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ABSTRACT It has been recently demonstrated by Bellini’s group that macroscopic states, such as coherent

states, can be entangled by the delocalized photon addition. Deymier’s group has shown that phase bits (phi-

bits) gates implemented by employing the topological acoustics (TA) principles can be used to implement

the TA-based quantum computing analogs. This motivates us to revisit our previous papers where we

have already described how to implement the universal quantum gates in integrated optics using optical

hybrid, directional coupler, Mach-Zehnder interferometer, and periodically poled lithium niobate (PPLN)

waveguides, but in a different context. In this paper, we describe how to implement the universal set of

quantum gates classical analogs in integrated optics by employing classical polarization states derived from

classical coherent states. The main problem for integrated optics implementation on a single photon level has

been to implement the controlled-phase gate because the existing optical nonlinear devices where incapable

of introducing the Ã rad phase shift on a single photon level through the Kerr effect, which is not a problem

at all when the classical polarization states are used instead. We also describe how to implement quantum

qudit analogs based on orbital angular momentum (OAM) states and corresponding qudit gates. To highlight

the importance of the proposed concepts, we experimentally demonstrate the controlled-phase gate analog

operation between the classical coherent states.

INDEX TERMS Entanglement, coherent states, polarization states, orbital angular momentum (OAM)

states, quantum computing, integrated optics, optical quantum computing analogs.

I. INTRODUCTION

The quantum information processing (QIP) [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],

[17], [18], [19], [20], [21], [22], [23], [24], [25] is a very

active research area with large number of applications includ-

ing quantum computing [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19], quantum communi-

cations [20], [21], [22], [23], quantum networks [23], [24],

[25], and quantum sensing [23], [26], to mention few. Further,

significant efforts have been made towards the commercial-

ization of quantum computers [27], [28], [29]. Moreover,

numerous quantum computing libraries have been developed

The associate editor coordinating the review of this manuscript and
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such as Qiskit, Cirq, Forest, ProjectQ, and Quantum devel-

opment kit (QDK) [17], [30], [31]. Typically, the following

three features of QIP are considered different from classical

computing [5], [10], [20], [24]: linear superposition, entan-

glement, and quantum parallelism. The linear superposition

indicates that the qubit is represented as a linear combination

of the basis states, while in classical computing only two dis-

crete bits (0 and 1) are used. On the other hand, superposition

principle is a basic principle applicable to any linear system,

not necessarily quantum. Even though state-of-the-art digital

computers indeed use just 0 and 1 bits to store information

to compute, the future classical computers do not need to

be binary only. The entangled states are particular quantum

states that cannot be decomposed into independent quantum

states. However, recently Bellini’s group have demonstrated
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experimentally that macroscopic states, including coherent

states, can be entangled by the delocalized photon addi-

tion [1]. Quantum parallelism is the capability to parallelly

conduct a large number of operations. Recently, Deymier’s

group have shown that the quantum algorithms can be run on

topological acoustic (TA)-based quantum analogs, which are

essentially classical computers, and that the nonlinearity is a

key enabler for so called quantum parallelism [2], [3], [4].

These recent findings have motivated us to revisit our previ-

ous QIP proposals for integrated optics implementations [11],

[12], [13], [14], [15], [16], [17], [18], [19], but now in the

context of optical quantum computing analogs.

In this paper, we propose how to implement classical

optical quantum computing analogs in integrated optics

by employing the coherent states as the qubit analogs.

We experimentally demonstrate the controlled-phase opera-

tion between the classical coherent states. We also describe

the qudit classical analogs and corresponding gates based

on the orbital angular momentum (OAM) states.

The organization of the paper is summarized in the rest

of this section. The classical polarization states and the

action on them by the polarizing elements, characterized

by using the Jones formalism, is described in Sec. II.

In the same section, we explain how to entangle coher-

ent states based on [1] and [25]. In Sec. III, we describe

classical single-qubit analogs’ implementations in integrated

optics by employing the optical hybrid, directional coupler,

and Mach-Zehnder interferometer. In Sec. IV, we describe

how to implement classical two-qubit analogs in integrated

optics, namely controlled-phase and CNOT gate analogs.

We also describe how to implement the generic classical

Bell state preparation circuit and quantum relay analogs.

To illustrate the high-potential of the proposed integrated

optics-based classical quantum computing analog concepts,

we perform the experimental demonstration of the controlled-

phase operation. In Sec. V, we describe the classical quantum

qudit equivalent based on OAM and introduce single-qudit

and two-qudit gates analogs’ implementations in integrated

optics.

II. CLASSICAL POLARIZATION STATES AND

ENTANGLEMENT OF CLASSICAL STATES

The Jones representation of the polarized light is given by

[17], [32]:

E =
[

EH
EV

]

=
[

EH0e
jÆH

EV0e
jÆY

]

, (1)

where EH0(EV0) is the amplitude in the horizontal (vertical)

polarization state andÆH (ÆV ) is the corresponding phase. The

intensity Ican be determined by

I = E
†
E =

[

E∗
H0 E

∗
V0

]
[

EH0

EV0

]

= |EH0|2 + |EV0|2, (2)

and if we normalize it to 1, we can use the Dirac notation [33],

[34] to represent arbitrary classical polarization states:

|Èð =
[

ÈH
ÈV

]

= ÈH

[

1

0

]

︸︷︷︸

|Hð

+ÈV
[

0

1

]

︸︷︷︸

|V ð

= ÈH |Hð + ÈH |V ð ,

(3)

wherein ÈH = EH/
√
I (ÈV = EV /

√
I ), while |Hð =

[

1 0
]T

and |V ð =
[

0 1
]T

represent horizontal and vertical

polarization states, respectively (that are clearly orthogonal).

The normalization condition is obviously satisfied:

|ÈH |2 + |ÈV |2 = |EH0|2 + |EV0|2
I

= 1. (4)

In Dirac notation, with each column-vector (‘‘ket’’) | Èð,
defined by (3), we associate a row-vector (‘‘bra’’) ïÈ | as
follows:

ïÈ | =
[

È∗
x È∗

y

]

. (5)

The dot (scalar) product of ket | Æð bra ïÈ | is defined by the

following ‘‘bracket’’ operation:

ïÆ|Èð = Æ∗
xÈx + Æ∗

yÈy = ïÈ |Æð∗. (6)

Using this notation, the right- and left-circular polarization

states, denoted respectively as |Rð and |Lð, can be represented
by:

|Rð = 1√
2

[

1

j

]

= 1√
2

|Hð + j√
2

|V ð ,

|Lð = 1√
2

[

1

−j

]

= 1√
2

|Hð − j√
2

|V ð , (7)

which are clearly orthogonal as ïR|Lð = 0.

The action of any polarizing element on a polarization state

can be described by the Jones operator (matrix) J performing

the action on the input state |Èð by [35]:

|Èoutð = J |Èð =
[

JHH JHV
JVH JVV

]

|Èð .

(8)

The linear polarizer changes the amplitude of polarization

vector (state), and can be characterized by the absorption

coefficients along H-axis and V-axis, denoted as aHand aV ,

respectively as follows:

Jpolarizer =
[

aH 0

0 aV

]

; 0 ⩽ ai ⩽ 1, i ∈ {H , V } . (9)

The wave plates (also known as the retarders or the phase

shifters) are polarizing devices introducing the phase shift

Æ/2 along H-axis and the phase shift −Æ/2 along V-axis, and
the corresponding Jones matrix is described by:

Jwave plate =
[

ejÆ/2 0

0 e−jÆ/2

]

= ejÆ/2
[

1 0

0 e−jÆ

]

. (10)

Two popular wave plates are quarter-wave plate(QWP),

for which Æ=Ã/2, and half-wave plate(HWP), for which
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FIGURE 1. Illustrating the transformation of the polarization basis: (a) the
rotation of the state vector, (b) the rotation of a coordinate system.

Æ=Ã , while the corresponding Jones matrices describing

their actions are given respectively by:

JQWP =
[

1 0

0 −j

]

, JHWP =
[

1 0

0 −1

]

. (11)

To illustrate, when the input state to the QWP is linear

±45ostate, denoted as |±45oð=[ 1±1]T/
√
2, at the output it

gets converted to the left-/right-circular polarization state as

follows:

JQWP

∣
∣±45◦〉 = 1√

2

[

1 0

0 −j

] [

1

±1

]

= 1√
2

[

1

∓j

]

. (12)

The third relevant polarizing element is the rotator, whose

action is illustrated in Fig. 1, wherein the polarization state

|Èð is rotated for ¹ in a clockwise direction, which is equiv-

alent to the rotation of a given coordinate system in the

opposite (counterclockwise) direction for the same angle ¹ ,

as shown in Fig. 1(b). The polarization state |Èð can be

represented in original the {|Hð,|V ð} basis by:

|Èð = |Hð ïH |Èð + |V ð ïV |Èð . (13)

From (13), we notice that the following is valid:

|Hð ïH | + |V ð ïV | = I2, (14)

where I2 is 2×2 identity matrix, which is known as the com-

pleteness relationship in the quantum mechanics. However,

our polarization states are classical, wherein each polarization

state is composed of large number of photons having the same

polarization. By multiplying (13) by ïH ’| and ïV ’| from the

left side we obtain:
∣
∣È ′〉 =

[ 〈

x ′|È
〉

〈

y′|È
〉

]

=
[ 〈

x ′|x
〉 〈

x ′|y
〉

〈

y′|x
〉 〈

y′|y
〉

] [

ïx|Èð
ïy|Èð

]

=
[

cos ¹ sin ¹

− sin ¹ cos ¹

]

︸ ︷︷ ︸

J(¹)

[

ïx|Èð
ïy|Èð

]

= J (¹) |Èð , (15)

where J (¹ ) is the Jones rotation matrix, which is simultane-

ously the basis transformation matrix.

By using these three polarizing elements we can obtain an

arbitrary elliptic polarization state starting from the coherent

state. Therefore, we have already introduced the concepts

relevant in quantum mechanics such as the superposition

principle (13), the completeness relationship (14), and the

change of basis (15), while manipulating the classical polar-

ization states.

Now we describe how to entangle classical coherent states

[1], [25]. The coherent state |³ð, where ³ is a complex number

[that is ³=|³| exp(jϕ)], can be represented in terms of number

(Fock) states |nð as follows [17], [23]:

|³ð = exp
[

−|³|2/2
] +∞
∑

n=0

(n!)−1/2³n |nð , ³ = |³| ejϕ (16)

One of the important properties of coherent states is that the

coherent state is an eigen vector of the annihilation operator

â (decreasing the degree of excitation for 1), that is:

â |³ð = ³ |³ð . (17)

The coherent state can also be represented as a displaced

vacuum state by:

D̂ (³) |0ð = |³ð , D̂ (³) = exp
(

³â† − ³∗â
)

, (18)

where D̂ (³) is the displacement operator. Based on Fig. 2

of ref. [25], we can entangle two continuous variable (CV)

states with the help of two periodically polled lithium

niobate (PPLN) crystals or waveguides serving the role

of single-photon addition modules. The corresponding cir-

cuit to entangle two coherent states |³ð and |´ð, based on

Figs. 2 and 9 of ref. [25], is provided in Fig. 2, where we use

â† to denote the creation operator (increasing the degree of

excitation for 1). The same pump laser is used to operate both

PPLN modules, whose power is split by the power splitter.

Each pump photon in either PPLN modules generates entan-

gled signal and idler photons. The idler modes are interacted

on the beam splitter. If the input states where CV states, after

the beam splitter we will not be able to identify if the click

on single photon detector 1 (SPD1)/SPD2 originating from

upper or lower PPLN module, thus making the input CV

states entangled [25]:

|Èoutð = −1/2
(

â†|³ð1|´ð2 + ejÆ |³ð1b̂†|´ð2
)

, (19)

where is the normalization factor. However, this is not

always true when the input states are coherent states. By using

the symmetry properties of the displacement operator we
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FIGURE 2. LiNbO 3 technology-based circuit to entangle two coherent
states. PDC: parametric down conversion, PPLN: periodically poled
lithium niobate crystal (or waveguide), BS: beam splitter, SPD:
single-photon detector.

FIGURE 3. The Poincaré sphere representation of the classical
polarization states.

arrive to the following relationship â†D̂ (³) = D̂ (³) (â† +
³∗), which allows us to re-write the (19) as follows:

|Èoutð = −1/2D̂1 (³) D̂2 (´)

(

|1ð1|0ð2 + ejÆ |0ð1|1ð2
)

−1/2³∗
(

1 + ejÆ
)

|³ð1|´ð2, (20)

wherein the first term is an entangled state, while the sec-

ond term is a separable state. By setting the phase shift on

phase trimmer (see Fig. 2) to Æ=Ã rad, the separable term

is removed, and we have been able to entangle two coherent

states:

|ÈoutðÆ=0 = −1/2D̂1 (³) D̂2 (´) (|1ð1|0ð2 + |0ð1|1ð2) .
(21)

Based on the above we conclude that linear superposition

and entanglement are also applicable to the classical states

and are not exclusive to the quantum mechanics, which is

contrary to the common belief [5], [10], [20], [24].

Before concluding this section, it is convenient to introduce

the Poincaré sphere representation of the classical polar-

ization state given by (3), which is in quantum mechanics

FIGURE 4. The optical hybrid suitable for both coherent detector and
classical single-qubit gates analogs implementations.

known as the Bloch sphere. The coefficients ÈH and ÈV

are complex numbers, and therefore can be represented as

ÈH = |ÈH | exp(jÆH ), ÈV = |ÈV | exp(jÆV ), so that we can

re-write (3) as follows:

|Èð=ejÆH




|ÈH | |Hð+ej

Æ
︷ ︸︸ ︷

(ÆV−ÆH ) |ÈV | |Vð




 , Æ=ÆV−ÆH ,

(22)

and by parametrizing the magnitudes of complex numbers by

|ÈH | = cos(¹/2), |ÈV | = sin (¹/2) and ignoring the global

phase shift we arrive at the following representation:

|Èð = cos

(
¹

2

)

|Hð + ejÆ sin

(
¹

2

)

|V ð =
[

cos
(
¹
2

)

ejÆ sin
(
¹
2

)

]

,

(23)

where Æ ∈ [0, 2Ã ] and ¹ ∈ [0, Ã], which is illustrated in

Fig. 3.

The north and south poles correspond to the computational

basis {|Hð,|V ð}. The diagonal basis is defined by two-unit

vectors placed along the x-axis {|+ð,|–ð}, while the circular

basis by two-unit vectors placed along the y-axis {|Rð, |Lð}.

III. CLASSICAL SINGLE-QUBIT GATES ANALOGS

IMPLEMENTED IN INTEGRATED OPTICS

The 2×2 optical hybrid has been considered in our previous

publications in the context of coherent detection to mix the

received signal and local oscillator (LO) laser signal [35] as

well as in the context of single-qubit gates implementation in

integrated optics [11], [12], [15], [16], [17]. Here we consider

a particular version of 2×2 optical hybrid with four phase

trimmers, provided in Fig. 4, suitable for manipulation of the

classical polarization states. This device is composed of two

input ports, two input Y-junctions, two output Y-junctions,

two output ports, and four phase trimmers. Based on Fig. 4

we conclude that the output electric fields Eo,1 and Eo,2 are
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FIGURE 5. The 2×2 optical classical hybrid-based single-qubit gate
analog suitable for implementation in the integrated optics.

related to the input electric fields Ei,1 and Ei,2 as follows:

Eo,1 =
√
1 − »ejÆ1Ei,1 +

√
»ejÆ3Ei,2,

Eo,2 =
√
»ejÆ2Ei,1 +

√
1 − »ejÆ4Ei,2. (24)

The corresponding matrix representation is given by:

Eo =
[

Eo,1
Eo,2

]

=
[ √

1 − »ejÆ1
√
»ejÆ3√

»ejÆ2
√
1 − »ejÆ4

]

︸ ︷︷ ︸

S

[

Ei,1
Ei,2

]

︸ ︷︷ ︸

Ei

= SEi,

(25)

where S is the scattering matrix defined by:

S =
[ √

1 − »ejÆ1
√
»ejÆ3√

»ejÆ2
√
1 − »ejÆ4

]

, (26)

and » is the power splitting ratio of the corresponding Y-

junction.

For instance, by setting Æ1 = Æ2 = Æ3 = 0, Æ4 = Ã, » =
1/2 the S-matrix becomes the Hadamard matrix:

H = 1√
2

[

1 1

1 −1

]

. (27)

By placing the 2×2 optical hybrid between the polarization

beam splitter (PBS) and polarization beam combiner (PBC),

we obtain the circuit shown in Fig. 5, which is suitable to

perform arbitrary single-qubit analog operation on a given

classical polarization state.

By parametrizing the power splitting ratio by
√
» =

sin (µ /2) and setting the phase shifts as follows:

Æ1 = −´/2 − ¶/2, Æ2 = ´/2 − ¶/2

Æ3 = −´/2 + ¶/2 + Ã, Æ4 = ´/2 + ¶/2 (28)

the unitary matrix connecting the output and input classical

polarization states is given by:

U = ej³
[

cos (µ /2) ej(−´/2−¶/2) − sin (µ /2) ej(−´/2+¶/2)

sin (µ /2) ej(´/2−¶/2) cos (µ /2) ej(´/2+¶/2)

]

,

(29)

which is commonly referred to as the Y-Z decomposition

theorem in QIP literature [5]. With this representation in

mind, we can represent an arbitrary single-qubit gate analog.

By selecting ³=Ã/2, ´=0, µ=Ã/2, and ¶=Ã the U−gate

reduces down to the Hadamard gate (27).

FIGURE 6. The directional coupler-based implementation of arbitrary
single-qubit gate analog employing the Y-Z decomposition theorem.

FIGURE 7. The directional coupler-based implementation of arbitrary
single-qubit gate analog employing the Barenco-like gate.

FIGURE 8. The Mach-Zehnder interferometer-based implementation of
arbitrary single-qubit gate analog employing the Y-Z decomposition
theorem.

The Pauli X-, Y-, and Z-gates can be implemented as

follows. By selecting ³=Ã/2, ´=−Ã , µ=Ã , and ¶=0 the

U−gate reduces to the Pauli-X gate:

X =
[

0 1

1 0

]

. (30.1)

By selecting ³=Ã/2, ´=0, µ=Ã , and ¶=0 arrive at the

Pauli-Y gate:

Y =
[

0 −j
j 0

]

. (30.2)

By selecting ³=Ã/2, ´=Ã , µ=2Ã , and ¶=0 the U− gate

reduces down to the Pauli-Z gate:

Z =
[

1 0

0 −1

]

. (30.3)

Further, by setting ³=Ã/8, ´=Ã/4, µ=2Ã , and ¶=0 rad

we obtain the Ã/8−gate:

T =
[

1 0

0 ejÃ/4

]

. (31)

Finally, by selecting ³=Ã/4, ´=Ã/2, µ=2Ã , and ¶=0 rad

the U− gate becomes the phase-gate:

P =
[

1 0

0 j

]

. (32)

The scattering matrix of directional coupler, used in

Figs. 6 and 7, is given by [35]:

S =
[

cos(kL) j sin(kL)

j sin(kL) cos(kL)

]

, (33)

where k is the coupling coefficient and L is the coupling

region length. By selecting the coupling phase shift to be

VOLUME 12, 2024 33573
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FIGURE 9. The integrated optics implementation of the controlled-phase
gate analog. The Kerr nonlinearity device could be either HNLF or PPLN
waveguide/crystal.

kL=µ /2, and by selecting the phase shifts on three phase

trimers as indicated in Fig. 6, the overall scattering matrix

is identical to that given by (29). Therefore, this device repre-

sents an alternative single-qubit gate analog implementation.

Another version of the single-qubit gate analog is provided in

Fig. 7, and it is derived from the Barenco theorem, claiming

the following two-qubit gate is universal [36]:

A (Æ, ³, ¹) =
[

I2

UB

]

,

UB =
[

ej³ cos ¹ −jej(³+Æ) sin ¹
−jej(³−Æ) sin ¹ ej³ cos ¹

]

(34)

By selecting the coupling phase shift to be kL=¹ , and by

selecting the phase shifts on two phase trimers as indicated in

Fig. 7, the overall scattering matrix is identical to that given

by UB−matrix in (34).

Finally, by using the Mach-Zehnder interferometer-based

circuit provided in Fig. 8, and by selecting the phase shifts as

specified in the Figure, we obtain the overall scatteringmatrix

given by (29).

IV. CLASSICAL CONTROLLED-PHASE AND CNOT GATES

ANALOGS IMPLEMENTED IN INTEGRATED OPTICS

The Barenco gate, introduced by the (34) represents the

universal quantum gate. The three-qubit Deutsch gate, intro-

duced in [37], also represents the universal quantum gate.

Another popular universal set of gates is {H , P, T , CNOT}

[38].We have already described how to implement the H ,

P, and Tgates in the previous section, what remains is to

describe how to implement the classical CNOT-gate analog.

Given that T2=P, and that CNOT gate classical analog can

be expressed in terms of controlled-phase gate

C(Z ) =
[

I2 0

0 Z

]

by:

CNOT |Cð |T ð = |Cð ¹ XC |T ð = |Cð ¹ (HZX)C |T ð
= I ¹ H · C(Z ) · I ¹ H |Cð |T ð , (35)

we can reduce the set of universal quantum gates down to {H ,

T , C(Z )}. The photonic implementation of the C(Z) gate in

integrated optics is illustrated in Fig. 9, where we employed

the Kerr nonlinear effect [35] to introduce the nonlinear phase

shift of Ã rad only between vertically polarized states so that

the action of the gate can be described by:

C(Z ) |Hð |Hð = |Hð |Hð , C(Z ) |Hð |V ð = |Hð |V ð ,
C(Z ) |V ð |Hð = |V ð |Hð ,C(Z ) |V ð |V ð = − |V ð |V ð . (36)

FIGURE 10. The integrated optics implementation of the classical CNOT
gate analog. The Kerr nonlinearity device could be either HNLF or PPLN
waveguide/crystal.

FIGURE 11. The integrated optics implementation of the classical generic
Bell states preparation circuit analog. The Kerr nonlinearity device could
be either HNLF or PPLN waveguide/crystal.

Namely, for sufficiently high light intensity the refractive

index of nonlinear optical medium, such as optical fiber,

is not only function of frequency É, but also function of

intensity of the light beam I that propagates through the non-

linear medium, that is we can write n(É, I ) = n(É) + n2I ,

where n2 is the Kerr coefficient. The cross-phase modulation

(XPM) will introduce the nonlinear phase shift to the target

polarization state, denoted by 18T , as follows [35]:

18T = 20PC
1 − e−aL

L
, 0 = 2Ãn2

¼Aeff
, (37)

where 0 is the nonlinear coefficient, Aeff is the effective

cross-sectional area of the fiber, a is the attenuation coef-

ficient, and PC is the power in the control |Cð polarization

state. By properly adjusting the power PC we can introduce

Ã phase-shift. Given that the typical values of the nonlin-

ear coefficient for standard SMF is small and range from

0.9-2.75 W−1km−1 [35], the highly nonlinear fiber (HNLF)

can be used for this purpose. Introducing the Ã rad XPM

phase shift is extremely difficult on a single-photon level [9],

[17]; however, it is straightforward to do so on a classical

level with the help of HNLFs. Unfortunately, the HNLF

is not compatible with integrated optics. Alternatively, the

HNLF can be replaced by the trype-0 PPLN waveguide,

where the nonlinear conversion efficiency is very efficient

for the vertical polarization states, and the overall circuit is

suitable for implementation in the lithium niobate (LN) tech-

nology. Such PPLN waveguides are commercially available

[39], and have been routinely used in our recent experi-

ments to generate bright entangled photons for distribution

of entanglement over atmospheric turbulence channels [40]

and in entanglement assisted communication demonstrations

over turbulent free-space optical links [41]. Based on (36),

to implement the CNOT gate analog, we need to insert

two Hadamard gates in the target polarization state, one

before and one after the C(Z)-operation, which is illustrated

in Fig. 10.
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FIGURE 12. The integrated optics implementation of the classical
quantum relay analog. The Kerr nonlinearity device could be either HNLF
or PPLN waveguide/crystal. APD: avalanche photodiode.

FIGURE 13. The experimental setup to demonstrate the controlled-phase
operation on classical qubit analogs. PBS: polarization beam splitter, PC:
personal computer.

Now we are in a position to describe an alternative way to

entangle two classical polarization states, with the help of the

Bell state preparation circuit, shown in Fig. 11. After apply-

ing the Hadamard gates on both control and target qubits,

we apply the CNOT-gate followed by the Hadamard gate on

target qubit so that the output polarization state becomes:

∣
∣Bij

〉

= 2−1/2







cH tH + cV tV
cH tV + cV tV
cH tV − cV tV
cH tH − cV tH






. (38)

Compared to the implementation from Fig. 2 only one PPLN

waveguide is needed. To illustrate, by setting cH = 1, cV =
0 and tH = 0, tV = 1, we obtain the following Bell state:

|B01ð = 2−1/2
[

H V V H
]

= 2−1/2 (|Hð |V ð + |V ð |Hð) .
(39)

By using the proposed classical single-qubit and two-qubit

analogs, we can implement the quantum relay analog in

integrated optics as shown in Fig. 12. The CNOT and C(Z)

gates are applied between the highlighted (in green) verti-

cal polarization basis states. We perform the measurements

only at intermediate node with the help of two avalanche

photodiodes (APDs) and when the vertical polarization state

is detected we conditionally execute Pauli X- and Z-gates

on the bottom polarization state. Clearly, the complexity of

this approach is high. The better strategy will be to employ

the entanglement swapping and teleportation concepts by

the photon addition as we described in [25]. Correspond-

ing quantum implementation in integrated optics is only

possible as a probabilistic device [7] (performing a desired

function with a certain probability), and the verification

of designed function is needed, thus increasing complexity

significantly.

FIGURE 14. The measured BERs on vertical polarizations of target
coherent sates (at 1551 nm).

FIGURE 15. The portion of BPSK sequence received on vertical
polarization states at 1551 nm. The control qubit analog is operated at
1550 nm.

To illustrate the high-potential of the proposed concept,

we performed the classical controlled-phase quantum qubit

analog demonstration, with experimental setup provided in

Fig. 13.

The laser operated at 1550 nm generates the classical states

that serve the role of the control qubit, while the bottom laser

generates the states at 1551 nm that serve the role of the

target qubit. To demonstrate the controlled-phase gate analog

operation from Fig. 9, we need to demonstrate that control

qubit coherent states can introduce the phase shift of Ã rad

to the vertical polarization states of the target qubit analog.

To do so we impose the BPSK modulation at 10 Gb/s on the

control coherent states, while the target coherent states are

unmodulated. We then combine the control and target coher-

ent states by the beam combiner and conduct the cross-phase

modulation (XPM) interaction of control and target coherent

states by the PPLNwaveguide. At the output of PPLNwaveg-

uide we separate horizontal (H) and vertical (V) polarization

states by the polarization beam splitter (PBS) and perform

the coherent balanced detection on vertical photons related to

the target coherent states at 1551 nm. To do so we mix the

local oscillator (LO) laser signal at 1551 nm with the vertical
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FIGURE 16. The portion of the target qubit analog waveform recorded on
real-time scope (corresponding to 1551 nm wavelength).

photons on optical hybrid (not shown in Figure) followed

by the homodyne balanced detector. The detected signal is

sampled by the real-time scope and sampled RF signal wave-

form is transferred to the personal computer (PC), where

we re-sample the waveform and calculate bit log-likelihood

ratios (LLRs), which are used to make decisions and deter-

mine the bit-error rates (BERs). The corresponding BER

related to the target coherent state are provided in Fig. 14.

The input power to the power combiner, the control power

PC , was varied, while the input power of the target coherent

states was used as the parameter. For the control qubit analog

powers higher than 1.4 dBm, the measured BER was zero,

indicating that the BPSK get transferred completely from the

control coherent states to the target coherent states, which

demonstrates that the circuit from Fig. 9 indeed operates as

the controlled-phase analog.

For illustrative purposes, we provide in Fig. 15 the portion

of the BPSK sequence received on the vertical polarization

states at 1551 nm.

The Ã rad voltage level is clearly indicated. Therefore,

by using the XPM we were able to introduce the Ã rad phase

shift on vertical polarization states at 1551 nm, while the con-

trol qubit analog was operated at 1550 nm thus demonstrating

the controlled-phase operation. Finally, in Fig. 16, we provide

the portion of the waveform record on the real-time scope

corresponding to the 1551 nm target qubit analog, confirming

that the sequence transferred from the control to target qubit

analog is error free.

V. OPTICAL ORBITAL ANGULAR MOMENTUM GATES

ANALOGS

In our papers [18] and [19] we have introduced the photon

angular momentum states by combining polarization and

orbital angular momentum (OAM) states, and proposed cor-

responding gates suitable for universal quantum computing

and quantum communication applications. In this section,

we provide the corresponding classical quantum gates’

analogs. The OAM modes have been intensively studied

for various classical communication applications, including

OAM multiplexing and OAM modulations [35], [42], [43],

[44], [45], [46], [47], [48], [49]. TheOAMdegree-of-freedom

is associated with the azimuthal phase dependence of the

complex electric field [35]. Among various vortex optical

beams carrying the OAM, the Laguerre-Gauss (LG) vortex

beams/modes are very popular and the electric field of an

LG beam traveling along the z-axis can be represented in

cylindrical coordinates (r ,Æ,z) (r : the radial distance from

propagation axis, Æ: the azimuthal angle, z: the propagation

distance) as follows [35], [42], [45]:

um,p (r, Æ, z) =
√

2p!
Ã (p+ |m|)!

1

w(z)

[

r
√
2

w(z)

]|m|

Lmp

(
2r2

w2(z)

)

× e
− r2

w2(z) e
− jkr2z

2(z2+z2
R) e

j(2p+|m|+1)tan−1 z
zR e−jmÆ,

(40)

where w(z) = w0

√

1 + (z/zR)
2 (w0 denotes the zero-order

Gaussian radius at the waist), zR = Ãw2
0/¼ is the Rayleigh

range (¼ denotes the wavelength), k=2Ã/¼ is the wave num-

ber, and Lmp (·) is the associated Laguerre polynomial, with p

and m being the radial and angular mode numbers, respec-

tively. It can be seen from (40) that the mth mode of the

LG beam has the azimuthal angular dependence of the type

exp(–jmÆ), where m is the azimuthal mode index. In free

space, for m=0, u(r ,Æ,z) get reduced down to a zero-order

Gaussian beam commonly referred to as the TEM00 mode.

For p=0, Lmp (·)=1 for values of azimuthal indices m, so that

the intensity of an LG mode can be placed on a ring of radius

proportional to |m|1/2. It can be shown that for fixed p, the

following principle of orthogonality is satisfied [35], [45]:

〈

um,p|un,p
〉

=
∫

u∗
m,p (r, Æ, z) un,p (r, Æ, z) rdrdÆ

=







∫
∣
∣um,p

∣
∣
2
rdrdÆ, n = m

0, n ̸= m

(41)

Clearly, different OAM states corresponding to a fixed radial

index p are orthogonal among each other, and as such they

can be used as the basis functions for either OAM modu-

lation or OAM multiplexing. The OAM modes can easily

be generated by the computer-generated holograms (CGHs)

[43], [44], [45]. The Bessel modes also belong to the class

of OAM modes, and they are obtained as solutions of the

wave equation in a step-index multi-mode fiber (MMF) of

core radius b, with corresponding electric field z-component

in cylindrical coordinates (r ,Æ,z) given by [35], [49]:

Ez (r, Æ, z) = AJm (krr) e
−jmÆej´z, r ⩽ b (42)

where kr =
√

n2ck
2
0 − ´2 with nc being the refractive index

of the core, k0=2Ã/¼ is the free-space wave number, and ´

the propagation constant. We use Jm(·) to denote the Bessel

function of the mth order. The ideal Bessel beams satisfy the

relationship [50] |E(r, Æ, z)|2 = |E(r, Æ)|2 and are therefore

diffraction free and as such represent excellent candidates for

free-space optical (FSO) applications. It the practice, it is not

trivial to generate the ideal Bessel beams and instead various

approximations need to be used [51].
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FIGURE 17. The integrated optics and FMF-based implementation of the
classical single-qudit gate analog.

FIGURE 18. The integrated optics and CGHs-based implementation of the
classical single-qudit gate analog.

Given that the OAM modes are orthogonal to each other,

as shown by (41), they can be used as the basis functions |lð
(l=−L, . . . , −1, 0, 1,. . . , L). The arbitrary spatial mode can

be decomposed in terms of the basis OAM modes by:

|Èð =
L

∑

l=−L
cl |lð, (43)

assuming that the number of supportedOAMmodes is 2L+1.

With this formalism at hand, given that the space here

is high-dimensional, now we have to describe the OAM

single-qudit and two-qudit analogs. The MMFs can be used

for this purpose, given the (42); however, the MMFs sup-

port too many modes to be of practical interest. Instead, the

few-mode fibers (FMFs), supporting the limited number of

modes should be used as advocated in [18], [19], and [35].

The single-qudit analog, provided in Fig. 17, is similar to

that proposed in our previous article [18]. The output of

the FMF will contain all basis OAM modes with the same

weight. In OAM modes-demultiplexer we separate the OAM

basis modes, introduce the desired complex weight by the

electro-optical (E/O) modulators, and recombine them by

OAMmodes-multiplexer before being coupled into the FMF.

The CGHs-based single-qudit analog, inspired by our pre-

vious paper [19], is provided in Fig. 18. We first separate

the OAM modes with corresponding complex coefficients

with the help of power splitter and complex-conjugate CGHs.

Each coordinate gets modified by the E/O modulators to

perform a desired qudit operation. The CGHs impose the lth

OAMmode (l=−L, . . . , 0, . . . ,L) corresponding to the l−th

coordinate, and such weighted OAM modes are combined to

generate the output mode.

The generalized controlled-phase gate analog is provided

in Fig. 19. The CGHs impose desired spatial modes. We use

highly nonlinear FMF to interact the control |Cð and target

|Tð qudit. Assuming that (2L + 1) is a prime number, the

generalized Z-gate is defined by [17], [18], [19]:

Z (b) |xð = ej
2Ã

2L+1 b |xð , (44)

FIGURE 19. The integrated optics and FMF-based implementation of the
generalized two-qudit controlled-phase gate analog.

and by adjusting the power of the control mode, we can

introduce the desired nonlinear phase shift on the target qubit

with the help of XPM. Instead of the HN-FMF, the PPLN

waveguide/crystal can be used that now supports a desired

number of higher order spatial modes.

VI. CONCLUDING REMARKS

Inspired by recent findings that the classical states can be

entangled [1], [2], the CNOT gate can be implemented using

the classical acoustic qubit-analog [3], and that quantum

parallelism can be achieved on classical quantum computing

acoustic analog [4], in this paper we propose how to imple-

ment quantum information processing analogs in integrated

optics based on classical polarization and OAM states.

By using the Jones formalism we have shown that arbi-

trary classical polarization state can be represented as the

superposition of horizontal and vertical basis polarization

states. We have also shown that the quantum mechanics

relevant concepts such as the superposition principle, the

completeness relationship, and the change of basis are also

applicable to the classical polarization states. To obtain any

classical polarization state only three polarizing elements are

sufficient: polarizer, wave-plate, and rotator.

We have shown that any two classical coherent states can

be entangled with the help of single photon addition module,

based on two PPLN waveguides.

We have further described how to implement an arbitrary

single-qubit gate analog in integrated optics using any of the

following three devices: 2×2 optical hybrid with four phase

trimmers, directional coupler with three phase trimmers,

and Mach-Zehnder interferometer with four phase trimmers.

We have then described how to implement controlled-phase

and CNOT gates analogs operating on classical polariza-

tion states in the lithium niobate technology. This completes

the implementation of universal quantum gates analogs for

classical polarization states. We have also described how to

implement Bell states preparation circuit and quantum relay

in the same technology. We have experimentally demon-

strated the controlled-phase operation between two classical

coherent states. Therefore, we have demonstrated that the

classical implementation of universal quantum gates in inte-

grated optics is possible.

The focus has been then moved to the spatial modes, and

we have shown that an arbitrary classical spatial mode can

be decomposed in terms of basis OAM modes. Therefore,

the spatial modes can be used as the classical qudit analogs.

We have described how to implement arbitrary single-qudit

gate analog in either FMF or CGH technologies.We have also
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described how to implement the generalized control-phase

two-qudit classical analog.

This paper, therefore, represents a step forward creating

a decoherence-free optical quantum information processing

and computing analog, which does not rely on the fragile

quantum states but rather robust classical states. Moreover,

the classical states can be measured without causing the state

collapse, which is unavoidable for quantum states. Given that

ref. [4] has already shown that certain quantum algorithms

exploiting the quantum parallelism can be implemented in

classical quantum computing acoustic analog platform, the

existing quantum algorithms need to be revisited for the true

quantum advantages. Further, the proposed classical optical

quantum computing analogs do not require delicate quantum

error correction. Finally, fault tolerance is not needed in

classical quantum computing analogs.
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