
Citation: Deymier, P.A.; Vasseur, J.O.;

Runge, K.; Khanikaev, A.; Alù, A.

Immunity to Backscattering of Bulk

Waves in Topological Acoustic

Superlattices. Crystals 2024, 14, 344.

https://doi.org/10.3390/

cryst14040344

Academic Editors: Luis M.

Garcia-Raffi, Yu Cang, Bin Yang

and Fangxin Wang

Received: 1 March 2024

Revised: 19 March 2024

Accepted: 28 March 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Immunity to Backscattering of Bulk Waves in Topological
Acoustic Superlattices

P. A. Deymier 1,*,†, Jérome O. Vasseur 2, K. Runge 1,†, A. Khanikaev 3,4,† and A. Alù 3,4,5,†

1 Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA;

krunge@arizona.edu
2 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520 IEMN,

F-59000 Lille, France; jerome.vasseur@univ-lille.fr
3 Department of Electrical Engineering, The City College of New York, New York, NY 10031, USA;

akhanikaev@ccny.cuny.edu (A.K.); aalu@gc.cuny.edu (A.A.)
4 Physics Program, Graduate Center, City University of New York, New York, NY 10016, USA
5 Photonics Initiative, Advanced Science Research Center, City University of New York,

New York, NY 10031, USA

* Correspondence: deymier@arizona.edu
† New Frontiers of Sound Science and Technology Center, The University of Arizona, Tucson, AZ 85721, USA.

Abstract: We herein investigate the scattering of orthogonal counterpropagating waves and one-

way propagating bulk waves in discrete acoustic superlattices subjected to a scattering potential

applied to one of the superlattice unit cells. We demonstrate theoretically that the orthogonality of

counterpropagating modes does not provide robust protection against backscattering. By contrast,

the one-way propagating modes do satisfy a no-reflection condition, i.e., they exhibit immunity to

backscattering, for a wide range of applied scattering potentials, which represent defects and disorder.
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1. Introduction

Broken symmetries such as time-reversal or inversion symmetry is at the heart of
the extraordinary properties of acoustic topological insulators, such as the topological
protection of acoustic waves against backscattering. For a review of the field of topological
acoustics, please see reference [1]. Here, we explore attributes of topological acoustic
waves that may lead to immunity to backscattering. Acoustic topological insulators are
bulk mechanical systems possessing gapped acoustic band structures whose vectorial
representations of the acoustic wave field amplitude exhibits unusual topologies as the
field parametrically spans the representation space.

The topological protection of acoustic waves to overcome backscattering in two-
dimensions can be achieved in gapped mechanical systems with broken time-reversal
symmetry. This approach emulates the quantum Hall effect (QHE) of solid-state physics.
These two-dimensional systems support, inside their gap, unidirectionally propagating
edge modes at their one-dimensional boundaries (edges), thereby making backscattering
impossible. The edge modes are chiral, i.e., they have handedness, considering a system
with two parallel surfaces, with edge modes propagating in opposite directions that are
not located on the same edge but on opposite edges. Chirality results from the mirror
symmetry that relates modes propagating in opposite directions on opposite surfaces.
Exciting only one surface produces a unidirectionally propagating wave. A scatterer on
that surface cannot convert the mode propagating into the counterpropagating mode since
it is not supported there. However, if the two surfaces are close enough for the evanescent
component of the acoustic (or any other) field perpendicular to the surfaces to overlap,
then scattering can transfer energy to the counterpropagating mode. Currently, such robust
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immunity to backscattering in these systems is achieved using active devices that break
time-reversal symmetry, making their practical implementation difficult.

A second approach to attain topological properties in two dimensions exploits a
mechanism analogous to the quantum spin Hall effect (QSHE) in systems satisfying time-
reversal symmetry, but with broken spatial symmetry, e.g., inversion symmetry in the case
of a valley Hall type of systems. Here, a two-dimensional gapped mechanical system may
support—inside its gap—degenerate edge modes at its boundaries. However, because
time-reversal symmetry is satisfied, edge modes propagating in opposite directions coexist
on the same boundary. The acoustic fields associated with this counterpropagating pair
of edge modes are orthogonal to each other and may be treated as possessing an intrinsic
degree of freedom analogous to the spin of fermionic quantum particles, and therefore
are sometimes referred to as pseudospins. The orthogonality of these pseudospins for
edge modes propagating in opposite directions and connected by the time reversal endows
them with helical symmetry. An arbitrary (non-pseudospin selective) excitation at only
one boundary produces two waves propagating in opposite directions. A perturbation
on that surface may or may not scatter an incident mode depending on its ability to flip
the pseudospin, thus converting the impinging mode into its orthogonal counterpart, i.e.,
into a reflected wave. Therefore, the orthogonality of pseudospins of co-located acoustic
waves may not be a strong enough condition for immunity to backscattering by any type
of scatterer. No backscattering can only occur for perturbations without a mechanism for
pseudospin flip.

Topological immunity to backscattering for bulk acoustic waves can be realized in
several ways. Modulation in space and time of the physical properties of acoustic media
introduces a bias which breaks time-reversal symmetry and, additionally, inversion sym-
metry, leading to a one-way propagation of bulk acoustic waves [2–5]. In these systems, the
time-dependence of the modulation leads to a frequency splitting that resembles Brillouin
scattering. The frequency of the Brillouin modes, resembling Stokes and anti-Stokes bands,
corresponds to harmonics of the frequency associated with the temporal modulation. A
Brillouin mode which hybridizes with the folded bands due to the spatial periodicity of the
modulation (i.e., Bloch waves) forms a band gap on one side of the Brillouin zone and not
the other. This asymmetry in band structure ensures that a physical perturbation cannot
scatter an incident traveling wave, with frequency within the hybridization band gap,
into a traveling reflected wave. However, other Brillouin modes span the gap frequency
range, providing channels for wave propagation and, therefore, scattering. In spite of
these channels, spatiotemporal modulations have been shown to provide high-level pro-
tection against backscattering by mass defects [2]. In addition, the challenge in achieving
spatiotemporal modulations of the medium’s physical properties makes the experimental
practical implementation difficult [6].

More recently, Deymier et al. have shown that continuous and/or discrete acoustic
superlattices can support waves that do not satisfy the translational invariance of Bloch
waves over the entire Brillouin zone, unless their amplitude vanishes for some wave
number [7]. In honor of Paul Dirac, these modes will be subsequently denoted as DRAK
(pronounced as “DeeRAK”) modes. DRAK modes are characterized by a pseudospin and
occur only on one side of the first Brillouin zone, leading to one-way propagation. In
these superlattices, time-reversal symmetry is satisfied but inversion symmetry is not. The
existence of DRAK modes results from the interplay of translational invariance of Bloch
waves, pseudospin, and a Fabry–Pérot resonance condition [8] in the superlattice unit cell.

In the current paper, we investigate the interaction between acoustic waves in discrete
superlattices and scattering potentials with the aim of revealing the conditions which
lead to immunity to backscattering. For the sake of analytical simplicity, we limit our
study of scattering in topological acoustic superlattices to (1) the elastic analog of the Su–
Schrieffer–Heeger (SSH) model [9] and (2) the simplest binary superlattice, which possesses
a Fabry–Pérot resonance. The SSH system does not exhibit DRAK modes but, as it will be
shown, it possesses one mode for which the forward and backward propagating waves are
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orthogonal to each other. We show that in this case, the orthogonality of counterpropagating
modes does not provide protection against backscattering. By contrast, the superlattice
with a Fabry–Pérot resonance supporting a DRAK mode can be topologically protected
against backscattering.

2. Model System

In a previous publication [7], we investigated discrete binary superlattices (Figure 1a)
and the Bloch waves they could support. The binary superlattice systems were formed by
periodically repeating unit cells composed of two segments of different one-dimensional
mass–spring harmonic chains. The masses were identical and denoted by M. The stiffness
of the springs in the two segments, 1 and 2, were defined as K1 and K2. The spacing between
adjacent masses was defined as a. The lengths of segments 1 and 2 in a general superlattice
were d1 = na and d2 = pa, where n and p are integers. As shown in Figure 1b, when n = 1
and p = 1, the system becomes the Su–Schrieffer–Heeger (SSH) model [10]. Here, we also
consider the model of Figure 1c, which is the simplest binary superlattice that supports a
Fabry–Pérot resonance in segment 2, and consequently a DRAK mode with zero amplitude
in one direction of propagation and non-zero amplitude in the opposite direction.

t
t

t

t
t

ff
ffÿଵ ÿଶÿ

t ýଵ = ÿÿ ýଶ = ýÿ ÿ ýÿ = 1 ý = 1 ff

t

ff ÿଵ ÿଶ ff ÿଵ ýଵ = ÿÿýଶ = ýÿ ff ÿ = ý = 1
t ÿ = 1 ý = 2

t

t ÿ஺,௠ே = (ýାேÿ௜௞భ௠௔ + ýேିÿି௜௞భ௠௔)ÿ௜ఠ௧
)ÿ஻,௟ே = (ýାேÿ௜௞మ௟௔ + ýேିÿି௜௞మ௟௔)ÿ௜ఠ௧

Figure 1. (a) Schematic representation of a general one-dimensional discrete superlattice. A periodi-

cally repeating unit cell N is composed of equally spaced identical masses M coupled through linear

springs with stiffnesses K1 and K2. The extent of segment 1 with stiffness K1 is d1 = na. The length of

segment 2 is d2 = pa. (b) Su–Schrieffer–Heeger (SSH) model for n = p = 1. (c) Simplest superlattice

with one Fabry–Pérot resonance in segment 2 with n = 1 and p = 2. In the SSH system (b), we also

refer to the masses in the unit cell by A and B. In system (c), we refer to the masses in a unit cell as A,

B, and C.

2.1. General Binary Superlattice

Using the transfer matrix method, we sought plane wave solutions for the general
binary superlattice in the following forms:

uN
A,m =

(

AN
+eik1ma + AN

−e−ik1ma
)

eiωt (1a)

uN
B,l =

(

BN
+ eik2la + BN

− e−ik2la
)

eiωt (1b)
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The wave numbers k j with j = 1,2 are related to the angular frequency ω via the well-known
dispersion relation of infinite harmonic chains:

Mω2 = 4Ki

(

sin k j
a

2

)2
(2)

Since the superlattice is periodic with period L = d1 + d2, we look for Bloch wave solutions
by choosing AN

± = eiqNL A± and BN
± = eiqNLB±, where q is the wave number. The transfer

matrix method enables us [7] to obtain analytical expressions for the band structure of the
superlattice as well as the amplitudes A± and B±. The dispersion relation is given by

cos qL = cos k1d1cos k2d2 +
[

− 1
2

(

1
f 4
(

sin k2
a
2

)2
+ f 4

(

sin k1
a
2

)2
)

+

4
(

sin k1
a
2

)2(
sin k2

a
2

)2
]

sin k1d1sin k2d2
sin k1asin k2a

(3)

where f = K1
K2

. We note that when the absolute value of the right-hand side of Equa-
tion (3) exceeds 1, the frequency lies within band gaps of the system corresponding to
evanescent modes.

The amplitudes in segment 1 are expressed as

A+ =
2i

f
(

δ
(2)
+ − δ

(2)
−
)(

δ
(1)
+ − δ

(1)
−
) e−ik1d1

(

f δ
(1)
+ − δ

(2)
+

)(

f δ
(1)
+ − δ

(2)
−
)

sin k2d2 (4a)

A− = i

{

sin k1d1cos k2d2 +
1

(

δ
(2)
+ −δ

(2)
−
)(

δ
(1)
+ −δ

(1)
−
)

[

−2
(

f δ
(1)
+ δ

(1)
− + 1

f δ
(2)
+ δ

(2)
−
)

+
(

δ
(1)
+ + δ

(1)
−
)(

δ
(2)
+ + δ

(2)
−
)]

cos k1d1sin k2d2 − sin qL
}

.

(4b)

In Equation (4a,b), we define δ
(j)
± = 1 − e±ikja with j = 1,2. The amplitudes in segment 2 are

given by the relation

(

α1 β1

f α1δ
(1)
− f β1δ

(1)
+

)

(

AN
+

AN
−

)

=

(

1 1

δ
(2)
− δ

(2)
+

)

(

BN
+

BN
−

)

. (5)

with α1 = 1
β1

= eik1na.

The DRAK mode occurs when a Fabry–Pérot resonance exists in segment (2), i.e.,
when sin k2d2 = 0, i.e., at circular frequencies ω0, such that k2d2 is an even or odd multiple
of π, which corresponds to DRAK modes inside the first Brillouin zone where wave
number q takes values in the range −π

L f q f +π
L . In the case of k2d2 being an odd

multiple of π, the dispersion relation reduces to cos q0L = −cos k1d1 or q0L = ±(k1d1 ± π).
With these conditions, clearly from Equation (4a), A+ = 0. Equation (4b) reduces to
A− = i{− sink1d1 − sin q0L}. A− = 0 when q0L = +(k1d1 ± π). Since k1d1 > 0, the
reduced wave number q0L = +(k1d1 − π) is located inside the negative side of the first
Brillouin zone. +(k1d1 + π) is the corresponding wave number inside the second Brillouin
zone (where +π f qL f +2π). A− = −2isin k1d1 ̸= 0 for q0L = −(k1d1 − π), which is
located symmetrically on the positive side of the Brillouin zone. By virtue of Equation (5),
B± = 0 when A±= 0. The DRAK mode has zero amplitude on one side of the Brillouin
zone but a non-zero amplitude on the symmetric opposite side. In Figure 2, we illustrate
the DRAK mode in the band structure of a superlattice with d1 = a and d2 = 2a. The
Fabry–Pérot resonance occurs for k2 = π

2a , which, using Equation (2) for medium 2 gives
ω0 =

√
2K2 for unit mass M. Two band structures are calculated from Equation (3) for the

two cases K1 = 2 N/m, K2 = 1 N/m and K1 = 1 N/m, K2 = 2 N/m. The corresponding
ω0 is also shown as horizontal lines. When K2 = 2N/m, the resonance frequency intersects
the associated second band only at zero wave number. When K2 = 1N/m, the resonance
frequency intersects the second band at two locations q0L = ±(k1a − π). As discussed
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above, the amplitude of the mode with a negative wave number is 0, while the amplitude
of the mode with the symmetric positive wave number is non-zero. To find the location of
these wave numbers, we use Equation (2) for the mass of type 1 with ω0 =

√
2K2 =

√
2

and find
∣

∣

∣
sin k1a

2

∣

∣

∣
= 1

2 , that is, k1a = 1.047, which gives q0L = ±2.094.

ÿ଴ = ඥ2ÿଶ = √2 ቚsin ௞భ௔ଶ ቚ = ଵଶýଵÿ = 1.047 ÿ଴ÿ = ±2.094

t ÿ଴ = ඥ2ÿଶ
ýଶýଶ πcos ÿ଴ÿ = cos ýଵýଵ ÿ଴ÿ = ±ýଵýଵ ýି = ÿሼsin ýଵýଵ − sin ÿ଴ÿሽ. ÿ଴ÿ =+ýଵýଵ ýି = 0 ÿ଴ÿ = −ýଵýଵ ýି = 2ÿ sin ýଵýଵ ≠ 0

t ÿ = ý = 1 ÿ = 2ÿýÿଶ = ÿଵ + ÿଶ ±ඥÿଵଶ + ÿଶଶ + 2ÿଵÿଶ cos ÿÿ ÿ஺ே =ýÿ௜௤ே௅ÿି௜ఠ௧ ÿ஻ே = ýÿ௜௤ே௅ÿି௜ఠ௧ ý = ýା + ýିý = ýା + ýି ൬ý(ÿ)ý(ÿ)൰ ∝ ቆඥÿ∗(ÿ)±ඥÿ(ÿ)ቇ = ቆ ඥÿଵ + ÿଶÿି௜௤௅±ඥÿଵ + ÿଶÿା௜௤௅ቇ±2 ൈ 1ቄቀ10ቁ , ቀ01ቁቅ

Figure 2. Band structure of superlattice with d1 = a and d2 = 2a with M = 1 kg. (a) Open circles

correspond to K1 = 2 N/m and K2 = 1 N/m and (b) open diamonds correspond to K1 = 1 N/m and

K2 = 2 N/m. The two horizontal lines identify the frequencies of Fabry–Pérot resonances ω0 =
√

2K2.

See text for more details.

In the case of k2d2 being an even multiple of π, the dispersion relation reduces to
cos q0L = cos k1d1 or q0L = ±k1d1. In that case, A− = i{sin k1d1 − sin q0L}. If q0L = +k1d1,
then A− = 0, but if q0L = −k1d1, then A− = 2isin k1d1 ̸= 0.

2.2. SSH System and Scattering

We recall that the SSH system is obtained when n = p = 1 and L = 2a. The dispersion
relation is given by

Mω2 = K1 + K2 ±
√

K2
1 + K2

2 + 2K1K2cos qL. (6)

The motion of the two masses in a unit cell N is described by Bloch waves, uN
A = AeiqNLe−iωt

and uN
B = BeiqNLe−iωt. The amplitudes are given by Equation (1a,b): A = A+ + A− and

B = B+ + B− with

(

A(q)
B(q)

)

∝

(
√

δ∗(q)
±
√

δ(q)

)

=

(

√

K1 + K2e−iqL

±
√

K1 + K2e+iqL

)

(7)

Here, the “*” denotes complex conjugation. The ± refers to the bands in Equation (6).
We note that these amplitudes cannot be zero for any value of the wave number q. The Bloch
wave amplitudes given by Equation (7) form a 2 × 1 vector in a two-dimensional complex

space with the basis

{(

1
0

)

,

(

0
1

)}

of the masses A and B of a unit cell. This representation of
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the displacement field within a cell spans the complex space by parametrically varying the
wave number q. We therefore seek wave numbers +q and −q, such that the corresponding
vector representations are orthogonal to each other. Considering two waves propagating in

opposite directions,

(

A(q)
B(q)

)

and

(

A(−q)
B(−q)

)

, the condition of orthogonality between these

two modes can be written as

(A(−q), B(−q))∗
(

A(q)
B(q)

)

= 0 (8)

This condition reduces to δ*(q) + δ(q) = 2 K1 + 2K2cos qL = 0 or

cos q§L = −K1

K2
(9)

Orthogonal counter propagating modes only exist when K1 < K2, which corresponds to
the topologically nontrivial phase of the elastic SSH system [11].

We now explore the scattering of waves in the SSH model. We consider a general
frequency-dependent scattering potential V(ω), acting on the mass of type A of the unit cell
N = 0. For example, if we consider that this potential arises from a perturbation of the mass
of A in the N = 0 unit cell, such that its mass is now M′ ̸= M, we have V(ω) = (M − M′)ω2.
The scattering potential may take many other functional forms depending on the type and
origin of the perturbation such as, for instance, resonant perturbations.

The dynamical equations in the vicinity of the defected unit cell take the following forms:

M
..
u

0
A = −K2

(

u0
A − u−1

B

)

− K1

(

u0
A − u0

B

)

+ V(ω)u0
A (10a)

M
..
u

0
B = −K1

(

u0
B − u0

A

)

− K2

(

u0
B − u1

A

)

(10b)

M
..
u
−1
B = −K1

(

u−1
B − u−1

A

)

− K2

(

u−1
B − u0

A

)

(10c)

M
..
u

1
A = −K2

(

u1
A − u0

B

)

− K1

(

u1
A − u1

B

)

. (10d)

The amplitudes of u0
A and u0

B are supposed to be unknown and written as

u0
A = Xe−iωt (11a)

u0
B = Ye−iωt (11b)

We also consider that the semi-infinite medium to the left of the defected unit cell supports
an incident “i” and a reflected “r” wave:

u−1
A =

(

Aie
−iqL + AreiqL

)

e−iωt (12a)

u−1
B =

(

Bie
−iqL + BreiqL

)

e−iωt (12b)

The medium to the right of the defected cell supports a transmitted “t” wave:

u1
A =

(

Ate
iqL
)

e−iωt (13a)

u1
B =

(

Bte
iqL
)

e−iωt (13b)

The scattering problem solved here is illustrated in Figure 3.
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t ý(ÿ)
t

t

ý௜ = ÿý௜ý௥ = 1ÿ ý௥ý௧ = ÿý௧ÿ = ±√ఋ√ఋ∗
ffi ý = ஺ೝ஺೔ ý′ = ஻ೝ஻೔ ýᇱ = ଵఈమ ý

ffi ÿ = ஺೟஺೔ ÿ′ = ஻೟஻೔ ÿ = ÿ′ ÿ, ý, ý, ÿÿ, ý
ffi t

ÿ(ÿ) = ÿଵÿ − ÿÿଵቆÿଵÿ − ÿÿଵ − ý(ÿ)ቇý(ÿ) = ý(ÿ)ቆÿଵÿ − ÿÿଵ − ý(ÿ)ቇý(ÿ) = 0 ÿ = 1 ý = 0. ý(ÿ) → ∞ ÿ → 0ý → −1 ÿ∗(ÿ) = −ÿ(ÿ) ÿ = ±√−1 = ±ÿ௄భఈ − ÿÿଵ = ∓ÿ2ÿଵ ý ≠ 0
t

t
t

ffi
t

t t

Figure 3. Schematic illustration of the SSH system subjected to a scattering potential V(ω). The

amplitudes of the incident; reflected and transmitted waves are shown as well as the amplitude of the

two masses in the cell N = 0. The black arrow indicates the location of the applied scattering potential.

Using Equation (7), we have
Bi = αAi (14a)

Br =
1

α
Ar (14b)

Bt = αAt (14c)

where α = ±
√

δ√
δ*

.

Furthermore, we define the reflection coefficient R = Ar
Ai

and R’ = Br
Bi

with R’ = 1
α2 R

and the transmission coefficient T = At
Ai

and T’ = Bt
Bi

with T = T’.
We now have four equations (10a,b,c,d) and four independent unknowns X, Y, R, T.

Eliminating X, Y from the equations, after algebraic manipulations, we extract expressions
for the reflection and transmission coefficients in terms of the scattering potential, namely

T(ω) =
K1
α − αK1

(

K1
α − αK1 − V(ω)

) (15)

R(ω) =
V(ω)

(

K1
α − αK1 − V(ω)

) (16)

We easily verify that when V(ω) = 0, T = 1 and R = 0. If V(ω) → ∞ , then T → 0
and R → −1 . It is also easy to verify that a mode satisfying the condition of orthogonality
between counterpropagating waves (Equation (9)) does not restrict Equations (15) and (16).
Indeed, the condition of orthogonality states that δ∗(q) = −δ(q), that is, α = ±

√
−1 = ±i.

In this case, K1
α − αK1 = ∓i2K1 and R ̸= 0. Orthogonality in the direction of propa-

gation for the topologically unconventional phase of the SSH system does not protect
against backscattering.

2.3. Scattering of DRAK Mode

We consider, now, the system of Figure 1c and apply a scattering potential V on
the mass A in the N = 0 cell. We focus on the scattering of the DRAK mode for which
there is a zero amplitude for one direction of propagation and a non-zero amplitude in
the opposite direction. In this case, and in contrast to the SSH system discussed in the
previous subsection, analytical expressions of reflexion and transmission coefficients cannot
be derived and one cannot analyze mathematically the scattering of a DRAK mode by
considering an incident wave and a reflected wave on one side of the scatterer and a
transmitted wave on the other side. Here, since the DRAK mode could be reflectionless [12],
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we address the scattering problem by considering that an incident wave is not reflected
and, therefore, it is totally transmitted. We therefore seek the existence of localized modes
in the vicinity of the scattering potential which are compatible with a reflectionless incident
wave. The scattering potential may then be associated with an evanescent or localized field
around the defected cell [13]. Since the DRAK mode corresponds to frequencies which
lie within a band and in the one-dimensional binary superlattice, the evanescent modes
live within the band gaps, and the localized mode we seek cannot be evanescent. We only
look for the existence of a localized mode in the perturbed cell compatible with the DRAK
reflectionless character and the applied scattering potential.

First, we write the equations of motion for the masses A, B, and C in the perturbed cell:

M
..
u

0
A = −K2

(

u0
A − u−1

C

)

− K
1

(

u0
A − u0

B

)

+ V(ω)u0
A (17a)

M
..
u

0
B = −K1

(

u0
B − u0

A

)

− K2

(

u0
C − u0

B

)

(17b)

M
..
u

0
C = −K2

(

u0
C − u0

B

)

− K2

(

u0
C − u1

A

)

(17c)

Similarly to the previous section, we assume that the scattering potential acts on the
mass A in the unit cell N = 0. We further assume that u1

A and u−1
C are given as

u1
A = Aeiqo Le−iωt (18a)

u−1
C = Ce−iqo Le−iωt (18b)

where qo is the wave number of the DRAK mode that has non-zero amplitude. Equation
(1a,b) state that A = A+ + A−, B = B+ + B−, and C = B+eik2a + B−e−ik2a = i(B+ − B−)
because k2d2 = 2k2a = π, so A = B = C = 0 when A± = B± = 0 for the DRAK mode on one
side of the Brillouin zone (e.g., for a reflected wave).

We now assume that
u0

A = Xe−iωt (19a)

u0
B = Ye−iωt (19b)

u0
C = Ze−iωt (19c)

X, Y, Z are the unknown amplitudes of masses A, B, and C in the defected N = 0 cell,
which enable the zero reflection of the DRAK mode by the scattering potential (see Figure 4).
The existence of a nontrivial solution for X, Y, Z is a necessary condition for immunity to
backscattering by the potential V(ω).

t
t

t
t

t

t

ýÿሷ஺଴ = −ÿଶ(ÿ஺଴ − ÿ஼ି ଵ) − ÿଵ(ÿ஺଴ − ÿ஻଴) + ý(ÿ)ÿ஺଴ýÿሷ஻଴ = −ÿଵ(ÿ஻଴ − ÿ஺଴) − ÿଶ(ÿ஼଴ − ÿ஻଴)ýÿሷ஼଴ = −ÿଶ(ÿ஼଴ − ÿ஻଴) − ÿଶ(ÿ஼଴ − ÿ஺ଵ)
tÿ஺ଵ ÿ஼ି ଵÿ஺ଵ = ýÿ௜௤೚௅ÿି௜ఠ௧ÿ஼ି ଵ = ÿÿି௜௤೚௅ÿି௜ఠ௧ÿ௢ ý = ýା + ýି ý = ýା + ýି ÿ = ýାÿ௜௞మ௔ + ýିÿି௜௞మ௔ = ÿ(ýା − ýି)ýଶýଶ = 2ýଶÿ = ÿ ý± = ý± = 0

ÿ஺଴ = ÿÿି௜ఠ௧ÿ஻଴ = ýÿି௜ఠ௧ÿ஼଴ = ýÿି௜ఠ௧ÿ, ý, ý
tÿ, ý, ý

t ý(ÿ)

t ý(ÿ)
t

t

t−ýÿ଴ଶÿ = −ÿଶ(ÿ − ÿÿି௜௤೚௅) − ÿଵ(ÿ − ý) + ý(ÿ଴)ÿ−ýÿ଴ଶý = −ÿଵ(ý − ÿ) − ÿଶ(ý − ý)−ýÿ଴ଶý = −ÿଶ(ý − ý) − ÿଶ(ý − ýÿ௜௤೚௅)ÿ଴ÿ = −(ýଵýଵ − ÿ) ýଵ = ÿ

Figure 4. Schematic illustration of the scattering of a reflectionless DRAK mode by a potential V(ω).

The amplitudes of the incident and transmitted waves are shown as well as the amplitude of the

three masses in the cell, N = 0. The black arrows indicate the three locations of the applied scattering

potential investigated here.
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The three Equation (17a,b,c) to solve are rewritten as

−Mω2
0X = −K2

(

X − Ce−iqo L
)

− K
1
(X − Y) + V(ω0)X (20a)

−Mω2
0Y = −K1(Y − X)− K2(Y − Z) (20b)

−Mω2
0Z = −K2(Z − Y)− K2

(

Z − Aeiqo L
)

(20c)

For illustrative purposes, we consider a DRAK mode with non-zero amplitude cor-
responding to q0L = −(k1d1 − π) with d1 = a; we can rewrite this set of equations in
the form

W





X
Y
Z



 =





−K2Ce+ik1a

0

−K2 Ae−ik1a



 (21)

where the matrix W is given by W =





γ − V −K1 0
−K1 γ −K2

0 −K2 η



 with γ = −Mω2
0 + K1 + K2

and η = −Mω2
0 + 2K2. Since the DRAK mode corresponds to k2d2 = k22a = π, the

dispersion relation of the homogeneous medium of type 2 given by Equation (2) is

Mω2
0 = 4K2

(

sin k2
a
2

)2
= 2K2, that is, η = 0 and γ = K1 − K2. With this, we have

W =





K1 − K2 − V −K1 0
−K1 K1 − K2 −K2

0 −K2 0





After inverting the matrix W, we obtain the amplitudes

X =
−1

K1 − K2 − V

(

K2Ceik1a − K1 Ae−ik1a
)

(22a)

Y = −Ae−ik1a (22b)

Z =
−1

K1 − K2 − V

(

−K1Ceik1a +

[

−(K1 − K2)
2 + (K1 − K2)V + K2

1

K2
2

]

K2 Ae−ik1a

)

. (22c)

We have verified that when V → 0 , the amplitudes X, Y, Z become those of the unper-
turbed superlattice, that is, A, B, C. Furthermore, we can verify that when V → ∞ , the am-

plitudes of the perturbed cell converge to a nontrivial solution





X
Y
Z



 =







0
1

K1−K2
K2






Ae−ik1a.

Let us consider an infinitely large scattering potential for all frequencies, for instance, in
the case of a potential, V(ω) = (M − M′)ω2 → ∞ , resulting from a mass defect with very
large mass, M′ → ∞ . In that case, mass A does not move but masses B and C are able to
transfer the incident wave to a transmitted wave as if the scatterer were not affecting the
system. Note that this is reminiscent of an anti-resonance, whereby one mass remains static
but transfers some driving force to other masses it is interacting with. The existence of

nontrivial amplitudes





X
Y
Z



 suggests that the DRAK mode resulting from the nontrivial

topology of the superlattice is immune to backscattering when the scattering potential is
applied to mass A.
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We now ask the question about immunity to backscattering when the scattering
potential acts on mass B in the cell N = 0. In this case, the matrix W becomes

W =





K1 − K2 −K1 0
−K1 K1 − K2 − V −K2

0 −K2 0





Solving Equation (21) yields the amplitudes

X =
−1

K1 − K2

(

K2Ceik1a − K1 Ae−ik1a
)

(23a)

Y = Aeik1a (23b)

Z =
−1

K1 − K2

(

−K1Ceik1a +

[

−(K1 − K2)
2 + (K1 − K2)V + K2

1

K2
2

]

K2 Ae−ik1a

)

(23c)

In the limit V → 0 , the amplitudes X, Y, Z become those of the unperturbed system,
A, B, C. We note that X and Y are independent of the potential. In the limit V → ∞ , the
amplitude Z diverges. When the scattering potential applies to the mass B, there is no
finite physical solution for amplitude Z. The no-reflection assumption breaks down for an
infinite potential applied to mass B. For finite scattering potentials, Equation (23a,b,c) offer
solutions for X, Y, Z that are compatible with the assumption of no reflection. The DRAK
mode appears to be immune to backscattering but for infinite potentials applied to mass B.

In the case of a scattering potential applied to the mass C in cell N = 0, the matrix W is

W =





K1 − K2 −K1 0
−K1 K1 − K2 −K2

0 −K2 −V



.

Its inverse takes the form

W−1 =
−1

K2[V(2K1 − K2)(K2 − K1)K2]







V(K1 − K2)− K2
2 VK1 K1K2

VK1 V(K1 − K2) K2(K1 − K2)

K1K2 K2(K1 − K2) −K2(2K1 − K2)






.

For finite scattering potentials, there exist amplitudes of the mass in the perturbed cell
which are compatible with the no-reflection assumption. In the limit V → ∞ , the inverse
matrix simplifies to

W−1 =
−1

K2(2K1 − K2)





(K1 − K2) K1 0
K1 (K1 − K2) 0
0 0 0





which leads to the following amplitudes:





X
Y
Z



 =
1

2K1 − K2





K1 − K2

K1

0



Ceik1a (24)

An infinite scattering potential on the mass C in the perturbed cell is accommodated
by a zero amplitude of that mass. Again, this behavior is reminiscent of an anti-resonance,
which enables the incident wave to be transmitted through the perturbed cell even for very
large scattering potentials.

Apart from an infinite potential on mass B, the no-reflection assumption for a DRAK
mode is compatible with any scattering potential applied to the masses A, B, and C in cell
N = 0.
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Hence, single-frequency DRAK modes appear to possess a strong immunity to backscattering.

3. Conclusions

We have investigated the scattering of acoustic waves in topologically non-conventional
discrete superlattices. We have considered the case of a two-mass-per-unit-cell superlattice
analogous to the SSH model as well as the case of the simplest binary superlattice, with
three masses per unit cell, which possesses a Fabry–Pérot resonance. The latter system
supports a one-way propagating mode (denoted DRAK mode) which has zero amplitude
on one side of the Brillouin zone but has a finite amplitude on the other side. The SSH
analog system does not exhibit DRAK modes but possesses one mode for which the for-
ward and backward propagating waves are orthogonal to each other. We investigated the
scattering of orthogonal and DRAK modes in their respective superlattice when masses
in one cell are selectively subjected to a general scattering potential. We demonstrate
theoretically that the orthogonality of counterpropagating modes does not provide robust
protection against backscattering. In contrast, the DRAK mode does satisfy a no-reflection
condition (i.e., shows immunity to backscattering) for a wide range of scattering potentials
applied to all three masses constituting the perturbed cell. Future work will include the
study of scattering in more general topological acoustic superlattices such as continuous
superlattices in addition to discrete ones. Additionally, here, we have considered scattering
potentials applied to individual masses within a unit cell; topological protection against
more complex scattering potentials will need to be studied.

Recently, the robustness of topological protection against backscattering in electronic
and photonic topological interface modes has been questioned [14–16]. The demonstra-
tion of robust immunity to backscattering for bulk acoustic waves in topologically non-
conventional superlattices, without breaking time-reversal symmetry, may have implica-
tions for the practical application of topological protection to engineered acoustic devices
and systems. The narrow-frequency DRAK modes in superlattice immune to backscat-
tering could offer low-cost and industry-compatible solutions to reducing insertion loss
(e.g., reflection loss due to defects) in next-generation acoustic wave filters and devices for
telecommunications and sensing. Experimental verification of the findings reported in this
paper for micro-acoustic wave devices, such as thin-film-based superlattices, as well as
one-dimensional acoustic waveguide superlattices is underway.
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