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Abstract

This study formally adapts the time-domain linear sampling method (TLSM) for ultra-
sonic imaging of stationary and evolving fractures in safety-critical components. The TLSM
indicator is then applied to the laboratory test data of [23, 19] and the obtained recon-
structions are compared to their frequency-domain counterparts. The results highlight the
unique capability of the time-domain imaging functional for high-fidelity tracking of evolv-
ing damage, and its relative robustness to sparse and reduced-aperture data at moderate
noise levels. A comparative analysis of the TLSM images against the multifrequency LSM
maps of [23] further reveals that thanks to the full-waveform inversion in time and space,
the TLSM generates images of remarkably higher quality with the same dataset.

1 Introduction

Recent laboratory implementations [3, 23] of the linear sampling method (LSM) [8, 4] for ultra-
sonic imaging showcase a unique opportunity for almost real-time reconstruction of anomalies
with exceptional resolution and flexibility in terms of sensing configuration. In [3, 23], the
data inversion is conducted in the frequency domain by deploying the most pronounced spectral
components of the (time-domain) measurements. More specifically, [3] uses an adaptation of
LSM in the modal space to recover the support of damage in an elastic waveguide, while [23]
directly computes the sampling indicator from the Fourier-transformed boundary measurements
to reconstruct a partially-closed stationary fracture in an elastic plate. Demonstrating success in
imaging with dense datasets, these studies simultaneously expose the sensitivity of the frequency-
domain LSM to noise especially with sparse data. The latter was displayed by the emergence
of many reconstruction artifacts and failure to recover parts of the hidden scatterer. To resolve
this, [23] applies the generalized linear sampling method (GLSM) [1, 20] to the same dataset
and the results show remarkable improvement. The GLSM furnishes a more robust imaging tool
by eliminating a heuristic assumption involved in the design of LSM imaging functional. More
specifically, the GLSM takes advantage of a symmetric factorization of the scattering operator
along with coercivity of the resulting middle operator to carefully construct a new cost function
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whose minimizer carries suitable properties for a more stable imaging indicator. The robustness
of GLSM, however, comes with the cost of a slower reconstruction due to the more complex
minimization of its associated cost function. Also, while the more rigorously built GLSM gen-
erates higher quality images, the inversion still occurs in the frequency domain which could be
another source of sensitivity to sparse imaging — since instead of full-length time signals, only a
discrete subset of their spectra is used for computing the LSM indicator maps. In light of this,
there are ongoing efforts to formally extend the GLSM indicator for inverse scattering in the
time domain, e.g., [5, 13].

Motivated by the promise of spatiotemporal full-waveform inversion and in light of recent
developments on inverse electromagnetic and acoustic scattering in the time domain [7, 12, 9, 6],
this study rigorously formulates the time-domain LSM for elastic-wave imaging of crack networks
in solids. The TLSM indicator is then applied to the laboratory test data in [23] and the results
are compared to multifrequency LSM reconstructions from the same dataset. It should be
mentioned that [23] is focused on single-step imaging of stationary scatterers where experiments
are conducted on (a) intact specimen before mounting in a MTS load frame for fracturing,
and (b) fractured specimen after dismounting at 60% of the maximum load in the post peak
regime. The ultrasonic measurements in (a) and (b) are then used to compute the scattering
signatures of a partially closed fracture in the specimen for constructing the LSM maps. On
the other hand, [19] reports a complementary suit of ultrasonic experiments conducted during
fracturing when the same specimen is in the load frame. These measurements have so far been
only used for sequential recovery of (geometric and interfacial) evolution via the differential
imaging method [21]. In this study, we take advantage of the dataset in [19] at 75% and 90% of
the maximum load for single-step reconstruction via TLSM to further examine the capacity of
this indicator for tracking of evolving anomalies.

This paper is organized as follows. Section 2 presents the direct scattering problem and the
affiliated dataset for inversion. Relevant function spaces along with the admissibility conditions
for parameters, such that the forward problem remains wellposed, are discussed in Section 3.
Section 4 defines the near-field elastic scattering operator and its factorization. This is followed
by establishing some results on the properties of involved operators. Based on the latter, the
time-domain LSM indicator is introduced in Section 5. Section 6 is dedicated to implementation
of this imaging modality to laboratory test data and comparing the results with the correspond-
ing frequency-domain reconstructions. Finally, a summary of the main findings is provided in
Section 7.

2 Problem statement

We consider the elastic-wave sensing of a fracture I' ¢ R? embedded in a homogeneous, isotropic,
elastic solid endowed with the mass density p > 0 and Lamé parameters p and A, satisfying
> 0and XA+ 2u > 0 [17]. The fracture is characterized by a heterogeneous contact condition
to describe the spatially-varying nature of its rough interface. For a given vector p € R3, T is
illuminated by an incident point source which is convolution in time of the Green dyadic with a
generic pulse Y,

w (2, 6y, p) = [x() * (2,5 y)p] (1), (2,1) € R*\{y} x R. (2.1)



Here, II is the fundamental displacement tensor which may be recast as

t—le —yl/\/i/p)
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where I3 is the 3 x 3 identity dyadic. The corresponding scattered field v solves

{ V- (C:Vv(x,t) — pV(x,t) = 0 | in R\ xR, 22)
n-(C:Vv(zx,t) = K(z)[v(z,t)] — t'(z,t) on I'xR,
subject to the causality condition

v(z,t) =0 for t<O. (2.3)
The elasticity tensor C is given by

C = Mz ®I3 + 2uly,
with Iy denoting the 4th-order symmetric identity tensor; [v] = [v" — v~] is the jump in v

across ['; t' = n - (C : Vu&) is the free-field traction vector; n = n~ is the unit normal on I’;
K = K(x) is a symmetric matrix of the specific stiffness coefficients.

Remark 2.1. In what follows, all quantities are rendered dimensionless by taking p, u, and R—
the characteristic size of a region sampled for fractures—as the respective scales for mass density,
elastic modulus, and length, which amounts to setting p=pu=R=1 [2].

The inverse problem is to reconstruct I' from the partial knowledge of the scattered waves
on some measurement surface I';, C R3\I'. The measured data set is

{v<$7t’y7p) NS Fm7 Yy € Fi7 t e Ra P S {ek}k:1,2,3}7

where v(zx,t;y,p) is the scattered field for an incident point source emitted at y € T'; C R3\I'
and {ey}r—123 is the unit coordinate vectors in R>.

Remark 2.2. It should be mentioned that the ensuing analysis does not hold in the case where
the observation surface is embedded in the fracture support i.e., I'y, C I'. However, if I'y, N
{R3\ T} # 0, then including additional measurements on a subset of I' does not change much
in the theoretical results and may increase the reconstruction quality. The latter is relevant to
down-well imaging of hydraulic fractures [22] where it may be the case that Ty, N T # (.



3 Well-posedness of the forward scattering problem

We shall analyze the scattering problem (2.2) with p = 1 by deploying the Laplace transform as

n [12]. Given the Hilbert space X, we denote by Z(R; X) = C§°(R; X) smooth and compactly
supported X-value functions. Further, 2'(R; X) are X-valued distributions on the real line and
the corresponding tempered distributions are ./ (R; X). For o € R we set

ZI(R; X) = {f € 7' (R; X): e_”tf(t) € y’(R;X)}.

For f € Z.(R; X), define the Laplace transform with respect to the time variable as
(Z0)6) = Fo) = [ i = FE . s = ntio

—0o0

For 0¢ € R, we denote
Coy i ={5€C:Qs<0p}.
Formally applying the Laplace transform to (2.2), observe that v(x, s) satisfies

. :Vv(x, s $2v(xz, s) = in 5
{v<c.v(7>)+ (z,5) = 0 RAL, (3.4)

n-(C:Vy(z,s) — K@) [v(z,s)] = —t'(z,s) on T.
Now, the objective is to establish explicit bounds on V(x,s) in terms of s € C,,. In this

vein, with reference to [10], let us define a frequency dependent norm on H*(D)? for a Lipschitz
domain D as the following

1, )l 2 (pys = \//D (IVu(z, 5)? + [su(e, s)|?) da,

which is equivalent to the usual norm H'(D)3 if s # 0. Similarly, frequency dependent norms
exist for the trace spaces H*/2(9D)? on the boundary, see [17] for the general definition. The
latter may be defined on @D using the spatial Fourier transform .# in .#/(R?), local charts
®;: R? — 9D, and the associated partition of unity x;: 9D — R, j =1,...,N, by

N
+1/2 .
H¢('73)”i[$1/2(ap)3 = Z/R2 (s + |z|?) / | Z[(x;¢) o ®;(x)]|*dz, s€R+io, g >0.
j=1

When equipped with these norms, the spaces H, Si 1/2 (OD)3 are dual to each other for the duality
product extending the L? inner product (f, g)op = faD g-fds.

Next, it is assumed that the fracture surface I' may be arbitrarily extended to a piecewise
smooth and simply connected surface 9D enclosing the bounded domain D such that the normal
vector n to the fracture surface I" coincides with the unit outward normal vector to dD. Moreover,
I" is an open set relative to 0D with a positive surface measure. In this setting, let us define

HEPC® = (] fe HE/0D) ),

AE2(rp = {f € H¥'*(9D)* : supp(f) C f} :

4



Given the above, note that H;l/z(f‘)3 and fI;l/2(F)3 are respectively the dual spaces of
ﬁsl/Q(F)3 and HSI/Q(I‘)?’ so that the following embeddings hold
HY()* ¢ HYA() € Li(T)* € HVA(D)* ¢ H V(1)
Remark 3.1. For brevity, a short-hand notation is used in what follows for the vector norms
such that e.g., || - HHS”Z(F)C*» is implied by || - ||H;/2(F).

In the context of (2.2), given v € H{ (R*\T')® then, by the trace theorem, [v] € H1/2( )3 [17].
Let us define by trp: v — [¥] the trace operator from H'(R3\I')® into HY/2(I").

Lemma 3.2. Let o9 > 0, there exists a constant C' > 0 depending only on I' and oy such that
||trr§”gs1/z(r) < C”G”H;(RS\F) Vv e Hl(Rg\F)3, s € Cgy.

Now, we are in position to investigate the well-posedness of the direct scattering problem
(3.4). This problem can be written variationally in terms of v € H'(R3\I')?

AW, w) = g(w), Ywe H' (R\I')?, (3.5)
with
AW, w) = —32/ W-vdx + Vw: C: Vvdz + (K[v], [w])p, (3.6)
R3\T R3\T

where (-, -)r denotes the duality product (H~Y2(I"), H/?(T)), and

g(w) = / [W] - t'dS.
r
Then we have the following result.

Theorem 3.3. Given the symmetric, real-valued, and positive semi-definite stiffness matriz
K € L®()3*3, let s € C,, for oo > 0 and assume that t' € H-Y2(T')3. Then, (3.4) has a
unique solution V(-,s) € HY(R3\I')3. Moreover, there exists a constant C depending only on og
and I' such that

G, )l @syey < Clo0, DISIE )l 2 (3.7)

Proof. As mentioned earlier, v solves (3.4) if and only if (3.5) is satisfied. Multiplying A(V, w)
defined in (3.6) by 5 := in + o, taking the real part, and setting w = v, one obtains

R (A, 9) — a(/ 1592 da + vv:c;vvdx+/[[v]]-1<[[v]]ds)
R3\T R3\I r

v

CUOHGH%I;(RC*»\F)-

This shows that (3.4) admits a unique solution. Further, since A(V,V) = g(V) we have

(/ [[v]]dS)
< \/\SP
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The last inequality comes from Lemma 3.2. Thus, the announced estimate (3.7) is proved. [

For m € R and o € R, we introduce the Hilbert space

co+io

HI(R: X) = {f e 2y®:x), [

—00+10

s F(s) 1% ds < oo},

endowed with the norm

oco+io R 1/2
T ( / |8|2m||f(8)||§(ds> , (35

—oo+io

see, e.g., [11, 24].

Remark 3.4. For simplicity, we use H;nhl, H;"fﬂ/Q and ﬁ;nfﬂﬂ to denote HI'(R; X) with
X =HIR3\I)3, X = HS:IEI/Q(F)3 and X = I;TS:H/Q(F)?’ in the rest of this paper, respectively.

As a consequence of Theorem 3.3 and the use of Laplace transform, one gets the following
result.

Proposition 3.5. Let og > 0 and assume that t* € H;n;rl’_lﬂ for some m € R. Then problem

(2.2) has a unique solution v € H:lg’ll with o > og. Moreover, there exists a constant C depending
only on og and I" such that

HVHH:}S’; < C(Uov F)HtiHH:;-L—UQ,

for all o > oy.

Now we can define the solution operator G to problem (2.2) as
G:HI'ENTV2 S BT defined by G(E) = v, (3.9)

where v € H:h”Ql is the unique solution of (2.2) for ¢ > 0 and m € R. Proposition 3.5 ensures
that this operator is well defined and bounded.

Remark 3.6. With reference to the Paley- Wiener theorem [10, Theorem 1], the uniform bound
in. Theorem 3.3 with respect to s € Cq, and the fact that if s — t'(-,s) is holomorphic in Cg,
with values in H=Y/2(T) then s — V(-,s) is holomorphic in Cy, with values in L*>(R3\T) implies
that if t° satisfies the causality condition (2.3) then the unique solution in Proposition 3.5 also
satiesfies (2.3).

As a consequence of Proposition 3.5 and Remark 3.6, one observes in particular that if x is
a C™*2_function with compact support then the scattering problem (2.2) has a unique solution
in H;an with o > 0 since t' =n- (C: Vu!) € H‘T;l’_l/Q

for x € C™*2. Moreover, if y vanishes
for t < T then the solution also vanishes for ¢t < T



4 Factorization of the near-field operator

Let x € C™*2? with m € N be a smooth excitation function with compact support in time, and
define Vy: = [vy1 Vy2 Vy,3] wherein (vy ;)r=123 denotes the scattered field solving (2.2) for
the incident field u;(m,t;y,ek)k:m’g in (2.1). In this setting, given the density distribution

H;nro, the near-field operator NX is defined by

(NXg)(z,t) := /R/ VX(x,t —1;y) - g(y,7)dydr, (x,t) € T), xR. (4.10)

From the linearity of the scattering problem with respect to the incident field, observe that
NXg in (4.10) is the trace (on I'y,) of the solution to (2.2) with the incident u, replaced by the
(regularized) retarded potential Lr g as

o = [ [ Uit oy
= [x(") * (L, g)(x, )| (t), (z1)¢€ R?)\Fi X R, (4.11)
wherein UY, := [u, 1 uy 2 uy 3] which may be recast as
. t=lz—yl/v/n/
Ul tiy) = (T Va0 V) i L )
) ¥ (t=le = yl/ VO +200)/p)
+ Ve ® Vg :
A+ 2p [z — y
and
(ro)wn) = [ [ Mty gty ayir

= [ M) o)y, (.0 € @) xR

From (4.11), since Liﬁi is a time convolution operator for the regular density y with compact
support, we have

—

L} 9(@,5) = (L¥ (5)5(9)) () (4.12)

for £ € R3\I'; and s € C, where

—

LX.(s) = %(s)Lr, (5),

with fp\z(s) similar to the single layer potential in the frequency domain

(Tr.980:9) (@) = [ Tilesv) 5wy, @R



Assumption 4.1. The pulse function x : R — R is a non-trivial and causal C3-function such
that its Laplace transform is holomorphic in Cqy and has a cubic decay rate,

Rs) < ’SC s € Co. (4.13)

This assumption is not strictly necessary but allows us to use relatively simple function

spaces in the main result of this paper. Slower decay rates would essentially change the time

regularity of all later results. It should be noted that Assumption 4.1 is satisfied by causal
C3-functions with compact support.

We also need the following assumption in order to apply some unique continuation argument.

Assumption 4.2. We assume that 0D that contains I is an analytic surface. We also assume
that I'; and 'y, are respectively parts of some analytic boundaries of simply connected domains
B; and By, enclosing D. In the case I'; = 0B; (T'y, = 0By,) the boundary 0B; (0By,) can be
assumed to be only Lipschitz continuous.

From now on in this section and in Section 5, Assumptions 4.1 and 4.2 are assumed to hold.

Lemma 4.1. For m € R, 0 > 0 and Q; := R3\I;, the operator LX : H;nf_lm — H;n;{im

18 bounded and injective. Moreover, the operator trpLiﬁi : H;nle/Z — Her2 172

injective with dense range.

s bounded,

Proof. For any g € H;nle/ 2, using the norm definition given in (3.8), we have
oo+io ) ) T )
LKl = [ POITE )l ds
—00+10

co+io o
< [ PR PIZE )

—oo+io

In addition, given the following (see e.g., [16, 14])
e 8oy < C@ DIl G0 yorva

together with assumption (4.13), one may deduce that there exists a constant C' such that

co+io

I8 < C [ s 215 s s = Clgl

co+io rf i

The boundedness of the operator trrLﬁ : H;nle/ 2 ﬁ:%;f 212 follows from Lemma 3.2.

To prove the injectivity of L%‘i, suppose that Lifig =0 forge Hg}zl/Z, then
R(S)Lr, ()g(s,-) =0 in RA\T for ae. s € R+ io.

Our assumptions imply in particular that the zeros of X(s), s € R+io form an at most countable
discrete set without finite accumulation point. Hence, EE(S)Q\(S, ) = 0 in R3\I; for a.e. s €
R + 0. Since the operator fE(s) . H7V2(Ty) — HY(R3\IY) is injective for all s € R + io
(see [16]), we obtain g(s,-) = 0 on I'; for a.e. s € R + ioc which implies that g = 0. The



injectivity of trpLiﬁi can be proved in a similar way using the injectivity of the operator trrLifi (s)
for a.e. s € R+ io (see [12]).

Finally, the denseness of the range of trpLifi can be seen by showing that the L?-adjoint of
trpLﬁ is injective. Let A* denote the adjoint of an operator A, then

(trFL>F<i> - X(_') * (trFLFZ')* = B,
where

[(trrLy,)" k| (z,t) = /F I(x,—;y) *xh(y,")] (t)dy, (x,t) el xR

* -~ /
The injectivity of (trpL’lfi) on (H;n;r 21 2) = H:;”F_ 2712 can be also checked by analyzing

the injectivity of the Laplace transform of (tI‘FL?i) on the R —io line. Now, in light of (4.12),
define

B(s) = X(~s)trr, Lr(~s),

so that following a similar argument used for the injectivity of trpL%“i, one obtains the desired
result as a consequence of the injectivity of trpil/;(—s) . H-'V/2(Ty) — HY2(D) for a.e. s € R—io
(see [12]) which completes the proof. O

Remark 4.2. Note that in Lemma 4.1, the space H‘TEUQ can be replaced by H;nf(z since the
later space is continuously embedded in the former one.

For m € R and o > 0, denote
?Q::{ueHgng:V-(C:Vu)—ﬁ:O in ]R3\F><R},

where the differential equation holds in the distributional sense. Then we introduce the free-field

. —-1/2
traction operator 1t : X' — H;nr /

Tru=n-(C:Vu) ‘F.

Lemma 4.3. For m € R and o > 0, the operator It : X' — H;nl’:lp is bounded when X

18 equipped with the norm on H;ng’ll.

Proof. For any u € X, we have

) co+io ) _ )
[Trull e —1e = / || | Tra, s)[IY 12 . ds
Ha,I‘ e —oo+io ’ Hi ! Q(F)

co+io
= [ s (C s TR s

For s € R+io, p € L?*(Q)3 such that div p € L?(£2) there exists a constant C' independent from
s such that (see [12, Proposition 9])

I Bll 2y < C (Il z2gye + ldiv B/l lzcay) -

9



Therefore, for u € X', using V- (C: Vu(,, s)) = —sd(+, s) in €, we deduce
I (C: VAC, ) [0z C(IIC: Va(, 8)ll p2eearys + V- (C 2 VA(, 5)) /]s]| L2 govry)

< Ol 8)| 7 @s\ry:

IN

Thus, we have

oo+io

ITeul, e < / [5G )17 ey ds = Cllullfm,

oco+io

This completes the proof. ]

Lemma 4.4. Let m € R and o > 0. Ifw € UQ, then there exists a sequence (b )nen in
Hglr_f’o such that

, ~11
LE 4, — w in H'" as n — oo.

m 1/2

Proof. Let w € X o0 , then from Lemma 3.2 we have trprw € H Lemma 4.1 implies that

there exists a sequence (1, )nen in H;npi ™ such that

. rm,1/2
trpLiSi () — trrw in Ho',F/ as n — 0o.

Note that both Lf 4, and w solve the elastic wave equation given by (2.2) in @ x R. The
bounds of Theorem 3.3 combined with Plancherel’s identity imply that

| L 4 — W ym—11 < Cltrp LY () — trrwl| gma2 — 0 as n— 0.
v o, v o,

O]

Proposition 4.5. Let m € R and o > 0, then the operator T[‘Lisi : Hﬁ??l/ — Herl T2 4

bounded, injective and has dense range.

Proof. Boundedness follow from the boundedness of L%‘i : H;nle/ 2 H;ngl 21 and the bound-

edness of 1T : XU’QZ_ — Ho,r .

For the injectivity, we assume that TpLﬁ@b = 0 for some ¥ € H ol 12 Then [20, Lemma

5.3] implies Z’f\z(s)zﬁ(, s) = 0 in R3\T for a.e. s € R +io. We conclude, as in Lemma 4.1, that

fp\z(s){b\(, s) = 0 in R3\T for a.e. s € R+ io. The jump relation for EE(S) and the injectivity
of the single-layer operator (see [16]) shows that ¥ = 0.

m+1 -1/2

To prove the denseness of the range of TFLX , consider t € H Since the embedding

H:?g 2 into Herl 1/2 i dense, there exists a sequence (t,,),en C Hm+3 ~1/2 uch that t, —
t in Hm+1 2 Due to Proposition 3.5, there exists v,, — Hm+2 ! such that v, satisfied (2.2)
with t’ = t,,. Lemma 4.4 states that we can approximate v,, by potentials X;’f;f ) Lﬁ‘/’n,l — Vp
as | — oo in Hm+2 ! with (Yn1)ien C H:}:lﬂ, Finally, the continuity of 7t from XZL;{Q into

H:LFH —1/2 shows that

TrL§ oy — Trva =t, asl—ooin Herl 172

m+1 ~1/2

Since, by construction, t, — t as n — oo in H the proof is complete. ]

10



For m € R and ¢ > 0, we introduce a restriction of this operator to I';,,

Gr,, : HI'TV 2 5 A2 defined by Grr,, (t) = tir, G(t)

m

where the solution operator G is defined in (3.9). The well posedness for the forward problem
in Proposition 3.5 and the trace theorem in Lemma 3.2 ensure that this operator is well defined
and bounded.

Lemma 4.6. Let m € R and o > 0, the operator Gr,, : H(T;rl’_lm — I:I(TFZQ s 1njective with
dense range.

Proof. Let v = G(t%) for t' € Herl /2 Assume that Gr, (t') = 0. Then, due to our
assumptions on I',, that is either a closed Lipschitz surface or an analytic open surface, the
unique continuation property and unique solvability of exterior scattering problems at complex
frequencies in R+ io, see Theorem 3.3, imply that v(-,s) = 0 in Q for a.e. s € R+io. Together
with the boundary condition given in (2.2), we have t' = —Tpv + K[v] = 0 by Lemmas 3.2
and 4.3.

Now we prove the denseness of the range of Gr,,. We observe that the range of Gr,, contains
trp,, u where

u(zx,t) := (Lrg)(x,t) = /R/Fﬂ(w,t —7;y)-g(y,7)dyr, (x,t) € R\ xR

for some density g € H_ m+1 U2 This simply comes from the fact that u:= Lrg € H"", ) ! for g€
H;nljl —1/2 (see Lemma 4.1) and it can be written as u = G(t') with t' := Ty Lrg € Hm+1 2
Following the last part of the proof of Lemma 4.1, one may show that

trr,, Lr : H:?;L_lm — I‘}ZLI"IW/LZ
has dense range. This concludes the proof. O

For y € I';, we consider the incident field u given in (2.1) which belongs to X, m+1 ! Due
to Lemma 4.3, we infer that

_ Tru c Hm+1 —1/2

In consequence, Proposition 3.5 implies that the scattered field v(-,-;y) is well defined in

m,1 m1/2

H ¢ and the trace theorem 3.2 implies that trp, v(-,-;y) is well defined in H Since

trp,, v(-,y) = Gr,, T pu;, the linear combination of several incident pulses produces the cor-
responding linear combination of the measurements. Therefore, for regular densities g, the
near-field operator NX simply satisfies

Vo)at) = [ [ Vi@t -rip)-gy.ryar

:cmm(ééfmw—nmgmﬂ@my%w

= GFmTFLﬁg(az,t), (x,t) e T)y x R.
Therefore, the factorization of NX can be written as

NX = Gr, Tr L. (4.14)

11



Proposition 4.7. Let m € R and o > 0, the operator NX is bounded, injective and has dense

~1/2 m,1/2
range from H(TFZ 2 to H;nr,,i .

Proof. This follows from the factorization NX = GFmTpLﬁ_ and Lemma 4.1, 4.3 and 4.6. ]

Remark 4.8. With the notation LZI = HS’IQ, Proposition 4.7 in particular implies that for all
o >0,

X . 72 2
NX:L2p — L2

1s bounded and injective with dense range.

5 Inverse solution
The main idea is to construct an approximate solution to the near field equation
(NXgp)(z,t) = ¢S (,t;d,t.), (x,t) € Tpyx R, (5.15)

where (j)% can be interpreted as a trial radiating field affiliated with the admissible density

¢ e ﬁ:l’Ll/ 2 specified over a smooth, non-intersecting trial fracture L given by

&S (@, t:d, 1) = / / T(z, 7y, t)d - ((t — 7,y)dydr (x,) ER\L xR,  (5.16)
RJL

where d € R? is the polarization direction, and ¢, represents a starting time. Moreover, the
fundamental normal traction T is defined by

T(m7t;y7t0) = 8H(m>t7y7t0)/an(y) (yat) € L X R

The fundamental theorem of linear sampling indicates that the norm of g; is unbounded
when L ¢ T'. Hence, one can construct an image of the hidden fracture I" by plotting L +— 1/||gL||
in the sampling region.

Theorem 5.1. Let o0 > 0, t, € R, d € R?, and some density ¢ € ﬁ;nj’:lp, then
1. For L C T, there exists a density vector gr, . € Lz27,1“¢ such that ||[NXgr,  — ¢§HL2 . Seand

lim,_,q HTFL%CZ-gLﬁHH;;l/Q < 00.

2. For L ¢ T, for all density vectors gr, . € L2 r, such that | NXgr. — ¢%||L2 . <€ one has

lim€_>0 HTFL%igLﬁHHl,;l/Z = OQ.
o,

Proof. Assume that L C I', then qb% € H:@[E{IB\L C H(szl for ¢ € ﬁ;n’Ll/Q by definition (5.16) and

the property of the double-layer potential given in [14, 16]. By extending ¢ from L to I" through

/

zero padding, we have ¢ € ﬁgllll . From the well-posedness of the forward scattering problem

and the fact that T1(t") = [v] = ¢ from H;nr_l’_lm to IEI;HI’}/2 has a bounded inverse (see [20,
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Lemma 5.6]), we know that (,2’)% is the unique causal solution to problem (2.2) with the boundary

data ti =Tr"¢e H;nr_l’_l/Q and

Gr,th = ¢ on T, xR.

Thus, one may approximate t’ , thanks to the denseness of the range of TpL’lﬁi given in Propo-
sition 4.5, such that for € > 0, there exists gr . € L?r,l“i such that

HTFL)lSigL,E - tiLHH:l:L*lM <e A lgf% HTFL%CZ.QL,€||H:;1,71/2 < 00.
The continuity of Gr,, from H;n;r L=1/2 4nto ﬁ:lrlyjz implies that
IN%gre = @S lliz, < ClNYgre = @Gl gorz < CITrLY gre = ti .1/ < Ce.

Now consider the case L ¢ T', we argue by contradiction and assume that there is a positive
sequence (€, )nen and suppose that there exists C' > 0 such that

1T LX 1ol o1v2 < C. (5.17)
Hence, there is a weakly convergent subsequence {gr., } in Lg’Fi. Set t%m = TpLﬁ 9L.en,, s DY
Proposition 4.5, it weakly converges to some t* € H;; 12 Now, let us set

v = G(t),

we have that v € Hgg2 by the property of the solution operator G in (3.9). Since t%m weakly
converges to t’ in Hi’r_l/Q, the factorization of NX given in (4.14) implies that NXgr, ., — trr, v
in L2 as n — oo due to Proposition 4.7. Since [[NXgy, . — 5 ||L3‘,1"m < e, we have v = ¢$ on

I';, X R, which means that the Laplace transforms of both functions coincide:
v(s,:) = qb%(s, 3 in LX(T,,) for a.e. s € R+ io.

Both v(s, ) and (b%(s, ) satisfy the Navier equation with complex frequency s in R3\(TUL). Due
to our assumptions on I';, that is either a closed Lipschitz surface or an analytic open surface, the
unique continuation property and unique solvability of exterior scattering problems at complex
frequencies in R + io imply that v(s,-) = q.’)%(s, Y in HYR3\(T'U L)) for a.e. s € R+io. Let
I' # 2° € L and let B, be a small ball centered at z° such that B, NT' = (). In this case, v is

analytic in B,, while (,2’)% has a discontinuity across B, N L. This contradiction shows that our
assumption (5.17) is wrong and concludes the proof. O

6 Laboratory implementation

This section makes use of the experimental data reported in [19] and [23] to (a) examine the
performance of TLSM for spatiotemporal tracking of evolving anomalies, and (b) conduct a
comparative study of LSM-based reconstructions in time and frequency domains. It should be
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mentioned that the these studies are conducted in a two-dimensional bounded domain, while
the mathematical analysis of TLSM in previous sections is performed in R3. Note that the
extension of theory to R? is straightforward and may be achieved by appropriate replacement
of the fundamental displacement tensor and associated potentials. We anticipate that similar to
recent generalizations in the frequency domain [18], extension of the time-domain analysis (of
Sections 2 — 5) to a bounded domain is possible, but may not lead to a significant change in the
following implementation of TLSM. Three distinct datasets are deployed in (a): (i,ii) waveforms
collected at 75% and 90% of the maximum load in the post peak regime while fracturing the
specimen in an MTS load frame according to [19], and (iii) data captured after the end of
fracturing (at 60% of the maximum load) where the specimen is dismounted from the load frame
and ultrasonic experiments are performed according to [23]. From the latter, the multifrequency
LSM reconstructions are also invoked for the analysis in (b). To help better understand the
data, a brief description of the experimental campaign in [19] is provided in the sequel. Tests
are sequentially conducted on a granite plate, with dimensions 0.96m x 0.3m x 0.03m, mounted
on a load frame to be fractured in the three-point bending configuration. Ultrasonic experiments
are conducted at three stages (before bending starts and then while fracturing at 75% and 90%
of the maximum load) such that the probing waves are interacting with an evolving scatterer.
At each stage, in-plane shear waves of the form

x(t) = H(ft) H(5—ft) sin (0.2xft) sin (2nft), f=30KHz, ¢¢€ (0,T], (6.18)

are induced by an S-wave piezoelectric transducer at eight locations sampling I'; on the spec-
imen’s boundary; here, H(-) is the Heaviside step function. The generated incident and total
fields are then measured at 145 sensing points over the observation surface I'), with the mea-
surement period of 7' = 0.998ms sampled at 1024 points. For image reconstruction (in time
and frequency domains), the search area is a square of dimensions 29cm x 29cm in the middle
of specimen discretized by a uniform grid of 100 x 100 points z, while the unit circle of trial
normal direction n is sampled at 16 points. Therefore, the scattering footprints of 160000 trial
dislocations .Z are used for the reconstruction in both time and frequency domains.

6.1 Data Inversion

The collected waveform data is processed as the following to compute the time-domain LSM
(TLSM) maps. The latter involves four steps, namely: (1) assembling the scattered field vX(zx, t)
over a unified grid in space-time, (2) constructing the composite near-field operator NX(x,t)
capturing convolution in time and multiplication in space over the source grid, (3) computing the
trial signature patterns <I>§7n affiliated with .2 (z,n; (), and (4) solving the discretized near-field
equation through non-iterative minimization of the TLSM cost functional.

6.1.1 Scattered field in space-time

The scattered field vX(x,t) is computed by subtracting the free field from the total field mea-
surements. The obtained signatures (in x1 and x5 directions) for multiple sources at y are then
assembled as the following

VX(2m_ 1:2m7 ka Z) = [Vll(mmatk;yi)v (619)

V2
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for
m=1,2,...Np, k=1,2,...N;, i=12,...N; (6.20)

wherein N,,, Ny, and N; indicating the number of samples on I';,, t, and I';, respectively.

6.1.2 Composite near-field operator
With reference to (4.10), the near-field scattering operator may be discretized as follows

N; k-1

[INYgS Wl(6 k) = V(L k= §ii)gS (i, 4),

i=0 j=0
¢=1,2,...2N,,, k=1,2,...N;, i=1,2,...N;.

(6.21)

where the first summation indicates multiplication in space, while the second implies convolution
in time.

6.1.3 Trial signatures in time

On setting ¢ = x(t)n, every trial pair (z,n) generates a unique scattering signature v, n(x,t)
recorded at every time step tp € (0,7], k = 1,2,...N;, over the observation grid x,, € I'y,,
m=1,2,... Ny, by solving

V- [C:Vvynl(z,t) — pVyn(z,t) = 0, (xeP\ZL, te(0,T))
n-C:Vv,,(xz,t) = 0, (x€dP, te(0,T)) (6.22)
Ven(z,t) = 0, (x €02y, te(0,T))
n-C:Vvyn(z,t) = |27 15(x - 2)((t), (xe £, te(0,T))

where &2 represents the specimen; T = 0.998ms is the total measurement period, and 0%,
signifies the support of three pins holding the sample in the loadframe. .Z is a penny-shaped
crack through the thickness of &2. Simulations are performed in three dimensions via the
computational platform reported in [20] based on the boundary element formulation of (6.22).
In this setting, the in-plane components of the computed scattered fields are recast in the
following form

1
(Pg,n(2m —1: 2m7 k) = [V;n] ((Bm, tk:)’ (623)
Vz

,n

form=1,2,...N,,,and k=1,2,... N;. Here, ‘I’g,n is a 2N, N,,, x 1 vector.
6.1.4 TLSM indicator

To construct the TLSM maps, the discretized near-field equation

[ngg,nme’tk) = Qg,n(wmatk), Tm € I, B € (07 T]v

(6.24)
m=1,2,...Nm, k=1,2,...N,
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is solved to obtain gg,n for every trial pair (z,n). Given the ill-posed nature of (6.24), a regu-
larized approximate solution g, n is obtained by minimizing the below Tikhonov cost function

gz,n ::argmingn L2(T))3 x L2(0T {
920 €L2(14)3 x L?(0T) (6.25)

HNng,n - q)g,nH%Q(I‘m)?’xL?(OT) + Nzn ”gg,nH%Q(ri)SxLQ(OT) }

Here, the regularization parameter 7, y, is determined by the Morozov discrepancy principle [15].
The minimizer of (6.25) is then deployed to compute the TLSM indicator

1

gz ll2ri3 < 22001)

(=) g- 1= argming. [/gznllr2r)3 x L2(07) (6.26)

whereby one may also build the thresholded indicator

1 if T(z) > 7 x max(¥)

, Tl €10 1. (6.27
0 otherwise tol €] Lo )

‘i(z) = 1z(2)%(2), lg(z) := {

In what follows, the frequency-domain LSM indicators £ and £ computed in [23] using post-
fracturing waveforms, associated with 60% of the maximum load, are invoked to be examined
against their time-domain counterparts, i.e., ¥ and ¥.

6.2 Results and discussion

The propagating fracture is periodically traced according to [19] by spraying acetone on the back
of specimen while being fractured in the load frame. The resulting images furnish the ground
truths used to verify the time- and frequency- domain reconstructions in the sequel.

6.2.1 Full aperture reconstruction

The TLSM indicator T (resp. ¥) in (6.26) (resp. (6.27)) is calculated using the scattered dis-
placements vX measured at N, = 145 scanning points x,, € '}, on the specimen’s boundary for
Ny = 1024 uniformly distributed time steps ¢ € (0 0.998]ms. At every testing stage, affiliated
with 90%, 75%, and 60% of the maximum load in the post peak [19], the transducer assumes
N; = 8 locations on I'; implying that every sensing step entails eight independent ultrasonic
experiments.

The TLSM imaging functional (6.26) takes advantage of the rich sequential dataset and full-
length waveforms in time to track the support of an advancing fracture I' = I'(¢) in space-time.
Fig. 1 shows the sequence of ¥ maps in the sampling region at the three loading stages mentioned
above where the ground truths — retrieved via acetone tracing in [19] — are used for verification.

Fig. 2 provides a comparison between the time-domain reconstruction ¥ (resp. f) and its
frequency-domain counterpart £ (resp. ,@) reported in [23]. For completeness, it is worth men-
tioning that the frequency-domain reconstructions of [23] are obtained as follows. First, the
spectral scattering operator and the corresponding trial patterns are computed at each indi-
vidual frequency. The multifrequency operator is next constructed as a block-diagonal matrix
affiliated with the latter sequence, and the trial signatures are assembled accordingly. The so-
lution to the resulting scattering equation is then used to obtain the multifrequency indicators
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Figure 1: Time-domain reconstruction of an advancing fracture: (a-c) ¥ maps computed from ultrasonic
waveforms measured at 90%, 75%, and 60% of the maximum load in the post-peak regime. The solid
line shows the ground truth.

scanning grid
(145 points)

source locations
(8 points)

g Y.//; Te { ‘\F 1 / Te ‘ F
[ ) T t | T
(a) (b) ()

Figure 2: Time- vs. frequency- domain reconstructions from post-fracturing data: (a-top) sensing con-
figuration, (a-bottom) ground truth I' compared against the recovered I's and I'e obtained from the
thresholded maps, (b) multifrequency indicator map £ and its 60% thresholded counterpart £ [23],
and (c) time-domain indicator map ¥ (6.26) and its affiliated ¥ (6.27) thresholded at 60%.

£ and £ (see [23, Section 5.1] for details). It should be mentioned that the plots in Fig. 2 are
affiliated with post-fracturing sensory measurements. The sharp localization and less artifacts
featured in the TLSM maps could be attributed to the fact that ¥ makes use of the entire time
history of data which entails less processing, whereas the multifrequency indicator £ deploys
only the most pronounced spectral components of the measured waveforms whose interactions
may be lost during signal processing and image construction.

With reference to (6.27), the thresholded maps % and £ in Fig. 2 identify the support of
sampling points z where their associated imaging functional satisfies J(z) > 0.6 x max(J),
J € {%,£}. These maps are then used to approximate the fracture boundary I's and T'e by
drawing the mid-line through the thresholded damage zone as shown in Fig. 2 (bottom row).
Comparing the recovered I'z and I'g with the ground truth I' further reveals the imaging ability
of each indicator.
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6.2.2 Sparse reconstruction

To further investigate the performance of time-domain indicator with limited data, the scanning
points on I, are uniformly downsampled to N,, € {48,28,20,16} while the number of sources
on I'; remains V; = 8. The imaging functional ¥ is then recalculated using reduced data. The
reconstruction results at 90% and 75% of the maximum load are shown in Fig. 3. The time-
versus frequency- domain inversion results using reduced post-fracturing data are provided in
Fig. 4. The TLSM indicator ¥ seem to remain robust with sparse data.

N,, =48 N,, =28 Np, =20 N, =16

Figure 3: Time-domain reconstruction from reduced data at 75% (top) and 90% (bottom) of the maxi-
mum load where T',, is sampled by N, points.

(©) (i) (i) (iv)

Figure 4: Time- wvs. frequency- domain inversion from reduced data at 60% of the maximum
load: (top) multifrequency indicator £ [23], and (bottom) time-domain indicator . Here, the number of
scanning points on I';, is N,,.
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6.2.3 Reduced aperture reconstruction

Partial-aperture and one-sided reconstructions are conducted in the time domain for sensing
configurations shown in Fig. 5 where the results at 90% and 75% of the maximum load are

illustrated. The comparison between T and £ distributions using reduced-aperture data is
provided in Fig. 6.

measurement grid
(60 points)

N
6 source locations

scanning grid
(20 points)
......

i1 4 source
(”) locations

f

N
sampling area

Figure 5: Partial-aperture time-domain reconstruction via (6.26) at (a) 90% and (b) 75% of the maximum
load. The loci and number of source/measurement points (for each case) is indicated in the left column.

measurement grid

. N N
6 source locations '«

scanning grid

-\ 4 source
(“) locations

’

sampling area,

Figure 6: Time- vs. frequency- domain inversion using (top) partial-aperture, and (bottom) one-sided
data collected after fracturing. The sensing configuration for each row is indicated in the left column.
The frequency domain £ maps are from [23].

7 Conclusion

This work provides the theoretical foundation of the time-domain linear sampling method for
elastic-wave imaging of fractures which complements the (existing) LSM framework in the
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frequency domain, and thus, paves the way for a systematic comparison between time- and
frequency- domain waveform inversion using laboratory experimental data of [23, 19]. The ex-
periments reported by [23] (resp. [19]) feature interaction of ultrasonic waves with a stationary
(resp. evolving) fracture in a plate whose signature on the specimen’s boundary is captured for
nondestructive evaluation. The TLSM indicator is applied to the scattered field data captured
(a) at 90% and 75% of the maximum load in the post peak regime during propagation [19], and
(b) after the end of fracturing (occurred at 60% of the maximum load) [23]. The TLSM maps
affiliated with the sequential datasets in (a) and (b) successfully recover the spatiotemporal
evolution of damage in the specimen. It is further shown that the reconstruction with sparse
i.e., downsampled and/or reduced-aperture data remain robust at moderate noise levels. Using
dataset (b), in parallel, a comparative analysis is conducted between the TLSM reconstructions
and the corresponding multifrequency LSM maps reported by [23]. A remarkable contrast in
image quality — in terms of localization and presence of artifacts, is observed between the time-
and frequency- domain inversions. The better quality of TLSM images are attributed to the
full-waveform inversion in time (in addition to space) which involves both amplitude and phase
information over the entire spectra during inversion.
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