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A B S T R A C T

The seminal paper of Francfort and Marigo (1998) introduced a variational formulation for Grif-
fith fracture (Griffith, 1920) that has resulted in substantial theoretical and practical progress in
modeling and simulating fracture. In particular, it led to the phase-field approximation proposed
in Bourdin et al. (2000), which has been widely implemented. However, the formulation in
Francfort and Marigo (1998) is known to have limitations, including its inability to treat applied
loads and its reliance on global minimization. In addition, the phase-field model (Bourdin
et al., 2000) and its extensions, as implemented, are not generally approximations of the
global minimizers in Francfort and Marigo (1998). In this paper, we show that there is a
local variational principle satisfied by global and local minimizers of the energy introduced in
Francfort and Marigo (1998), which is compatible with loads, and which is a generalization of
the stress intensity factor. We use this principle to reformulate variational fracture, including
formulations that, for the first time, can include all forms of applied loads. We conclude by
showing the connection between phase-field models, as implemented, and our formulations.

1. Introduction

The variational formulation of Griffith fracture (Griffith (1920)) introduced by Francfort and Marigo (1998) has led to major
advances in the mathematical study and simulation of fracture. A central feature of that formulation is its mathematical robustness —
it can be stated with no assumptions at all on crack geometry or regularity, such as the existence of crack tips. From a mathematical
point of view, this is very advantageous, allowing existence proofs (which are missing for models based on stress intensity factors)
as well as rigorous approximation results, such as those based on phase-fields.

Benefits of this formulation are evident when implementing phase-field fracture, since ‘‘cracks’’ grow where elastic energy is
sufficiently large, again with no assumption whatsoever about the geometry of the ‘‘cracks’’. On the other hand, this locality,
i.e., the growth of cracks local to where the elastic energy is sufficiently large, while physically desirable, is not present in the
original formulation (Francfort and Marigo, 1998), since the formulation there is based on global minimization (and implementations
of phase-field fracture do not involve global minimization). A natural and important question is then, what are these phase-field
formulations approximating? The limiting sharp interface model must not be based on global minimality, but instead some kind of
local property.

An additional limitation of global minimization is that it is incompatible with applied body loads. Our goal is to find a local
variational principle that works seamlessly with loads, while having the same mathematical robustness (no regularity or geometric
assumptions on the crack) as (Francfort and Marigo, 1998).

Another reason to seek a local formulation is to allow nucleation based on strength (Kumar et al., 2018). There, growth of existing
(large) cracks is governed by Griffith’s criterion, whereas nucleation of new cracks is based on completely separate ‘‘strength’’
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criteria. Global minimality as in Francfort and Marigo (1998) can force nucleation, independent of the specified nucleation criteria.
Therefore a local Griffith criterion, governing only growth of existing cracks, is desirable.

Below, we describe a local variational principle – a necessary condition for Griffith stability – which naturally works with all types
of applied loads. Furthermore, it is weak in the sense we want, in that there is no requirement of any regularity of cracks, such as
the existence of crack tips. In essence it allows us to specify exactly what energy competes with fracture surface energy, separately
from specifying the energy that determines the elastic equilibrium. Furthermore, it seems to be the first necessary condition for
Griffith stability that requires no regularity of the crack.

This paper is organized as follows. In Section 1.1 below, we describe in more detail limitations of current sharp interface
variational models. Interestingly, these problems are largely missing from phase-field models, as implemented, and we describe
these features of phase-field models in Section 1.2. In Section 2 we state the proposed variational principle, local Griffith stability. We
then give precise variational formulations for different models, both static and quasi-static, with and without loads, and even define
static crack stability for dynamic fracture. We also describe how this new stability definition might be used to formulate models
when only part of the elastic energy competes with Griffith surface energy, as proposed for viscoelastic materials in Shrimali and
Lopez-Pamies (2023).

Section 3 discusses the relationship between stability based on stress intensity factors, and the stability we propose here. We
show their consistency, and that our approach is more general, in that no extra assumptions, such as regularity or crack geometry,
are required. Then in Section 4 we describe why energy minimizers satisfy local Griffith stability. Finally, in Section 5, we discuss
the connection between our formulations and phase-field models. In particular, we describe the role 𝛤 -convergence plays in relating
rescaled phase-field models to our variational principle.

1.1. Limitations of existing sharp interface models: the problem with loads

Before we explain the problem with loads, we first need to be more precise about the formulation in Francfort and Marigo (1998)
without loads. Considering for simplicity scalar displacements 𝑢 on 𝛺 ⊂ R

𝑁 with the simplest elastic energy density 1

2
|∇𝑢|2, Griffith

constant 𝐺𝑐 , and crack sets 𝐾, the total energy of a displacement-crack pair (𝑢,𝐾), with 𝑢 allowed to be discontinuous across 𝐾, is
given by

𝐸𝐺(𝑢,𝐾) ∶=
1

2 ∫𝛺 |∇𝑢|2𝑑𝑥 + 𝐺𝑐𝑁−1(𝐾),

where 𝑁−1(𝐾) is the 𝑁 −1 dimensional Haudorff measure (surface area) of the crack 𝐾 ⊂ 𝛺̄, and 𝑢 ∈ 𝐻1(𝛺 ⧵𝐾) (a slight abuse of
notation explained below). Minimizing this energy (globally or locally) subject to a given displacement boundary condition produces
a displacement 𝑢 and crack set 𝐾 satisfying 𝛥𝑢 = 0 in 𝛺 ⧵ 𝐾 with normal derivative 𝜕𝜈𝑢 = 0 on 𝐾. In addition, the crack 𝐾 results
from direct competition between elastic and surface energy, producing a form of Griffith stability:

𝐸𝐺(𝑢,𝐾) ≤ 𝐸𝐺(𝑣, 𝜅)

for all pairs (𝑣, 𝜅) satisfying 𝑣 = 𝑢 on 𝜕𝛺 and 𝜅 ⊃ 𝐾. If (𝑢,𝐾) are obtained by global minimization, then this inequality holds for all
such (𝑣, 𝜅), and if they are obtained by local minimization, then the inequality will hold if 𝑣 is sufficiently close to 𝑢.

We now turn to the problem of including boundary and body loads in variational fracture. With boundary load 𝑔 on part of 𝜕𝛺
denoted 𝜕𝑁𝛺, and displacement boundary condition zero, for example, on the remainder of the boundary 𝜕𝐷𝛺, it would seem that
we should minimize

𝐸𝐿𝑜𝑎𝑑 (𝑢,𝐾) ∶=
1

2 ∫𝛺 |∇𝑢|2𝑑𝑥 − ∫𝜕𝑁𝛺

𝑔𝑢 𝑑𝑠 + 𝐺𝑐𝑁−1(𝐾)

over 𝑢 ∈ 𝐻1(𝛺 ⧵𝐾) with 𝑢 = 0 on 𝜕𝐷𝛺. Minimizing this energy is easily seen to be impossible (except in the trivial case 𝑔 ≡ 0). The
idea is, we can choose a part of 𝜕𝑁𝛺 in which the average of 𝑔 is not zero, and if we create a crack disconnecting that part of the
boundary from 𝜕𝐷𝛺, the second term in the energy can be sent −∞ with a controlled cost in the rest of the energy, so the total energy
goes to −∞. Essentially the same issue occurs with body loads. While there is some suggestion that preventing interpenetration cures
problems with loads, if we consider antiplane displacements in two dimensions, we see that no interpenetration is required when
breaking off a loaded piece of the material and sending it to ∞, thereby sending the energy to −∞.

There are additional issues with loads, besides nonexistence, which we describe in Larsen (2021) and do not repeat here. But these
issues are not present if we want the crack surface energy to compete with elastic energy the same way it does with displacement
boundary conditions, as we advocated in Larsen (2021). There, we showed that this principle can be implemented with boundary
loads — instead of trying to minimize a single energy, we can find (𝑢,𝐾) simultaneously minimizing two different energies:

𝐸𝐾 (𝑣) ∶=
1

2 ∫𝛺 |∇𝑣|2𝑑𝑥 − ∫𝜕𝑁𝛺

𝑔𝑣 𝑑𝑠

over displacements 𝑣 with the same crack and with 𝑣 = 𝑢 on 𝜕𝐷𝛺, and

𝐸𝐺(𝑣, 𝜅) =
1

2 ∫𝛺 |∇𝑣|2𝑑𝑥 + 𝐺𝑐𝑁−1(𝜅)

over displacement-crack pairs with 𝑣 ∈ 𝐻1(𝛺 ⧵ 𝜅), 𝑣 = 𝑢 on all of 𝜕𝛺, even 𝜕𝑁𝛺, and for 𝜅 ⊃ 𝐾. We then get the elastic plus
load equilibrium 𝑢 we want, but the crack results only from competition between elastic and surface energy (of course, the crack
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indirectly depends on the load, but only by the dependence of 𝑢 on the load, and not direct energy competition between the load
and surface area). This formulation, and a method for showing existence, are developed in Larsen (2021).

Body loads are much worse. The total energy is now

1

2 ∫𝛺 |∇𝑢|2𝑑𝑥 − ∫𝛺 𝑓𝑢 𝑑𝑥 + 𝐺𝑐𝑁−1(𝐾),

and there is a big problem with global and local minimizers, in addition to corresponding issues to those described above for
boundary loads. Splitting this energy into two energies, as with boundary loads, cannot work, since 𝑢 cannot simultaneously minimize

1

2 ∫𝛺 |∇𝑢|2𝑑𝑥 − ∫𝛺 𝑓𝑢 𝑑𝑥

and

1

2 ∫𝛺 |∇𝑢|2𝑑𝑥 + 𝐺𝑐𝑁−1(𝐾),

as minimizing the first implies 𝛥𝑢 = 𝑓 in 𝛺 ⧵𝐾, while minimizing the second gives 𝛥𝑢 = 0 in 𝛺 ⧵𝐾. So the question for body loads
is, how can we produce 𝑢 minimizing the first energy, while having the crack in equilibrium only with elastic energy? Below, we
show how this can be done with a local variational principle.

This extends even to the situation in Shrimali and Lopez-Pamies (2023), where they propose that for certain materials, the
displacement 𝑢 should minimize an elastic energy of the form

∫𝛺 𝑊 (∇𝑢)𝑑𝑥,

with 𝑊 = 𝑊 𝐸𝑞 +𝑊 𝑁𝐸𝑞 , but the elastic-fracture equilibrium should come from minimizing just

∫𝛺 𝑊 𝐸𝑞(∇𝑢)𝑑𝑥 + 𝐺𝑐𝑁−1(𝐾).

Here, 𝑊 𝐸𝑞 is the equilibrium elastic energy density, and 𝑊 𝑁𝐸𝑞 is a non-equilibrium elastic energy density, which slowly dissipates
over time. In this setting, the variational principle for determining 𝑢 (given 𝐾) cannot be combined with the variational principle
for elastic-fracture equilibrium into one energy. However, we will consider below splitting this into two variational problems, one
for determining the equilibrium displacement, and the other a local principle that sees only 𝑊 𝐸𝑞 and surface energy.

1.2. Features of phase-field models, as implemented

In principle, none of the above are problems for phase-field fracture, as implemented. While the elastic plus surface energy
from Bourdin et al. (2000) is

𝐸𝛿(𝑢, 𝑣) ∶=
1

2 ∫𝛺(𝜂𝛿 + 𝑣2)|∇𝑢|2𝑑𝑥 + 𝐺𝑐

(
1

4𝛿 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝛿 ∫𝛺 |∇𝑣|2𝑑𝑥
)
,

in practice, for static and quasi-static settings, this energy is effectively split into two energies, which are separately (alternately)
minimized: with 𝑣 fixed, 𝑢 minimizes

𝐸𝑣(𝑢) ∶=
1

2 ∫𝛺(𝜂𝛿 + 𝑣2)|∇𝑢|2𝑑𝑥

and with 𝑢 fixed, 𝑣 minimizes

𝐸𝑢(𝑣) ∶=
1

2 ∫𝛺 𝑣2|∇𝑢|2𝑑𝑥 + 𝐺𝑐

(
1

4𝛿 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝛿 ∫𝛺 |∇𝑣|2𝑑𝑥
)
.

The first energy 𝐸𝑣 includes only the part of 𝐸𝛿 that depends on 𝑢, and the second, 𝐸𝑢, on 𝑣. Notice that the latter naturally
includes the elastic and surface energy, and minimizing in 𝑣 means that the crack advances when the reduction in the elastic energy
compensates for the increase in surface energy, independently of the rule governing 𝑢. For static and quasi-static fracture, 𝑢 is found by
minimizing the first energy, 𝐸𝑣, given the updated 𝑣. 𝐸𝑢 and 𝐸𝑣 are then alternately minimized until convergence. For dynamics,
elastodynamics is used to find 𝑢, where the stiffness is 𝜂𝛿 + 𝑣2 (Bourdin et al., 2011), and 𝑣 is found by minimizing 𝐸𝑢.

These procedures are easily modified to include loads. For example, with body loads, it is enough to change the first energy
only, and for statics and quasi-statics, minimize in 𝑢:

𝐸𝐿
𝑣
(𝑢) ∶=

1

2 ∫𝛺(𝜂𝛿 + 𝑣2)|∇𝑢|2𝑑𝑥 − ∫𝛺 𝑓𝑢𝑑𝑥

so that the minimal 𝑢 is in elastic equilibrium subject to the body load 𝑓 , and there is no direct competition between the surface
energy and the work done by the load. Minimizing in 𝑣 is done just as before, with elastic energy alone competing with surface
energy. Boundary loads can be handled similarly (even in sharp interface fracture, see Larsen (2021)). In general, whatever principle
determines 𝑢, minimizing 𝐸𝑢 in 𝑣 results in the crack advancing only if the reduction in elastic energy alone is sufficient to justify
the increase in surface energy.
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Fig. 1. Rescaling 𝐾 at 𝑥0.

This extends even to the situation in Shrimali and Lopez-Pamies (2023) described above, where for certain viscoelastic materials
there are two parts to the elastic energy, and only one competes with surface energy: the equilibrium displacement is found by
minimizing the total stored elastic energy

𝐸𝑣(𝑢) ∶= ∫𝛺(𝜂𝛿 + 𝑣2)𝑊 (∇𝑢)𝑑𝑥

with 𝑊 = 𝑊 𝐸𝑞 +𝑊 𝑁𝐸𝑞 , but only 𝑊 𝐸𝑞 competes with surface energy: 𝑣 minimizes

𝐸𝑢(𝑣) ∶= ∫𝛺(𝜂𝛿 + 𝑣2)𝑊 𝐸𝑞(∇𝑢)𝑑𝑥 + 𝐺𝑐

(
1

4𝛿 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝛿 ∫𝛺 |∇𝑣|2𝑑𝑥
)
.

The function 𝑢 is an equilibrium displacement, with elastic energy 𝑊 , but the crack advances based only on whether the reduction
in the 𝑊 𝐸𝑞 elastic energy compensates for increased surface energy. Here, we can expect that alternate minimization produces (𝑢, 𝑣)
with 𝑢 minimizing 𝐸𝑣 and 𝑣 minimizing 𝐸𝑢.

In addition, we emphasize that these phase-field formulations have the physically desirable property that they are spatially local:
cracks advance (𝑣 decreases) only if the elastic energy is large enough where the crack advances.

With the exception of boundary loads, none of the above can be done with existing sharp interface variational formulations.

2. The local variational principle

The main definitions we introduce are local Griffith stability, Definition 2.2 below, and elastic-Griffith stability, Definition 2.3. Local
Griffith stability is a pointwise stability condition, in the same way that 𝛥𝑢 = 𝑓 is a pointwise balance condition. It is naturally applied
at crack tips, and is a generalization of stress intensity factors, with the benefit that no crack tips, and no crack geometry at all, are
necessary in order to state the stability condition.

Before stating the condition, we first briefly discuss notation. Mathematically, the appropriate settings for ‘‘sharp interface’’
fracture are rather technical spaces based on 𝑆𝐵𝑉 or 𝑆𝐵𝐷. For our purposes, we do not need to go into these technical details, and
so we will use more intuitive notation which is only slightly an abuse. We first recall that if a crack set 𝐾 is closed in 𝛺, then an
admissible displacement 𝑢, which can be discontinuous across 𝐾, is in the space 𝐻1(𝛺 ⧵ 𝐾). Below we will use this notation even
when 𝐾 is not closed.

Second, if 𝑢 and 𝑣 are both in 𝐻1(𝛺 ⧵ 𝐾) with the same trace on 𝜕𝛺 (which is a technical form of boundary values), we say
𝑣 ∈ 𝐻1

𝑢
(𝛺 ⧵ 𝐾), which is the same as saying 𝑢 − 𝑣 ∈ 𝐻1

0
(𝛺 ⧵ 𝐾). For simplicity, we will usually take 𝛺 ⊂ R

2, even when the
corresponding result holds in R

𝑁 . When there is something special about R2, we will note it.
We say 𝑢 ∈ 𝐻1

𝑙𝑜𝑐
(R2 ⧵𝐾) if for every bounded open set 𝑈 ⊂ R

2, we have 𝑢 ∈ 𝐻1(𝑈 ⧵𝐾) (the point being that integrals over all of
R
2 might not be finite). Finally, when integrating over 𝛺 ⧵𝐾, we usually write the integral over all of 𝛺, since the 𝐾 we consider

have Lebesgue measure zero.
We now turn to the proposed variational principle. The idea is that under a certain rescaling, first introduced in Bonnet (1996),

blow-up limits of stable states must have a global minimality property. We will save the details of taking limits, and why they
should have this minimality, for Section 4, but we state the rescaling and minimality now. Given a displacement-crack pair (𝑢,𝐾)

with 𝑢 ∈ 𝐻1(𝛺 ⧵𝐾), for 𝑥0 ∈ 𝛺 fixed, and for each 𝜀 > 0, we set

𝑢𝜀(𝑥) ∶= 𝜀
−

1
2 [𝑢(𝑥0 + 𝜀𝑥) − 𝑢(𝑥0)] and 𝐾𝜀 ∶= 𝜀−1(𝐾 − 𝑥0), (2.1)

see Fig. 1.
If a pair (𝑢̂, 𝐾̂) is the limit as 𝜀 → 0 of the above rescaled pairs (or the limit of a subsequence), then due to the rescaling, both 𝑢̂

and 𝐾̂ would be defined on all of R2, and so 𝑢̂ ∈ 𝐻1
𝑙𝑜𝑐

(R2 ⧵ 𝐾̂) and 𝐾̂ ⊂ R
2. The minimality that we will consider for this pair is
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Definition 2.1 (Global Griffith Stability). A pair (𝑢̂, 𝐾̂) with 𝑢̂ ∈ 𝐻1
𝑙𝑜𝑐

(R2 ⧵ 𝐾̂) is globally Griffith-stable if for every 𝑟 > 0, it minimizes

𝐸𝐺
𝑟
(𝑤, 𝜅) ∶=

1

2 ∫𝐵(0,𝑟) |∇𝑤|2𝑑𝑥 + 𝐺𝑐1(𝜅 ∩ 𝐵(0, 𝑟))

over pairs (𝑤, 𝜅) satisfying 𝑤 ∈ 𝐻1
𝑢̂
(𝐵(0, 𝑟) ⧵ 𝜅) and 𝜅 ⊃ 𝐾̂ ∩ 𝐵(0, 𝑟). Here, 1 is the one-dimensional Hausdorff measure.

Our main definition just requires all such blow-up limits to have this minimality:

Definition 2.2 (Local Griffith Stability). (𝑢,𝐾) with 𝑢 ∈ 𝐻1(𝛺 ⧵ 𝐾) is locally Griffith stable if for every 𝑥0 ∈ 𝛺, every blow-up limit
(𝑢̂, 𝐾̂) of (𝑢𝜀, 𝐾𝜀) is globally Griffith stable.

The convergence to blow-up limits is a bit technical, and we discuss this in more detail below, in Remark 4.1.
We now describe how this local stability can be used to define stable states and evolutions. For the simplest setting, static

fracture with no loads, we will combine the usual elastic equilibrium condition with the new local Griffith stability condition. Later
we can make a very natural modification to include loads. The formulation for quasi-static fracture with loads is a natural further
modification.

Definition 2.3 (Elastic-Griffith Stability). We say (𝑢,𝐾) with 𝑢 ∈ 𝐻1(𝛺 ⧵𝐾) is elastic-Griffith stable if:

(1) 𝑢 minimizes

𝑤 ↦
1

2 ∫𝛺 |∇𝑤|2𝑑𝑥

over 𝑤 ∈ 𝐻1(𝛺 ⧵𝐾) with 𝑤 = 𝑢 on 𝜕𝛺, i.e.,

𝛥𝑢 = 0 in 𝛺 ⧵𝐾, 𝜕𝜈𝑢 = 0 on 𝐾,

and
(2) (𝑢,𝐾) is locally Griffith stable (Definition 2.2).

Of course, this stability can be posed with specified boundary values, but we leave that out here since it is unnecessary for
defining stable states.

Body and boundary loads are easily added:

Definition 2.4 (Elastic-Griffith Stability with Loads). We say (𝑢,𝐾) with 𝑢 ∈ 𝐻1(𝛺 ⧵𝐾) is elastic-Griffith stable with body load 𝑓 and
boundary load 𝑔 (applied to part of the boundary 𝜕𝑁𝛺) if:

(1) 𝑢 minimizes

𝑤 ↦
1

2 ∫𝛺 |∇𝑤|2𝑑𝑥 − ∫𝛺 𝑓𝑤 𝑑𝑥 − ∫𝜕𝑁𝛺

𝑔𝑤 𝑑𝑠

over 𝑤 ∈ 𝐻1(𝛺 ⧵𝐾) with 𝑤 = 𝑢 on 𝜕𝐷𝛺 ∶= 𝜕𝛺 ⧵ 𝜕𝑁𝛺, i.e.,

𝛥𝑢 = 𝑓 in 𝛺 ⧵𝐾, 𝜕𝜈𝑢 = 0 on 𝐾, and 𝜕𝜈𝑢 = 𝑔 on 𝜕𝑁𝛺,

and
(2) (𝑢,𝐾) is locally Griffith stable.

Note as above that global and local minimizers of variational fracture with boundary loads (see Larsen (2021)) satisfy this
definition, as do local minimizers with body loads (see Section 4). Note also that if 𝑓 = 0 and 𝑔 = 0, Definition 2.4 reduces to
Definition 2.3, as we would want.

Next we have the general quasi-static formulation:

Definition 2.5 (Quasi-Static Elastic-Griffith Stable Evolution with Loads). We say (𝑢,𝐾) is a quasi-static evolution on [0, 𝑇 ] with body
load 𝑓 and boundary load 𝑔 if it satisfies the following:

(1) for every 𝑡 ∈ [0, 𝑇 ], (𝑢(𝑡), 𝐾(𝑡)) is elastic-Griffith stable with body load 𝑓 (𝑡) and boundary load 𝑔(𝑡) in the sense of the above
Definition 2.4,

(2) 𝐾(𝑡) ⊂ 𝐾(𝑠) for all 𝑡 < 𝑠, and
(3) the total energy,

𝐸(𝑡) ∶=
1

2 ∫𝛺 |∇𝑢(𝑡)|2𝑑𝑥 − ∫𝛺 𝑓 (𝑡)𝑢(𝑡)𝑑𝑥 − ∫𝜕𝑁𝛺

𝑔(𝑡)𝑢(𝑡) 𝑑𝑠 + 𝐺𝑐1(𝐾(𝑡)) −work(𝑡)

is non-increasing in 𝑡, where work(𝑡) is the work done by applied forces from time zero to time 𝑡 (as well as by possibly
varying Dirichlet boundary values).
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All quasi-static evolutions (without loads) that have been studied mathematically, whether locally stable as in Dal Maso and
Toader (2002) and Knees et al. (2008), local minimizers as in Larsen (2010a), or global minimizers as originally proposed in Francfort
and Marigo (1998), satisfy this definition, with 𝑓 = 𝑔 = 0.

We can also define static crack stability for dynamic fracture.

Definition 2.6 (Static stability in dynamic fracture). For a dynamic fracture solution (𝑢,𝐾) (e.g., as defined in Larsen (2010b)), we
say the crack is stable at time 𝑡 if (𝑢(𝑡), 𝐾(𝑡)) is locally Griffith stable.

Notice that we cannot define stability in this way for dynamic fracture when the crack is growing, since where the crack grows,
the form of the singularity at crack tips is different from what it is for static and quasi-static fracture. This is in contrast to a static
crack in dynamic fracture, when the form of the stress singularities is the same as it is for static and quasi-static fracture (see Grisvard
(1992)). We note that this static stability has not been proven for dynamic fracture solutions.

We now return to the difficulty presented in Shrimali and Lopez-Pamies (2023). There, the elastic energy density 𝑊 (∇𝑢) has
the form 𝑊 𝐸𝑞(∇𝑢) +𝑊 𝑁𝐸𝑞(∇𝑢), and in their model, only 𝑊 𝐸𝑞(∇𝑢) competes with fracture energy — that is, cracks advance only if
concentrations in 𝑊 𝐸𝑞(∇𝑢) are sufficiently large. In terms of energy minimization, this is not so easy to model. However, with our
proposed stability criterion, it is straightforward: the condition is that every blow-up limit (𝑢̂, 𝐾̂) minimizes

𝐸𝑟(𝑤, 𝜅) ∶= ∫𝐵(0,𝑟) 𝑊
𝐸𝑞(∇𝑤)𝑑𝑥 + 𝐺𝑐1(𝜅 ∩ 𝐵(0, 𝑟))

over pairs (𝑤, 𝜅) satisfying 𝜅 ⊃ 𝐾̂ ∩ 𝐵(0, 𝑟) and 𝑤 ∈ 𝐻1
𝑢̂
(𝐵(0, 𝑟) ⧵ 𝜅), for every 𝑟 > 0. So we have

Definition 2.7 (Partial-Elastic Griffith Stability). (𝑢,𝐾) is 𝑊 𝐸𝑞-elastic-Griffith stable if:

(1) 𝑢 minimizes

𝑤 ↦ ∫𝛺 𝑊 (∇𝑤)𝑑𝑥

over 𝑤 ∈ 𝐻1
𝑢
(𝛺 ⧵𝐾), and

(2) all blow-up limits are 𝑊 𝐸𝑞-Griffith-stable: for every 𝑥0 ∈ 𝛺, every blow-up limit (𝑢̂, 𝐾̂) is globally Griffith-stable in the sense
of (a modified) Definition 2.1: for every 𝑟 > 0, it minimizes

𝐸𝑟(𝑤, 𝜅) ∶= ∫𝐵(0,𝑟) 𝑊
𝐸𝑞(∇𝑤)𝑑𝑥 + 𝐺𝑐1(𝜅 ∩ 𝐵(0, 𝑟))

over pairs (𝑤, 𝜅) satisfying 𝜅 ⊃ 𝐾̂ ∩ 𝐵(0, 𝑟) and 𝑤 ∈ 𝐻1
𝑢̂
(𝐵(0, 𝑟) ⧵ 𝜅).

In this formulation, we assume that 𝑊 𝐸𝑞 is quadratic. Notice also that there is a consistency issue in this definition, not present
with the other formulations, or with the phase-field version: if (𝑢,𝐾) satisfies (1), then blow-up limits (𝑢̂, 𝐾̂) should automatically
minimize 𝐸𝑟(𝑤, 𝐾̂) over 𝑤 ∈ 𝐻1

𝑢̂
(𝐵(0, 𝑟) ⧵ 𝐾̂). That is, the blow-up version of the PDE satisfied by 𝑢 should be the same as the PDE

corresponding to this minimization of 𝐸𝑟.

3. Comparison with stress intensity factors

A number of mathematics papers have looked carefully at calculating energy release rates using stress intensity factors for regular
crack geometries. In particular, Lazzaroni and Toader (2011) shows that for sufficiently regular cracks 𝐾 with crack tip, away from
𝜕𝛺 antiplane displacements in elastic equilibrium (with or without loads) must have the form

𝑢(𝑟, 𝜃) = 𝑢𝑅(𝑟, 𝜃) + 𝑢𝑆 (𝑟, 𝜃),

where 𝑢𝑅 ∈ 𝐻2(𝛺 ⧵ 𝐾) and 𝑢𝑆 (𝑟, 𝜃) = 𝑟
1
2 sin(𝜃∕2) for some  ∈ R (the stress intensity factor), assuming without loss of generality

that the crack 𝐾 is oriented along the −𝑥 axis, with crack tip at the origin. Using Grisvard (1992), the energy release rate is shown
to be 𝜋

4
2, giving crack stability if 𝜋

4
2 < 𝐺𝑐 , and instability if

𝜋

4
2 > 𝐺𝑐 .

We now look at what happens with our rescaling in this regular setting: consider 𝑥0 = 0, and we have

𝑢𝜀(𝑟, 𝜃) ∶= 𝜀
−

1
2 𝑢(𝜀𝑟, 𝜃) = 𝜀

−
1
2 𝑢𝑅(𝜀𝑟, 𝜃) + 𝜀

−
1
2 𝑢𝑆 (𝜀𝑟, 𝜃),

where we can assume 𝑢(0) = 0 since that value is subtracted off in the rescaling (2.1). The rescaled 𝑢𝑅 converge to a constant (since
∇𝑢𝑅 is bounded — see section 6.4.2 of Grisvard (1992)), which must be zero since 𝑢𝑅(0) = 0. Rescaling 𝑢𝑆 gives

(𝑢𝑆 )𝜀(𝑟, 𝜃) ∶= 𝜀
−

1
2 𝑢𝑆 (𝜀𝑟, 𝜃) = 𝜀

−
1
2 (𝜀𝑟)

1
2 sin(𝜃∕2) = 𝑟

1
2 sin(𝜃∕2) = 𝑢𝑆 (𝑟, 𝜃).

Not surprisingly, we get that the singular part is self-similar under this rescaling. We therefore have

𝑢𝜀 → 𝑢𝑆

as 𝜀 → 0, and so 𝑢̂ = 𝑢𝑆 .
As we now discuss, stability in terms of the energy release rate based on the stress intensity factor  is consistent with local

Griffith stability.
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Remark 3.1. Suppose first that we have (𝑢,𝐾) as above, with 𝜋

4
2 > 𝐺𝑐 , i.e., the elastic energy release rate exceeds 𝐺𝑐 . Performing

the rescaling and taking the blow-up limit, we obtain (𝑢̂, 𝐾̂) with 𝑢̂(𝑟, 𝜃) = 𝑟
1
2 sin(𝜃∕2), as we just described above. Since 𝜋

4
2 > 𝐺𝑐

by assumption, we get that (𝑢̂, 𝐾̂) is not globally Griffith stable, as small increments 𝛥𝐾 in 𝐾 would reduce the elastic energy by
approximately 𝜋

4
21(𝛥𝐾) > 𝐺𝑐1(𝛥𝐾), and so such increments would reduce the total energy of (𝑢̂, 𝐾̂). So, instability in the sense

that the stress intensity factor is too large implies instability in the sense of local Griffith stability.

On the other hand, suppose we have (𝑢,𝐾) for which 𝜋

4
2 < 𝐺𝑐 . Then we again perform a blow-up, and get 𝑢̂(𝑟, 𝜃) = 𝑟

1
2 sin(𝜃∕2).

Since 𝜋

4
2 < 𝐺𝑐 , small increments in the crack would increase the total energy, since the release of elastic energy is less than the cost

in surface energy. So, (𝑢̂, 𝐾̂) is globally stable, when considering sufficiently small (regular) increments. But any (regular) increment
could be scaled down with the scaling 𝐾𝜀, making it sufficiently small, without changing 𝑢̂ = 𝑢𝑆 since 𝑢𝑆 is self-similar under these
rescalings. So, we get global stability when considering regular increments. It is a natural conjecture that this minimality extends
to all increases in the crack set, but as far as we know, this is open.

Another question is what happens if 𝜋

4
2 = 𝐺𝑐? As far as we know, it is open whether 𝑢𝑆 in this case would be globally stable,

but it is natural to expect it would be.

Remark 3.2. As noted above, the representation 𝑢 = 𝑢𝑅 + 𝑢𝑆 , necessary for the definition of stress intensity factor, requires some
restrictions on 𝐾, in particular, that 𝐾 is a connected set near a crack tip. Our formulation has no such requirement. For example,
𝐾 might have a component with crack tip at a point 𝑥0, and there could be a family of smaller and smaller cracks approaching
𝑥0 from ahead of the crack component with tip 𝑥0. This would prevent the analysis using stress intensity factors and the above
representation of 𝑢 near the crack tip, but our formulation, local Griffith stability, would still be valid. Indeed, 𝑢̂ and 𝐾̂ always exist,
and their minimality can always be tested.

Remark 3.3. We return now to the question of whether stability should be defined in terms of competition between only elastic
energy and surface energy, or whether potential energy due to loads should also be involved. With sufficient regularity of 𝐾, the

equilibrium displacement has the form 𝑢 = 𝑢𝑅 + 𝑢𝑆 with 𝑢𝑆 = 𝑟
1
2 sin(𝜃∕2), as above. Grisvard (1992) shows that the energy release

rate for

1

2 ∫ |∇𝑢|2 − ∫ 𝑓𝑢

is also 𝜋

4
2. But following our definition, we blow-up 𝑢 at the origin (the crack tip) to get 𝑢̂ = 𝑢𝑆 , and we get the same energy

release rate of 𝜋

4
2, even though that energy release rate is based only on 1

2
∫ |∇𝑢|2. So as with phase-field fracture, we get the

desirable property that stability depends on the stress singularity at a crack tip, and is independent of the reason for the singularity –
the presence of loads, etc., is irrelevant.

Remark 3.4. To summarize, taking the blow-up limit is a way of isolating the singular part of 𝑢, even with no regularity of 𝐾 and
no decomposition of 𝑢; 𝑢̂ is a weak, more general, version of 𝑢𝑆 , which behaves just like 𝑢𝑆 for purposes of stability.

Finally, we emphasize again that this variational formulation works in any dimension, and can accommodate complicated
geometries such as those that might be present along crack fronts in three dimensions.

4. Minimality and local Griffith stability

We now explain why unilateral global or local minimizers of 𝐸𝐺 must be locally elastic-Griffith stable. Of course, this implies in
particular that quasi-static evolutions in the sense of Francfort and Marigo (1998), and locally minimizing evolutions, as in Larsen
(2010a), must be locally elastic-Griffith stable at every time. We also note that if evolutions are not local minimizers, but are
stable in the sense of Griffith at every time, as in Dal Maso and Toader (2002) and Knees et al. (2008), then they also satisfy local
elastic-Griffith stability at every time.

4.1. Global Griffith stability and blow-ups

4.1.1. Global minimizers
If (𝑢,𝐾) is a global minimizer of 𝐸𝐺 (or unilateral minimizer), then it also satisfies two local properties: (i) a weak form of the

Euler–Lagrange equation, 𝛥𝑢 = 0 in 𝛺 ⧵ 𝐾 and 𝜕𝜈𝑢 = 0 on 𝐾, and (ii) local Griffith stability. Here we outline why (ii) holds. First,
we restate the scaling — fix 𝑥0 ∈ 𝛺, and set

𝑢𝜀(𝑥) ∶= 𝜀
−

1
2 [𝑢(𝑥0 + 𝜀𝑥) − 𝑢(𝑥0)] and 𝐾𝜀 ∶= 𝜀−1(𝐾 − 𝑥0). (4.1)

The point of this scaling, introduced in Bonnet (1996) (and appropriate for any 2-homogeneous elastic energy) is that it preserves
the relative contributions of the elastic and surface energies:

1

2 ∫𝐵(0,𝑟) |∇𝑢𝜀|
2𝑑𝑥 = 𝜀−1

1

2 ∫𝐵(𝑥0 ,𝜀𝑟) |∇𝑢|
2𝑑𝑥

while

1(𝐾𝜀 ∩ 𝐵(0, 𝑟)) = 𝜀−11(𝐾 ∩ 𝐵(𝑥0, 𝜀𝑟)),
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with 𝑢𝜀 continuous off of 𝐾𝜀. For 𝛺 ⊂ R
𝑁 instead of R2, the only difference is that 𝜀−1 is replaced with 𝜀1−𝑁 in both of the above

equations, and 1 is replaced with 𝑁−1 in the second. There is one additional point we should note, which is that more generally,
in the definition of 𝑢𝜀, we can subtract off piecewise constant functions (see Bonnet (1996)) instead of the constant 𝑢(𝑥0). This is
useful to study solutions near points on the crack set besides crack tips. But for crack tips, it is enough to subtract off 𝑢(𝑥0).

Since the 𝐸𝐺 energy of competitors scales the same way, it is immediate that, since by assumption (𝑢,𝐾) has lower energy (elastic
plus surface) than competitors that differ from (𝑢,𝐾) only in 𝐵(𝑥0, 𝜀𝑟), it must be that (𝑢𝜀, 𝐾𝜀) also minimizes this energy (the factor
𝜀−1 not affecting minimality) compared with competitors that differ from it only in 𝐵(0, 𝑟). To be more explicit, for every 𝑟 > 0,
given (𝑤, 𝜅) such that 𝑤 ∈ 𝐻1

𝑢𝜀
(𝐵(0, 𝑟) ⧵ 𝜅) and 𝜅 ⊂ 𝐵(0, 𝑟) with 𝜅 ⊃ 𝐾𝜀 ∩ 𝐵(0, 𝑟), we have

1

2 ∫𝐵(0,𝑟) |∇𝑢𝜀|
2𝑑𝑥 + 𝐺𝑐1(𝐾𝜀 ∩ 𝐵(0, 𝑟)) ≤ 1

2 ∫𝐵(0,𝑟) |∇𝑤|2𝑑𝑥 + 𝐺𝑐1(𝜅).

Notice that this implies

1

2 ∫𝐵(0,𝑟) |∇𝑢𝜀|
2𝑑𝑥 ≤ 𝐺𝑐2𝜋𝑟, (4.2)

since 𝜕𝐵(0, 𝑟) can be added to 𝐾𝜀 ∩ 𝐵(0, 𝑟), creating a competitor with zero elastic energy in 𝐵(0, 𝑟) (technically, 𝜕𝐵(0, 𝜌) would be
added, with 𝜌 slightly less than 𝑟). So, it must be that the amount of elastic energy inside 𝐵(0, 𝑟) is no more than the perimeter of
𝐵(0, 𝑟) times 𝐺𝑐 .

Then, if 𝑢𝜀 and 𝐾𝜀 converge to 𝑢̂ and 𝐾̂ respectively, as 𝜀 → 0 (or for a sequence 𝜀𝑛 → 0), it follows from Francfort and Larsen
(2003) that for every 𝑟 > 0, (𝑢̂, 𝐾̂) minimizes

(𝑤, 𝜅) ↦
1

2 ∫𝐵(0,𝑟) |∇𝑤|2𝑑𝑥 + 𝐺𝑐1(𝜅 ∩ 𝐵(0, 𝑟))

over 𝑤 ∈ 𝐻1
𝑢̂
(𝐵(0, 𝑟) ⧵ 𝜅) and 𝜅 ⊃ 𝐾̂. The idea is that if a pair (𝑤, 𝜅) had lower energy than (𝑢̂, 𝐾̂) in 𝐵(0, 𝑟), then for 𝜀 small enough

(so 𝑢𝜀 is close enough to 𝑢̂), 𝑢𝜀 and 𝐾𝜀 could be modified inside 𝐵(0, 𝑟) to equal (𝑤, 𝜅) (at an energy cost that goes to zero with 𝜀),
thereby reducing the energy of (𝑢𝜀, 𝐾𝜀) in 𝐵(0, 𝑟), contradicting minimality. So, these blow-ups satisfy Definition 2.1, and (𝑢,𝐾) is
locally elastic-Griffith stable.

Remark 4.1 (On Convergence). Because of the bound (4.2), if for each 𝑟 > 0, 1(𝐾𝜀 ∩ 𝐵(0, 𝑟)) is bounded, we are guaranteed that
there is some (𝑢̂, 𝐾̂) that is the limit of a sequence (𝑢𝜀𝑛 , 𝐾𝜀𝑛

) with 𝜀𝑛 → 0 (this follows from 𝑆𝐵𝑉 compactness). The convergence
is like weak local 𝐻1 convergence, in that 𝑢𝜀 → 𝑢̂ in 𝐿2(𝐵(0, 𝑟)) and ∇𝑢𝜀 ⇀ ∇𝑢̂ weakly in 𝐿2(𝐵(0, 𝑟)), for every 𝑟 > 0. If 𝐾𝜀𝑛

are the discontinuity sets of 𝑢𝜀𝑛 , then 𝐾̂ is by definition the discontinuity set of the limit 𝑢̂. This convergence is summarized as
(𝑢𝜀𝑛 , 𝐾𝜀𝑛

) → (𝑢̂, 𝐾̂), and we call (𝑢̂, 𝐾̂) a blow-up limit of (𝑢𝜀, 𝐾𝜀).

4.1.2. Local minimizers
It is straightforward to see that blow-ups of local minimizers also satisfy Definition 2.1: If (𝑢,𝐾) is a (𝐿2) local minimizer, that

means that for some 𝛿 > 0, (𝑢,𝐾) is minimal over competitors (𝑤, 𝜅) with ‖𝑢−𝑤‖𝐿2 < 𝛿. Now again consider a blow-up limit (𝑢̂, 𝐾̂).
If (𝑤, 𝜅) had lower energy than (𝑢̂, 𝐾̂) in 𝐵(0, 𝑟), then for 𝜀 small enough, the unscaled 𝑤 would be within 𝛿 of 𝑢, and 𝑢𝜀 and 𝐾𝜀

could be modified inside 𝐵(0, 𝑟) to equal (𝑤, 𝜅) (at an energy cost that goes to zero with 𝜀), thereby reducing the energy of (𝑢𝜀, 𝐾𝜀)

in 𝐵(0, 𝑟). For 𝜀 small enough, the 𝐿2 norm of this modification would be less than 𝛿. So, these blow-ups satisfy Definition 2.1.

4.1.3. Blow-ups of local minimizers with loads
Whether or not local minimality of 𝐸𝐿𝑜𝑎𝑑 is a reasonable model for body loads, the fact is, body loads cannot compete with

surface energy locally (on sufficiently small scales), and we can see that here too, minimizers satisfy local elastic-Griffith stability.
We now sketch the reason. We consider 𝑥0 ∈ 𝛺, and for simplicity, we take 𝑢(𝑥0) = 0. Then set

𝑢𝜀(𝑥) ∶= 𝜀
−

1
2 𝑢(𝑥0 + 𝜀𝑥)

and 𝐾𝜀 ∶= 𝜀−1(𝐾 − 𝑥0).
As noted, this scaling preserves the relative contributions of the elastic and surface energies:

1

2 ∫𝐵(0,𝑟) |∇𝑢𝜀|
2𝑑𝑥 = 𝜀−1

1

2 ∫𝐵(𝑥0 ,𝜀𝑟) |∇𝑢|
2𝑑𝑥

while

1(𝐾𝜀 ∩ 𝐵(0, 𝑟)) = 𝜀−11(𝐾 ∩ 𝐵(𝑥0, 𝜀𝑟)).

On the other hand, the load term scales differently:

∫𝐵(0,𝑟) 𝑓𝑢𝜀𝑑𝑥 = 𝜀
−

5
2 ∫𝐵(𝑥0 ,𝜀𝑟) 𝑓𝑢𝑑𝑥

so that

𝜀
3
2 ∫𝐵(0,𝑟) 𝑓𝑢𝜀𝑑𝑥 = 𝜀−1 ∫𝐵(𝑥0 ,𝜀𝑟) 𝑓𝑢𝑑𝑥.
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We then get

𝐸𝑟(𝑢𝜀, 𝐾𝜀) ∶=
1

2 ∫𝐵(0,𝑟) |∇𝑢𝜀|
2𝑑𝑥 − 𝜀

3
2 ∫𝐵(0,𝑟) 𝑓𝑢𝜀𝑑𝑥 +1(𝐾𝜀 ∩ 𝐵(0, 𝑟))

= 𝜀−1
1

2 ∫𝐵(𝑥0 ,𝜀𝑟) |∇𝑢|
2𝑑𝑥 − 𝜀−1 ∫𝐵(𝑥0 ,𝜀𝑟) 𝑓𝑢𝑑𝑥 + 𝜀−11(𝐾 ∩ 𝐵(𝑥0, 𝜀𝑟)).

So, since 𝑢 was a local minimizer, 𝑢𝜀 minimizes 𝐸𝑟 subject to small variations, and so 𝑢𝜀 weakly satisfy

𝛥𝑢𝜀 = 𝜀
3
2 𝑓.

If we suppose 𝑢𝜀 and 𝐾𝜀 converge to 𝑢̂ and 𝐾̂ as 𝜀 → 0 (at least for some sequence 𝜀𝑛 → 0), then since 𝛥𝑢𝜀 → 0, we get

𝛥𝑢̂ = 0,

and we are left with (𝑢̂, 𝐾̂) minimizing just elastic plus surface energy, and so this pair satisfies Definition 2.1.

5. 𝜞 -Convergence of rescaled phase-field fracture

We now return to the phase-field formulation of fracture, as implemented. We recall that in practice, the phase-field energies
𝐸𝛿 are not globally minimized, but perhaps they are locally minimized. In this case, 𝛤 -convergence is not the relevant convergence
of phase-field energies to Griffith fracture energies of the type in Francfort and Marigo (1998) (see Braides (2014) for a general
discussion of difficulties when taking limits of local minimizers). This raises important questions, such as, what are implementations
of phase-field fracture approximating (if anything), and in what sense? Below we give partial answers.

Suppose (𝑢𝛿 , 𝑣𝛿) locally minimize 𝐸𝛿[𝛺], where

𝐸𝛿[𝛺](𝑢, 𝑣) ∶=
1

2 ∫𝛺(𝜂𝛿 + 𝑣2)|∇𝑢|2𝑑𝑥 + 𝐺𝑐

(
1

4𝛿 ∫𝛺(1 − 𝑣)2𝑑𝑥 + 𝛿 ∫𝛺 |∇𝑣|2𝑑𝑥
)
,

subject to boundary conditions, and 𝑢𝛿 → 𝑢0. We want to check whether (𝑢0, 𝑆𝑢0
) satisfies elastic-Griffith stability, our Definition 2.3,

where 𝑆𝑢0
is the discontinuity set of 𝑢0.

For each 𝑢, 𝑣 ∈ 𝐻1(𝛺) and any 𝑥0 ∈ 𝛺, 𝜀 > 0, set

𝑢𝜀(𝑥) ∶= 𝜀
−

1
2 [𝑢(𝑥0 + 𝜀𝑥) − 𝑢(𝑥0)]

and

𝑣𝜀(𝑥) ∶= 𝑣(𝑥0 + 𝜀𝑥).

Note that 𝑣𝜀 is only a translation and dilation, just as 𝐾𝜀 was a translation and dilation. Then |∇𝑢𝜀|2(𝑥) = 𝜀|∇𝑢|2(𝑥0 + 𝜀𝑥) and
|∇𝑣𝜀|2(𝑥) = 𝜀2|∇𝑣|2(𝑥0 + 𝜀𝑥), while scaling from 𝐵(𝑥0, 𝜀𝑟) to 𝐵(0, 𝑟) produces a factor of 𝜀−2, so that

1

2 ∫𝐵(0,𝑟)(𝜂𝛿 + 𝑣2
𝜀
)|∇𝑢𝜀|2𝑑𝑥 = 𝜀−1

1

2 ∫𝐵(𝑥0 ,𝜀𝑟)(𝜂𝛿 + 𝑣2)|∇𝑢|2𝑑𝑥,

1

4𝛿 ∫𝐵(0,𝑟)(1 − 𝑣𝜀)
2𝑑𝑥 =

𝜀−2

4𝛿 ∫𝐵(𝑥0 ,𝜀𝑟)(1 − 𝑣)2𝑑𝑥,

and

𝛿 ∫𝐵(0,𝑟) |∇𝑣𝜀|
2𝑑𝑥 = 𝛿 ∫𝐵(𝑥0 ,𝜀𝑟) |∇𝑣|

2𝑑𝑥.

We then get

1

2 ∫𝐵(0,𝑟)(𝜂𝛿 + 𝑣2
𝜀
)|∇𝑢𝜀|2𝑑𝑥 + 𝐺𝑐

[
𝜀

4𝛿 ∫𝐵(0,𝑟)(1 − 𝑣𝜀)
2𝑑𝑥 +

𝛿

𝜀 ∫𝐵(0,𝑟) |∇𝑣𝜀|
2𝑑𝑥

]

= 𝜀−1

(
1

2 ∫𝐵(𝑥0 ,𝜀𝑟)(𝜂𝛿 + 𝑣2)|∇𝑢|2𝑑𝑥 + 𝐺𝑐

[
1

4𝛿 ∫𝐵(𝑥0 ,𝜀𝑟)(1 − 𝑣)2𝑑𝑥 + 𝛿 ∫𝐵(𝑥0 ,𝜀𝑟) |∇𝑣|
2𝑑𝑥

])
.

Setting 𝛼 ∶= 𝛿∕𝜀, we have

𝐸𝛼[𝐵(0, 𝑟)](𝑢𝜀, 𝑣𝜀) = 𝜀−1𝐸𝛿[𝐵(𝑥0, 𝜀𝑟)](𝑢, 𝑣).

Here we are cheating slightly, since we have 𝜂𝛿 instead of 𝜂𝛼 in 𝐸𝛼 , but this makes no difference if we choose 𝜂𝛿 ≪ 𝛼. So we have the
usual 𝛤 -convergence of Ambrosio and Tortorelli (1990), meaning that 𝐸𝛼[𝐵(0, 𝑟)] 𝛤 -converges to the Griffith energy 𝐸𝐺

𝑟
for every

𝑟 > 0.
Returning to our local minimizers (𝑢𝛿 , 𝑣𝛿), due to compactness we can suppose that 𝑢𝛿 → 𝑢0 in 𝐿2(𝛺), and 𝑢0 ∈ 𝐻1(𝛺 ⧵𝐾) with

𝐾 = 𝑆𝑢0
(𝑢0 is technically in SBV). We fix 𝑥0 ∈ 𝛺 and perform the above 𝜀 rescaling, to get (𝑢𝜀

𝛿
, 𝑣𝜀

𝛿
), and rescale 𝑢0 to get 𝑢0

𝜀. If the
blow-up limit of 𝑢0 at 𝑥0 is 𝑢̂, i.e., 𝑢0

𝜀
→ 𝑢̂, then we have

𝑢̂ = lim
𝜀→0

𝑢0
𝜀 and 𝑢0

𝜀 = lim
𝛿→0

𝑢𝜀
𝛿
,
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so we get

𝑢̂ = lim
𝜀→0

lim
𝛿→0

𝑢𝜀
𝛿
.

We can then choose 𝜀(𝛿) ≫ 𝛿 so that lim𝛿→0 𝑢
𝜀(𝛿)

𝛿
= 𝑢̂.

If the (𝑢𝛿 , 𝑣𝛿) are uniform local minimizers near 𝑥0, i.e., they are all global minimizers within 𝐵(𝑥0, 𝜌) for some 𝜌 > 0 (or within
𝐵(𝑥0, 𝜌𝛿) with 𝜌𝛿 → 0 more slowly than 𝜀(𝛿)), then it follows from the 𝛤 -convergence of 𝐸𝛼 that (𝑢̂, 𝐾̂) is globally Griffith stable.
And if this uniform local minimality holds for each 𝑥0 ∈ 𝛺, then (𝑢0, 𝑆𝑢0

) satisfies our Definition 2.2. Condition (1) in Definition 2.3
is straightforward, and so the pair satisfies Definition 2.3, and is elastic-Griffith stable.

6. Conclusions

We introduce a new, local, variational principle for Griffith fracture which does not have the drawbacks of global minimization,
and in particular is compatible with applied loads. We also emphasize a larger point, that it is not entirely global minimization
that leads to problems with loads. Rather, it is also the requirement that there be a variational formulation using a single energy,
so that loads and fracture are forced to directly interact. Instead, as first put forward with boundary loads in Larsen (2021), we
should consider two distinct variational problems, one for determining the equilibrium displacement, and the other for defining
crack stability based on elastic energy in competition with surface energy.

Here we showed that with body loads, and in other settings, the competition between elastic and surface energy must be local.
The difficulty is defining a local principle in a way that maintains the mathematical robustness of Francfort and Marigo (1998).
Local Griffith stability does just this. In addition, it is consistent with, and can be viewed as a generalization of, stress intensity
factors and corresponding energy release rates. This local stability condition also opens the door to mathematical models for a host
of materials which are not purely elastic, but crack growth is governed by elastic energy concentrations competing with fracture
surface energy.
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