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Abstract

Despite the major advances in NLP, significant
disparities in NLP system performance across lan-
guages still exist. Arguably, these are due to un-
even resource allocation and sub-optimal incen-
tives to work on less resourced languages. To
track and further incentivize the global develop-
ment of equitable language technology, we in-
troduce GlobalBench. Prior multilingual bench-
marks are static and have focused on a limited
number of tasks and languages. In contrast, Glob-
alBench is an ever-expanding collection that aims
to dynamically track progress on all NLP datasets
in all languages. Rather than solely measuring ac-
curacy, GlobalBench also tracks the estimated per-
speaker utility and equity of technology across
all languages, providing a multi-faceted view of
how language technology is serving people of the
world. Furthermore, GlobalBench is designed
to identify the most under-served languages, and
rewards research efforts directed towards those
languages. At present, the most under-served lan-
guages are the ones with a relatively high pop-
ulation, but nonetheless overlooked by compos-
ite multilingual benchmarks (like Punjabi, Por-
tuguese, and Wu Chinese). Currently, Global-
Bench covers 966 datasets in 190 languages and
includes 1,128 system submissions spanning 62
languages.1

1 Introduction

Advances in multilingual natural language process-

ing (NLP) technologies (Dabre et al., 2020; Hed-

derich et al., 2021) have raised the enticing possibil-

ities of NLP systems that benefit all people around

the world. However, at the same time, studies into

the state of multilingual NLP have demonstrated

stark differences in the amount of resources avail-

able (Joshi et al., 2020; Yu et al., 2022) and perfor-

mance of existing NLP systems (Blasi et al., 2022;

Khanuja et al., 2023; Ahia et al., 2023).

Why do these disparities exist? The causes of

these disparities are multifarious, but Blasi et al.

(2022) argue that one major factor is a problem of

incentives and resource allocation. For instance,

languages associated with larger economic might

1GlobalBench is available at https://github.com/

neulab/globalbench.

Figure 1: GlobalBench Design: A leaderboard for each

task is separately maintained. Each leaderboard con-

tains a multi-faceted evaluation of submitted systems,

along with a ranking of the most under-served languages.

More details can be found in Section 2.

(as measured by GDP of the countries where they

are spoken) see more research and resource devel-

opment, leading to more performant systems.

In this paper, we propose GlobalBench, a new

benchmark and leaderboard that is designed to

specifically incentivize the global development of

equitable language technologies that serve speak-

ers of all languages throughout the world. Glob-

alBench follows the footsteps of other successful

multilingual benchmarks such as XTREME (Hu

et al., 2020) and XGLUE (Liang et al., 2020),

which aggregate results of systems across several

tasks to provide a general idea of progress being

made in the field of multilingual NLP. However,

these benchmarks, by design, are static and lack the

goal to be an all-inclusive, ever-expanding collec-

tion of datasets. Additionally, they mainly focus on

average accuracy over all languages in the dataset,

and thus say little about the downstream utility and
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Figure 2: GlobalBench’s Philosophy: First, we aim to inclusively gather datasets for all tasks and languages. Second,

we present a multi-faceted evaluation of systems, going beyond average accuracies across languages, to keep track

of the utility and equity of these systems. Third, GlobalBench ranks the most to least under-served languages on the

leaderboard of each task, and rewards improvement in utility, which can be achieved through both dataset and model

contributions. The lower the ranking of a language the better since a lower ranking indicates it is less under-served.

In the above example, the addition of Dataset3 improves the measured utility of L3 in the NER leaderboard, and

the addition of System2 improves the measured utility of L2 and L3 for the NER leaderboard.

equity of submitted systems across languages.

Hence, in designing GlobalBench, we make a

number of intentional design decisions to explicitly

promote the improvement of language technology

for all of the world’s citizens:

• Inclusive Dataset Selection: We aim to be

able to evaluate all datasets in all languages

for all tasks, making it possible to (in theory)

cover any language for which a dataset exists.

• Multi-Faceted Evaluation: As shown in Fig-

ure 1, GlobalBench explicitly considers per-

speaker utility and equity (§2), measuring how

close NLP systems have come to equitably

covering all speakers in the world, instead of

just those in our existing data.

• Reward Data and Model Contributions:

GlobalBench encourages improvements in the

state-of-the-art (instead of just measuring the

state-of-the-art itself), by identifying under-

served languages and rewarding progress on

them, both in terms of dataset and model con-

tributions.

In the remainder of this paper, we detail Glob-

alBench’s design principles (§2), how interested

research community members can participate (§3),

the currently covered tasks and systems (§4), anal-

ysis of the current state of NLP viewed through the

lens of GlobalBench (§5), related work (§6) and

our expectations for the path forward (§7).

All in all, we believe that improving the quality

and equity of language technologies for all speak-

ers in the world is one of the paramount challenges

of NLP today. In the famous mantra from Peter

Drucker, what you cannot measure, you cannot im-

prove; GlobalBench is a first step in this direction.

2 GlobalBench Design Principles

Philosophy: A working example of our guiding

philosophy is shown in Figure 2. Our unique re-

ward system incentivizes model builders to not

only improve system performance, but also build

datasets for new languages. To illustrate the for-

mer, let’s assume that there were NER datasets for

L2 and L3 on GlobalBench, and now researchers

build a new system for NER (System2) which

is state-of-the-art for languages L2 and L3. This

14158



increases utility for both languages (Equation 3),

which is attributed to System2 on our NER leader-

board. For the latter, let’s change our assumption

to that there was no NER dataset for L3 before,

but a pre-trained model (System2) supports this

language. Hence, the introduction of Dataset3
helps realize a sharp improvement in utility for L3,

which was previously immeasurable (hence, for all

practical purposes, zero). Thus, the increase in util-

ity for L3 on the NER leaderboard is attributed to

Dataset3. Additionally, we rank the most to least

under-served languages. To illustrate how this rank-

ing helps, let’s consider the case for NER in Figure

2. Before the introduction of Dataset3, L3 was

most under-served, followed by L1. After inclusion

of Dataset3 in the leaderboard, the measured util-

ity for L3 increases. Now, even though the utility

value of L1 remains unchanged, L1 might become

the most under-served language following the in-

crease in utility of L3. This would act as a positive

feedback for the community to direct their efforts

towards languages needing most work (here, L1,

as specified by the most under-served languages

rankings), and drive progress for global equity in a

positive cause-effect feedback loop.

Design: GlobalBench maintains a separate leader-

board for each of the covered tasks, as shown

in Figure 1. Each leaderboard details the con-

stituent datasets, system submissions and the fol-

lowing evaluation metrics (further details in §2.2

and §2.3): a) Performance (F1, accuracy, BLEU,

etc.); b) System-by-System Utility (linguistic and

demographic); c) Global Average Utility (linguistic

and demographic); d) Equity; e) Most under-served

Languages; f) Score by Language. For more details

about GlobalBench UI, please refer to §A.3.

2.1 Dataset Selection: Inclusivity

The first pillar of GlobalBench’s approach is that

we attempt to be all-inclusive with respect to tasks,

datasets, and languages. On the dataset front, Glob-

alBench currently includes 966 datasets spanning

190 languages. On the modeling front, it has

1,128 system outputs spanning 6 NLP tasks and

62 languages (note that not every dataset integrated

within GlobalBench has system outputs submitted

to the leaderboard at present). Overall, Global-

Bench has support to accept dataset and system

submissions for 17 NLP tasks in 6671 languages2,

2The source of metadata of these languages is "Ethnologue:
Languages of the World."

managing to include the majority of the about 7000

spoken languages around the world (Austin and

Sallabank, 2011). At present, named entity recogni-

tion is the task with the highest coverage of world

speaker population (59.34%), but GlobalBench

hopes to continually evolve with time.

2.2 Multi-Faceted Evaluation: Utility and

Equity

Utility Blasi et al. (2022) introduce utility ul of

a system for a task and language to be its per-

formance normalized by the best possible perfor-

mance (typically, human-level performance, but if

it’s unattainable, we use the empirical maximum as

an estimate) afforded by the task:

ul =
performancel

theoretical max performance
(1)

While the above helps estimate system perfor-

mance relative to the ideal scenario, the final utility

provided also depends on the systems’ demand,

which is the second term used by Blasi et al. (2022)

in their analysis. Demand dl is characterized by tak-

ing into consideration demographic and linguistic

perspectives. Under the demographic perspective,

the demand for a technology in a language is esti-

mated to be proportional to the number of speakers

of the language itself nl (dl ∝ nl). Under the lin-

guistic perspective, the demand across languages

is identical (dl ∝ 1). These two alternatives, as

well as any intermediate combination of them, are

parameterized through a single exponent τ :

d
(τ)
l =

nτl
∑

l′ϵL nτl′
(2)

where τ = 1 corresponds to a demographic notion

of demand and τ = 0 to a linguistic one. Using the

above, Blasi et al. (2022) define a global metric as

follows:

Mτ =
∑

lϵL

d
(τ)
l . ul (3)

In essence, Mτ = 0 means that no user bene-

fits from language technology and Mτ = 1 cor-

responds to each language user enjoying perfect

technology.

In GlobalBench, we provide the demographic

weighted (τ = 1) and the linguistic weighted

(τ = 0) utilities for all languages in each task. For

each language, we take the maximum utility scores
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Text Classification Text Classification  This movie is awesome! => a) Positive, b) Negative,  c) Neutral

Sequence Labeling

Named Entity Recognition Amy was born in 2020  => Amy[Person] was born in 2020[Time].

Word Segmentation 今夜月色很美 => 今夜 | 月色 | 很 | 美

Chunking Amy will close the window => [NP Amy] [VP will close] [NP the window] 

Cloze
Multiple Choice The capital of France is _____. => a) Paris, b) London, c) Rome, d) Madrid

Generative The capital of France is _____. => The capital of France is Paris.

Text Pair Classification Text Pair Classification S1: Amy doesn’t live far away from me; S2: Amy lives close to me => Entailment

Span Text Classification Aspect-based Sentiment I was happy with the delivery, dissatisfied with the product => delivery (+); product (-)

Text Editing Grammatical Error Corr. There is a apple. => There is an apple.

Question Answering

Extractive QA Text: “Amy and Bob formed a group”; Q: How many people are in the group? => A: Two.

Multiple Choice QA

Open Domain

[Text as above] Q: How many people are in the group?  a) 1, b) 2, c) 3 => A: b) 2

Q: What is the capital of France? => A: Paris.

Conditional Generation

Machine Translation [French to Japanese] Bonjour => おはよう

Summarization Story of “Beauty and the Beast” => Summary of “Beauty and the Beast”

Code Generation Iterate through words of a file in Python => words = open('myfile').read().split()

Knowledge Graph Prediction KG link tail prediction Given the true head of a KG, predict the tail entity of the KG.

Language Modeling Language Modeling The weather is _____ => beautiful

Figure 3: Overview of Tasks: All tasks currently supported by GlobalBench are as shown above. This is expected to

constantly evolve with time. Refer to Section 4 for details.

of all systems submitted to GlobalBench. To ob-

tain task global averages, as shown in Table 2, we

average across utility values for all languages.

Equity While utility paints the picture of how

far from ideal we are in serving NLP technol-

ogy to each user, equity helps measure how uni-

form the technologies we serve are, across lan-

guages. Khanuja et al. (2023) recently proposed

that amongst other measures of statistical disper-

sion, the Gini coefficient (Dorfman, 1979) best

captures this uniformity. Hence, we use the same

as a measure of equity in our work. Intuitively,

a lower value of G indicates that languages are

closer to a uniform distribution. Considering either

extremes, when all languages have the same perfor-

mance, G = 0, and when there is support for only

one language, G = 1. Formally, if performance

of a language for a task is yi, (i = 1 ... n where n
is the total number of languages), and is indexed

in non-decreasing order (yi ≤ yi+1), then the Gini

coefficient (G) can be calculated as:

G =
1

n

(

n + 1− 2

∑n
i=1(n + 1− i)yi

∑n
i=1 yi

)

(4)

For each task, we obtain equity values, calcu-

lated using the maximum performance of submitted

systems for each language in a task. For languages

that are not supported by any dataset, we assume

the system performance to be zero. The global

equity values for each task are in Table 2.

Apart from the above, we keep track of system

performances (F1/Accuracy/BLEU etc.). For each

task, we take the system output with the highest

performance among all system outputs with the

same language, and provide a ranking of languages

with the highest system performances. We also

maintain a ranking of most under-served languages

(sorted in increasing order of utility), for reasons

detailed below.

2.3 Incentivization: Reward Improvement

We can estimate current global progress in lan-

guage technologies using the demographic and lin-

guistic weighted global averages, and the global

equity values. In GlobalBench, we also encourage

development of systems that improve upon these

metrics. We accomplish this in two ways:

First, we identify areas with the greatest potential

for improvement, i.e., we identify the most under-

served languages. Blasi et al. (2022), demon-

strates that a variety of values provide different

prioritizations over demographic- and linguistic-

weighted utility. Following the footsteps of Blasi

et al. (2022), we chose a parameter of τ = 0.4
largely qualitatively, observing the results with dif-

ferent values and taking one that seemed to strike

a reasonable balance between higher- and lower-
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resource languages, such that some of each ap-

peared near the top of the languages to prioritize.

Languages farthest from the ideal τ -weighted util-

ity are expected to be most under-served. Hence,

(1− τ -weighted utility) of a language gives us this

measure. We sort each of the 6671 languages

supported in GlobalBench according to this mea-

sure. In the end, we obtain a ranking of languages

with relatively high populations and relatively low

scores, broken down by task.

Second, a submission’s rank on our leaderboard

is determined by how much it contributes to in-

creasing the overall τ -weighted utility across lan-

guages. This can be achieved in two ways: i) Data

Efforts: By contributing datasets for previously

unsupported languages, their utility, which was

previously immeasurable (hence, for all practical

purposes, zero), sees a sharp rise; ii) Improved

Systems: By submitting new systems which im-

prove upon the state-of-the-art, we improve utility

by definition (Equation 3).

3 Implementation and Participation

Details for GlobalBench

GlobalBench accepts open submissions of datasets

and systems.

For datasets that are already a part of Global-

Bench, system results for them can be submitted

to GlobalBench for evaluation. The submission

process of system results is simple: one can submit

system results to GlobalBench through github di-

rectly. Participants don’t need to separately submit

anything else.

In addition, if people want to submit new

datasets to benchmark, one can follow the dataset

submission process provided in our github reposi-

tory.3 After doing so, corresponding system results

can be submitted as per the above instructions.

4 Datasets and Tasks

In GlobalBench, we currently support 17 tasks that

fall into 10 distinct categories. These tasks rep-

resent a diverse set of NLP technologies, ranging

from those that are highly applicative and user-

facing (question answering, machine translation

etc.), to those that aren’t directly applied, but are

nonetheless fundamental to NLP (language mod-

eling, etc.). We briefly summarize the tasks and

provide one example for each task in Figure 3, and

we provide a more detailed description and a list of

3
https://github.com/neulab/globalbench.

all datasets that GlobalBench sees system submis-

sions in §A.1. While we support 17 tasks covering

966 datasets, we don’t have system outputs for all

as of now. We make a note of system outputs avail-

able for each task in Table 1, to inform our results

and analyses.

5 Results and Analysis

GlobalBench allows us to conduct a series of anal-

yses to assess global progress in NLP technologies.

While GlobalBench is intended to be evolving to

gauge the continued improvements in performance

of NLP systems, we examine the current state of

systems that have been submitted, to demonstrate

how GlobalBench can guide and incentivize future

participation and improvement in language tech-

nology.

5.1 How inclusive is GlobalBench?

The inclusive design of GlobalBench elucidated in

Section 2 means that it can (in theory) support any

NLP task and dataset. GlobalBench currently sup-

ports dataset submissions of 6671 languages and

17 tasks. GlobalBench now covers 966 datasets in

190 languages. We have 1,128 system outputs at

the time of writing, spanning 6 NLP tasks: named

entity recognition (NER), text pair classification,

text classification, extractive QA, machine transla-

tion, and KG link tail prediction; over a total of 62

languages. With the existing systems included in

GlobalBench, we already cover 4.72% to 59.34%

of the first languages of people in the world depend-

ing on the task, as detailed in Table 2. We focus on

analyzing system submissions for these six tasks

below.

5.2 What is our Current Progress as

Measured by GlobalBench?

Next, we discuss the current state of NLP progress

through the lens of GlobalBench. To do so, we

display the demographic- and linguistic-weighted

global average scores in Table 2.

Variance in estimated utility across tasks: In

Table 2, we observe that NER has the highest es-

timated overall demographic and linguistic global

average. Additionally, NER and MT have the high-

est language coverage (60 languages). This is be-

cause these tasks have been subject to extensive and

impressive multilingual dataset development and

evaluation efforts by authors of FLORES (Goyal

et al., 2022), MasakhaNER (Adelani et al., 2021),
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Category Task
Number of

Metric
Datasets Languages System Outputs

Text Classification Text Classification 127 12 199 Accuracy

Sequence Labeling

Named Entity Recognition 78 60 450 F1

Word Segmentation 1 1 - F1

Chunking 2 1 - F1

Cloze
Generative 10 1 - CorrectCount

Multiple Choice 21 2 - Accuracy

Text Pair Classification Text Pair Classification 57 30 96 Accuracy

Span Text Classification Span Text Classification 4 1 - Accuracy

Text Editing Grammatical Error Correction 10 1 - SeqCorrectCount

Question Answering

Extractive 80 18 185 F1

Multiple Choice 72 2 - Acc.

Open Domain 4 2 - ExactMatch

Conditional Generation

Machine Translation 242 60 170 Bleu

Summarization 251 55 - Bleu

Code Generation 4 5 - Bleu

KG Prediction KG Prediction 3 1 28 Hits

Language Modeling Language Modeling - - - Perplexity

Table 1: Overall Statistics of supported tasks, datasets and system outputs. We currently have 1128 system outputs

across 6 tasks and 62 languages. Refer to §5 for a detailed analysis.

and NusaCrowd (Cahyawijaya et al., 2023), which

are all included in GlobalBench. In contrast, the

estimated demographic- and linguistic- weighted

utility for tasks like KG link prediction or multiple-

choice QA are low. These are tasks where intensive

data creation efforts have traditionally focused on

English. The multilingual datasets that do exist are

less widely used and/or not yet included in Glob-

alBench. However, GlobalBench can help iden-

tify these coverage failures and improve accuracy

(§5.3).

Linguistic vs. demographic utility: In addition,

we observe that overall linguistic utility scores

across all tasks are very low, and substantially

lower than the corresponding demographic utility

scores. For instance, the demographic utility score

for NER is 0.4489, while the linguistic utility score

for the same is only 0.0067. This makes clear that

the systems submitted to GlobalBench are currently

doing a better job of covering widely-spoken lan-

guages, but are doing less well at covering all of

the languages in the world.

Equity of systems across languages: Since we

calculate the Gini coefficient accounting for all

6671 languages, all values are extremely high (near-

ing 1). Text classification and KG Prediction only

have datasets for English, hence the Gini values

almost equal 1. We also note that, despite NER

Task Demo. Avg. ↑ Ling. Avg. ↑ Gini ↓ % Pop.

NER 0.4489 0.0067 0.9920 59.34%

Extractive QA 0.3460 0.0020 0.9975 44.46%

Text Pair Classif. 0.3465 0.0019 0.9976 39.02%

MT 0.0485 0.0002 0.9987 10.58%

Text Classif. 0.0477 0.0001 0.9997 4.72%

KG Prediction 0.0221 0.0001 0.9998 4.72%

Table 2: Demographic and linguistic global averages,

equity values (Gini), and percentage of world population

covered by current submissions of system results to

GlobalBench. Only showing tasks with at least one

system submission.

and MT having the same language coverage, MT

has a higher Gini value, indicating that amongst

the languages supported, NER has a more uniform

distribution of performance as compared to MT.

Variation across languages per task: We also

maintain a ranking of system performance for each

language as described in §2.2. For each task, we

take the highest performance amongst all systems,

to represent the performance for a (task, language)

pair. Next, we rank all system performances across

languages for each task. For example, suppose we

have 4 systems with performances P1, P2, P3, and

P4 for task T1, where P1 and P2 are in language L1,

and P3 and P4 are in language L2. If P1 > P2, then

P1 is used to represent the performance of T1 in L1;

similarly, if P3 > P4, then P3 is used to represent

the performance of T1 in L2. We then rank the
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(a) NER

(b) KG Link Tail Prediction

Figure 4: Variations across languages for a task: Rank-

ing of system performance for each language in NER

(above) and KG Prediction (below).

system performances of L1 and L2 under task T1,

i.e., we compare P1 and P3 to see which language

sees higher system performance. Figure 4a shows

a chromatic visualization of system analysis across

language populations for NER. GlobalBench sup-

ports 78 datasets and 60 languages for this task, and

sees 450 system submissions of this task. There-

fore, we can see high system performances for

many languages. However, KG Link Tail Predic-

tion does not have many submitted systems (28),

with monolingual coverage and low performance,

as shown in Figure 4b. For a more comprehensive

set of chromatic analysis figures for each task with

system outputs, please refer to Appendix §A.2.

5.3 Measuring improvement with

GlobalBench

Another major focus of GlobalBench is to mea-

sure and encourage improvement in the quality of

language technology systems.

5.3.1 How have we improved?

GlobalBench keeps track of when each submission

was made, making it possible to examine global

progress in NLP over time. To give one example

of this, in Figure 5 we show how dataset submis-

sions have helped increase the global averages for

NER in the recent past. [Switch to use publication

date of datasets/systems to address reviewer3’s question B

–YS] Specifically, the earliest time point only cov-

ered English datasets, leaving both averages rela-

(a) Demographic global average

(b) Linguistic global average

Figure 5: A snaphsot capturing the increase in global

averages for NER in the recent past, with the addition

of new datasets.

tively low. In the second datapoint, systems for

African languages from the MasakhaNER dataset

were added (Adelani et al., 2021), significantly rais-

ing the linguistic average. In the third datapoint,

systems from the XTREME benchmark (Hu et al.,

2020) were added, covering a more populous set

of languages, significantly raising the demographic

average.

5.3.2 Where can we improve?

The variety of analysis in the previous section is,

in a sense, backward-looking: it looks back at the

progress that has already been made. In order to

instead get a better idea of how we may improve

our systems in the future, we use the methodology

in Section 2.3 to identify most under-served lan-

guages in GlobalBench, which are the languages

with relatively high populations and relatively low

scores for each of the tasks. To display in Global-

Bench, we choose a parameter of τ = 0.4, which

allows us to moderate between considerations of

serving all speakers in the world and serving all

languages in the world.

We show the three most under-served languages

for each task in Table 3.4 From these statistics we

observe some interesting trends. First, for tasks

where the most widely spoken non-English lan-

4Note that for the purpose of these statistics, we use the
source language for the machine translation task.
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Task Lang 1 Lang 2 Lang 3

Named Entity Recognition cmn pnb wuu

Extractive QA por jpn urd

Text Pair Classification ben por ind

Machine Translation cmn spa ara

Text Classification cmn spa ara

KG Prediction cmn spa ara

Table 3: Most under-served languages for each task (by

ISO 639-3 language code).

guages in the world, Mandarin Chinese (cmn),

Spanish (spa), and Arabic (ara) are not covered,

these are selected the most under-served languages.

However, for the tasks with better language cov-

erage such as NER, extractive QA, and text pair

classification, the most under-served languages

are ones with relatively high population that are

nonetheless not covered well by existing multilin-

gual datasets that have been included in Global-

Bench. This indicates a need for more creation or

incorporation of datasets for major languages such

as Punjabi, Wu Chinese, and Portuguese, which

have been overlooked by existing composite bench-

marks.

6 Related Work

From datasets to benchmarks Given the ubiq-

uitous use of NLP technology in applications, it is

imperative to track and maintain progress across

a variety of NLP tasks. Evaluating and compar-

ing systems on a single task can also be problem-

atic; past work has identified issues with standard

datasets (Artetxe et al., 2020; Gururangan et al.,

2018). As the field has progressed, several bench-

marks have been released to spur the development

of generalizable NLU systems. GLUE (Wang et al.,

2018) was one such benchmark with a collection

of 9 diverse NLU tasks (sentiment analysis (Socher

et al., 2013), natural language inference (Williams

et al., 2018), etc.), contrary to prior benchmarks

that focused on datasets for a single category of

tasks (Conneau and Kiela, 2018). SuperGLUE

(Wang et al., 2019) updates GLUE by introducing

a new set of harder tasks like commonsense rea-

soning (Zhang et al., 2018) and question answer-

ing (Khashabi et al., 2018). The recently released

BIG-bench (Srivastava et al., 2022) consists of a

diverse set of 204 tasks, aimed at specifically evalu-

ating the capabilities and limitations of large LMs.

Finally, Dynabench (Kiela et al., 2021) is a human-

and-model-in-the-loop platform, for dynamic data

collection and benchmarking, which currently sup-

ports ten tasks. Notably, none of these benchmarks

provide utility/equity measures, or a reward struc-

ture that incentivizes progress towards the most

under-served languages.

Moving beyond English While the aforemen-

tioned benchmarks have driven progress in NLP

for English, there have been several recent efforts

made towards other languages as well. Multilin-

gual composite benchmarks such as XTREME (Hu

et al., 2020), XTREME-R (Ruder et al., 2021),

and XGLUE (Liang et al., 2020) are a collection

of datasets in a variety of tasks and languages.

XTREME includes 9 tasks across 40 languages,

XTREME-R includes 10 tasks across 50 languages

with 198 datasets, and X-GLUE improves GLUE

(Wang et al., 2018) by including 11 cross-lingual

tasks. However, all of these are static and lack the

goal to be an all-inclusive, ever-expanding collec-

tion of datasets. Beyond these, there have been

directed efforts towards dataset curation, especially

for the low [text] resource. MasakhaNER (Adelani

et al., 2021) supports a large dataset for NER task

of 10 African languages. IndoNLU (Wilie et al.,

2020) is the first vast resource Indonesian bench-

mark, and the KLUE benchmark (Park et al., 2021)

focuses on 8 diverse tasks in Korean.

In sum, while all of the above efforts have been

impactful, none have had the goal to track global

progress made by us as a research community, and

design a reward system that incentivizes both data

and model work, especially for the under-served

languages. With GlobalBench, we propose a first

step to bridge this gap and move towards inclusive,

multi-faceted measurement of progress.

7 Conclusion

In this paper, we introduce GlobalBench, an ever-

expanding collection of datasets and models span-

ning all tasks and languages within NLP. Our aim

is for the community to move towards a common

goal of building NLP technology that equitably

serves all of the world’s citizens. To achieve this,

we design a leaderboard resting upon three founda-

tional principles: i) inclusivity: we track progress

across all tasks and datasets for 6671 languages; ii)

multi-faceted evaluation: our evaluation measures

the per-speaker utility and equity of submitted sys-

tems, and also maintains a list of most under-served

languages; iii) reward improvement: we reward

data and modeling efforts that help improve utility
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across languages, rather than simply maintaining

the best-performing systems. Analysing the 1,128

system outputs already integrated within Global-

Bench, reveals that NER has the highest utility at

present, but is also least equitable. The combina-

tion of high demographic and low linguistic utility

underscores that efforts have been mostly limited

to populous languages. Finally, we identify that the

most under-served languages vary across tasks, but

are primarily the ones with relatively high speaker

population, but nonetheless low coverage in our

datasets. All in all, we believe that GlobalBench is

one step towards measurable progress in improving

the global quality and equity of languages tech-

nologies for all speakers in the world, and we hope

the rest of the research community will join us in

pursuit of this goal.

8 Limitations

GlobalBench is a broad-reaching effort that has the

ambitious goal of measuring performance across all

languages in the world. However, to even take the

first steps towards this goal we needed to make a

number of approximations, which are also inherent

limitations of the current work.

Inclusivity vs. Comparability: Inclusivity

across datasets doesn’t come without its downsides.

With the goal of covering all datasets, we lose some

measure of control to GlobalBench. When evalu-

ating global progress of language technology for

particular tasks, GlobalBench uses multilingual

datasets that may come from distinct sources or

have dissimilar genres, causing the difficulty of

each dataset to vary. Since GlobalBench doesn’t

take into consideration the differences in diffi-

culty among datasets of different languages, dis-

tinct datasets across different languages might not

be directly comparable. However, this is com-

mon practice for previous benchmarks such as

XTREME (Hu et al., 2020) and Universal Depen-

dencies (Nivre et al., 2016). Furthermore, we ex-

pect the law of averages to even out this issue as

we keep collecting diverse datasets across domains

for each language.

Languages vs. Language Varieties: In addition,

while GlobalBench relies heavily on distinctions

between languages, language boundaries are neb-

ulous, and many dialects or language varieties ex-

ist. If datasets annotated with language varieties,

as well as demographic information regarding the

number of speakers of these varieties existed, such

information could be incorporated within Glob-

alBench at a future date. But the current results

reported in this paper do not consider this informa-

tion.

Reliance on Performance and Population-based

Demand Measures: Currently, GlobalBench re-

lies on standard performance measures such as ac-

curacy, F1, and BLEU to approximate the utility

that would be provided by a system to a poten-

tial user. However, in reality there is not so direct

of a connection between model performance and

whether it is actually serving speakers of a partic-

ular language well. In addition, we use the first-

language speaking population as an approximation

for the demand for a language technology in a par-

ticular language. However, this disregards second-

language speakers, and cannot take into account

the case where there may be differing demand for

particular pieces of technology by speakers of dif-

ferent languages.

Possible Bad Actors: Bad actor is a common

concern for benchmarks working on such incen-

tives like GlobalBench. While there may be differ-

ent varieties of bad actors – those who explicitly

cheat, or those who don’t explicitly cheat but at-

tempt to get a good score on the benchmark without

solving the underlying problem. For the time being,

we intend to manually identify and disqualify the

former, and we believe that our multi-faceted and

broad-spanning approach benchmarking approach

may be a sufficient deterrent for the latter.
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A Appendix

A.1 Tasks, Datasets and System Outputs

We summarize the tasks and all datasets for which

GlobalBench sees submissions of system outputs.

The datasets cover a wide range of languages and

domains, and vary in terms of size and complexity.
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Text Classification This task involves classify-

ing text into one or more predefined categories (one

label is associated with each sequence). An exam-

ple of this would be classifying the sentiment of a

movie review to be either positive, negative or neu-

tral. GlobalBench covers the following datasets for

this task: the QC (Question Classification) dataset

(Li and Roth, 2002), the ATIS (Airline Travel In-

formation Systems) dataset (Hemphill et al., 1990),

the MR (Movie Review) dataset (Pang and Lee,

2005), the SST-2 (Stanford Sentiment Treebank)

Corpus (Socher et al., 2013), datasets from GLUE

(the General Language Understanding Evaluation)

benchmark (Wang et al., 2018), and the Code-

Switching Corpus (Ostapenko et al., 2022).

Sequence Labeling This task involves label-

ing each word or token in a sequence with

a specific tag, requiring contextual understand-

ing at the token-level. We cover three tasks

here: Named-Entity-Recognition (NER), Word-

Segmentation, and Chunking. NER aims to iden-

tify and classify named entities, such as person

names, organizations, and locations, in a piece

of text. Word-Segmentation involves identifying

the word boundaries of certain languages like Chi-

nese, Japanese, and Thai. Chunking involves divid-

ing text into syntactically and semantically coher-

ent chunks or phrases for languages like Chinese.

GlobalBench covers the following datasets for this

task: the MasakhaNER Corpus (Adelani et al.,

2021), the CoNLL-2003 dataset (Tjong Kim Sang

and De Meulder, 2003), and the PAN-X dataset

(Artetxe and Schwenk, 2019).

Cloze This task involves filling in missing words

or phrases in a text, based on the context provided

by the surrounding words. We focus on multiple-

choice cloze and generative cloze. The former in-

volves filling in the blanks with one of several op-

tions, while the latter involves filling in the blanks

for a given prompt.

Text Pair Classification This task involves clas-

sifying the relationship of pairs of texts, such as

determining whether two sentences are paraphrases

of each other, or contradict each other. A widely

known example is that of natural language in-

ference, where the task is to predict whether a

given hypothesis can be entailed from or contra-

dicts a premise. GlobalBench covers the follow-

ing datasets for this task: the Cross-lingual Natu-

ral Language Inference (XNLI) corpus (Conneau

et al., 2018), the Stanford Natural Language Infer-

ence (SNLI) corpus (Bowman et al., 2015), and the

Sentences Involving Compositional Knowldedge

(SICK) dataset (Marelli et al., 2014).

Span Text Classification This task involves clas-

sifying a span of text within a larger piece of text,

rather than the whole text. Here, we include aspect-

based sentiment classification as a task, which in-

volves predicting the sentiment of certain features

within a sequence.

Text Editing This task involves making correc-

tions or improvements to a piece of text given some

requirements, such as fixing grammar or spelling

errors. We include the task of grammatical error

correction here.

Question Answering This task involves gener-

ating answers to questions either given a context,

or in an open-ended fashion. We focus on three

tasks: extractive QA: extracting the answer span

from a given context, multiple choice QA: answer-

ing a question based on a set of given options, and

open-domain QA: answering questions from an

open domain, such as general knowledge or current

events. GlobalBench covers the following datasets

for this task: XQuAD (Artetxe et al., 2020), Ty-

DiQA (Clark et al., 2020), SD-QA (Faisal et al.,

2021), and MLQA (Lewis et al., 2020).

Conditional Generation This task involves gen-

erating text based on certain conditions or con-

straints. We focus on three tasks: machine trans-

lation (MT), summarization, and code generation.

Machine translation involves translating text from

one source language to another where possible

MT pairs are counted by considering every pos-

sible pair of languages, summarization involves

generating a concise summary of articles or doc-

uments, and code generation involves generating

a program in a programming language given an

input command in natural language. GlobalBench

covers the following datasets for this task: datasets

from the Fifth Conference on Machine Transla-

tion (WMT20) shared tasks5 and datasets from the

Gaokao benchmark (Yuan and Liu, 2022).

Knowledge Graph Prediction This task in-

volves reasoning over knowledge graphs (KG), for

example, predicting missing or unknown facts in a

KG, based on information contained in the graph.

5https://www.statmt.org/wmt20/
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We include the KG link tail prediction task, which

aims to predict the tail entity of missing links in

knowledge graphs. GlobalBench covers the follow-

ing datasets for this task: WordNet18RR (Shang

et al., 2019), FB15K-237 (Bordes et al., 2013).

Language Modeling This task involves predict-

ing the next token in a sequence, given the con-

text of previous tokens. It is a fundamental task

used to pre-train decoder models, which are further

adapted for downstream applications.

A.2 Visualization of System Performance

across Language populations

We visualize system performances across language

populations for each task with at least one system

output, as shown in Figure 6.

A.3 GlobalBench UI

Figure 7 shows the User Interface of GlobalBench

Text Pair Classification task. On the top left of the

webpage, there is a brief description of the task.

Participants will be able to see the statistics of all

analyses. For instance, under the Demographic-

Weighted Global Average analysis, there is the

overall Demographic Average of this task and the

diachronic figure representing how the the over-

all Demographic Average of this task has changed

over time.
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(a) KG Link Tail Prediction (b) Text Classification

(c) Machine Translation (d) Text Pair Classification

(e) Extractive QA (f) Named Entity Recognition

Figure 6: Visualization of System Performance across Language Population

Figure 7: GlobalBench Text Pair Classification task UI
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