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Abstract It is shown that multiple logical phi-bit large-scale unitary operations analogous to quantum circuits
can be realized by design. Logical phi-bits are nonlinear acoustic analogues of qubits which arise when elastic
waveguides are coupled and driven at multiple frequencies in the presence of non-linearities. The contribution
presents an approach that maps both the state of multiple phi-bits in their supporting nonlinear acoustic metastructure
and their representations as complex state vectors in exponentially scaling Hilbert spaces. Upon physically actuating
7 changes in phi-bit phases and by engineering appropriate multiple phi-bits representations, one can realize a
scalable phi-bit-based quantum Fourier transform.

Keywords Acoustic qubit analogues - Phi-bit-based quantum Fourier transform - Acoustic metastructure - Unitary
operations

1 Introduction

Quantum computing harnesses quantum superposition and quantum correlation. The first phenomenon provides the
support for encoding massive amounts of information in coherent superpositions of states of a composite quantum
system constituted of subsystems, e.g., qubits [1,2]. The second phenomenon provides the correlation between the
qubits and the capability of processing information in a parallel manner. The ultimate goal of quantum computing is
to realize large-scale unitary operations or gates on multiple qubits. An N-qubit gate operates on states supported by
an exponentially scaling basis of dimension 2V [3]. It is this exponential scaling that potentially gives the advantage
of quantum computing over classical computers. However, the fragility of quantum superpositions of large number
of qubits means this task is achieved using decomposition of large-scale unitary matrices into quantum circuits
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involving sequences of elementary single- and two-qubit gates which may form a universal set of gates [4]. The
challenge is then to determine the minimal quantum circuit capable of realizing a desired large-scale operation.
The discrete Fourier transform has many applications (see Refs. [5—8], for example). This contribution focuses on
the quantum Fourier transform (QFT), i.e., the discrete Fourier transform implemented on qubits [9], is a canonical
large-scale operation of interest in many applications. The QFT can be realized with a circuit utilizing the single
qubit Hadamard gate and the phase gate. The QFT is also an important component of quantum algorithms such as
Shor’s algorithm for finding prime factors [10].

While some analogies between sound and quantum properties have previously been observed [11], engineered
superpositions of states of acoustic waves and quantum waves potentially offer a decoherence-free, acoustic, phase-
based computing alternative to quantum systems for some quantum information processing applications [12,13].
A phi-bit [14] is a two-state degree of freedom of an acoustic wave, which can be in a coherent superposition
of states with complex amplitude coefficients. A phi-bit is a classical acoustic analogue of a qubit. Phi-bits have
been used to experimentally demonstrated the single phi-bit quantum-like phase and Hadamard gates [15], and
the two phi-bit C-NOT gate [16]. These gates are elementary components of a universal set of gates that can be
used to generate multiple phi-bit quantum-like circuits. The effort to develop large-scale phi-bit gates, which do
not need to be decomposed into circuits of elementary gates, spurred the realization of a non-trivial three phi-
bit unitary transformation that swaps components of a 23 vector about a pivot [17]. It has been demonstrated
this operation can scale to increasing numbers of phi-bits [18]. However, so far, this research has constituted of
demonstrating the existence of phi-bit-based gates. The primary focus of the present work is to show that multiple
phi-bit large-scale unitary operations can be realized by design. This design is accomplished by engineering the
correspondence between the state of the logical phi-bits in their supporting physical space and a representation in an
exponentially scaling Hilbert space that transforms according to the desired gate upon changes in the experimental
driving conditions. This approach is applied to the design of scalable multiple phi-bit QFT operations.

2 Logical phi-bits

A logical phi-bit is a two-state degree of freedom in the spectral domain of nonlinear acoustic modes supported by
an externally driven array of nonlinearly coupled waveguides [13, 14]. In these experiments, the array of waveguides
is a metastructure composed of three acoustic waveguides, taking the form of aluminum rods, coupled with epoxy
resin. The experimental aluminum rod (McMaster-Carr 1615T172: diameter = 1/2-inch, length = 0.6096 m, and
density = 2660kg/m?) produces longitudinal waves with a wavelength close to 10cm at the chosen frequency, see
below. This means the waves travel almost one dimensionally along the rod-like waveguides. The external driving
is achieved via piezoelectric transducers attached to the ends of the rods. Each transducer is actuated by separate
signal generators and amplifiers. Detecting transducers are attached to the ends of the rods opposite to the driving
transducers. Transmission from the transducers to the rods is enhanced by a thin layer of honey which serves as
ultrasonic coupling agent. The transducer/couplant/rod assemblies are maintained under the constant pressure of
three independent rubber bands. The entire array of waveguides is suspended by thin threads for isolation. Further
details of this experimental setup can be found in Ref. [14].

By exciting the waveguides using different frequencies, e.g., f; and f>, the displacement field measured at the
waveguide’s detection ends is the Fourier sum of modes with the primary frequencies f] and f> as well as secondary
nonlinear modes. In the experiment, rod 1 operated at a frequency of f; =62 kHz, while rod 2 operated at f, = 66
kHz. The frequency f; was adjusted in increments of 50 Hz. The nonlinear modes have frequencies which are linear
combinations of the driving frequencies: pf; 4+ qf2, where p and g are integer. Each nonlinear mode represents
a logical phi-bit. The displacement field of a logical phi-bit at the end of three waveguides can be referred and
renormalized to that of a waveguide at the edge of the array, defined as waveguide 1, to obtain a 2 x 1 vector:

(p,q) _ 62 exp(i§012) .
U - <é3 eXp(i§013) exp(l (pwl + qa)Z) t)’ (1)
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where w; = 27 f;; i = 1, 2. The phase difference between the displacement field at waveguides 2 and 3 relative to
waveguide 1 are p1» = @2 — ¢ and @13 = @3 — ¢1. The phases @1, @2, and @3 arise from the complex nature of the
resonant amplitudes of the driven system with dissipation as well as any nonlinear effect combining these resonant
amplitudes. ¢; and ¢3 are the magnitudes of the acoustic field at the ends of the waveguides 2 and 3, normalized
to the magnitude at the end of waveguide 1. The state of the logical phi-bit {p, g} can be redefined in terms of
phase differences of the displacement field only, by constructing the nontemporal part of the field as the normalized
complex amplitude state vector:

L (exp(ipi2)
P.q) — plg 5
" V2 <eXp(i</>13)> @

A single logical phi-bit state, represented in this form, spans the Bloch sphere and is analogous to a quantum bit
(qubit). By manipulating the frequency, phase, and/or magnitude of the driving signals, one can rotate the logical
phi-bit state vector, #”>%), Importantly, the state of each logical phi-bit (i.e., nonlinear mode) is strongly correlated
to all other logical phi-bits through the nonlinearity of the physical system. This means that a single change in the
driving conditions of the physical system will lead to simultaneous changes in the state vectors of all individual
logical phi-bits. The single physical action will subsequently rotate a state of N logical phi-bits, represented in the
tensor product space of individual phi-bits. This space scales exponentially as 2V. A change in the conditions of
the physical systems changes all 2" components of a N phi-bit representation. Logical phi-bit correlations and
manipulation of the supporting physical system can therefore be used to operate in a massively parallel manner on
the components of exponentially scaling multiple phi-bit state representations.
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It has been experimentally observed that changes in the driving conditions of the array of waveguides can
lead to 7 jumps in the logical phi-bit phases ¢17 and ¢3. A possible origin of these phase jumps in terms of
nonlinear interactions of driven acoustic waves in the metastructure was discussed in detail previously [14,19].
The phases as functions of driving conditions can be decomposed into a monotonously varying contribution and
sharp 7w jumps. For the sake of brevity, these are referred to these as non-resonant and resonant contributions to
the phi-bit phase. Considering a phi-bit { p,q} the non-resonant phases can be expressed as linear combinations
poe12 (f1)+qe12 (f2) and pe1s (f1) +qe13 (f>) of the phase differences associated with the linear displacement
of the array of waveguides at the frequencies f; and f>. That is, one can easily subtract these phases for each
phi-bit to obtain resonant contribution to ¢, and ¢;3. Figure 1 illustrates the experimentally measured behavior of
the resonant phases for two logical phi-bits. Here, rods 1 and 2 are driven at two different initial frequencies. The
frequency f7 is then tuned and the phases @12 and ¢;3 for each phi-bit are obtained from the complex components
of the Fourier spectrum at the ends of the rods. Figure 1 shows that both phi-bits exhibit simultaneous 7 jumps in
their corresponding phases ¢12 and ¢13.

It is this type of simultaneous phase jumps that will be exploited to design single and multiple phi-bit represen-
tations that will enable QFT operations.

3 Single phi-bit QFT

Recall that the QFT for N bits is associated with the unitary matrix:

1 1 1 1 1
1 w w? w3 e w1
1 1 w? w? w® e w?(@=D
Fo = Nl LG w6 w? w3 (@D )
| W@l p20-D  ,30-D  @-Do-D

27

withQ=2Nandw=eiQ.
Consider a variation on the single logical phi-bit analytical representation of Eq. (2) that could be achieved by
some unitary transformation in the single phi-bit Hilbert space. Define the new single logical phi-bit representation:

Vo = i (Si“ o1 ) , 4

cos @1

where ¢1 = ¢12/2 and ¢ = ¢13/2.
Any physical action of the supporting metastructure leading to a 7 jump in both ¢ and ¢;3 will produce a
rotation of V) to a new state V(; such that

V(; = Mo Vy )

where the unitary matrix Max2 = is the oy Pauli matrix. M>> has been obtained using the standard

—i
0
trigonometric relations: sin (a + b) = sina cosb + cosa sin b and cos (a + b) = —sina sinb + cosa cos b.
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Now design a new representation, V, that would transform (upon 7 jumps) according to the single phi-bit QFT
(or Hadamard gate):

P (11 ©6)
SRV B
This new representation is written analytically in the form:
_ _ (a1 a2 i sin (]51
V= XaVo = (azl a22> ¢ (COS¢1> ™

When applying the physical action that produces 7 jumps, the vector V transforms as:

V,/, = szzv(; = XM Vy (8)
Upon the application of the QFT, the vector V transform according to

Ve =FV = F:X2,0V 9)
One therefore seeks a matrix Xpy> such that V} = V;,. Using Egs. (8) and (9), this condition is satisfied if
F2Xox2 — X2x2Max2 =0 (10)

Equation (10) is a special form of Sylvester equation [20]. Its solution is obtained as follows. Rewrite the matrix
X2x2 as the vector composed of the columns of the matrix:

vec(Xay2) = (a11, az1, ain, an)’ (11)

Here, the superscript 7 denotes the transpose, that is vec(X2x2) is a column vector.
Equation (10) is then rewritten as:

Cvec(Xax2) =0, (12)
where the matrix C is given by:
C=hx®F M _,® hy. (13)

In Eq. (13), I>x» is the identity matrix. The condition for the existence of non-trivial solutions for vec(X,,,) (or
X»>42) is that the determinant of C be equal to zero.
Inserting Eq. (6) and the oy, Pauli matrix into Eq. (13) yields:

1 1 —iv2 0

1 1 -1 0 —iv2
L2livz o 1 1
0 V2 1 -1

It is straightforward to show that det (C) = 0. There are two vectors vec(X2x2) forming an orthonormal basis for
the null space of C, namely

C =

(vec(X2x2) D = (=0.205, —0.6613, 0.6447i, —0.2905:)7
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and
(vec(X52)) ' = (0.6613, —0.2505, —0.2905i, —0.6447i)" .

Any linear combination of these two vectors will also be a solution to Eq. (12). Note that these vectors (or a linear
combination of these vectors) can be recast in matrix form and inserted into Eq. (7) to obtain a representation of the
phi-bit state which upon physically actuating 7 phase jumps will transform according to the one-bit QFT. Further,
the transformation will be independent of the initial value of the phases @12 and @13 as well as of the coefficient in
a linear combination of the null space basis. These coefficients and initial phase values can be used to define the
input to the QFT.

4 Two phi-bit QFT

Redefine the representation of a single phi-bit “(7)”:

. NG
i i 1 ()
vy =% (sm ¢‘<,->> , (14)

COs ¢,
where qbii) = goglz) /4 and q)g) = (pfg) /4. The superscript (i) =1,2 refers to the phi-bits. Note that now the phi-bit
phases are divided by 4 instead of 2 as was the case for a single phi-bit QFT. Define the two phi-bit state as the
tensor product of single phi-bit states, namely

Vo=V"® V. (15)
Expanding Eq. (15),

sin ¢§1) sin (]552)
. 2
ei(¢§”+¢§2>) sin ¢f ) cos qb% )
cos (;5;1) sin (])%2)
cos ¢fl) cos ¢§2)

Vo = 16)

Using trigonometric relations, upon a 7 jump for the four phi-bit phases <p§12), (p%) and gog), (p%), the vector Vp

transforms to
Vo = MaxaVo. a7

In anticipation of scaling the approach to designing a representation that results in the QFT, note that M4x4 =

1 1 1 1
-1 1 11 1 1 I 1 1 1
L =L L =L i .
221 21 1 lﬁ(—l 1)®f2<_1 1>Wher€M2x2 ﬁ<_1 l)1snowthet1ransfor
I -1 -1 1

mation for the single phi-bit representation given by Eq. (14).
Again, introduce a new representation V:

aypr di2 a3 a4
azr dz a3z a4
asp  dszz dzz  dsq
aqr 442 a4z aqq

V = X4X4VO = V() (18)
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While the representation V) is separable (it is a tensor product), the representation V may not be factorizable into a
tensor product, that is, it may be non-separable or classically entangled [13]. In contrast to quantum systems where
entanglement is necessary to correlate qubit states, classical entanglement of phi-bits is only needed to expand the
accessible regions of multiple phi-bit Hilbert spaces and subsequently increase the number of possible states and
the range of information that can be encoded and processed in those states. Recall that logical phi-bits are correlated
via the nonlinearity of the elasticity of the physical system.

When acting physically on the system to produce & jumps, the vector V transforms as

V,; = X4><4V(; = X4xaMyxsVy,. (19)

Using Eq. (3), the QFT, Fy, for two bits is written as

1 1 1 1
SO P @
1 —i -1 i
Upon application of the QFT to the vector V, one gets
Vi = F4V = F4X4,4Vo. Q1)
One, therefore, seeks a matrix X4x4 such that V;p = Vj;. This condition is satisfied when:
F4X4x4 — XqxaMyxq4 = 0. (22)
Following the previous section, rewrite the matrix X414 as the vector composed of the columns of the matrix:
vec(X4xa) = (@11, a21, a31, aai, - . ., 14, a4, ass, aas). . (23)
Equation (22) is then rewritten as
Cvec(X4x4) =, (24)
where the matrix C is given by
C=Iyxs ® F4 — M}y ® Iyxs. (25)

Inserting the expression for M4.4 and Eq. (20) into Eq. (24), Matlab© has been used to verify that det(C) = 0.
There exist 5 solutions that form an orthogonal basis for the null space of C (see Sect. 6). Similar to the single phi-bit
case, a linear combination of these solutions will transform upon 7 jumps according to the two-bit QFT. Again,
this transformation will be independent of the initial value of the phases (pf'z) and <p§’3) as well as of the coefficient
in a linear combination of the null space basis. These coefficients and initial phase values can be used to define the

input to the two phi-bit QFT.
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5 Multiple phi-bit QFT

Consider a system composed of N logical phi-bits and define the representation of a single phi-bit “(7)”” among the
N's as

. NG
; - (i)
vy =% (Sm d"m) , (26)

COs ¢,

where qbfi) = (pfiz)/ZN and ¢S = ¢\ /2N The superscript (i) =1...., N refers to the phi-bits.

The N phi-bit state is represented as the tensor product of single phi-bit states, namely
o=V"eVv e --eV". 27
Upon a 7 jump for all the phi-bit phases goflz) (pfg), the vector Vj transforms to
Vo = Myw on Vo, (28)
iNZ . B« .. . x .
where Mon  ov =€ 2N M2y ®. .. Q@ Mayo with Mayo = (—a 8 ).Thequantltles,a = sin 5 and 8 = cos I
Define the target representation as
V =Xon,ov Vo 29)

The components of the matrix X,y v are a with the indices k = 1,...,2VN andl =1, ...,2V,
The physical action applies the transformation:

V= Xonon Vo = Xonson Man yon V. (30)
The N phi-bit QFT, F,w, yields

Vi = FynV = Fon Xon v Vo (31)
V;T will be equal to V} when

Fon Xon yon — Xon yan Man yon = 0. (32)

Following the preceding sections, the sought matrix X,v,,v is reformulated as the vector vec(X,w,,nv). The
solutions of

Cvec(Xon 4 on) =0, (33)
where the matrix C is now given by

C = I, v ® Fon — M)y oy ® L v (34)
The solutions of Eq. (34) that form an orthonormal basis can be used to construct the representation V (Eq. (29))
that will transform according to the Nphi-bit QFT when operations on the physical system lead to 7 jumps in the

logical phi-bit phases.
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It is conjectured that Eq. (33) possesses solutions for all number of phi-bits. The existence of 8 solutions forming
the basis of the null space of C for a three phi-bit system has been verified. The basis of the null space for four
phi-bits contains 9 vectors. This conjecture is supported by the fact that the representations V and Vj involve, upon

7 jumps, powers of terms of the form ' 227’76 which are also the components of the QFT matrix (Eq. (3)).

This general approach enables us to design representations for inputting data into a multiple phi-bit QFT that can
be physically realized by actuating an acoustic metastructure. This approach establishes a link between multiple
phi-bit gates in exponentially complex Hilbert spaces and operations on the physical system scaling linearly with
the number of phi-bits. In this example, the QFT of the input data is achieved through the v jumps in the phi-bit
phases. It is worth stressing that the phi-bit-based QFT can be defined and executed for any input.

6 A two phi-bit example

The concept of phi-bit-based QFT is illustrated with a simple two phi-bit case. The phi-bits of Fig. 1 may serve
as the physical platform. Here, instead of determining an orthonormal basis for the null space of the matrix C, a
rational basis for that null space is calculated using Matlab©. That basis is not usually orthonormal. However, linear
combinations of these basis vectors will also provide a means of defining inputs for the QFT. The five matrices
below form the rational basis:

0 0 0 0 -1 —=i/2 —=i/2 1 0 —i/2 —i/2 0
i _ 0 1 -1 0} x2 0 0 —i 01. xB 0 0 0 1.
ax4 0 0 0 0] “o 0 —i/2 —i/2 0] "4 0 i/2 i/2 0}’
0 -1 1 0 0 —i 0 0 -1 0 0 0
0 —i/2 —i/2 0 0 —i/2 —i/2 0
X[4] _ 0 0 i 0]. x5 _ -1 0 0 0
ax4 -1 —i/2 —i/2 1] "4 0 i/2 i/2 0
0 i 0 0 0 0 0 1
:0
Consider calculating the Fourier transform of the following input vector V; = (l) . For this, choose the

representation V = XEX] 4 V0. This vector takes the form:

0
v (¢§l>+¢§2>) sin ¢fl) cos ¢§2) 8 cos ¢£l) sin ¢§2) (35)
—sin qﬁfl) cos ¢£2) + cos qb{l) sin ¢£2)
or
0
V = ei(¢§l)+¢£2)) <sin ¢§1) cos ¢§2) — cos ¢§1) sin ¢§2)) (1)
—1

By changing the driving conditions applied on the acoustic metastructure such that all phi-bit phases change by 7,
(for instance by changing the driving frequency f; of Fig. 1 from 62 to 64.2 kHz), the vector V transforms into

0

, (D@ 2
V = el("52 2 ) <Sin¢§l) cos ¢52) —cos¢§l) sin ¢1(2)) 01

—2i
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To within a general phase, the output vector Vo = is the Fourier transform of V.

0
—2i
One may be interested in determining if some function possesses some specific period. Represent the function
—i
. 1 . . .
as the input vector: V; = . | . To realize that vector, use the representation V = X EX] 4 Vo. This vector takes the
i

-1
form:
—% sin q&il) cos ¢§2) - ’7 cos ¢§1) sin qbfz)
¢§”+¢§2)) cos q)fl) cos q&iz)
% sin qﬁl) cos qbiz) + ’5 cos ¢§1) sin ¢§2)
—sin gbfl) sin qﬁfz)

v = (36)

By initializing the two phi-bit system such that gog) = (pg) = 1, the sines and cosines are equal to each other (i.e.,

in T 7 L
sin 7 =cos 7 = ﬁ) and V reduces to

—i
V_ei(¢§'>+¢;2>)l 1
o 2| i

-1

This initial state can be achieved by driving the two phi-bits of Fig. 1 with a frequency f; ~64.2 kHz. A change of
driving conditions by raising f] to 65 kHz adds 7 to the phi-bit phases leading to the following transformations:

sin qbfl) sin ¢>f2) — sin ¢§1) sin 45%2) + sin ¢>fl) cos ¢§2) + cos ¢>§1) sin qﬁiz) + cos ¢£1) cos qbf)

sin ¢§l) cos (]5{2) — —sinqbfl) sin ¢§2) + sin qbfl) cos ¢>§2) — cos qb{l) sin q’)?) + cos qb{l) cos ¢(2)

1
cos ¢1(1) sin ¢§2) — —sin ¢>§]) sin ¢1(2) — sin ¢§1) cos c/)l(z) + cos ¢>§1) sin qbl(z) + cos qbfl) cos ¢](2)

cos ¢>§1) cos qbfz) — sin qbfl) sin ¢£2) — sin gbfl) cos ¢£2) — cos qbil) sin ¢>§2) + cos qbfl) cos ¢>}2).

With gpg) = (pg) = m, the first three components of the representation given in Eq. (36) become zero. The fourth

YOG (5D
component becomes —4/2 = —2. Upon 7 jumps, the prefactor, e’<¢2 e ) transforms into i el(d)z e ) $0
0
V/ =V = ei(¢él>+¢£2)) 0
0
—2i

0

- . . . 0

To within a general phase, the Fourier transform output is obtained: Vo = 0

—2i

After the steps of initialization and physical operation that leads to 7 jumps in the phi-bit phases, by calculating
the fourth component of the chosen two phi-bit representation, it can be determined if the input function possesses
a specific period. For instance, a non-zero value of the first component of the output vector indicates a constant
function over the domain of four discrete points of the function. A non-zero value of the third component of the
output vector corresponds to a period extending over half of the domain of the function. A non-zero value of the
fourth component corresponds to a function of the form ¢! 2" with the domain of the function defined through the
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Practical implementation of a scalable discrete Fourier transform

integer n = 1, 2, 3, 4. The QFT approach implemented on multiple phi-bit can, therefore, be used to extract the
periods of sequences of real but also complex numbers.

Note that after a QFT on a qubit-based computing platform, there is no effective way to recover the Fourier
coefficients which are stored in quantum superpositions of probability amplitudes (i.e., quantum wave functions).
Because of quantum wave function collapse, a measurement of the state of qubits will only return the computation
basis and not the superposition. In contrast, a logical phi-bit-based QFT operates on complex amplitudes of nonlinear
acoustic modes which are not subjected to wave function collapse. Retrieving all Fourier coefficients on N phi-bits
would require 2 calculations, thus creating significant computational overhead. However, phi-bit-based QFT will
realize its full potential when one needs the calculation of only one or a few Fourier components enabling the
measurement of the period(s) of a function. Phi-bit-based QFT will also demonstrate its full power when combined
with other multiple phi-bit gates and/or algorithms.

7 Conclusion

An approach that establishes a correspondence between the state of multiple logical phi-bits, acoustic qubit ana-
logues, in their supporting physical space and their representations as complex state vectors in exponentially scaling
Hilbert spaces has been introduced. The physical response of the correlated logical phi-bits to changes in the exper-
imental conditions is mapped onto a multiple phi-bit discrete Fourier transformation unitary matrix analogous to
the quantum Fourier transform (QFT). QFT is a ubiquitous operation in quantum information science [21,22] and
a common component of quantum algorithms [23-25]. The scalable QFT operates in parallel on the components of
multiple phi-bit complex state vectors requiring only a single physical action on the nonlinear acoustic metastruc-
ture that supports the phi-bits. It has been demonstrated that the approach is scalable by showing that there exists
a solution for the QFT matrix for any number of phi-bits in Sect. 5. This approach forms the foundation for the
design and development of other multiple phi-bit unitary operations and/or algorithms that, in contrast to qubits, are
unaffected by measurements and decoherence. The ingredients for applying this approach to the design of useful
multiple phi-bit unitary matrices and gates include (a) a knowledge of phi-bit phase response to changes in driving
conditions of the supporting acoustic metastructure, (b) analytical or numerical representations of single phi-bit
and multiple phi-bits in exponentially scaling Hilbert space initializable into all (or as many possible) separable or
non-separable states, and (c) an algebraic or numerical mapping between the effect of the desired unitary matrix
and the change in driving conditions on the representations. The strong nonlinear correlation between phi-bits
enables bypassing the need of qubit-based computing platforms for decomposition of large-scale unitary matrices
into quantum circuits of elementary gates. Finally, a significant limitation in the design of a quantum algorithm is
related to its mapping to a specific quantum processor. Indeed, current quantum computers are constituted of qubits
occupying different parts of the processor imposing physical constraints on the possible coupling between qubits
[26]. Therefore, the design of an efficient quantum algorithm needs to be adapted to a specific quantum processor
map of qubit coupling, that is, its coupling map. As nonlinear acoustic modes, logical phi-bits live within the same
physical space of the acoustic metastructure. Strongly correlated logical phi-bits occupy the same real estate, and
thus the design of phi-bit-based gates and algorithms will not suffer from spatial physical constraints.
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