRT algorithm. The
A-GLRT algorithm requires O(N?3) comparisons.

Proof. Calculation of the maximization in the numerator can be
calculated in O(NN?) iterations and performing O(N) comparisons
at each iteration as described by Theorem 2. Therefore, it requires

O(N3) comparisons in total. Similarly, maximization of the denomi-
nator requires the same amount of computation and can be calculated
in a similar manner using FPra M instead of Pyp um. After that, a final
comparison is made by com aring the ratio of the numerator and
denominator with yGLrT = p; (__(1)3 Algorithm 2 follows these steps,
therefore, it requires O(IN'3) comparisons in total. O

Algorithm 2 A-GLRT
Input: y, &, Paar, Pupr, {Pr(E)}z=0,1, {palailt:) }+;=0,1, N
Output: Decision Hg or H1

1: Set { } .
AP=7 Te{0,... Ta}, Tac{1,...N}

2: Set “YGLRT = Pf'Eizl’ lnum,max = 0, ldenom,max =0.
% Calculate the maximum likelihood estimations.

3: for all Py €P do

Set PMD,M =Py laum=1.

for i=1 to N do
% Set the likelihoods for robot ¢ according to Lemma 7.
6 Set CLJ:pa(asz:1)P]\1/[B%(1*PMD,L)%
7: Set CM,i :pa(ai\ti ZO)PI\(/IID_’ﬁi)(l—PMQM)yi
8
9

AN

Set lnum = lnum 'maX{CL,i7 CM,i}
if lnum > lnum,max then Set lnum,max =loum-
10: epeat steps 4-9 for the denominator.
% Pe orm the standard hypothesis test using the maximum
likelihood estimations.
11 f s ~YoLrr then Return decision H1

denom,max

12: else Return decision g

Finally, we investigate how the measurements y and stochastic
trust values o are being used by the A-GLRT algorithm.
Considering (39), an equivalent decision rule to the one derived in
Lemma 7 is given as:

Palailt;=1)45 PI\hDZIJ\ZO*PMD,M)%
— 1—y; Lt
Po (az‘tz—o) < PMD{A (1_PMD,L)y”

With this new perspectlve, we can gain more insights about the A-
GLRT. First, we can see that the A-GLRT is essentially performing
a likelihood ratio test with trust values for each robot to decide if
they are legitimate or not, using different threshold values based on
the measurement coming from that robot. For now, let’s assume that
Bupm is not O or 1. Then, we can see that as trust values become
more accurate, meaning that the ratio % approaches oo if
t; =1 or approaches zero otherwise, for all values that «y; can take,
the finite threshold value becomes insignificant and the decision
is made using trust values only. This situation agrees with intuition
since, in this regime, trust values become true indicators of robot

identities. In the next section, we formalize this intuition.

(41)

B. Behavior of A-GLRT as Quality of Trust Values Improve

In this section, we characterize the behavior of the A-GLRT
algorithm as the quality of the trust values increase. For the rest of
this section only, we focus on the special case where «; is a discrete
random variable drawn from a Bernoulli distribution:

Assumption 3. Let the vector t denote the true identities of the
robots in the network. We assume that the distribution of o; when
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robot 1 is legitimate is the Bernoulli distribution with probability
1 —Pe,1»

Pa(ailt;=1) ~ Bernoulli(1—pe1).

Similarly, we assume that the distribution given that robot i is
malicious is the Bernoulli distribution with probability pe o,

Pa(ailt; =0) ~ Bernoulli(pe o).

Under this assumption, we are interested in the case where
the conditional expectation that ¢ € M approaches O such that
Ela;lt; = 0] — 0, and the conditional in the case that ¢ € £
approaches 1 such that E[w; |t; = 1] — 1. Since the expected value
of Bernoulli(p) is equal to p, a direct implication of this limit
behavior and Assumption 3 is that both p. ; and p. o approach
0. Let (t.", Py;p.as) and (ta”, Py 5r) be maximizers of the
numerator and denominator in (35)

te{o,l}g}%w6[0,1]Pr(a|t)Pr(y|H1,tPMD,M) "
< YGLRT,

ax Pr(alt)Pr(y|Ho.t, 5
t6{071}g1,PpA,Me[0,1] r(aft)Pr(y[Ho.t. Fram) Ho

1

respectively: We want to show that both ¢,,* and t4* are equal to
the true trust vector ¢ with high probability. Moreover, when these
estimated vectors are equal to each other, i.e., t,,* =t4*, A-GLRT
is equivalent to the likelihood ratio test using the measurements of
legitimate robots only.

Lemma 8. Assume that Assumption 3 holds. Let (t,," Py, ,,) and
(ta",Ppy ) be maximizers of the numerator and denominator in
the GLRT decision rule (35), respectively. Then, both t,,* and tg*
are equal to t with high probability given that E[c;|t; =0] — 0 for
every i € M and E|o;[t; =1] — 1 for every i € L.

Proof. We show the proof only for the numerator for conciseness.
However, a symmetric argument applies to the denominator as
well. Moreover, we drop the subscript in ¢,,* for readability and
instead we denote it with £*. We want to show that the probability
Pr(t* # t|H1,t, Fypy) goes to zero as E[a[t; = 0] — 0 and
Ela;|t; = 1] — 1. Our strategy is to split this probability into two
cases using the law of total probability: the first case is the case
where the vector of trust values does not match the true trust vector,
i.e., a #t and the second case where a = t. The intuition is that
the probability of the first case goes to zero, and t* will be equal
to t with high probability in the second case since pe 1,pe.0 — 0.
Now, we will show this formally. We have that

Pr(t* #t|H1.t, Fipm)
=Pr(t* #tla#tt,Hi,Pypm)Pr(a#tlt)
+Pr(t* #tla=t,t,Hi,Pypy)Pr(a=t|t).
We can bound the probability Pr(a#t|t) as

U {ai#ti} |t>
i€LUM
<> Pr(aAtift:) =|Mpeo+|Llpe,r-
ieEN
Since pe 1,pe,0 — 0, Pr(a#t|t) goes to 0 and the first term in (42)
vanishes. Now let’s consider the second term. We want to show that
the probability Pr(t* #t|a=t,t,H1,Pp ) goes to 0. For contra-

(42)

Pr(a#t|t) :Pr(

diction, assume that £* #¢. Remember that (t*, Py, ;) maximizes
the numerator by definition. The numerator is calculated as:

11 palalty) Pupl (1= Pupp)”
vt =1
: H pa(ai|t;)P1\Tul),_1\}1h(1_PﬂD,M)yi~
2:t;=0
Since t*#t and a=t, we have

1 pala:lt)) Rl (1— Ppr)”

itr=1
1—y; i
’ H pa(aiﬁf)P&m\}[j (1_P1\71D,M)y <max(pe,1,Pe,0)-
B:tf=0
We will show that there exist a pair of estimators different than
(t*, Pyipn) that results in a larger numerator. Let (¢, Pypm) be
another pair of estimators for the numerator where Fypm = 0.5.

Here, PMD,M =0.5 is an arbitrary choice to simplify the calculations.
Using this pair of estimators, the numerator is

11 palailt) Pyt (1= Apr)¥
2:t;=1
: H Palailts) Pyup i (1— Pupm)”
i:t; =0
_ L1—peo [M] 1—y; Yi
*(T) : H (I=pe,1)Pypy. (1—FAmr)”
2:t; =1
Since pe,1,pe,0 — 0, we have

T polailt;) s (1= Pup )

i:t;zl
T palasle?) Bt (1~ Bipan)** < max(pe1.p.0)
@ty =0
1- . '
<($>|Ml‘ [T @—pea) P (1— Pupr)”".

2:t; =1

Therefore, (£, Pyp ) results in a larger numerator than (", Pyipm)
where t* # t and @ = t, which means that t* cannot be the
maximizer. Hence, the event t* # ¢ in this case has probability 0,
which concludes our proof. O

Now, we can state the main result of this section.

Proposition 2. Assume that Assumption 3 holds. Let (tn* Py y)
and (tq",Ppy ;) be maximizers of the numerator and denominator
in (35), respectively. If Ela;|t; = 0] — O for every i € M and
Ela;|t; =1]— 1 for every i€ L, then, with high probability, the
A-GLRT algorithm is equivalent to the likelihood ratio test using
the measurements of legitimate robots only, that is

Hieﬁpl%i,L'(l_PFA,L)l_y"’ 7;1 Pr(2=0)
— < .
[Ticr (1= Pupp)¥ - Pypy #o Pr(E=1)

Proof. By Lemma 8, we have t,,* =t4" =t with high probability.
We use t in place of both ¢,,* and t4* for simplicity in the rest of the
proof. First, in the trivial case where ) ., _,1=0, the GLRT has

the form (43) because there are no malicious robots in the system.
Ei:tizo(l_yi) ity =094
2i:tv=01 ’ and P;A’M - Zi:t/{=01 b

Lemma 6. Notice that Py, equals 1 — Pgs m- Therefore, in the
calculation of GLRT, the contribution coming from the malicious

(43)

1] [1

* —
In other cases, Fypy =

Authorized licensed use limited to: Princeton University. Downloaded on July 02,2024 at 22:45:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2024.3415235

robots in the numerator and denominator cancel each other out. As
a result, the GLRT has the form (43). Therefore, in all cases, the
GLRT has the form (43) with high probability. [

C. Utilizing the Prior Knowledge with A-GLRT

In this section, we introduce two modifications of the A-GLRT
algorithm to optionally incorporate additional information about
the malicious robots into the system if it is available.

1) Probability of Each Robot Being Malicious: In some cases,
the probability of each robot being malicious is available or assumed
to be known. Essentially, this information would quantify the
vulnerability of the multi-robot system, where a higher probability
would correspond to a more vulnerable system. For instance,
some previous works including [19], [24] have this assumption.
Referring back to Example 1, this scenario could correspond to
one where the server, having access to historical ground truth
data on trustworthiness of robots from a roadway, incorporates
this information into its decision rule. In this part, we modify the
A-GLRT algorithm to introduce a way to incorporate this additional
information. First, we formalize this new assumption. For the
analysis of this section only we assume the following:

Assumption 4. Let t; denote the true identity of a robot i in the
network. We assume that if a prior distribution over t; is known,
given by Pr(t;), then it is independent of other robots and known
by the FC.

Under this assumption, we modify the GLRT given by (35):

max  Pr(at)Pr(y(Hy B
te{0,1}N , Pupm€[0,1] ( ) (y| 1 MD»M) Hq

max
t€{0,1}N , Pam€[0,1]

>
Pr(a.t)Pr(y[Hot.Poant) o3, 0"

where we can calculate Pr(a,t) using Pr(a,t) = Pr(alt)Pr(¢).
Now, we focus on how to calculate the numerator with this new
formulation since the denominator follows a similar structure. We
write the numerator as:

HPranz MDL(I PMDL)

te{0, l}N PMDME [0,1 {

2t;=1
H PI‘ az, 3 MDM(l PMDM) }
it =
Notice that this new formulation does not af-
fect the results in Lemma 6. Moreover, Ilet
CL,i épa(az|tz:1)Pr(tz:1)P1\1/[B’y1j(l PMDL)y’ and
CM,i épa (ai |t1 = O)Pr(tz = O)PI\I/IB?\/I(l — .PMDJ\/[)y1 . With these

new definitions, Lemma 7 and Theorem 2 still hold. Therefore, we
can still use the A-GLRT algorithm given in Algorithm 2 just by re-
placing ¢ ; and ¢y ; with these new definitions that include Pr(t;).

2) An Upper Bound on The Number of Malicious Robots: In
this part, we assume that the the upper bound on the proportion
of the malicious robots in the network, denoted by 72, is known
similar to the case of the 2SA algorithm. We next show how to
modify Algorithm 2 to incorporate this additional information. This
upper bound can be expressed as [M| 23", _\-1—t; <mN. First,
notice that this new constraint on ¢ does not affect the results in

Lemma 6. However, the inner maximization given in expression
(38) turns into a constrained optimization problem,

max a;[t;)PLvi(1— B Yi
te{o,1}N7M|§mN{i.glpa( ifti) P ( ML)

H Palailt;)

)Pap i (1~ Pup)”: }»
1t =

for a given Pyipm. We prov1de Algorithm 3 to calculate this.

Algorithm 3 Input y, a, FPmr, Puwr, {Pr(E)}==01.
{palailti)}t;=01, N, m

Output: Estimate ¢

1: Initialize N x 1 vector d arbitrarily.

2: for i=1to N do

3: Set cr; :pa(ai|tz‘=I)Pl\(/[l])_,ﬁh)(l—PMD,L)y"-
Set em, =pa(alti= O)PI\(/[IDTﬁi) (1-Pwpm)?
Setd;=cm,i—cL-

Set d=Sorted(d)

Set count =0

for all (~1j eddo
Set ¢ as the corresponding index of j in the unordered

vector d

10: if d; >0 and count <7N then

> sorting is in descending order

R O

11: Set t; =0, count = count+1
12: else Set ¢, =1
13: Return ¢.

The main difference of Algorithm 3 compared to the
unconstrained inner maximization described in Lemma 7 is that
it requires sorting. One can use a sorting algorithm which takes
O(NlogN) comparisons such as merge sort [51]. Notice that this
additional computation increases the number of comparisons given
in Lemma 7 from O(N) to O(NlogN).

VI. HARDWARE EXPERIMENT AND NUMERICAL RESULTS

In this section we validate our theoretical results using a hardware
experiment with robotic vehicles driving on a mock-up road network.
In this setting the robots are tasked with reporting the traffic
condition of their road segment to a FC, similar to the scenario
in Example 1 used throughout the paper. The objective of the
malicious robots is to cause the FC to incorrectly perceive the traffic
conditions (see Fig. 3). A numerical study further demonstrates the
performance with increasing proportions of malicious robots.

We compare the performance of the 2SA and A-GLRT against
several benchmarks including the Oracle, where the FC knows
the true trust vector t and discards malicious measurements. The
Oracle benchmark serves as a lower bound on the probability of
error. We also benchmark the Oblivious FC, where the FC treats
every robot as legitimate, and a Baseline Approach [24] where the
FC uses a history of 7" measurements to develop a reputation about
each robot. The Baseline method ignores information from robots
whose measurements disagree with the final decision at least n <71
times. The Oracle, Oblivious FC, and Baseline approaches use
the decision rule in (11). Malicious robots perform a Sybil attack
where they spoof additional robots into the network. These spoofed
entities are not physically present on the roadmap, and thus do not
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affect the ground truth traffic conditions. However, they can act to
help prevent the FC from making the correct decision by sending
additional malicious measurements about the traffic conditions,
thus helping malicious robots gain a majority in the network. The
spoofed entities choose to send measurements to the FC following
the same strategy as malicious robots, i.e., Psam and Pyupwm
defined in (2), and their measurements are assumed to be i.i.d.
We use the opensource toolbox in [52] to obtain trust values from
communicated WiFi signals by analyzing the similarity between
different fingerprints to detect spoofed transmissions. The works in
[28]-[30] model these trust values c; € [0,1] as a continuous random
variable. We discretize the sample space by letting A={0,1} and
setting a; =1 if the trust value is > 0.5 and a; =0 otherwise.

A. Hardware Experiment

A group of N =11 mobile robots drive in a loop from a starting
point A to point B, approximately 4.5 meters apart, by traversing
one of four possible paths made up of six different road segments.
The robots used were GoPiGo differential drive robots from Dexter
Industries. As the robots drive between points A and B they are
given noisy position information for themselves and neighboring
robots from an OptiTrack motion capture system with added white
Gaussian noise with a variance of 1m?. This serves as a proxy
for GPS-reported measures used in crowdsourcing traffic detection
schemes like Waze, Google Maps, and others. A road segment
is considered to have traffic (y; = 1) if the number of robots on
the segment is > 2. Of the 11 robots in the group, 5 robots are
legitimate, 3 are malicious, and 3 are spoofed by the malicious robots
(making them also malicious). Malicious robots know the true traffic
conditions and report the wrong measurement with probability 0.99,
i.e., Bram = FPupm =0.99. Hypothesis tests were run on each road
segment any time at least one robot was present on that segment.
All tests were run using MATLAB 2020a on a 2.6GHz Intel Core
17-10750H CPU with 16GB RAM. The entire experiment was run
for 15 minutes, with tests run as frequently as the computer could
compute them in order to maximize the number of tests. This led to
a frequency of 30 hypothesis tests on each road segment per second,
for a total of 61233 hypothesis tests carried out (since hypothesis
tests were only used on road segments that were currently occupied).
Of the 61233 tests, 29.9% consisted of only legitimate robots, 28.1%
of only malicious robots, and 42.0% contained both legitimate
and malicious robots. The empirical data from the experiment
is stated in Table II, where Baselinel and Baseline5 refer to the

DN g T T o . Sybil Entity

1 N B

Fig. 3: Robots drive along a roadmap comprised of six road segments to get from
point A to point B. While traversing the roadmap, robots estimate the congestion
on their current road segment as either containing traffic (red) or not (green), and
relay their estimates to the FC. All robots relay messages to the FC, but only a few
are depicted on the figure for ease of readability.

Baseline Approach from [24] with parameters 7" and 7 set to (T'=1,
n = 0.5) and (T' = 5, n = 2.5). We determined the parameters
in Table II by first running an experiment without performing
hypothesis tests and observing the behavior of the compared to
ground truth. The trust values gathered using the toolbox in [52]
led to the empirical probabilities p,(a; = 1|t; = 1) = 0.8350 and
Pa(a; =1[t;=0)=0.1691 (see Fig. 4) 2.

In our hardware experiment the 2SA and A-GLRT outperform
the Oblivious FC and the Baseline approach. The Baseline exhibits
a high percent error due to the fact that it relies on the majority of the
network being legitimate. Since 6 out of 11 robots are malicious, it
is likely that many hypothesis tests are conducted where the majority
are malicious. This points to a common vulnerability of reputation
approaches that require legitimate robots to be in the majority.

a) Numerical Studies: Next, we perform a numerical study
on the performance of each approach when the proportion of
malicious robots is varied. In the numerical study we use N =10
robots with Pr(2=0) =Pr(E=1) =0.5, Bear = PyprL = 0.15,
and Pra v = Pyvpm =0.99 and perform hypothesis tests over 1000
trials for each proportion of malicious robots. In the simulation study
the trust value distributions are fixed at p,(a; = 1|t; = 1) = 0.8,
Pala; = 1|t; = 0) = 0.2, and the proportion of malicious robots
varies from 0 to 1. The results of the simulation study are plotted in
Fig. 5. From the plot it can be seen that the 2SA and the A-GLRT
perform well even after malicious robots comprise the majority
since they use additional trust information independent of the data,
whereas the Baseline Approaches (abbreviated with ‘B’ in the
figure) fail since they use only the data to assess the trustworthiness
of the robots. Additionally, the existence of the critical proportion of
malicious robots, m*, beyond which the 2SA chooses to ignore all
measurements and make the decision using the prior probabilities
Pr(2=0) and Pr(2=1) can be seen. This value is approximately
m* = 0.8 for this set of parameters. Finally, we investigate the
effect of the malicious robots’ strategy on the performance of our
approaches. We use the same setup as the previous numerical study,

2A link to the code repository containing some of the functions
used to run the hypothesis tests and experiment can be found here:
https://github.com/mcavorsi/Adversarial_Hypothesis_Testing/tree/main

Parameters
PraL 0.0800 PupL 0.2100
Pr(2=0) 0.6432 Pr(E=1) 0.3568
Percent Error
2SA (Sec.IV-A) | 30.5% | A-GLRT (Sec. V-A) | 29.0 %
Oracle 19.5 % Oblivious FC 52.0 %
Baselinel 50.8 % Baseline5 49.1 %

TABLE II: EXPERIMENTAL RESULTS

Empirical Distribution of Trust
Values from Legitimate Robots

Empirical Distribution of Trust
Values from Malicious Robots
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Fig. 4: Empirical distribution of the trust values gathered during the hardware
experiment for legitimate and malicious robots. The trust value is thresholded to
a=1ifitis >0.5, and a =0 otherwise.
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PercentError as a Function of Proportion of
Malicious Robots
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Fig. 5: The percent error for multiple approaches when the proportion of malicious
robots is varied. The 2SA and A-GLRT outperform the Oblivious FC and Baseline
(B) when the majority of the network is malicious. The performance of the Oracle
declines as the proportion of malicious robots in the network increases since the
FC is given access to less legitimate information.

except we fix the number of malicious robots to 6 and we vary the
probability ps of flipping their bit. The results are shown in Fig. 6.

VII. CONCLUSION

In this paper we present two methods to utilize trust values in
solving the binary adversarial hypothesis testing problem. The first
method, the Two Stage Approach, uses the trust values to determine
which robots to trust in the first stage, and then makes a decision
from the measurements of the trusted robots using a LRT in the
second stage. We show that the probability of error when using the
2SA algorithm is provably minimized under a worst-case attack.
Furthermore, we analyze some of the limiting behaviors of the algo-
rithm. For the case where the trust value quality is high, making it
more likely to trust a legitimate than malicious robot in the first stage
of the 2SA, we show that the probability of error decays towards
zero at least exponentially as the number of robots in the network
increases. Additionally, we characterize m*, the critical proportion
of malicious robots in the network that would blind the FC using the
2SA. We show that m™* is a function of the quality of the trust values
used, and that if the trust value quality is high, m* can greatly exceed
the typical limit that a majority of the network cannot be malicious
seen by previous works that do not use trust values [12], [16], [22].

The second method, the Adversarial Generalized Likelihood
Ratio Test (A-GLRT), jointly uses the trust values and measurements

Percent Error as a Function of Probability of
Flipping of Malicious Robots
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Fig. 6: Percent error comparing the performances of 2SA and A-GLRT as probability
of flipping the bit py is varied. The worst performance of the 2SA is observed when
py =1 as proven in Lemma 1. Since the A-GLRT uses both measurements and
trust values when making a decision, we see more performance degradation when
the measurements have more randomness, i.e., when p I is close to 0.5.

to estimate the trustworthiness of each robot, the strategy of
malicious robots, and the true hypothesis. In general, GLRT-based
approaches are computationally expensive since they require the
MLE of the unknown parameters. However, with the addition of
trust values we show that the A-GLRT algorithm can perform the
hypothesis test in polynomial time. Additionally, we show that
the A-GLRT algorithm reduces to performing a LRT using the
measurements of legitimate robots only when the quality of trust
values approaches perfect, i.e., Pysr — 1 and Bpgm — 0, and
thus the test in this case is optimal. In comparison to the 2SA,
the A-GLRT performs slightly better in numerical studies under
a worst-case attack, but at the expense of higher computation
costs. The 2SA can perform hypothesis tests in linear time as
opposed to polynomial time since the trust thresholds ~; and p;
can be computed offline and applied repeatedly for each successive
hypothesis test as long as the system parameters have not changed.
Finally, we test both methods in a hardware experiment where
61233 hypothesis tests were run by each method on a mock-up
road network where robotic vehicles report traffic conditions. The
hardware experiment validates our theoretical claims by showing
that both methods perform well, even when malicious robots are in
the majority. Specifically, the percent error seen by the 2SA and A-
GLRT were 30.5% and 29.0%, respectively, compared to the Obliv-
ious FC that does not use trust values, which yielded 52.0% error.

APPENDIX
A. Proof of Lemma 4

Proof. We start by proving the first part of the lemma, which upper
bounds the error probability for Case 4. Recall that ;. and ky; denote
the actual number of legitimate and malicious robots trusted by the
FC. Furthermore, recall that k= (3. |£|+1 and ky = Sy M| —1
are the minimum number of legitimate robots within the region
kr> B |L| and the maximum number of malicious robots within
the region ky < Au| M| that can be trusted, respectively. The
probability of error for Case 4 and a given &, and ky is

Pe(k.kim) =Pr(E2=0) Pra (Sx = yrs[Ho  kr.kom)
+Pr(2=1)Pup (Sx <rs[H1 kL .km)-

The event probabilities Pr(Z = 0) and Pr(Z = 1) are constant,
so in order to upper bound P, (kL,km), we look to upper bound
PBea (S~ > 7yrs|Hoske,km) and Pyp (Sn <7yrs|H1.kL,km). We will
only derive the result for Pra (Sn > yrs|Ho,kL,kwm) since the proof
is analogous for Pyp (Sn <~rs|H1,kL,km)-

From (27) we see that for every ki and ky such that &y > 5| L]
and ky < Bv| M| the following holds:

Pra(Sn>yrs|Ho ke .km)
< max  Pra(Sn>7yrs|Ho kkm)

- kL>pBL|L],

km<Bu| M|
< max  exp(—kLD(Ypa (kL,km)| | PraL))

ku>BL|L],

km<Bu| M|
@ in ke min D (kL k)| Peas)
e — min - min )

< exp ATl L B, YEA\RL,AM FALL

km<pm|M|  km<pBu|M|

O - _

< exp(—kv D (Fra (ke,fm)| [ Prar) )
where (a) follows from the nonnegativity of k. and the KL
divergence. The inequality (b) follows by minimizing both terms
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in the product in (a). The first term is trivially minimized when
kr, = kL. The KL divergence term attains its minimum at 0 when
’;/FA(k‘L, km) = PFA,L' When %A(kL, k‘M) S (PFA,L, 1), the KL
divergence is minimized when ga (kr,km) is minimized, which
we show next to be when k. = ki and kv =k

From (28) we see that Jga (L, kym) is minimized when ky is
maximized, i.e., ky = kni. Now fix &y = k. Recall the assumption
that A |£] >>max{Su|M]|,1} (Assumption 2.b), thus ki >> k.
Therefore, we can rewrite (28) as

TS Wo,L
ku(wor+wir)  (wor+wir) .
Since Pr(E=1) > Pr(2=0) we have that s <0. Therefore, the
expression in (44) is minimized when & is minimized, i.e., kp =k,
as long as Jra (kL,km) € (Prar,1).

The first part of the lemma shows that worst-case probability of er-
ror corresponding to Case 4 can be upper bounded by (30). However,
this assumes that Yga (kr,km) € (Prar,1) and up (kr,km) € (0,1—
Pypy.). We now proceed to prove the second part of the lemma by
showing that the set of values for which g (kL JFn) € (Pear,1) is
nonempty. The proof is analogous for the missed detection case.

Consider ki, —o0o. Notice that Apa(kp,km) — — ok

- wo,Ltwi,L”
this case, :YFA(ﬁ;kM) S (PFA,L71) if woqlﬂﬁ S (PFA,L,1)~ Since

Prap€(0,0.5) and Pypy €(0,0.5), and wpp,wy 1, >0 we have

Ara (kL km) = (44)

that —“>£_ € (0,1), thus it remains to show that
o,LtwiL
Wo,L
_MOL S By (45)
Wo,L+wW1,L

We can manipulate (45) by multiplying both sides by (wo . +w1 1),
plugging in the expressions for wp . and w; 1, and using some
algebra to yield

1-A
(1_PFA,L)log(P,FA’L) >PFA,L10g(
MD,L

1~ Py MD’L) . (46)

FPrap
Next, note that 1 — % <log(x) <x—1. Then, we can lower bound

the LHS of the expression in (46) and upper bound the RHS to give
us

PypL 1—-PupL
(1_PFA,L) (1— 1—PFA’L) > PFA,L < PFA’L — 1) .

This reduces to 1> 1. Therefore, the condition in (45) holds for all
cases, except when 1 — % =log(x) =« — 1. This occurs at x =1,
which corresponds to % =1, and 17;& =1. If we restrict
the values of Pesy and Pypy to (0,0.5] then this corresponds to
Fear = Pupr. = 0.5. Since Frap. and Pypy are bounded away
from 0.5, the condition in (45) holds for all Py € (0,0.5) and
PMD,L S (0705) O]
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