
J
H
E
P
0
2
(
2
0
2
4
)
1
6
0

Published for SISSA by Springer

Received: January 5, 2024
Revised: February 8, 2024

Accepted: February 9, 2024
Published: February 22, 2024

Quark-lepton mass relations from modular flavor
symmetry

Mu-Chun Chen ,a Stephen F. King ,b Omar Medina c and José W.F. Valle c

aDepartment of Physics and Astronomy, University of California,
Irvine, CA 92697-4575, U.S.A.

bSchool of Physics and Astronomy, University of Southampton,
Southampton SO17 1BJ, U.K.

cInstituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC,
Paterna (Valencia) E-46980, Spain

E-mail: muchunc@uci.edu, s.f.king@soton.ac.uk, omar.medina@ific.uv.es,
valle@ific.uv.es

Abstract: The so-called Golden Mass Relation provides a testable correlation between
charged-lepton and down-type quark masses, that arises in certain flavor models that do
not rely on Grand Unification. Such models typically involve broken family symmetries.
In this work, we demonstrate that realistic fermion mass relations can emerge naturally
in modular invariant models, without relying on ad hoc flavon alignments. We provide a
model-independent derivation of a class of mass relations that are experimentally testable.
These relations are determined by both the Clebsch-Gordan coefficients of the specific finite
modular group and the expansion coefficients of its modular forms, thus offering potential
probes of modular invariant models. As a detailed example, we present a set of viable
mass relations based on the Γ4 ∼= S4 symmetry, which have calculable deviations from the
usual Golden Mass Relation.

Keywords: Discrete Symmetries, Flavour Symmetries, Theories of Flavour

ArXiv ePrint: 2312.09255

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2024)160

https://orcid.org/0000-0002-5749-2566
https://orcid.org/0000-0002-4351-7507
https://orcid.org/0000-0002-1488-8413
https://orcid.org/0000-0002-1881-5094
mailto:muchunc@uci.edu
mailto:s.f.king@soton.ac.uk
mailto:omar.medina@ific.uv.es
mailto:valle@ific.uv.es
https://arxiv.org/abs/2312.09255
https://doi.org/10.1007/JHEP02(2024)160


J
H
E
P
0
2
(
2
0
2
4
)
1
6
0

Contents

1 Introduction 1

2 Mass relations from modular symmetry 3
2.1 Modular invariance 3
2.2 Mass matrices at the symmetry points 6
2.3 Conditions for mass relations 7

3 Example of viable mass relations 8
3.1 Zooming in the golden quark-lepton mass relation 13
3.2 Stability under renormalization group evolution 13

4 Discussion and outlook 15

A The Γ4 group — basis and modular forms 16

B Polynomial system solutions 18

C Another class of mass relations 19
C.1 Example of a mass relation for the up-type quarks and neutrinos 19

1 Introduction

In the Standard Model (SM), fermion masses and mixings arise from the Yukawa interaction
of quarks and leptons with the Higgs field. Although the fields of the three families have
identical SM gauge group quantum numbers, they exhibit largely distinct masses. Such
hierarchical structure of masses across the three families appears rather enigmatic [1–3].
Moreover, the mixing pattern of quarks and leptons encoded in the CKM and lepton mixing
matrices is quite different, and unexplained from first principles in the SM.

Understanding the pattern of fermion masses and mixings presents a two-fold puzzle for
particle physics. While some success has been achieved towards predicting fermion mixings
through the imposition of family symmetries [4–8], less progress has been made concerning
the formulation of a fully convincing theory of fermion mass hierarchies, though there have
been many proposals in this direction [9–18].

The idea of relating quark and lepton masses has a long history. Since the SU(5) model
proposed by Georgi and Glashow [19], that places quarks and leptons within a common
representation, it has become usual to expect quark and lepton mass relations to emerge
from gauge unification [20–27].

However, despite many efforts that started rather early on [28], no truly definitive theory
relating quarks and leptons has ever been devised. The so-called flavor puzzle became more
acute after the discovery of neutrino oscillations [29, 30] and the need to account for neutrino
masses and mixings as well.
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Interestingly, viable relations between quark and lepton masses can also emerge in flavor
symmetry models, even in the absence of genuine gauge unification. This is the case for the
so-called approximate golden quark-lepton mass relation [31–35]

mb√
msmd

≈ mτ√
mµme

, (1.1)

that has been obtained both with discrete as well as continuous family symmetry groups.
This relation has also been obtained in the context of orbifold extensions of the SM [36–40].
Given the experimental uncertainty of down-quark mass measurements,

md

ms
≈ 1

20 ,
ms

mb
≈ 1

50 ,
me

mµ
≈ 1

200 , and mµ

mτ
≈ 1

17 , (1.2)

one can readily verify that this mass relation is consistent with experimental data. Cleary
this is just one relation and, by itself, does not exhaust the complexity of the flavor problem.
However, given its success and simplicity, one may argue that it could constitute part of
the ultimate theory of flavor. Note also that it is consistent with the Georgi-Jarlskog mass
relations [28],

me

md
≈ 1

3 ,
mµ

ms
≈ 3 , mτ

mb
≈ 1 , (1.3)

which was predicted to hold at the GUT scale, with quark masses increased by a factor
of about 3 at low energies, due to renormalization group (RG) running (with the largest
contribution coming from QCD). We emphasize that the combination in eq. (1.1) (satisfied
by the Georgi-Jarlskog relations) is rather stable under renormalization group evolution.
As a consequence the Golden mass relation, which holds at the electroweak scale could
potentially hold also at high energy scales, even all the way up to the gauge unification scale
MGUT ∼ 1016 GeV (See discussion in subsection 3.2).

A common drawback of flavor symmetry model predictions, such as eq. (1.1), is that
they usually rely on ad hoc flavor symmetry breaking and vacuum alignment assumptions,
for example through flavons in the scalar sector [4, 41–45, 45–52]. By contrast, in modular
invariant models where the flavor symmetry is nonlinearly realized [53] (for a recent review
see [54]), minimal, realistic, and uniquely defined symmetry breaking patterns can be obtained
without the need for flavons. Moreover, these symmetries could unveil a possible connection
between the SM and strings or extra dimensional field theories [55–66].

In this work we point out that modular flavor symmetries can naturally yield viable
correlations between the SM fermion masses without invoking flavons nor Grand Unification.
This illustrates the potential of these symmetries towards the formulation of a successful and
experimentally testable flavor theory of fermion masses. Mass relations can emerge from
the symmetry structure of the vector-valued modular forms that uniquely parametrize the
breaking of modular invariance [53, 54, 67, 68]. In particular, using modular invariance we
obtain analytically a generalization of the golden quark-lepton mass relation in eq. (1.1).

This work is structured as follows: in section 2 we present the general method, i.e. a
model-independent derivation of fermion mass relations in modular invariant models that
contain few parameters. In section 3 we present an explicit example for the Γ ∼= S4 modular
group, in which we derive viable mass relations of down-quarks and charged leptons. We
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also contrast these to experimental data. In section 4 we argue that, though the chosen
example is not intended to be a complete flavor model, the general method may be useful
to build more comprehensive modular symmetry models of flavor, with significantly fewer
free parameters than the SM.

2 Mass relations from modular symmetry

To begin with, let us assume an N = 1 supersymmetric theory, whose action is given as

S =
∫
d4xd2θd2θ̄K(τ̄ , ψ̄, τ, ψ) +

∫
d4xd2θW(τ, ψ) + h.c , (2.1)

where K is the Kähler potential and W is the superpotential. These are functions of the
chiral superfields τ and ψ.

2.1 Modular invariance

Besides the SM gauge symmetry, we require the action S to be invariant under the modular
group SL(2,Z) ≡ Γ, so it remains unchanged under the modular transformation [48, 53, 55, 56]

τ
γ−→ aτ + b

cτ + d
where γ =

a b
c d

 with ad− cb = 1 (2.2)

where the matrix γ has integer entries and belongs to the modular group Γ, generated
by the elements

S =

 0 1
−1 0

 , T =

1 1
0 1

 , R =

−1 0
0 −1

 , (2.3)

that obey the relations S2 = R, (ST )3 = R2 = 1, and RT = TR.
The set of matter chiral superfields ψ of the Minimal Supersymmetric Standard Model

(MSSM) present in the action in eq. (2.1) transform as weighted representations ψ ∼⊕
α(rα,−kα) under the action of γ ∈ Γ.

ψα
γ−→ (cτ + d)−kα ρrα(γ)ψα . (2.4)

Here α labels different irreducible representations ρr(γ) of ΓF, a finite subgroup of Γ that
plays the role of the flavor symmetry. The corresponding automorphic factor (cτ + d)−kα

depends on the weight kα.
The superpotential W , which is assumed to be invariant under a modular transformation,

can be written as a power series in the superfields ψα

W =
∑
n

(Yα1...αn(τ)ψα1 . . . ψαn)1 . (2.5)

Note that given the transformation properties of τ and ψα under the modular group in
eqs. (2.2) and (2.4) the Yukawa couplings Yα1...αn(τ) are requited to be the vector-valued
modular forms [67–69] of the finite modular group ΓF

Yα1...αn(γτ) = (cτ + d)kYnρY (γ)Yα1...αn(τ), (2.6)

with weight kYn and representation ρY (γ) of ΓF, such that each term of the superpotential
in eq. (2.5) is invariant under a modular transformation.
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Figure 1. This figure shows the fundamental domain for the action of the modular group in cyan.
We chose to include the solid line border. The three symmetry points, τsym = i∞, i, ω, are marked in
red. An arbitrary value of τ in the complex plane can be mapped to a point within this domain via a
modular transformation in eq. (2.2).

The structure of the Kähler potential K, and its covariance under a modular transforma-
tion is of great importance once a model is specified [70, 71]. Nonetheless, since our aim in
this paper is not to build a particular modular invariant model but rather to demonstrate
a proof of principle that the mass relations can be a result of modular invariance, we will
not include further discussion around it.

The superpotential terms in W involving the SM fermions can be written compactly
as modular invariant fermion bilinears,

W ⊃ ψiM(τ)ij ψcj , (2.7)

with i, j = 1, . . . , 3 denoting the three families of the SM. Here it is understood that M(τ)
includes the Higgs doublet chiral superfields Φu,d of the MSSM. Their vacuum expectation
values (VEVs) induce the spontaneous breaking of the SM electroweak symmetry, while the
VEV of the scalar component of the field τ , the modulus, characterizes the breaking of modular
invariance. Altogether, the Φu,d and τ VEVs give rise to the mass matrices of the SM fermions.

We now turn to the issue of modular symmetry breaking and residual symmetries. Note
that, as seen from eqs. (2.2) and (2.6), modular invariance is nonlinearly realized, and any value
of τ will break this symmetry. In figure 1 we display the fundamental domain of the modular
group action on τ . Furthermore, there are three special values of the modulus τ at which the
modular group Γ breaks down into different preserved residual discrete symmetries [53, 72–75].
We generically denote these values as τsym and refer to them as symmetry points. These are
associated to some unbroken combination of the generators of the modular group in eq. (2.3).
As seen from eqs. (2.2) and (2.3) the R generator is unbroken for any value of τ , so that a
ZR2 symmetry is always preserved. Therefore the three symmetry points are

• τsym = i∞, invariant under T , preserving ZTN ⊗ ZR2 .

• τsym = i, invariant under S, preserving ZS4 , with ZR2 as a subgroup.

• τsym = ω ≡ exp(2πi/3), invariant under ST , preserving ZST3 ⊗ ZR2 .

– 4 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
0

Notice that for τsym = i∞ the preserved symmetry ZTN ⊗ZR2 is determined by the order N of
the T generator (TN = I) of the corresponding finite modular group.

When the modulus τ is near any of the symmetry points τsym, certain appealing properties
of the modular forms in eq. (2.6) become manifest. For instance, they can give rise to
hierarchical patterns of fermion masses [75–78], a property that is fundamental to this work.
Our main result, outlined below in this section, emerges from these residual symmetries in
a model-independent manner. Our derivation holds as long as we are close to any of the
three symmetry points τsym = i∞, i, ω. It is convenient to define deviation parameters
from each of the three symmetry points

ϵi∞(τ) = ei
2πτ
N , ϵi(τ) =

τ − i

τ + i
, and ϵω(τ) =

τ − ω

τ − ω2 . (2.8)

Note that one can write the modular form multiplets in eq. (2.6) in terms of these variables.
This is useful since the expansion the vector-valued modular forms in terms of ϵi∞, ϵi or ϵω is
related to their “charge” under the respective residual symmetry group, as stressed in [75].

We now turn to the main result of our proposal, which is a model-independent derivation
of how correlations between fermion masses can emerge naturally from modular flavor
symmetries. We denote a generic pair of matter superfield multiplets ψ and ψc resembling
the three SM fermion families as:

ψ =


ψ1

ψ2

ψ3

 , and ψc =


ψc1

ψc2

ψc3

 . (2.9)

In general, one can write a general fermion mass matrix Mψ as a function of n parameters
a1, . . . , an present in the superpotential

W ⊃ ψMψ(a1, . . . , an)ψc , (2.10)

so that the three fermion masses are functions of these parameters:

m1(a1, . . . , an), m2(a1, . . . , an), and m3(a1, . . . , an). (2.11)

Given the chiral structure of the MSSM gauge interactions, it is convenient to use the Hermitian
and positive semi-definite matrix Hψ instead of the original mass matrix Mψ in eq. (2.10),

Hψ ≡MψM
†
ψ, (2.12)

this eliminates unphysical mixing parameters associated with the SU(2)L singlet superfields
ψc. The squared masses of the three fermions are obtained by performing a unitary basis
tranformation Uψ over the ψ superfields:

D2
ψ = U †

ψHψUψ, where D2
ψ ≡ Diag(m2

1,m
2
2,m

2
3). (2.13)

Without loss of generality we assume the following ordering of the masses,

m1 ≤ m2 ≤ m3. (2.14)
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Solving for the individual masses in eq. (2.11) is, in general, a highly non-trivial model-
dependent task. In contrast, we can use a set of basis invariants of Hψ(a1, . . . , an) to extract
useful information concerning the SM fermion masses in terms of the a1, . . . , an parameters
(see for example [79]), i.e.

Tr[Hψ] = m2
1 +m2

2 +m2
3, (2.15)

1
2

{
(Tr[Hψ])2 − Tr[HψHψ]

}
= m2

1m
2
3 +m2

2m
2
3 +m2

1m
2
2, (2.16)

Det[Hψ] = m2
1m

2
2m

2
3. (2.17)

In these equations, the left-hand side are polynomials in the underlying parameters a1, . . . , an,
with mass-dimension of 2, 4, and 6, respectively.

2.2 Mass matrices at the symmetry points

Close to the three symmetry points τsym = i∞, i, ω one can conveniently write
Hψ(a1, . . . , ϵ(τ)) as a function of the dimensionless parameter ϵ(τ) [75–78]. In a given
model the definition of ϵ will depend on the corresponding symmetry point τsym according to
the definitions in eq. (2.8). We will write the expressions in terms of ϵ(τ) instead of τ .

In a modular invariant model, the number of independent parameters of the superpotential
is reduced, since each term must be invariant under a modular transformation, i.e.

W ⊃
∑
i

αi
(
Y

(k)
r (ϵ)ψ†Φu,dψc

)
1
, (2.18)

where Φu,d denote the two MSSM Higgs doublets, while Y (k)
r (ϵ) represents the vector-valued

modular forms of weight k. The index i labels all the modular invariant contractions of
Y

(k)
r (ϵ) with the MSSM superfields and αi are independent numerical coefficients. To match

with our notation in eq. (2.10), we will consider the dimensionful quantities ai ≡ αivu,d/
√
2

as the mass matrix parameters, along with ϵ describing the deviation from one of the three
residual symmetry points. Note that in top-down constructions the superpotential coefficients
αi are expected to be correlated quantities [58, 63, 64, 80–87], nonetheless in bottom-up
constructions they are taken to be independent.

At the symmetry point (in the ϵ → 0 limit) a discrete residual symmetry is preserved.
For a given finite modular flavor group, and for certain weighted representation assignments
for ψ and ψc, the rank of Hψ will be reduced in the symmetric limit, due to the preservation
of the corresponding residual symmetry [75–78],

lim
ϵ→0

Det[Hψ(a1, . . . , ϵ)] = m2
1m

2
2m

2
3 = 0. (2.19)

This condition implies that at least the first family is massless in the symmetric limit. Thus,
the small mass m1 would result from the deviation of the modulus τ from the residual
symmetry point τsym, providing a symmetry-based explanation for the lightness of the first-
family fermion. As detailed in [75], certain weighted representation assignments can render
m1, m2, and even m3 massless at the symmetry point. In our derivation, we focus on the
minimal scenario where only m1 is massless in this limit, though the approach is directly
applicable to the other cases.
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2.3 Conditions for mass relations

If the number of coefficients αi is either one (α1) or two (α1, α2) in eq. (2.18), the mass matrix
resulting from the superpotential will depend on at most three independent parameters,
one of which is dimensionless (ϵ). In this case the system in eqs. (2.15)–(2.17) is a solvable
polynomial system of three variables.

This implies that in a given model, the Hψ matrix will lead to a correlation among the
three fermion masses, provided it satisfies the following two conditions:

1. The superpotential (2.18) must contain (at most) two independent coefficients, α1 and
α2, so that Hψ depends only on two dimensionful parameters: a1 = (α1vu,d/

√
2) and

a2 = (α2vu,d/
√
2), in addition to ϵ. This condition is necessary, otherwise, eqs. (2.15)–

(2.17) form an unconstrained polynomial system.

2. The three-dimensional matrix Hψ reduces its rank at the symmetry point, as indicated
by eq. (2.19), i.e.

rank
[
lim
ϵ→0

Hψ(a1, a2, ϵ)
]
< rank[Hψ(a1, a2, ϵ)]. (2.20)

In general, since Hψ is positive semi-definite, one can write eq. (2.17) as a power expansion
in the dimensionless parameter |ϵ| around the symmetry point τsym, leading to

Det[Hψ(a1, . . . , ϵ)] =
∞∑
m=0

fm(a1, . . . , an)|ϵ|2m. (2.21)

If the second condition above is satisfied by Hψ then f0(a1, . . . , an) = 0 in the expasion.
Therefore, when both conditions hold we can write the last equation as

Det[Hψ(a1, a2, ϵ)] = m2
1m

2
2m

2
3 ≡ fψ(a1, a2) |ϵ|η +O

(
|ϵ|2η

)
+ . . . , where η > 0. (2.22)

where we defined fψ(a1, a2) ≡ fη(a1, a2), which is the coefficient of the leading term in the
expansion in eq. (2.21). From dimensional analysis, we know that fψ is a homogeneous
order-six polynomial in the parameters a1 and a2. However, since ϵ is dimensionless, the
value of η can not be inferred solely from dimensional analysis.

Using eqs. (2.14) and (2.19), we can write (2.15) and (2.16) in the symmetric limit

lim
ϵ→0

Tr[Hψ] ≡ hψ(a1, a2) = m2
2 +m2

3, (2.23)

lim
ϵ→0

1
2

{
(Tr[Hψ])2 − Tr[HψHψ]

}
≡ gψ(a1, a2) = m2

2m
2
3. (2.24)

The two homogeneous polynomials hψ(a1, a2) and gψ(a1, a2) are of order 2 and 4 respectively.
This is a two-equation system of two variables a1 and a2. At the exact symmetry point
these polynomials give solutions of the form

ã1(m2,m3) , and ã2(m2,m3) , (2.25)

which relate the model parameters a1, a2 with the fermion masses m2 and m3. See appendix B
for further discussion about the polynomial system solutions.
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The solutions in the last equation, that hold at the symmetry point (ϵ→ 0), together
with eq. (2.22) lead us to define the polynomial

f(m2,m3) ≡ fψ(ã1(m2,m3), ã2(m2,m3)), (2.26)

Close to the symmetry point we can approximate eq. (2.22) to its leading term in |ϵ| ≪ 1.
This yields an expression relating the three fermion masses to |ϵ|

m2
1m

2
2m

2
3

f(m2,m3)
≈ |ϵ|η . (2.27)

This is our central result, it allows us to identify potentially viable correlations between the
masses of the SM fermions in modular invariant models. In a specific model, the polynomial
f(m2,m3) is determined by both the Clebsch-Gordan coefficients of the finite modular group
ΓF and the vector-valued modular forms in the superpotential terms of eq. (2.18). It is
important to note that eq. (2.27) serves as a valid approximation near the symmetry points
τsym = i∞, i, ω; otherwise, additional terms of the expansion in eq. (2.22) must be considered.
Notice that eq. (2.27) is fully independent of the phase of ϵ(τ).

3 Example of viable mass relations

To illustrate the general derivation in the previous section and emphasize key points, we now
turn to a specific example. Let’s consider Γ4 ∼= S4 as the finite modular group. There are
several flavor models based on this group or its double cover (see e.g. [73, 88–95]). Detailed
information about the group properties, the chosen basis for the representations, and the
expansion of the relevant modular forms are given in appendix A.

The Γ4 weighted-representation assignments of the down-sector superfields that result
in a quark-lepton mass relation are given in table 1. For simplicity we omit transformation
properties under the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge symmetry, as they are the standard
ones of the MSSM [96]. As mentioned in the previous section, the first necessary condition
for predicting a fermion mass relation is related to the number of invariant contractions in
the superpotential (see eq. (2.18)). In the case of Γ4 at weight 2, there are five modular
forms arranged in two multiplets:

Y
(2)

2 (τ) =

Y1(τ)
Y2(τ)

 , Y
(2)

3 (τ) =


Y3(τ)
Y4(τ)
Y5(τ)

 . (3.1)

Hence there are only two independent contractions of the superfields with the modular forms,

3⊗ 3′ ⊗ Y
(2)

2 =⇒ 1 and 3⊗ 3′ ⊗ Y
(2)

3 =⇒ 1 . (3.2)

Hence, the relevant superpotential terms in eq. (2.18) for down-quarks and charged-leptons
have the following structure:

WΓ4
Φd

⊃ αd1

(
QΦdDcY

(2)
2 (τ)

)
1
+ αd2

(
QΦdDcY

(2)
3 (τ)

)
1

+ αe1

(
LΦdEcY (2)

2 (τ)
)

1
+ αe2

(
LΦdEcY (2)

3 (τ)
)

1
. (3.3)
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Q Dc L Ec Φd Y
(2)

2 Y
(2)

3

Γ4 3 3′ 3 3′ 1 2 3
k −1 −1 −2 0 0 2 2

Table 1. This table contains the Γ4 weighted-representation assignments that render a quark-lepton
mass relation. MSSM gauge symmetry transformations are omitted in this table.

There are four coefficients in eq. (3.3): αd1, αd2, αe1, and αe2. In our bottom-up setup, these are
independent parameters. Although they are potentially complex, we assume the preservation
of CP symmetry so these coefficients are real [97]. We define the following set of dimensionful
parameters

ad1 ≡ αd1vd√
2
, ad2 ≡ αd2vd√

2
, ae1 ≡

αe1vd√
2
, and ae2 ≡

αe2vd√
2
. (3.4)

in terms of the standard MSSM VEVs ⟨Φu,d⟩ ≡ vu,d/
√
2 .

The mass matrices for down-type quarks and charged-leptons, denoted as Md and Me

respectively, are given as:

Mf =


−af1Y2 −af2Y4 af2Y5

−af2Y4 1√
2

(√
3af1Y1 − 2af2Y3

)
1
2a

f
1Y2

af2Y5
1
2a

f
1Y2

1√
2

(√
3af1Y1 + 2af2Y3

)
 , for f = d, e. (3.5)

For the sake of compactness, we have omitted the explicit τ dependence of the modular forms
Yi(τ), with i = 1, . . . , 5. Notice that Md and Me, as described in eq. (3.5), have a common
structure arising from their shared covariance properties under the gauge as well as the Γ4
symmetries. Both mass matrices satisfy our first condition in section 2.3.

As prescribed in the previous section we define the Hermitian matrices

Hd ≡MdM
†
d , and He ≡MeM

†
e . (3.6)

For τ close to the T -symmetric point τT ≡ i∞ these matrices fulfill the second condition
outlined in eq. (2.20). Consequently, they will lead to mass correlations that we will now
discuss. Following eq. (2.8), throughout this section we define the ϵ(τ) parameter:

ϵ(τ) ≡ q
1
4 = e

2πiτ
4 , thus lim

τ→i∞
ϵ(τ) = 0. (3.7)

In this limit the superpotential preserves a residual ZT4 symmetry, generated by T in table 2
of appendix A.

Given that our general derivation applies near the residual symmetry points, we can
truncate the expansion of the modular forms given in appendix A to their leading order in ϵ:

Y
(2)

2 (ϵ) ≈

1 + 24ϵ4

−8
√
3ϵ2

 , Y
(2)

3 (ϵ) ≈


1−8ϵ4

−4
√
2ϵ

−16
√
2ϵ3

 . (3.8)
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It is manifest that the T -symmetric limit ϵ → 0 corresponds to the following alignment of
the vector-valued modular forms

lim
ϵ→0

Y
(2)

2 (ϵ) =

1
0

 , lim
ϵ→0

Y
(2)

3 (ϵ) =


1
0
0

 . (3.9)

At this symmetry point we obtain the following mass spectrum for charged-leptons and
down-quarks

lim
ϵ→0


mτ

mµ

me

 =


mτ (ae1, ae2)
mµ (ae1, ae2)

0

 , lim
ϵ→0


mb

ms

md

 =


mb

(
ad1, a

d
2

)
ms

(
ad1, a

d
2

)
0

 , (3.10)

meaning that in the limit τ → i∞ the down-quark and the electron become massless, hence
their mass is only generated through a deviation from this symmetry point. In this limit,
the masses of the second and third family fermions are functions of the parameters defined
in eq. (3.4).

Following the general derivation in section 2 we determine the polynomials defined in
eqs. (2.23), and (2.24) for this example:

hd(ad1, ad2) =
3
2a

d
1
2 + 2ad2

2 = m2
s +m2

b , gd(ad1, ad2) =
1
16

(
3ad1

2 − 4ad2
2)2

= m2
sm

2
b , (3.11)

and analogously for charged-leptons he(ae1, ae2) and ge(ae1, ae2) which in this case have the
equivalent structure.

We can obtain solutions for these two polynomial systems as described in eq. (2.25). For a
detailed list of all the different solutions to this polynomial system please refer to appendix B.
Notably, the following set of solutions (obtained for ϵ→ 0) produces viable mass relations:

ãd1,±(ms,mb) =
mb ±ms√

3
, ãd2,±(ms,mb) =

mb ∓ms

2 , (3.12)

ãe1,±(mµ,mτ ) =
mτ ±mµ√

3
, ãe2,±(mµ,mτ ) =

mτ ∓mµ

2 . (3.13)

When the modulus value τ departs from a given symmetry point, in this case τT = i∞,
there is a common scaling dependence on the parameter ϵ(τ) that generates both md and
me. Referring to eq. (2.22) we can express the equations for the determinants of He and
Hd as an expansion in the ϵ parameter:

Det [Hd] = m2
bm

2
sm

2
d ≈

4
27

(
3ad1 + 2

√
3ad2

)4 (
3ad1 − 4

√
3ad2

)2
|ϵ|4 +O

(
|ϵ|8

)
. (3.14)

Det [He] = m2
τm

2
µm

2
e ≈

4
27

(
3ae1 + 2

√
3ae2

)4 (
3ae1 − 4

√
3ae2

)2
|ϵ|4 +O

(
|ϵ|8

)
. (3.15)

Therefore close to the symmetry point (|ϵ| ≪ 1) we can plug in eqs. (3.12) and (3.13) into
eqs. (3.14), and (3.15) to obtain

m2
bm

2
sm

2
d ≈ f±(mb,ms) |ϵ|4 , m2

τm
2
µm

2
e ≈ f±(mτ ,mµ) |ϵ|4 , (3.16)
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where f±(m3,m2) are two polynomials of order 6 that depend on masses of the third and
second generation fermions. The viable polynomial obtained f±(m3,m2) is given by

f±(m3,m2) = 64m4
3 (m3∓3m2)2 . (3.17)

We stress that the coefficients (marked in red in the last equation) in the polynomials are
determined not only by the scaling properties of the modular forms in eq. (3.8) with respect to
|ϵ| (away from a symmetry point), but they also involve Clebsch-Gordan coefficients of the S4
group and the coefficients of the Fourier expansion of the modular forms (also marked in red in
eq. (3.8)). The expansion coefficients have been proven to contain mathematical information
(see e.g. [98]) whose significance in models with modular flavor symmetry remains somewhat
underexplored, as the focus so far has primarily centered on the ϵ scaling properties [75–78, 99].

Looking at eq. (3.16) it is straightforward to obtain the predicted mass relations for
this example

m2
bm

2
sm

2
d

f±(mb,ms)
≈

m2
τm

2
µm

2
e

f±(mτ ,mµ)
(3.18)

which can be simplified to obtain
msmd

mb (mb ± 3ms)
≈ mµme

mτ (mτ ± 3mµ)
. (3.19)

Different possible signs in the denominators correspond to different solutions in eqs. (3.12)
and (3.13). There are four distinct mass relations emerging from eq. (3.19), which we
label as follows:

R1: msmd

mb (mb − 3ms)
≈ mµme

mτ (mτ − 3mµ)
. (3.20)

R2: msmd

mb (mb − 3ms)
≈ mµme

mτ (mτ + 3mµ)
. (3.21)

R3: msmd

mb (mb + 3ms)
≈ mµme

mτ (mτ − 3mµ)
. (3.22)

R4: msmd

mb (mb + 3ms)
≈ mµme

mτ (mτ + 3mµ)
. (3.23)

To scrutinize the viability of these mass relations we performed a scan over the following set
of parameters determining the masses of down quarks and charged leptons

{ad,e1,2, |ϵ|} =⇒ {md,s,b,e,µ,τ}. (3.24)

Notice that the light down-quark masses md and ms are determined through lattice QCD
computations, and exhibit the largest uncertainties amongst all fermion masses in eqs. (3.20)–
(3.23). In figures 2 and 3 we display the results of our parameter scan, each point plotted falls
within the experimental 3-σ region for mb, me, mµ, and mτ . We include the plots of R1 and
R2 in figure 2 illustrating how the mass relations differing only on signs in the denominators
can be substantially different. In figure 3 we show a close-up plot of R1 and R3 which are the
most favored experimentally. These curves use the experimental central values for mb, me,
mµ, and mτ , allowing us to compare the analytical mass relations with the numerical results
from the parameter scan. The scatter plot and the plotted lines show excellent agreement,
indicating that the approximations we used to derive the mass relations are accurate enough.
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Figure 2. This plot displays the results of our parameter scan {ad,e
1,2, |ϵ|} =⇒ {md,s,b,e,µ,τ} in the

md−ms plane. Each point lies inside the experimental 3-σ range for mb, me, mµ, and mτ . The allowed
1-σ and 2-σ regions for md and ms are shown as a dark- and light-cyan rectangle respectively [100].
We include the plots of the mass relations R1 and R2 from eqs. (3.20) and (3.23). There can be
sizable differences between these mass relations. For comparison we also plot (dashed) the golden
quark-lepton mass relation in eq. (3.25) obtained in “non-modular” flavor models [31–35].
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Figure 3. This is a close-up of figure 2 where we plot R1 and R3 from eqs. (3.20) and (3.22), which
are the experimentally favored ones. The dashed curve in the plot shows the golden quark-lepton mass
prediction in eq. (3.25) obtained in “non-modular” flavor models [31–35]. An improved determination
of ms and md could probe our mass relations.
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3.1 Zooming in the golden quark-lepton mass relation

We will now take a closer look at the derived mass relations in eqs. (3.20)–(3.23) in comparison
to the golden quark-lepton mass relation obtained from traditional flavor symmetries [31–35].
In the usual derivation of the latter, using flavons for example, there are small corrections
which are usually neglected, i.e.

mbmsmd

m3
b +O(m3

s)
≈ mτmµme

m3
τ +O(m3

µ)
. (3.25)

These corrections in the denominators of eq. (3.25) are very small. In contrast, the corrections
in eq. (3.19) arising from Clebsch-Gordan coefficients of the Γ4 symmetry and those of the
modular forms expansion around the symmetry point, are typically much larger. They
can yield substantial differences, as shown in figures 2 and 3, where we also display the
prediction from eq. (3.25).

Indeed, the mass relations in eqs. (3.20)–(3.23) have an interesting property. They involve
polynomials f±(m3,m2), eq. (3.17), which include a term proportional to m6

3. Given the
strong hierarchy between the masses of fermions in the second and third families (m3 ≫ m2),
these polynomials f±(m3,m2) can be approximated using their leading term:

m2
m3

≪ 1 =⇒ f±(m3,m2) ≈ 64m6
3. (3.26)

This illustrates that there is a class of polynomials f(m3,m2), defined in eq. (2.26), which
have a leading term proportional to m6

3. And when used to relate charged-leptons and
down-type quarks, this class of polynomials will approximate the golden quark-lepton mass
relation in eq. (3.25) for largely hierarchical fermion masses m1 ≪ m2 ≪ m3. In fact, by
using this insight, one can infer that the polynomials in eq. (3.17) will be roughly consistent
with experimental data even without performing a quantitative parameter scan.

What is important to note is that the mass relations in eqs. (3.20)–(3.23) are indeed valid
for the values of quark and lepton masses (up to theoretical or experimental uncertainty).
Our general derivation in section 2 and the above example demonstrate that a class of viable
mass predictions for down-quarks and charged-leptons can arise from modular invariant
models near the symmetry points. Although the obtained mass relation can be similar
to the non-modular golden mass relation, these predictions can yield testable deviations
from it. As a result, improving determinations of light-quark masses could help constrain
modular invariant flavor models, where the mass hierarchies of quarks and leptons emerge
from deviations from residual symmetry points.

3.2 Stability under renormalization group evolution

Mass relations are generally very sensitive to renormalization group (RG) running. For
instance, the Georgi-Jarlskog mass relations in eq. (1.3), derived at the GUT scale [28],
undergo significant evolution to fit experimental quark and lepton masses at lower scales,
such as MZ . In contrast, the mass relations in eqs. (3.20)–(3.23), derived from eq. (2.27),
involve ratios of down-quark to charged-lepton masses. Thus, they are expected to be fairly
stable under RG running. This follows from the fact that the dominant contribution to the
Yukawa couplings’ β-functions comes from gauge couplings, which effectively cancel in the
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Figure 4. FR1(µE) from eq. (3.27) is plotted in dark cyan, from the electroweak scale MZ to the GUT
scale MGUT = 2× 1016 GeV, using the REAP and SusyTC packages [24, 104]. We take central values
of quark and lepton masses [100]. The dark green solid line FR1(µE) = 1 is taken as reference and
corresponds to the R1 mass relation. The plot shows how its changes remain within the light-green
band corresponding to 10% deviation, showing the validity of R1 from the electroweak to the GUT
scale, given the uncertainty in the light quark masses md and ms.

mass ratios. However, for the bottom quark mass mb there is a contribution involving the
top quark Yukawa coupling yt, making it necessary to analyze more closely the stability
of our fermion mass relations.

To illustrate this point with an example we define the quantity FR1(µE) and rewrite the
mass relation R1 in eq. (3.20) with the down-quark and lepton masses given as functions
of the scale µE,

FR1(µE) ≡
msmdmτ (mτ − 3mµ)
mµmemb(mb − 3ms)

≈ 1. (3.27)

For definiteness we perform the RG running of the mass relation R1 in the constrained
MSSM (CMSSM) [101–103], using the Mathematica Package REAP [104] with the extension
SusyTC [24] so as to account for SUSY threshold corrections [100, 105, 106]. To quantify
the RG running of the mass relation R1 we choose the mass of the Z-boson (MZ) as the
initial scale [100], where it holds quite well, as seen from figures 2 and 3. For definiteness
we choose as benchmark the following values for the SUSY breaking scale MSUSY = 10TeV
and tan β = vu/vd = 50. Concerning the four CMSSM soft SUSY-breaking parameters, we
take the common scalar mass m0 = 12TeV, fermion mass m1/2 = 10TeV, and the trilinear
coupling A0 = −15TeV.

With these assumptions, we plot in figure 4 the evolution of FR1(µE) in eq. (3.27) from
the electroweak scale MZ to the GUT scale MGUT = 2× 1016 GeV, using the central values
of the experimental quark and lepton masses as input. We also display as a reference the
case FR1(µE) = 1, and the 10% deviation band. It is clear from this figure that the mass
relation is quite stable under RG running, and holds all the way from the electroweak scale
to the GUT scale, given the large uncertainty of the light quark masses md and ms.
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4 Discussion and outlook

We have given a model-independent method to derive mass relations for the SM fermions in
modular flavor symmetry models containing few parameters. They are determined by the
Clebsch-Gordan coefficients of the specific modular flavor group as well as the expansion
coefficients of the corresponding vector-valued modular forms around the symmetry points.

We illustrated our results with a detailed example in section 3, where we obtained viable
mass relations for charged leptons and down-type quarks from the Γ4 ∼= S4 flavor symmetry.
We showed that these mass relations are experimentally testable, and distinguishable from
their non-modular counterpart the so-called golden mass relation given by eq. (3.25) [31–35].
Since the mass relations can have sizable differences from one modular flavor group to another,
they could be used to experimentally probe different models.

In appendix C we point out the existence of a second class of mass relations that could
yield viable predictions regarding neutrino masses and the up-quark sector. Nonetheless,
these are model-dependent. We presented a particular example to highlight the differences
with respect to our general derivation in section 3. This example is very suggestive, as it
relates the smallness of the solar squared mass splitting to the lightness of the up quark.

We want to stress that the examples presented in section 3 and appendix C are not
meant to be understood as complete flavor models, rather as illustrations of the use of our
general method for deriving mass relations. Note that, as discussed in the Introduction
(section 1), the main significance of the mass relations in eqs. (3.20)–(3.23) and eq. (3.25)
is that they are compatible with experimental data of the SM fermion masses, which is a
non-trivial fact. Our two examples appear to be complementary, since in section 3 we only
deal with the down sector of the MSSM, while in appendix C we discuss the up sector and
neutrinos. Since we present them independently, we can not make any meaningful statement
concerning CKM mixing, which by definition involves both up and down quark sectors
simultaneously. Although one can complete each of the models trivially, we can not preserve
both predictions simultaneously in a simple manner. In other words, it is straightforward
to extend the model of the down sector in section 3 to include also the up-type quarks and
neutrinos, while preserving the mass relations in eqs. (3.20)–(3.23), at the expense of losing
the prediction for the up sector in appendix C.

It has been proven challenging to build experimentally viable quark and lepton modular
flavor models while keeping the number of input parameters to a minimum. We expect that
the results obtained in this work, largely model-independent, may prove useful also for more
comprehensive modular invariant models and for top-down constructions. We demonstrated
that viable mass relations for the SM fermions can emerge in modular flavor symmetry in
a general manner relying only on the modular flavor group and its vector-valued modular
forms, rather than ad hoc flavon alignments. The mass relations can differentiate amongst
models. This was illustrated with one explicit example where the mass relations predicted are
distinguishable from the one obtained in a traditional flavor symmetry model with flavons.
The differences may be resolved experimentally and this may, perhaps, shed light on the
symmetry underlying the flavor problem.
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S T

1,1′ ±1 ±1

2 1
2

−1
√
3

√
3 1

 1 0
0 −1



3,3′ ±1
2


0

√
2
√
2

√
2 −1 1

√
2 1 −1

 ±


1 0 0
0 i 0
0 0 −i


Table 2. Generators of S4 in the symmetric T -diagonal basis.
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A The Γ4 group — basis and modular forms

The Γ4 ≃ S4 group is of order 24, all its elements can be written in terms of two generators
S and T following its presentation equation:

S4 ≃ {S, T |S2 = T 4 = (ST )3 = e}. (A.1)

The S4 group has five irreducible representations: two singlets 1, 1′, one doublet 2, and two
triplets 3, 3′. In this work we use the basis displayed in table 2. In this basis the T generator
is diagonal for all irreducible representations, and both generators are symmetric matrices.

– 16 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
0

The S4 representation products relevant for the examples outlined in section 3 and
appendix C are given by

3 ⊗ 3′ =⇒



1′ ∼ α1β1 + α2β3 + α3β2

2 ∼

 √
3
2 (α2β2 + α3β3)

−α1β1 + 1
2 (α2β3 + α3β2)



3 ∼


α3β3 − α2β2

α1β3 + α3β1

−α1β2 − α2β1



3′ ∼


α3β2 − α2β3

α2β1 − α1β2

α1β3 − α3β1



3 ⊗ 3 =⇒



1 ∼ α1β1 + α2β3 + α3β2

2 ∼

α1β1 − 1
2 (α2β3 + α3β2)√

3
2 (α2β2 + α3β3)



3 ∼


α3β2 − α2β3

α2β1 − α1β2

α1β3 − α3β1



3′ ∼


α3β3 − α2β2

α1β3 + α3β1

−α1β2 − α2β1



(A.2)

2 ⊗ 2 =⇒



1 ∼ α1β1 + α2β2

1′ ∼ α1β2 − α2β1

2 ∼

α2 β2 − α1 β1

α1 β2 + α2 β1


(A.3)

The vector-valued modular forms of the Γ4 group at weight 2 are

Y
(2)

2 (τ) =

Y1(τ)
Y2(τ)

 , Y
(2)

3 (τ) =


Y3(τ)
Y4(τ)
Y5(τ)

 . (A.4)

these can be written as power expansions

Yi(τ) =
∞∑
n=0

ci,nq
n
4 , with q ≡ e2πiτ , (A.5)
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where ci,n are constant coefficients. We obtained the explicit expansion following the derivation
in [107].

Y1(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + 96q6 + 192q7 + . . . ,

Y2(τ) = q
1
2 (−8

√
3− 32

√
3q − 48

√
3q2 − 64

√
3q3 − 104

√
3q4 − 96

√
3q5 + . . . ),

Y3(τ) = 1− 8q + 24q2 − 32q3 + 24q4 − 48q5 + 96q6 − 64q7 + . . . , (A.6)

Y4(τ) = q
1
4 (−4

√
2− 24

√
2q − 52

√
2q2 − 56

√
2q3 − 72

√
2q4 − 128

√
2q5) . . . ,

Y5(τ) = q
3
4 (−16

√
2− 32

√
2q2 − 48

√
2q3 − 96

√
2q4 − 80

√
2q5 + . . .) .

B Polynomial system solutions

In eqs. (2.23) and (2.24) of section 2 we defined the polynomials hψ(a1, a2) and gψ(a1, a2),
these are homogeneous polynomials of order 2 and 4 respectively. Ultimately the solutions
of the polynomial system

hψ(a1, a2) = m2
2 +m2

3,

gψ(a1, a2) = m2
2m

2
3,

(B.1)

determine f(m3,m2) in eq. (2.27), which is the main result of this work.
By naive counting one could infer that this polynomial system has eight solutions, the

product of the orders of the two polynomials. Nonetheless the actual number of independent
and physically inequivalent solutions of the polynomial system in (B.1) cannot be determined
generically without the explicit form of hψ(a1, a2) and gψ(a1, a2).

To illustrate this, consider the mass matrix Mf in eq. (3.5), for this particular case
the polynomials take the form

hψ(a1, a2) =
3
2a1

2 + 2a22 = m2
2 +m2

3, gψ(a1, a2) =
1
16

(
3a12 − 4a22

)2
= m2

2m
2
3. (B.2)

This polynomial system has in fact only three independent and physically inequivalent solutions

a) ã1,+(m2,m3) =
m3 +m2√

3
, ã2,−(m2,m3) =

m3 −m2
2 , (B.3)

b) ã1,−(m2,m3) =
m3 −m2√

3
, ã2,+(m2,m3) =

m3 +m2
2 , (B.4)

c) â1,+(m2,m3) =
m3 +m2√

3
, â2,−(m2,m3) = −m3 −m2

2 , (B.5)

These solutions, following eqs. (2.26) and (2.27) lead to the following three mass relations
around the τsym = i∞, in terms of ϵ defined in eq. (3.7)

a) m2m1
8m3(m3 + 3m2)

≈ |ϵ|2, b) m2m1
8m3(m3 − 3m2)

≈ |ϵ|2, c) m3m1
8m2(m2 + 3m3)

≈ |ϵ|2. (B.6)

Solutions a) and b) yield viable predictions when relating down-type quark and charged-
lepton masses, as they feature a leading power of m2

3 in the denominator (refer to subsection 3.1
for more details). In a complementary fashion, solution c) provides novel viable predictions
for the up-sector masses, as demonstrated by eq. (C.10) in appendix C.
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Q U c L N c Φu Y
(2)

2 Y
(2)

3

S4 3 3′ 3 3 1 2 3
k −1 −1 −2 0 0 2 2

Table 3. Γ4 weight and representation assignments that lead to a correlation between neutrino and
up-quark masses. Gauge MSSM transformation properties are omitted.

C Another class of mass relations

Our derivation in section 2 is general, and model-independent. We now consider a second
class of mass relations that can emerge in modular invariant models. This happens when
an Hψ matrix, defined in eq. (2.12), satisfies the first condition listed in subsection 2.3,
while it does not satisfy the second. Meaning that at the symmetric point ϵ → 0 the rank
of the matrix is not reduced.

rank
[
lim
ϵ→0

Hψ(a1, a2, ϵ)
]
= rank[Hψ(a1, a2, ϵ)]. (C.1)

This implies that, in the limit, the three non-vanishing masses m1, m2 and m3 can be written
as functions of only two parameters a1, and a2. This yields algebraic relations amongst the
three masses at the symmetry point. This relation can be obtained by solving the polynomial
system in eqs. (2.23), and (2.24). However, it cannot be derived in a model independent
way, as it does not only depend on the representation and weight of the fields, but also
on the specific symmetry point.

C.1 Example of a mass relation for the up-type quarks and neutrinos

We regard it illustrative to give an explicit example of how to obtain the second kind of mass
relations which could also potentially yield interesting and viable predictions.

For definiteness, we assume that neutrinos acquire a mass through a Type-I seesaw
mechanism, including thus the N c superfields for the three heavy right-handed (RH) neutrinos.
The representation and weight assignments are given in table 3, leading to the following
up-sector MSSM superpotential terms

WΓ4
Φu

⊃ αu1

(
QΦuU cY (2)

2 (τ)
)

1
+ αu2

(
QΦuU cY (2)

3 (τ)
)

1

+ αν1

(
LΦuN cY

(2)
2 (τ)

)
1
+ αν2

(
LΦuN cY

(2)
3 (τ)

)
1
+ mN

2 N cN c. (C.2)

Here the modular forms are the ones given in eq. (3.1). The Dirac and RH neutrino mass
blocks are given by

MD
ν =


aν1Y1 −aν2Y5 aν2Y4

aν2Y5
√
3
2 a

f
1Y2 −1

2 (aν1Y1+2aν2Y3)
−af2Y4 −1

2 (aν1Y1−2aν2Y3)
√
3
2 a

ν
1Y2

 , and, MN =mN


1 0 0
0 0 1
0 1 0

 .

(C.3)
The effective mass of the light neutrinos is given by the standard seesaw formula

Mν ≈ −MD
ν M

−1
N (MD

ν )⊤. (C.4)
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We choose these particular representations to illustrate a relevant point. The Hermitian matrix
Hν ≡MνM

†
ν fulfills the first property in subsection 2.3, with only two dimensionful parameters;

aν1 , and aν2 . However, at the symmetry point τsym = i∞ its rank is not reduced, eq. (C.1).
In this example, for simplicity we choose the up-quark mass matrix Mu to have the

same structure that Mf in eq. (3.5) thus around τsym = i∞ we have the following expression
relating up-quark masses

m2
tm

2
cm

2
u

f(mt,mc)
≈ |ϵ|4 (C.5)

where the polynomial can be either one of the three solutions listed in eq. (B.6) in appendix B.
The last equation indicates that at this symmetric point the masses of the three families satisfy

lim
ϵ→0


mt

mc

mu

 =


mt (au1 , au2)
mc (au1 , au2)

0

 , lim
ϵ→0


mν

3

mν
2

mν
1

 =


mν

3 (aν1 , aν2)
mν

2 (aν1 , aν2)
mν

1 (aν1 , aν2)

 , (C.6)

Notice that mu vanishes at the symmetric limit as expected from the relation in eq. (C.5).
However, since neither of the neutrino masses vanish, the three neutrino masses are not
independent. In fact at the symmetry point two neutrino masses are degenerate:

lim
τ→i∞

mν
2 = mν

1 =⇒ lim
τ→i∞

∆m2
21 = 0. (C.7)

Therefore in this example the smallest of the required neutrino mass squared splitting,
the solar ∆m2

21, must result from a departure from the symmetry point τT = i∞ yielding
∆m2

21 ∝ |ϵ|2.1 For this illustrative example we restrict ourselves to the region Im ϵ = 0, hence
for values |ϵ| ≪ 1 we obtain the simplified expression

∆m2
21 ≈ fν±(mν

3 ,m
ν
1)|ϵ|2, (C.8)

This expression is analogous to eq. (2.27) but manifestly different. The function fν±(mν
3 ,m

ν
1)

has mass-dimension 2 and is given by

fν±(mν
3 ,m

ν
1)=

8mν
1

∆m2
31

[
8mν

1
3+16mν

1
2mν

3+14mν
1m

ν
3
2−3mν

3
3±3

√
4mν

1+mν
3

(
4mν

1m
ν
3

3
2 +mν

3
5
2
)]
,

(C.9)
where ∆m2

31 is the atmospheric neutrino squared mass difference. Notice that last equation
is valid for both normal (NO) and inverted ordering (IO) of neutrino masses since the
polynomial form is common.

A viable correlation between the up-quark and neutrino masses can be obtained by using
eqs. (C.5), (C.9), the plus sign function fν+ and the third solution in eq. (B.6), i.e.

∆m2
21

fν+(mν
3 ,m

ν
1)

≈ mtmcmu

8m2
c(mc + 3mt)

. (C.10)

This correlation becomes manifest when we scan our parameter space {au,ν1,2 , |ϵ|} =⇒
{mu,c,t,m

ν
1,2,3} as shown in figure 5. Indeed, this figure shows a correlation in the mu vs.

1Note that in this example the relation between the three neutrino masses depends on the value of ϵ(τ), in
contrast to the one obtained in reference [108].
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Figure 5. Predicted quark-lepton mass correlations. In the left panel we show mu versus the lightest
neutrino mass mν

1 , each point lies inside the experimental 3-σ range for mt, mc, ∆m2
21, and ∆m2

31
from PDG [109] and [110] respectively. This correlation is the prediction in eq. (C.10). The right panel
assumes normal ordering, fixing mν

1 = 35 meV. It illustrates how both mu and ∆m2
21 are generated

simultaneously, when departing from the symmetry point as predicted by eqs. (C.5) and (C.8).

squared solar mass splitting plane that results by taking points {mt, mc, ∆m2
21, ∆m2

31 (NO)}
within their 3σ ranges given the PDG [109] and ref. [110], respectively. This result is very
suggestive, as it correlates the smallness of the solar squared mass splitting to the lightness
of mu, which is the quark mass with the largest uncertainty [100].

This example is relevant as it shows that there is a (second) kind of mass relations that can
emerge in modular symmetric models that is not included in our general derivation in section 2.
We want to highlight that this example, and in particular eqs. (C.7) and (C.8), illustrates how
mass matrices satisfying eq. (C.1) could lead to viable predictions for the neutrino sector.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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