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ABSTRACT It has been recently demonstrated by Bellini’s group that macroscopic states, such as coherent
states, can be entangled by the delocalized photon addition. Deymier’s group has shown that phase bits (phi-
bits) gates implemented by employing the topological acoustics (TA) principles can be used to implement
the TA-based quantum computing analogs. This motivates us to revisit our previous papers where we
have already described how to implement the universal quantum gates in integrated optics using optical
hybrid, directional coupler, Mach-Zehnder interferometer, and periodically poled lithium niobate (PPLN)
waveguides, but in a different context. In this paper, we describe how to implement the universal set of
quantum gates classical analogs in integrated optics by employing classical polarization states derived from
classical coherent states. The main problem for integrated optics implementation on a single photon level has
been to implement the controlled-phase gate because the existing optical nonlinear devices where incapable
of introducing the 7 rad phase shift on a single photon level through the Kerr effect, which is not a problem
at all when the classical polarization states are used instead. We also describe how to implement quantum
qudit analogs based on orbital angular momentum (OAM) states and corresponding qudit gates. To highlight
the importance of the proposed concepts, we experimentally demonstrate the controlled-phase gate analog
operation between the classical coherent states.

INDEX TERMS Entanglement, coherent states, polarization states, orbital angular momentum (OAM)
states, quantum computing, integrated optics, optical quantum computing analogs.

I. INTRODUCTION such as Qiskit, Cirq, Forest, ProjectQ, and Quantum devel-

The quantum information processing (QIP) [1], [2], [3], [4],
[51, 6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25] is a very
active research area with large number of applications includ-
ing quantum computing [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], quantum communi-
cations [20], [21], [22], [23], quantum networks [23], [24],
[25], and quantum sensing [23], [26], to mention few. Further,
significant efforts have been made towards the commercial-
ization of quantum computers [27], [28], [29]. Moreover,
numerous quantum computing libraries have been developed
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opment kit (QDK) [17], [30], [31]. Typically, the following
three features of QIP are considered different from classical
computing [5], [10], [20], [24]: linear superposition, entan-
glement, and quantum parallelism. The linear superposition
indicates that the qubit is represented as a linear combination
of the basis states, while in classical computing only two dis-
crete bits (0 and 1) are used. On the other hand, superposition
principle is a basic principle applicable to any linear system,
not necessarily quantum. Even though state-of-the-art digital
computers indeed use just 0 and 1 bits to store information
to compute, the future classical computers do not need to
be binary only. The entangled states are particular quantum
states that cannot be decomposed into independent quantum
states. However, recently Bellini’s group have demonstrated
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experimentally that macroscopic states, including coherent
states, can be entangled by the delocalized photon addi-
tion [1]. Quantum parallelism is the capability to parallelly
conduct a large number of operations. Recently, Deymier’s
group have shown that the quantum algorithms can be run on
topological acoustic (TA)-based quantum analogs, which are
essentially classical computers, and that the nonlinearity is a
key enabler for so called quantum parallelism [2], [3], [4].
These recent findings have motivated us to revisit our previ-
ous QIP proposals for integrated optics implementations [11],
[12], [13], [14], [15], [16], [17], [18], [19], but now in the
context of optical quantum computing analogs.

In this paper, we propose how to implement classical
optical quantum computing analogs in integrated optics
by employing the coherent states as the qubit analogs.
We experimentally demonstrate the controlled-phase opera-
tion between the classical coherent states. We also describe
the qudit classical analogs and corresponding gates based
on the orbital angular momentum (OAM) states.

The organization of the paper is summarized in the rest
of this section. The classical polarization states and the
action on them by the polarizing elements, characterized
by using the Jones formalism, is described in Sec. IIL.
In the same section, we explain how to entangle coher-
ent states based on [1] and [25]. In Sec. III, we describe
classical single-qubit analogs’ implementations in integrated
optics by employing the optical hybrid, directional coupler,
and Mach-Zehnder interferometer. In Sec. IV, we describe
how to implement classical two-qubit analogs in integrated
optics, namely controlled-phase and CNOT gate analogs.
We also describe how to implement the generic classical
Bell state preparation circuit and quantum relay analogs.
To illustrate the high-potential of the proposed integrated
optics-based classical quantum computing analog concepts,
we perform the experimental demonstration of the controlled-
phase operation. In Sec. V, we describe the classical quantum
qudit equivalent based on OAM and introduce single-qudit
and two-qudit gates analogs’ implementations in integrated
optics.

Il. CLASSICAL POLARIZATION STATES AND
ENTANGLEMENT OF CLASSICAL STATES

The Jones representation of the polarized light is given by
[17], [32]:

_[EuT] _ [ Enoe®
8] lme) o

where Eyo(Eyo) is the amplitude in the horizontal (vertical)
polarization state and ¢y (¢y ) is the corresponding phase. The
intensity /can be determined by

E
I =E'E=[E} E}] |:El\j:))j| = |Enol* + |Evol*, (2)
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and if we normalize it to 1, we can use the Dirac notation [33],
[34] to represent arbitrary classical polarization states:

¥) = [zﬂ = Y mwvm — Y |H) + v V).
Vv
~— ~—

|H) V)

3)

wherein vy = Ey/I (Yy = Evy/J/I), while |H) =
[ 1 O]T and |V) = [O 1 ]T represent horizontal and vertical
polarization states, respectively (that are clearly orthogonal).
The normalization condition is obviously satisfied:

|Erol® + 1Evol*
— =
In Dirac notation, with each column-vector (“ket”) | i),
defined by (3), we associate a row-vector (“bra’) (| as
follows:

e l® + v |* = 1. “)

(¥l = [1//;‘ w;] : 5)

The dot (scalar) product of ket | ¢) bra (| is defined by the
following ‘‘bracket” operation:

(BIV) = ¥ + Iy = (Vlg)™. (6)

Using this notation, the right- and left-circular polarization
states, denoted respectively as IR) and IL), can be represented
by:

_ 1 [1 _ 1 j
|R>_«/§|:j:|_\/§|H)+\/§|V)’

_ 1 1| 1 _j
'”‘ﬁ[—j}‘ﬁ'm s

which are clearly orthogonal as (R|L) = 0.

The action of any polarizing element on a polarization state
can be described by the Jones operator (matrix) J performing
the action on the input state ly) by [35]:

Wou) = J [¥) = [’H” JHV} ).

Jvg Jyy
(8)

The linear polarizer changes the amplitude of polarization
vector (state), and can be characterized by the absorption
coefficients along H-axis and V-axis, denoted as agand ay,
respectively as follows:

ay 0O .
Jpolarizerz[gav}§ 0<a;<1,ie{H, V}. (9
The wave plates (also known as the retarders or the phase
shifters) are polarizing devices introducing the phase shift
¢ /2 along H-axis and the phase shift —¢ /2 along V-axis, and
the corresponding Jones matrix is described by:
ez 0 w1 0
Jwave plate = |: 0 e J¢/2 = e]¢/ 0e® |° (10)

Two popular wave plates are quarter-wave plate(QWP),
for which ¢=m/2, and half-wave plate(HWP), for which
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FIGURE 1. lllustrating the transformation of the polarization basis: (a) the
rotation of the state vector, (b) the rotation of a coordinate system.

¢=m, while the corresponding Jones matrices describing
their actions are given respectively by:

10 10
Jowp = [0 —j} , Juwp = |:0 _1] (11

To illustrate, when the input state to the QWP is linear
+45°state, denoted as 1+45%)=[ 1+1]T /+/2, at the output it
gets converted to the left-/right-circular polarization state as
follows:

Jowe |+45°) = % [(1) E,} [iﬂ - % [%] (12)

The third relevant polarizing element is the rotator, whose
action is illustrated in Fig. 1, wherein the polarization state
Iyr) is rotated for fin a clockwise direction, which is equiv-
alent to the rotation of a given coordinate system in the
opposite (counterclockwise) direction for the same angle 6,
as shown in Fig. 1(b). The polarization state i) can be
represented in original the {IH),|V)} basis by:

[Y) =1H)HIY) + V) VIY). (13)
From (13), we notice that the following is valid:
|H) (H| +|V) (V] =12, (14)

where I is 2 x 2 identity matrix, which is known as the com-
pleteness relationship in the quantum mechanics. However,
our polarization states are classical, wherein each polarization
state is composed of large number of photons having the same
polarization. By multiplying (13) by (H’l and (V| from the
left side we obtain:

(-]
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where J(0) is the Jones rotation matrix, which is simultane-
ously the basis transformation matrix.

By using these three polarizing elements we can obtain an
arbitrary elliptic polarization state starting from the coherent
state. Therefore, we have already introduced the concepts
relevant in quantum mechanics such as the superposition
principle (13), the completeness relationship (14), and the
change of basis (15), while manipulating the classical polar-
ization states.

Now we describe how to entangle classical coherent states
[1], [25]. The coherent state lor), where « is a complex number
[that is e=lal exp(je)], can be represented in terms of number
(Fock) states In) as follows [17], [23]:

+00
o) = exp [—|a|2/2] S )2 ), = lal e (16)
n=0

One of the important properties of coherent states is that the
coherent state is an eigen vector of the annihilation operator
a (decreasing the degree of excitation for 1), that is:

ala) =o|a). 17

The coherent state can also be represented as a displaced
vacuum state by:

D(@)10) =), D (@) = exp (aeﬁ _ a*a) . s

where D (@) is the displacement operator. Based on Fig. 2
of ref. [25], we can entangle two continuous variable (CV)
states with the help of two periodically polled lithium
niobate (PPLN) crystals or waveguides serving the role
of single-photon addition modules. The corresponding cir-
cuit to entangle two coherent states le) and 18), based on
Figs. 2 and 9 of ref. [25], is provided in Fig. 2, where we use
a' to denote the creation operator (increasing the degree of
excitation for 1). The same pump laser is used to operate both
PPLN modules, whose power is split by the power splitter.
Each pump photon in either PPLN modules generates entan-
gled signal and idler photons. The idler modes are interacted
on the beam splitter. If the input states where CV states, after
the beam splitter we will not be able to identify if the click
on single photon detector 1 (SPD1)/SPD2 originating from
upper or lower PPLN module, thus making the input CV
states entangled [25]:

Wou = 9~ (1181 + el BT1B),) . (19)

where 97 is the normalization factor. However, this is not
always true when the input states are coherent states. By using
the symmetry properties of the displacement operator we
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FIGURE 2. LiNbO 3 technology-based circuit to entangle two coherent
states. PDC: parametric down conversion, PPLN: periodically poled
lithium niobate crystal (or waveguide), BS: beam splitter, SPD:
single-photon detector.
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FIGURE 3. The Poincaré sphere representation of the classical
polarization states.

arrive to the following relationship atb (@) = D) @t +
o), which allows us to re-write the (19) as follows:

[Wou = 92Dy (@) D () (111110)2 + 10)411),)
oo (14 ) o)y 1B)s, 20)

wherein the first term is an entangled state, while the sec-
ond term is a separable state. By setting the phase shift on
phase trimmer (see Fig. 2) to ¢=m rad, the separable term
is removed, and we have been able to entangle two coherent
states:

[Wout)g—o = 90 ~2D1 (@) D2 (B) (11)110)2 + [0)1]1)2).
21)

Based on the above we conclude that linear superposition
and entanglement are also applicable to the classical states
and are not exclusive to the quantum mechanics, which is
contrary to the common belief [5], [10], [20], [24].

Before concluding this section, it is convenient to introduce
the Poincaré sphere representation of the classical polar-
ization state given by (3), which is in quantum mechanics
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FIGURE 4. The optical hybrid suitable for both coherent detector and
classical single-qubit gates analogs implementations.

known as the Bloch sphere. The coefficients ¥y and v
are complex numbers, and therefore can be represented as

VY = |Yulexp(jén), yv = [Yv|exp(jpyv), so that we can
re-write (3) as follows:

[

—_—~—
[y = [yl |H)+e @V=21) 1y (W] o=dv_on.

(22)

and by parametrizing the magnitudes of complex numbers by
Y| = cos(0/2), |Yy| = sin(0/2) and ignoring the global
phase shift we arrive at the following representation:

0 s . [0 0
|v) = cos (5) |H) + ¢/ sin (5) V) = [e]-;osshg?(

where ¢ € [0,27] and 6 € [0, ], which is illustrated in
Fig. 3.

The north and south poles correspond to the computational
basis {IH),IV)}. The diagonal basis is defined by two-unit
vectors placed along the x-axis {|+),I-)}, while the circular
basis by two-unit vectors placed along the y-axis {IR), IL)}.

Ill. CLASSICAL SINGLE-QUBIT GATES ANALOGS
IMPLEMENTED IN INTEGRATED OPTICS

The 2x2 optical hybrid has been considered in our previous
publications in the context of coherent detection to mix the
received signal and local oscillator (LO) laser signal [35] as
well as in the context of single-qubit gates implementation in
integrated optics [11], [12], [15], [16], [17]. Here we consider
a particular version of 2x2 optical hybrid with four phase
trimmers, provided in Fig. 4, suitable for manipulation of the
classical polarization states. This device is composed of two
input ports, two input Y-junctions, two output Y-junctions,
two output ports, and four phase trimmers. Based on Fig. 4
we conclude that the output electric fields E, ; and E, » are
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FIGURE 5. The 2x2 optical classical hybrid-based single-qubit gate
analog suitable for implementation in the integrated optics.

related to the input electric fields E; 1 and E; > as follows:

E,1=+1- Kej‘mEi’] + \/Eeij[,z,
Eop = kP E; | + V1 —ke®E,. (24)

The corresponding matrix representation is given by:

E — Eoqn | | V1= Kl \/Eof,‘/(z)3 Ei1| SE:
ST Eon | T Jee® T —ked® || Eo |~ 77"
—_——

S Ej

where S is the scattering matrix defined by:

JT= ke Jiedts
S=1" ket JT—xet |’ (26)

and « is the power splitting ratio of the corresponding Y-
junction.

For instance, by setting ¢1 = ¢o = ¢3 =0, ¢pa =7, Kk =
1/2 the S-matrix becomes the Hadamard matrix:

I [11
n=gli) 7

By placing the 2 x2 optical hybrid between the polarization
beam splitter (PBS) and polarization beam combiner (PBC),
we obtain the circuit shown in Fig. 5, which is suitable to
perform arbitrary single-qubit analog operation on a given
classical polarization state.

By parametrizing the power splitting ratio by /k =
sin (¥ /2) and setting the phase shifts as follows:

or=—p/2-8/2,  $2=p/2-35/2
¢3=—B/2+68/24+m, ¢p4=PB/2+68/2  (28)

the unitary matrix connecting the output and input classical
polarization states is given by:

U — o cos (y/2) F/270/2) _in (y /2) /(—P/2+8/2)
B sin (y/2) B2/ cos (y/2) B/2H/D |
(29)

which is commonly referred to as the Y-Z decomposition
theorem in QIP literature [S]. With this representation in
mind, we can represent an arbitrary single-qubit gate analog.
By selecting a=m/2, =0, y=m/2, and §=n the U—gate
reduces down to the Hadamard gate (27).
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FIGURE 6. The directional coupler-based implementation of arbitrary
single-qubit gate analog employing the Y-Z decomposition theorem.
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FIGURE 7. The directional coupler-based implementation of arbitrary
single-qubit gate analog employing the Barenco-like gate.
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FIGURE 8. The Mach-Zehnder interferometer-based implementation of
arbitrary single-qubit gate analog employing the Y-Z decomposition
theorem.

The Pauli X-, Y-, and Z-gates can be implemented as
follows. By selecting a«=r/2, B=—n, y=n, and §=0 the
U —gate reduces to the Pauli-X gate:

x:[?5]

By selecting a=m/2, =0, y=m, and §=0 arrive at the

Pauli-Y gate:
_[o-
Y = |:j 0 ] .

By selecting a=n/2, f=m, y=2m, and §=0 the U— gate
reduces down to the Pauli-Z gate:

o-[15]

Further, by setting a=n/8, f=n/4, y=2m, and §=0 rad
we obtain the 7 /8 —gate:

1 0
Finally, by selecting a«=n/4, B=n/2, y=2n, and §=0 rad
the U — gate becomes the phase-gate:

10
p:[oj}. (32)

The scattering matrix of directional coupler, used in
Figs. 6 and 7, is given by [35]:

S — cos(kL)
| jsin(kL)

(30.1)
(30.2)

(30.3)

jsin(kL) } 33)

cos(kL)

where k is the coupling coefficient and L is the coupling
region length. By selecting the coupling phase shift to be
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=——s|PBS| " |PBC

FIGURE 9. The integrated optics implementation of the controlled-phase
gate analog. The Kerr nonlinearity device could be either HNLF or PPLN
waveguide/crystal.

I

kL=y /2, and by selecting the phase shifts on three phase
trimers as indicated in Fig. 6, the overall scattering matrix
is identical to that given by (29). Therefore, this device repre-
sents an alternative single-qubit gate analog implementation.
Another version of the single-qubit gate analog is provided in
Fig. 7, and it is derived from the Barenco theorem, claiming
the following two-qubit gate is universal [36]:

agan ="y

Ur — é%cos  —jel @) sin o
B=1 _jd@®sing & coso

By selecting the coupling phase shift to be kL=6, and by
selecting the phase shifts on two phase trimers as indicated in
Fig. 7, the overall scattering matrix is identical to that given
by U p—matrix in (34).

Finally, by using the Mach-Zehnder interferometer-based
circuit provided in Fig. 8, and by selecting the phase shifts as
specified in the Figure, we obtain the overall scattering matrix
given by (29).

} (34)

IV. CLASSICAL CONTROLLED-PHASE AND CNOT GATES
ANALOGS IMPLEMENTED IN INTEGRATED OPTICS

The Barenco gate, introduced by the (34) represents the
universal quantum gate. The three-qubit Deutsch gate, intro-
duced in [37], also represents the universal quantum gate.
Another popular universal set of gates is {H, P, T, CNOT}
[38].We have already described how to implement the H,
P, and Tgates in the previous section, what remains is to
describe how to implement the classical CNOT-gate analog.
Given that T?=P, and that CNOT gate classical analog can
be expressed in terms of controlled-phase gate

|20,
C2Z)= [0 Z:| by:
CNOT |C)|T) = |C) @ XC |T) = |C) ® (HZX)C |T)
=I®H-CZ)-I®QHI|C)|T), (35)
we can reduce the set of universal quantum gates down to {H,
T, C(Z)}. The photonic implementation of the C(Z) gate in
integrated optics is illustrated in Fig. 9, where we employed
the Kerr nonlinear effect [35] to introduce the nonlinear phase
shift of  rad only between vertically polarized states so that
the action of the gate can be described by:
C)|H)|H) = |H) |H), CZ)|H)|V)=IH)|V),
C@OIV)IH)=IV)IH),C@Z)|V)IV)=—=IV)IV). (36)
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FIGURE 10. The integrated optics implementation of the classical CNOT
gate analog. The Kerr nonlinearity device could be either HNLF or PPLN
waveguide/crystal.

1 H_|Hadamard-gate: | 1Co
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18y
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= PBS a=n/2, p=0, a=n/2, =0, PBC ==
10)+,11) y=n/2, 5= y=ni2, 5=n
H

FIGURE 11. The integrated optics implementation of the classical generic
Bell states preparation circuit analog. The Kerr nonlinearity device could
be either HNLF or PPLN waveguide/crystal.

Namely, for sufficiently high light intensity the refractive
index of nonlinear optical medium, such as optical fiber,
is not only function of frequency w, but also function of
intensity of the light beam /that propagates through the non-
linear medium, that is we can write n(w, I) = n(w) + nyl,
where n; is the Kerr coefficient. The cross-phase modulation
(XPM) will introduce the nonlinear phase shift to the target
polarization state, denoted by A®r, as follows [35]:

1— e—aL

Ady = ZFPC—L , I = , 37

where I' is the nonlinear coefficient, A,y is the effective
cross-sectional area of the fiber, a is the attenuation coef-
ficient, and Pc is the power in the control IC) polarization
state. By properly adjusting the power P¢c we can introduce
7 phase-shift. Given that the typical values of the nonlin-
ear coefficient for standard SMF is small and range from
0.9-2.75 W~'km~! [35], the highly nonlinear fiber (HNLF)
can be used for this purpose. Introducing the = rad XPM
phase shift is extremely difficult on a single-photon level [9],
[17]; however, it is straightforward to do so on a classical
level with the help of HNLFs. Unfortunately, the HNLF
is not compatible with integrated optics. Alternatively, the
HNLF can be replaced by the trype-0 PPLN waveguide,
where the nonlinear conversion efficiency is very efficient
for the vertical polarization states, and the overall circuit is
suitable for implementation in the lithium niobate (LN) tech-
nology. Such PPLN waveguides are commercially available
[39], and have been routinely used in our recent experi-
ments to generate bright entangled photons for distribution
of entanglement over atmospheric turbulence channels [40]
and in entanglement assisted communication demonstrations
over turbulent free-space optical links [41]. Based on (36),
to implement the CNOT gate analog, we need to insert
two Hadamard gates in the target polarization state, one
before and one after the C(Z)-operation, which is illustrated
in Fig. 10.
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FIGURE 12. The integrated optics implementation of the classical
quantum relay analog. The Kerr nonlinearity device could be either HNLF
or PPLN waveguide/crystal. APD: avalanche photodiode.
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FIGURE 13. The experimental setup to demonstrate the controlled-phase
operation on classical qubit analogs. PBS: polarization beam splitter, PC:
personal computer.

Control qubit analog

Target qubit analog

Now we are in a position to describe an alternative way to
entangle two classical polarization states, with the help of the
Bell state preparation circuit, shown in Fig. 11. After apply-
ing the Hadamard gates on both control and target qubits,
we apply the CNOT-gate followed by the Hadamard gate on
target qubit so that the output polarization state becomes:

cyty + cyty
cyty +cyty
CHly —cyly
CHIH — CylH

|Bj) =271/ (38)

Compared to the implementation from Fig. 2 only one PPLN
waveguide is needed. To illustrate, by setting cy = 1, cy =
Oand rg =0, ty = 1, we obtain the following Bell state:

|Bo) =272 [HVVH]=2"Y2(H)|V)+|V) H)).
(39)

By using the proposed classical single-qubit and two-qubit
analogs, we can implement the quantum relay analog in
integrated optics as shown in Fig. 12. The CNOT and C(Z)
gates are applied between the highlighted (in green) verti-
cal polarization basis states. We perform the measurements
only at intermediate node with the help of two avalanche
photodiodes (APDs) and when the vertical polarization state
is detected we conditionally execute Pauli X- and Z-gates
on the bottom polarization state. Clearly, the complexity of
this approach is high. The better strategy will be to employ
the entanglement swapping and teleportation concepts by
the photon addition as we described in [25]. Correspond-
ing quantum implementation in integrated optics is only
possible as a probabilistic device [7] (performing a desired
function with a certain probability), and the verification
of designed function is needed, thus increasing complexity
significantly.
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FIGURE 15. The portion of BPSK sequence received on vertical
polarization states at 1551 nm. The control qubit analog is operated at
1550 nm.

To illustrate the high-potential of the proposed concept,
we performed the classical controlled-phase quantum qubit
analog demonstration, with experimental setup provided in
Fig. 13.

The laser operated at 1550 nm generates the classical states
that serve the role of the control qubit, while the bottom laser
generates the states at 1551 nm that serve the role of the
target qubit. To demonstrate the controlled-phase gate analog
operation from Fig. 9, we need to demonstrate that control
qubit coherent states can introduce the phase shift of 7 rad
to the vertical polarization states of the target qubit analog.
To do so we impose the BPSK modulation at 10 Gb/s on the
control coherent states, while the target coherent states are
unmodulated. We then combine the control and target coher-
ent states by the beam combiner and conduct the cross-phase
modulation (XPM) interaction of control and target coherent
states by the PPLN waveguide. At the output of PPLN waveg-
uide we separate horizontal (H) and vertical (V) polarization
states by the polarization beam splitter (PBS) and perform
the coherent balanced detection on vertical photons related to
the target coherent states at 1551 nm. To do so we mix the
local oscillator (LO) laser signal at 1551 nm with the vertical
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FIGURE 16. The portion of the target qubit analog waveform recorded on
real-time scope (corresponding to 1551 nm wavelength).

photons on optical hybrid (not shown in Figure) followed
by the homodyne balanced detector. The detected signal is
sampled by the real-time scope and sampled RF signal wave-
form is transferred to the personal computer (PC), where
we re-sample the waveform and calculate bit log-likelihood
ratios (LLRs), which are used to make decisions and deter-
mine the bit-error rates (BERs). The corresponding BER
related to the target coherent state are provided in Fig. 14.
The input power to the power combiner, the control power
Pc, was varied, while the input power of the target coherent
states was used as the parameter. For the control qubit analog
powers higher than 1.4 dBm, the measured BER was zero,
indicating that the BPSK get transferred completely from the
control coherent states to the target coherent states, which
demonstrates that the circuit from Fig. 9 indeed operates as
the controlled-phase analog.

For illustrative purposes, we provide in Fig. 15 the portion
of the BPSK sequence received on the vertical polarization
states at 1551 nm.

The m rad voltage level is clearly indicated. Therefore,
by using the XPM we were able to introduce the 7 rad phase
shift on vertical polarization states at 1551 nm, while the con-
trol qubit analog was operated at 1550 nm thus demonstrating
the controlled-phase operation. Finally, in Fig. 16, we provide
the portion of the waveform record on the real-time scope
corresponding to the 1551 nm target qubit analog, confirming
that the sequence transferred from the control to target qubit
analog is error free.

V. OPTICAL ORBITAL ANGULAR MOMENTUM GATES
ANALOGS

In our papers [18] and [19] we have introduced the photon
angular momentum states by combining polarization and
orbital angular momentum (OAM) states, and proposed cor-
responding gates suitable for universal quantum computing
and quantum communication applications. In this section,
we provide the corresponding classical quantum gates’
analogs. The OAM modes have been intensively studied
for various classical communication applications, including
OAM multiplexing and OAM modulations [35], [42], [43],
[44], [45], [46], [47], [48], [49]. The OAM degree-of-freedom
is associated with the azimuthal phase dependence of the
complex electric field [35]. Among various vortex optical
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beams carrying the OAM, the Laguerre-Gauss (LG) vortex
beams/modes are very popular and the electric field of an
LG beam traveling along the z-axis can be represented in
cylindrical coordinates (r,¢,z) (r: the radial distance from
propagation axis, ¢: the azimuthal angle, z: the propagation
distance) as follows [35], [42], [45]:

e
T (p+ mD! w@) | w) P An?(2)

jkr2Z
3222 ] -1z .
2(2+23) e/(2p+|m|+1)tan i e—jm¢’

(40)

where w(z) = woy/ 1+ (z/zR)2 (wo denotes the zero-order

Gaussian radius at the waist), zg = nw% /A is the Rayleigh
range (A denotes the wavelength), k=2 /A is the wave num-
ber, and L}'(-) is the associated Laguerre polynomial, with p
and m being the radial and angular mode numbers, respec-
tively. It can be seen from (40) that the mth mode of the
LG beam has the azimuthal angular dependence of the type
exp(—jm¢), where m is the azimuthal mode index. In free
space, for m=0, u(r,p,z) get reduced down to a zero-order
Gaussian beam commonly referred to as the TEMgy mode.
For p=0, LI’,"(~)=1 for values of azimuthal indices m, so that
the intensity of an LG mode can be placed on a ring of radius
proportional to Iml'/2. It can be shown that for fixed p, the
following principle of orthogonality is satisfied [35], [45]:

um,p (rv ¢7 Z) =

2
X e w2(z) e

(um,pmn,p) = / u;kn)p (r, ¢, D unp (r, ¢, 2) rdrde

_ /|um,p|2rdrd¢, n=m @1
0, n#m

Clearly, different OAM states corresponding to a fixed radial
index p are orthogonal among each other, and as such they
can be used as the basis functions for either OAM modu-
lation or OAM multiplexing. The OAM modes can easily
be generated by the computer-generated holograms (CGHs)
[43], [44], [45]. The Bessel modes also belong to the class
of OAM modes, and they are obtained as solutions of the
wave equation in a step-index multi-mode fiber (MMF) of
core radius b, with corresponding electric field z-component
in cylindrical coordinates (r,¢,z) given by [35], [49]:

E.(r,¢,2) =Ady (ker)e P r <b (42)

where k, = /n%ko2 — B? with n. being the refractive index
of the core, kg=2m /A is the free-space wave number, and S
the propagation constant. We use J;,(-) to denote the Bessel
function of the mth order. The ideal Bessel beams satisfy the
relationship [50] |E(r, ¢, 2)|> = |E(r, ¢)|* and are therefore
diffraction free and as such represent excellent candidates for
free-space optical (FSO) applications. It the practice, it is not
trivial to generate the ideal Bessel beams and instead various
approximations need to be used [51].
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FIGURE 18. The integrated optics and CGHs-based implementation of the
classical single-qudit gate analog.

Given that the OAM modes are orthogonal to each other,
as shown by (41), they can be used as the basis functions I/)
(I=—-L,...,—1,0,1,..., L). The arbitrary spatial mode can
be decomposed in terms of the basis OAM modes by:

L

)= > alb, (43)

|=—L

assuming that the number of supported OAM modes is 2L+1.

With this formalism at hand, given that the space here
is high-dimensional, now we have to describe the OAM
single-qudit and two-qudit analogs. The MMFs can be used
for this purpose, given the (42); however, the MMFs sup-
port too many modes to be of practical interest. Instead, the
few-mode fibers (FMFs), supporting the limited number of
modes should be used as advocated in [18], [19], and [35].
The single-qudit analog, provided in Fig. 17, is similar to
that proposed in our previous article [18]. The output of
the FMF will contain all basis OAM modes with the same
weight. In OAM modes-demultiplexer we separate the OAM
basis modes, introduce the desired complex weight by the
electro-optical (E/O) modulators, and recombine them by
OAM modes-multiplexer before being coupled into the FMF.
The CGHs-based single-qudit analog, inspired by our pre-
vious paper [19], is provided in Fig. 18. We first separate
the OAM modes with corresponding complex coefficients
with the help of power splitter and complex-conjugate CGHs.
Each coordinate gets modified by the E/O modulators to
perform a desired qudit operation. The CGHs impose the /th
OAM mode (I=—-L,...,0,...,L) corresponding to the /—th
coordinate, and such weighted OAM modes are combined to
generate the output mode.

The generalized controlled-phase gate analog is provided
in Fig. 19. The CGHs impose desired spatial modes. We use
highly nonlinear FMF to interact the control IC) and target
IT) qudit. Assuming that (2L + 1) is a prime number, the
generalized Z-gate is defined by [17], [18], [19]:

Z(b) |x) = 7P |x) | (44)
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FIGURE 19. The integrated optics and FMF-based implementation of the
generalized two-qudit controlled-phase gate analog.

and by adjusting the power of the control mode, we can
introduce the desired nonlinear phase shift on the target qubit
with the help of XPM. Instead of the HN-FMF, the PPLN
waveguide/crystal can be used that now supports a desired
number of higher order spatial modes.

VI. CONCLUDING REMARKS

Inspired by recent findings that the classical states can be
entangled [1], [2], the CNOT gate can be implemented using
the classical acoustic qubit-analog [3], and that quantum
parallelism can be achieved on classical quantum computing
acoustic analog [4], in this paper we propose how to imple-
ment quantum information processing analogs in integrated
optics based on classical polarization and OAM states.

By using the Jones formalism we have shown that arbi-
trary classical polarization state can be represented as the
superposition of horizontal and vertical basis polarization
states. We have also shown that the quantum mechanics
relevant concepts such as the superposition principle, the
completeness relationship, and the change of basis are also
applicable to the classical polarization states. To obtain any
classical polarization state only three polarizing elements are
sufficient: polarizer, wave-plate, and rotator.

We have shown that any two classical coherent states can
be entangled with the help of single photon addition module,
based on two PPLN waveguides.

We have further described how to implement an arbitrary
single-qubit gate analog in integrated optics using any of the
following three devices: 2x2 optical hybrid with four phase
trimmers, directional coupler with three phase trimmers,
and Mach-Zehnder interferometer with four phase trimmers.
We have then described how to implement controlled-phase
and CNOT gates analogs operating on classical polariza-
tion states in the lithium niobate technology. This completes
the implementation of universal quantum gates analogs for
classical polarization states. We have also described how to
implement Bell states preparation circuit and quantum relay
in the same technology. We have experimentally demon-
strated the controlled-phase operation between two classical
coherent states. Therefore, we have demonstrated that the
classical implementation of universal quantum gates in inte-
grated optics is possible.

The focus has been then moved to the spatial modes, and
we have shown that an arbitrary classical spatial mode can
be decomposed in terms of basis OAM modes. Therefore,
the spatial modes can be used as the classical qudit analogs.
We have described how to implement arbitrary single-qudit
gate analog in either FMF or CGH technologies. We have also
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described how to implement the generalized control-phase
two-qudit classical analog.

This paper, therefore, represents a step forward creating
a decoherence-free optical quantum information processing
and computing analog, which does not rely on the fragile
quantum states but rather robust classical states. Moreover,
the classical states can be measured without causing the state
collapse, which is unavoidable for quantum states. Given that

ref.

[4] has already shown that certain quantum algorithms

exploiting the quantum parallelism can be implemented in
classical quantum computing acoustic analog platform, the
existing quantum algorithms need to be revisited for the true
quantum advantages. Further, the proposed classical optical
quantum computing analogs do not require delicate quantum
error correction. Finally, fault tolerance is not needed in
classical quantum computing analogs.
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