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Abstract Simulation is a key tool in population genetics for both methods development and 

empirical research, but producing simulations that recapitulate the main features of genomic 

datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large 

increases in the quantity and quality of available genetic data, and the sophistication of infer-

ence and simulation software. However, implementing these simulations still requires substantial 

time and specialized knowledge. These challenges are especially pronounced for simulating 

genomes for species that are not well-studied, since it is not always clear what information is 

required to produce simulations with a level of realism sufficient to confidently answer a given 

question. The community-developed framework stdpopsim seeks to lower this barrier by facili-

tating the simulation of complex population genetic models using up-to-date information. The 

initial version of stdpopsim focused on establishing this framework using six well-characterized 

model species (Adrion et al., 2020). Here, we report on major improvements made in the new 

release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog 

and substantial additions to simulation capabilities. Features added to improve the realism of 

the simulated genomes include non-crossover recombination and provision of species-specific 

genomic annotations. Through community-driven efforts, we expanded the number of species 

in the catalog more than threefold and broadened coverage across the tree of life. During the 

process of expanding the catalog, we have identified common sticking points and developed the 

best practices for setting up genome-scale simulations. We describe the input data required for 

generating a realistic simulation, suggest good practices for obtaining the relevant information 

from the literature, and discuss common pitfalls and major considerations. These improvements 

to stdpopsim aim to further promote the use of realistic whole-genome population genetic simu-

lations, especially in non-model organisms, making them available, transparent, and accessible to 

everyone.

eLife assessment
This important paper reports recent improvements and extensions to stdpopsim, a community-

driven resource that is built on top of powerful software for performing simulations of population 

genomic data and provides a catalog of species with curated genomic parameters and demographic 

models. In addition to describing the new features and species in stdpopsim, the authors provide a 

set of practical guidelines for implementing realistic simulations. Overall, this convincing manuscript 

serves as an excellent overview of the utility, challenges, common pitfalls, and best practices of 

population genomic simulations. It will be of broad interest to population, evolutionary, and ecolog-

ical geneticists studying humans, model organisms, or non-model organisms.
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Introduction
Population genetics allows us to answer questions across scales from deep evolutionary time to 

ongoing ecological dynamics, and dramatic reductions in sequencing costs enable the generation 

of unprecedented amounts of genomic data that can be used to address these questions (Ellegren, 

2014). Ongoing efforts to systematically sequence life on Earth by initiatives such as the Earth Biog-

enome (Lewin et al., 2022) and its affiliated project networks, such as Vertebrate Genomes (Rhie 

et al., 2021), 10,000 Plants (Cheng et al., 2018) and others (Darwin Tree of Life Project Consor-

tium, 2022), are providing the backbone for enormous increases in the amount of population-level 

genomic data available for model and non-model species. These data are being used, among other 

things, in the inference of population history and demographic parameters (Beichman et al., 2018), 

studying adaptive introgression (Gower et al., 2021), providing null expectations for selection scans 

(e.g. Hsieh et al., 2021), and understanding the implications of deleterious variation in populations 

of conservation concern (e.g. Robinson et al., 2023). While many of the methods that address these 

questions were initially developed for a few key model systems such as humans and Drosophila, more 

recent efforts are generalizing these methods to include important factors not initially accounted for, 

such as inbreeding or selfing (Blischak et al., 2020), skewed offspring distributions (Montano, 2016), 

and intense artificial selection even for non-model organisms (MacLeod et al., 2013; MacLeod et al., 

2014).

Simulations can be useful at all stages of this work—for planning studies, analyzing data, testing 

inference methods, and validating findings from empirical and theoretical research. For instance, 

simulations provide training data for inference methods based on machine learning (Schrider and 

Kern, 2018) and Approximate Bayesian Computation (Csilléry et al., 2010). They can also serve as 

baselines for further analyses: for example, simulations incorporating demographic history serve as 

null models when detecting selection (Hsieh et al., 2016) or seed downstream breeding program 

simulations (Gaynor et al., 2021). More recently, population genomic simulations have been used to 

help guide conservation decisions for threatened species (Teixeira and Huber, 2021; Kyriazis et al., 

2022).

Increasing amounts of data and the sophistication of inference methods have enabled researchers 

to ask ever more specific and precise questions. Consequently, simulations must incorporate more 

and more elements of biological realism. Important elements include genomic features such as muta-

tion and recombination rates that strongly affect genetic variation and haplotype structure (Nachman, 

2002). The inclusion of these genomic features is particularly important when linked selection is acting 

upon the patterns of genomic diversity being studied (Cutter and Payseur, 2013). Furthermore, the 

demographic history of a species—encompassing population sizes and distributions, divergences, 

and gene flow—can dramatically affect patterns of genomic variation (Teshima et al., 2006). Thus 

species-specific estimates of these and other ecological and evolutionary parameters (such as those 

governing the process of natural selection) are important when generating realistic simulations. This 

presents challenges, especially to new researchers, as it takes a great deal of specialized knowledge 

not only to code the simulations themselves but also to find and choose appropriate estimates of the 

parameters underlying the simulation model.

The recently developed community resource stdpopsim provides easy access to detailed popula-

tion genomic simulations (Adrion et al., 2020). It lowers the technical barriers to performing these 

simulations and reduces the possibility of erroneous implementation of simulations for species with 

published demographic models. The initial release of stdpopsim was restricted to only six well-

characterized model species, such as Drosophila melanogaster and Homo sapiens, but the feedback 

we received from the community identified a widespread desire to simulate a broader range of non-

model species, and ideally to incorporate these into the stdpopsim catalog for future use. This feed-

back, and subsequent efforts to expand the catalog, also uncovered a vital need to better understand 

when it is practical to create a realistic simulation of a species of interest, and indeed what ‘realistic’ 

means in this context.

This paper reports on the updates made in the current release of stdpopsim (version 0.2), and 

is also intended as a resource for any researcher who wishes to develop chromosome-scale simula-

tions for their own species of interest. We start by describing the central idea behind the standard-

ized simulation framework of stdpopsim, and then outline the main updates made to the stdpopsim 

catalog and simulation framework in the past two years. We then provide guidelines for generating 
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population genomic simulations, either for the purpose of using them in one specific study, or with 

the intent of making the simulations available for future work by adding the appropriate models to 

stdpopsim. Among other considerations, we discuss when a chromosome-scale simulation is more 

useful than simulations based on either individual loci or generic loci. We specify the required input 

data, mention common pitfalls in choosing appropriate parameters, and suggest courses of action for 

species that are missing estimates of some necessary inputs. We conclude with examples from two 

species recently added to stdpopsim, which demonstrate some of the main considerations involved 

in the process of designing realistic chromosome-scale simulations. While the guidelines provided in 

this paper are intended for any researcher interested in implementing a population genomic simula-

tion using any software, we highlight the ways in which the stdpopsim framework eases the burden 

involved in this process and facilitates reproducible research.

The utility of stdpopsim for chromosome-scale simulations
We begin by providing a brief overview of the importance of chromosome-scale simulations and the 

main rationale behind stdpopsim; see Adrion et al., 2020 for more on the topic. The main objective of 

population genomic simulations is to recreate patterns of sequence variation along the genome under 

the inferred evolutionary history of a given species. To achieve this, stdpopsim is built on top of the 

msprime (Kelleher et al., 2016; Nelson et al., 2020; Baumdicker et al., 2021) and SLiM (Haller and 

Messer, 2019) simulation engines, which are capable of producing fairly realistic patterns of sequence 

variation if provided with accurate descriptions of the genome architecture and evolutionary history 

of the simulated species. The required parameters include the number of chromosomes and their 

lengths, mutation and recombination rates, the demographic history of the simulated population, 

and, potentially, the landscape of natural selection along the genome. A key challenge when setting 

up a population genomic simulation is to obtain estimates of all of these quantities from the literature 

and then correctly implement them in an appropriate simulation engine. Detailed estimates of all of 

these quantities are increasingly available due to the growing availability of population genomic data 

coupled with methodological advances. Incorporating this data into a population genomic simulation 

often involves integrating this data between different literature sources, which can require specialized 

knowledge of population genetics theory. Thus, the process of coding a realistic simulation can be 

quite time-consuming and often error-prone.

The main objective of stdpopsim is to streamline this process, and to make it more robust and more 

reproducible. Contributors collect parameter values for their species of interest from the literature 

and then specify these parameters in a template file for the new model. This model then undergoes a 

peer-review process, which involves another researcher independently recreating the model based on 

the provided documentation. Automated scripts then execute to compare the two models; if discrep-

ancies are found in this process, they are resolved by discussion between the contributor and reviewer, 

and if necessary with the input of additional members of the community. This quality-control process 

quite often finds subtle bugs (e.g. as in Ragsdale et al., 2020) or highlights parts of the model that 

are ambiguously defined by the literature sources. This increases the reliability and reproducibility of 

the resulting simulations in any downstream analysis.

Another important goal of stdpopsim is to promote and facilitate chromosome-scale simulations, 

as opposed to the common practice of simulating many short segments (see, e.g. Harris and Nielsen, 

2016). Simulation of long sequences, on the order of 107 bases, has until recently been computa-

tionally prohibitive, but this has changed with the development of modern simulation engines such 

as msprime and SLiM. Generating chromosome-scale simulations has several key benefits. First, the 

organization of genes on chromosomes is a key feature of a species’ genome that is ignored in many 

traditional population genomic simulations (see Schrider, 2020 for one exception). Second, modeling 

physical linkage allows simulations to capture important correlations between genetic variants on a 

chromosome. These correlations reduce variance relative to separate and independent simulations of 

equivalent genetic material. This has a particularly striking effect in long stretches with a low recom-

bination rate, as observed for instance on the long arm of human chromosome 22 (Dawson et al., 

2002). In bacteria, a similar effect occurs due to genome-wide linkage that is broken only by the 

horizontal transfer of short segments (Didelot and Maiden, 2010). When conducting simulations with 

natural selection, genetic linkage has an even stronger effect. Selection acting on a small number of 

sites can indirectly influence levels and patterns of genetic variation at linked neutral sites, which has 
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been shown to have a widespread effect on patterns of genomic variation in a myriad of species (e.g. 

McVicker et al., 2009; Charlesworth, 2012). In addition, the lengths of chromosome-scale shared 

haplotypes within and between populations provide valuable information on their demographic 

history. Demographic inference methods that use such information, such as MSMC (Schiffels and 

Wang, 2020) and IBDNe (Browning and Browning, 2015), perform best on long genomic segments 

with realistic recombination rates. Chromosome-scale simulations are clearly required to test (or train) 

such methods, or to conduct power analyses when designing empirical studies that use them. With 

stdpopsim, such simulations are available with just a single call to a command-line script or with the 

execution of a handful of lines of Python code.

Additions to stdpopsim
When first published, the stdpopsim catalog included six species: Homo sapiens, Pongo abelii, Canis 

familiaris, Drosophila melanogaster, Arabidopsis thaliana, and Escherichia coli (Figure 1). One way 

the catalog has expanded is through the introduction of additional demographic models for Homo 

sapiens, Pongo abelii, Drosophila melanogaster, and Arabidopsis thaliana, enabling a wider variety 

of simulations for these well-studied species. However, the initial collection of six species represents 

only a small slice of the tree of life. This is a concern not only because there is a large community of 

researchers studying other organisms, but also because methods developed for application to model 

species (such as humans) may not perform well when applied to other species with very different 

biology. Adding species to the stdpopsim catalog will allow developers to easily test their methods 

across a wider variety of organisms.

We thus made a concerted effort to recruit members of the population and evolutionary genetics 

community to add their species of interest to the stdpopsim catalog. This effort involved a series of 

workshops to introduce potential contributors to stdpopsim, followed by a ‘Growing the Zoo’ hack-

athon organized alongside the 2021 ProbGen conference. The seven initial workshops allowed us to 

reach a broad community of more than 150 researchers, many of whom expressed interest in adding 

non-model species to stdpopsim. The hackathon was then structured based on feedback from these 

participants. One month before the hackathon, we organized a final workshop to prepare interested 

participants, by introducing them to the process of developing a new species model and adding it 

to the stdpopsim code base. Roughly 20 scientists participated in the hackathon (most of whom are 

included as authors on this paper), which resulted in the addition of 15 species to the stdpopsim 

catalog (Figure  1). The catalog now includes a teleost fish (Gasterosteus aculeatus), a bird (Anas 

platyrhynchos), a reptile (Anolis carolinensis), a livestock species (Bos taurus), six insects including 

two vectors of human disease (Aedes aegypti and Anopheles gambiae), a nematode (Caenorhabditis 

elegans), two flowering plants including a crop (Helianthus annuus), an algae (Chlamydomonas rein-

hardtii), two bacteria, four primates, and a common mammalian associate of humans (Canis familiaris). 

Not all of these have recombination maps or demographic models (see Figure 1), but this lays a 

framework for future contributions.

Expanding the species catalog required adding several capabilities to the simulation framework of 

stdpopsim. Some features were added by upgrading the neutral simulation engine, msprime, from 

version 0.7.4 to version 1.0 (Baumdicker et al., 2021). Among other features, this upgrade includes a 

discrete-site model of mutation, which enables simulating sites with multiple mutations and possibly 

more than two alleles. Another key feature added to stdpopsim’s simulation framework was the ability 

to model non-crossover recombination. In bacteria and archaea, genetic material can be exchanged 

through horizontal gene transfer, which can add new genetic material (e.g. via the transfer of plas-

mids) or replace homologous sequences through homologous recombination (Thomas and Nielsen, 

2005; Didelot and Maiden, 2010; Gophna and Altman-Price, 2022). However, the initial version of 

stdpopsim used crossover recombination to stand in for these processes. Although we cannot currently 

simulate varying gene content (as would be required to simulate the addition of new genetic material 

by horizontal gene transfer), the msprime and SLiM simulation engines now allow gene conversion, 

which has the same effect as non-crossover homologous recombination. Following Cury et al., 2022, 

we use this to include non-crossover homologous recombination in bacterial and archaeal species. 

This is done in stdpopsim by setting a flag in the species model to indicate that recombination should 

be modeled without crossovers and specifying an average tract length of exchanged genetic mate-

rial. For example, the model for Escherichia coli has been updated in the stdpopsim catalog to use 
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Figure 1. Phylogenetic tree of species available in the stdpopsim catalog, including the six species we published in the original release (Adrion et al., 

2020, in blue), and 15 species that have since been added (in orange). Solid circles indicate species that have one (light gray) or more (dark gray) 

demographic models and recombination maps. Branch lengths were derived from the divergence times provided by TimeTree5 (Kumar et al., 2022). 

The horizontal bar below the tree indicates 500 million years (my). Source code for generating the tree is given in Figure 1—source code 1 and 2.

The online version of this article includes the following source code for �gure 1:

Source code 1. R code for generating the �gure.

Source code 2. Newick-format tree used as input in R code.



 Research advance﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Lauterbur et al. eLife 2023;12:RP84874. DOI: https://​doi.​org/​10.​7554/​eLife.​84874 � 7 of 20

non-crossover recombination at an average rate of ‍8.9 × 10−11‍ recombination events per base per 

generation, with an average tract length of 542 bases (Wielgoss et al., 2011; Didelot et al., 2012). 

Note that this rate (‍8.9 × 10−11‍) corresponds to the rate of initiation of a recombined tract.

Recombination without crossover is also prevalent in sexually reproducing species, where it is 

termed gene conversion. Gene conversion affects shorter segments than crossover recombination and 

creates distinct patterns of genetic diversity along the genome (Korunes and Noor, 2017). Indeed, 

gene conversion rates in some species are estimated to occur at similar or even higher rates than 

crossover recombination (Gay et al., 2007; Comeron et al., 2012; Wijnker et al., 2013). To accom-

modate this in stdpopsim simulations, one needs to specify the fraction of recombinations that occur 

due to gene conversion (i.e. without crossover), and the average tract length. For example, the model 

for Drosophila melanogaster has been updated in the stdpopsim catalog to have a fraction of gene 

conversions of 0.83 (in all chromosomes that undergo recombination) and an average tract length of 

518 bases (Comeron et al., 2012). This update does not affect the rate of crossover recombination, 

but it adds gene conversion events at a ratio of 83:17 relative to crossover recombination events. 

We note that since non-crossover recombination incurs a high computation load in simulation, it is 

turned off by default in stdpopsim, and must be explicitly invoked by the simulation model. Note that 

ignoring gene conversion may result in a slightly skewed distribution of shared haplotypes between 

individuals (see Table 1).

Another important extension of stdpopsim allows augmenting a genome assembly with genome 

annotations, such as coding regions, promoters, and conserved elements. These annotations can be 

used to simulate selection at a subset of sites (such as the annotated coding regions) using parametric 

distributions of fitness effects. Standardized, easily accessible simulations that include the reality of 

pervasive linked selection in a species-specific manner has long been identified as a goal for evolu-

tionary genetics (e.g. McVicker et al., 2009; Comeron, 2014). Thus, we expect this extension of 

stdpopsim to be transformative in the way simulations are carried out in population genetics. This 

significant new capability of the stdpopsim library will be detailed in a forthcoming publication, and 

is not the focus of this paper.

Guidelines for implementing a population genomic simulation
The concentrated effort to add species to the stdpopsim catalog has led to a series of important 

insights about this process, which we summarize here as a set of guidelines for implementing realistic 

simulations for any species. Our intention is to provide general guidance that applies to any popula-

tion genomic simulation software, but we also mention specific requirements that apply to simulations 

done in stdpopsim.

Basic setup for chromosome-level simulations
Implementing a realistic population genomic simulation for a species of interest requires a detailed 

description of the organism’s demography and mechanisms of genetic inheritance. While simulation 

Table 1. Guidelines for dealing with missing parameters.

For each parameter, we provide a suggested course of action, and mention the main discrepancies 

between simulated data and real genomic data that could be caused by misspecification of that 

parameter.

Missing parameter Suggested action Possible discrepancies

Mutation rate Borrow from the closest relative 
with a citable mutation rate

Number of polymorphic sites

Recombination rate Borrow from the closest relative 
with a citable recombination rate

Patterns of linkage disequilibrium

Gene conversion rate and tract 
length

Set the rate to 0 or borrow from the 
closest relative with a citable rate

Lengths of shared haplotypes across 
individuals

Demographic model Set the effective population size 
(‍Ne‍) to a value that re�ects the 
observed genetic diversity

Features of genetic diversity that 
are captured by the site frequency 
spectrum, such as the prevalence of 
low-frequency alleles
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software requires unforgivingly precise values, in practice we may only have rough guesses for most 

of the parameters describing these processes. In this section, we list the relevant parameters and 

provide guidelines for how to set them based on current knowledge.

1.	 A chromosome-level genome assembly, which consists of a list of chromosomes or scaffolds 
and their lengths. Having a good quality assembly with complete chromosomes, or at least very 
long scaffolds, is necessary if chromosome-level population genomic simulations are to reflect 
the genomic architecture of the species. When expanding the stdpopsim catalog during the 
‘Growing the Zoo’ hackathon, we considered the possibility of adding species whose genome 
assemblies are composed of many relatively small contigs, unanchored to chromosome-level 
scaffolds. Although we had not previously put restrictions on which species might be added, 
we decided that we would only add species with chromosome-level assemblies. The main justi-
fication for this restriction is that species with less complete genome builds typically do not 
have good recombination maps and demographic models, making chromosome-level simula-
tion much less useful in such species. Another issue is the storage burden and long load times 
involved in dealing with hundreds of contigs. Finally, each species requires validation of its code 
before it is added to the stdpopsim catalog, as well as long-term maintenance to keep it up-to-
date with changes made to the stdpopsim framework. So, the benefit of including species with 
very partial genome builds in stdpopsim would be outweighed by the substantial extra burden 
on stdpopsim maintainers as well as downstream users of these models. Another reason to 
focus on species with chromosome-level assemblies is that we expect their numbers to dramat-
ically increase in the near future due to numerous genome initiatives (Lewin et al., 2022; Rhie 
et al., 2021; Cheng et al., 2018) and the development of new long-read sequencing technol-
ogies and assembly pipelines (Chakraborty et al., 2016; Amarasinghe et al., 2020; Amaras-
inghe et al., 2021).

2.	 An average mutation rate for each chromosome (per generation per bp). This rate estimate can 
be based on sequence data from pedigrees, mutation accumulation studies, or comparative 
genomic analysis calibrated by fossil data (i.e. phylogenetic estimates). At present, stdpopsim 
simulates mutations at a constant rate under the Jukes–Cantor model of nucleotide mutations 
(Jukes and Cantor, 1969). However, we anticipate future development will provide support for 
more complex, heterogeneous mutational processes, as these are easily specified in both the 
SLiM and msprime simulation engines. Such progress will further improve the realism of simu-
lated genomes, since mutation processes, including rates, are known to vary along the genome 
and through time (Benzer, 1961; Ellegren et al., 2003; Supek and Lehner, 2019).

3.	 Recombination rates (per generation per bp). Ideally, a population genomic simulation should 
make use of a chromosome-level recombination map, since the recombination rate is known 
to vary widely across chromosomes (Nachman, 2002), and this can strongly affect the patterns 
of linkage disequilibrium and shared haplotype lengths. When this information is not available, 
we suggest specifying an average recombination rate for each chromosome. At a minimum, an 
average genome-wide recombination rate needs to be specified, which is typically available for 
well-assembled genomes. For bacteria and archaea, which primarily experience non-crossover 
recombination, the average tract length should also be specified (see details in the previous 
section). Gene conversion (optional): If one wishes to model gene conversion in eukaryotes, 
either together with crossover recombination or as a stand-alone process, then one should 
specify the fraction of recombinations done by gene conversion as well as the per chromosome 
average tract length.

4.	 A demographic model describing ancestral population sizes, split times, and migration rates. 
Selection of a reasonable demographic model is often crucial, since misspecification of the 
model can generate unrealistic patterns of genetic variation that will affect downstream analyses 
(e.g. Navascués and Emerson, 2009). A given species might have more than one demographic 
model, fit from different data or by different methods. Thus, when selecting a demographic 
model, one should examine the data sources and methods used to obtain it to ensure that 
they are relevant to the study at hand (see also Limitations of simulated genomes below). At a 
minimum, simulation requires a single estimate of effective population size. This estimate, which 
may correspond to some sort of historical average effective population size, should produce 
simulated data that matches the average observed genetic diversity in that species. Note, 
however, that this average effective population size cannot capture features of genetic variation 
that are caused by recent changes in population size and the presence of population structure 
(MacLeod et al., 2013; Eldon et al., 2015). For example, a recent population expansion will 
produce an excess of low-frequency alleles that no simulation of a constant-sized population will 
reproduce (Tennessen et al., 2012).
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5.	 An average generation time for the species. This parameter is an important part of the species’ 
natural history. This value does not directly affect the simulation, since stdpopsim uses either the 
Wright–Fisher model (in SLiM) or the Moran model (in msprime), both of which operate in time 
units of generations. Thus, the average generation time is only currently used to convert time 
units to years, which is useful when comparing among different demographic models.

These five categories of parameters are sufficient for generating simulations under neutral evolu-

tion. Such simulations are useful for a number of purposes, but they cannot be used to model the 

influence of natural selection on patterns of genetic variation. To achieve this, the simulator needs to 

know which regions along the genome are subject to selection, and the nature and strength of this 

selection. As mentioned above, the ability to simulate chromosomes with realistic models of selection 

is still under development, and will be finalized in the next release of stdpopsim. The development 

version of stdpopsim enables simulation with selection (using the SLiM engine) by specifying genome 

annotations and distributions of fitness effects, as specified below.
6.	 Genome annotations, specifying regions subject to selection (as, for example, a GFF3/GTF file). 

For instance, annotations can contain information on the location of coding regions, the posi-
tion of specific genes, or conserved non-coding regions. Regions not covered by the annotation 
file are assumed to be evolving free from the effects of direct natural selection.

7.	 Distributions of fitness effects (DFEs) for each annotation. Each annotation is associated with 
a DFE describing the probability distribution of selection coefficients (deleterious, neutral, 
and beneficial) for mutations occurring in the region covered by the annotation. DFEs can be 
inferred from population genomic data (reviewed in Eyre-Walker and Keightley, 2007), and 
are available for several species (e.g. Ma et al., 2013; Huber et al., 2018).

The current release of stdpopsim contains annotations and implemented DFE models for the three 

model species: A. thaliana, D. melanogaster, and H. sapiens. A forthcoming publication will provide 

details about how this is implemented in stdpopsim and examples of possible uses of this feature.

Extracting parameters from the literature
Simulations cannot of course precisely match reality, but in setting up simulations it is desirable to 

choose parameters that best reflect our current understanding of the evolutionary history of the 

species of interest. In practice, a researcher may choose each parameter to match a fairly precise esti-

mate or a wild guess, which may be obtained from a peer-reviewed publication or by word of mouth. 

However, values in stdpopsim are always chosen to match published estimates, so that the underlying 

data and methods are documented and can be validated. Because the process of converting informa-

tion reported in the literature to parameters used by a simulation engine is quite error-prone, inde-

pendent validation of the simulation code is crucial. We highly recommend following a quality-control 

procedure similar to the one used in stdpopsim, in which each species or model added to the catalog 

is independently recreated or thoroughly reviewed by a separate researcher.

Obtaining reliable and citable estimates for all model parameters is not a trivial task. Oftentimes, 

values for different parameters must be gleaned from multiple publications and combined. For 

example, it is not uncommon to find an estimate of a mutation rate in one paper, a recombination map 

in a separate paper, and a suitable demographic model in a third paper. Integrating information from 

different publications requires caution, since some of these parameter estimates are entangled in non-

trivial ways. For instance, consider simulating a demographic model estimated in a specific paper that 

assumes a certain mutation rate. Naively using the demographic model, as published, with a new esti-

mate of the mutation rate will lead to levels of genetic diversity that do not fit the genomic data. This 

is addressed in stdpopsim by allowing a demographic model to be simulated using a mutation rate 

that differs from the default rate specified for the species. See, for example, the model implemented 

for Bos taurus, which is described in the next section. This important feature does not necessarily fix all 

potential inconsistencies caused by assumptions made by the demographic inference method (such 

as assumptions about recombination rates). It is therefore recommended, when possible, to take the 

demographic model, mutation rates, and recombination rates from the same study, and to proceed 

carefully when mixing sources. An additional tricky source of inconsistency is coordinate drift between 

subsequent versions of genome assemblies. In stdpopsim, we follow the UCSC Genome Browser and 

use liftOver to convert the coordinates of recombination maps and genome annotations to the coor-

dinates of the current genome assembly (Hinrichs et al., 2006).
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Limitations of simulated genomes
Despite their great utility, simulated genomes cannot fully capture all aspects of genetic variation as 

observed in real data, with some aspects modeled better than others. As mentioned above, this will 

strongly depend on the demographic model used in the simulation. Thus, it is important to consider 

the potential limitations of different demographic models in reflecting observed genetic variation. 

First, a demographic model inferred from analysis of genomic data will likely depend on the samples 

that contributed the analyzed genomes. The inferred demographic model can only reflect the gene-

alogical ancestry of these sampled individuals, and this will typically make up a small portion of the 

complete genealogical ancestry of the species. Thus, demographic models inferred from larger sets 

of samples from diverse ancestry backgrounds may potentially provide a more comprehensive depic-

tion of genetic variation within a species. This is true if sufficiently realistic demographic models can 

be fit—models that account for the structure of populations within a species. That said, the choice of 

samples used for inference will mostly influence recent changes in genetic variation. This is because 

the genealogy of even a single individual consists of numerous ancestors in each generation in the 

deep past, which is the premise of methods that infer ancestral population sizes from a single input 

genome (Li and Durbin, 2011).

The computational method used for inference also affects the way genetic variation is reflected by 

the demographic model, because different methods derive their inference from different features of 

genomic variation. Some methods make use of the site frequency spectrum at unlinked single sites 

(e.g. Gutenkunst et al., 2009; Excoffier et al., 2013; Liu and Fu, 2015), while other methods use 

haplotype structure (e.g. Li and Durbin, 2011; Schiffels and Wang, 2020; Browning and Browning, 

2015). This, in turn, may influence the accuracy of different features in the inferred demography. 

For example, very recent demographic changes, such as recent admixture or bottlenecks, are diffi-

cult to infer from the site frequency spectrum, but are more easily inferred by examining shared 

long haplotypes (as demonstrated by the demographic model inferred for Bos taurus by MacLeod 

et al., 2013; see below). Several studies have compared different approaches to demographic infer-

ence (e.g. Harris and Nielsen, 2013; Beichman et al., 2017), but unfortunately, there is currently no 

succinct handbook that describes the relative strengths and weaknesses of different methods. Thus, 

assessing the potential limitations of a given demographic model currently requires some familiarity 

with the method used for its inference. In addition, all methods assume that the input sequences are 

neutrally evolving. This implies that technical choices, such as the specific genomic segments analyzed 

and various filters, may also influence the inferred model and its ability to model observed genetic 

variation. Thus, it is strongly advised to read the study that inferred the demographic model and 

understand potential limitations that stem from the selection of samples, methods, and filters.

We note that the inclusion of a demographic model in the stdpopsim catalog does not involve 

any judgment as to which aspects of genetic variation it captures. Any model that is a faithful imple-

mentation of a published model inferred from genomic data can be added to the stdpopsim catalog. 

Thus, potential users of stdpopsim should use the implemented models with the appropriate caution, 

keeping in mind the limitations discussed above. We maintain a fairly detailed documentation page 

for the catalog (see Data availability), which contains a brief summary for each demographic model. 

This summary includes a graphical description of the model (such as the one shown for Anopheles 

gambiae in Figure 2B), as well as a description of the data and method used for inference. Therefore, 

the documentation can provide guidance to potential users of stdpopsim in the process of selecting 

an appropriate demographic model for simulation. Finally, we hope that the standardized simula-

tions implemented in stdpopsim will facilitate additional studies that examine the relative strengths 

and limitations of different approaches to demographic inference (and modeling genetic variation in 

general), and this will allow us to generate even more realistic simulations in the future.

Filling in the missing pieces
For many species, it is difficult to obtain estimates of all necessary model parameters. Table 1 provides 

suggestions for ways to deal with missing values of various model parameters. The table also mentions 

possible consequences of the misspecification of each parameter.

In some cases, one may wish to generate simulations for a species with a partial genome build. 

Despite the focus of stdpopsim on species with chromosome-level assemblies (see discussion above), 

simulation is still potentially useful for species with less complete assemblies, with some important 
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considerations to keep in mind. Longer contigs or scaffolds in these builds can be simulated sepa-

rately and independently. This approach allows us to model genetic linkage within each contig, but 

genetic linkage between different contigs that map to the same chromosome will not be captured 

by the simulation. This provides a reasonable approximation for many purposes, at least for genomic 

regions far from the contig edges. For shorter contigs, separate independent simulations will not be 

able to capture patterns of long-range linkage in a reasonably realistic way. Thus, a potentially viable 

option for shorter contigs is to combine them into longer pseudo-chromosomes, trying to mimic the 

species’ expected chromosome lengths. Despite their somewhat artificial construction, these pseudo-

chromosomes have the important benefit of capturing patterns of linkage similar to those observed 

in real genomic chromosomes. If, for example, the main purpose of the simulation is to examine the 

distribution of lengths of shared haplotypes between individuals, or study patterns of background 

selection, then it makes sense to simulate such pseudo-chromosomes. However, genetic correlations 

between different specific contigs lumped together in this way are obviously not accurate. So, if the 

main purpose of the simulation is to examine local patterns of genetic variation in loci of interest, 

then it may be more appropriate to simulate the relevant contigs separately (even if they are short), 

or to randomly sample several mappings of contigs to pseudo-chromosomes. For some purposes, it 

makes sense to simulate a large number of unlinked sites (Gutenkunst et al., 2009; Excoffier et al., 

2013), which can be generated without any sort of genome assembly. However, this approach would 

not have the benefits of chromosome-scale simulations. While some of the same considerations hold 

when simulating unlinked short sequences, a detailed discussion about such simulations goes beyond 

the scope of this paper. Ultimately, the recommended mode of simulation for a species with a partial 

genome assembly depends on the intended use of the simulated genomes.
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Figure 2. The species parameters and demographic model used for Anopheles gambiae in the stdpopsim catalog. (A) The parameters associated with 

the genome build and species, including chromosome lengths, average recombination rates (per base per generation), and average mutation rates (per 

base per generation). (B) A graphical depiction of the demographic model, which consists of a single population whose size changes throughout the 

past 11,260 generations in 67-time intervals (note the log scale). The width at each point depicts the effective population size (‍Ne‍), with the horizontal 

bar at the bottom indicating the scale for ‍Ne = 106
‍. This �gure is adapted from the data on the stdpopsim catalog documentation page (see Data 

availability) and plotted with POPdemog (Zhou et al., 2018). Source code for generating the �gure is given in Figure 2—source code 1.

The online version of this article includes the following source code for �gure 2:

Source code 1. R code for generating the �gure.



 Research advance﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Lauterbur et al. eLife 2023;12:RP84874. DOI: https://​doi.​org/​10.​7554/​eLife.​84874 � 12 of 20

Examples of added species
In this section, we provide examples of two species recently added to the stdpopsim catalog, Anoph-

eles gambiae, and Bos taurus, to demonstrate some of the key considerations of the process. In each 

example, we highlight in bold the model parameters set for each species.

Anopheles gambiae (mosquito)
Anopheles gambiae, the African malaria mosquito, is a non-model organism whose population history 

has direct implications for human health. Several large-scale studies in recent years have provided 

information about the population history of this species on which population genomic simulations 

can be based (e.g. Miles, 2017; Clarkson et  al., 2020). The genome assembly structure used in 

the species model is from the AgamP4 genome assembly (Sharakhova et al., 2007), downloaded 

directly from Ensembl (Howe et al., 2020) using the special utilities provided by stdpopsim.

Estimates of average recombination rates for each of the chromosomes (excluding the mitochon-

drial genome) were taken from a recombination map inferred by Pombi et  al., 2006 which itself 

included information from Zheng et al., 1996; Figure 2A. As direct estimates of mutation rate (e.g. 

via mutation accumulation) do not currently exist for Anopheles gambiae, we used the genome-wide 

average mutation rate of ‍µ = 3.5 × 10−9
‍ mutations per generation per site estimated by Keightley 

et al., 2009 for the fellow Dipteran Drosophila melanogaster, a rate that was used for the analysis 

of A. gambiae data in Miles, 2017. To obtain an estimate for the default effective population size 

(‍Ne‍), we used the formula ‍θ = 4µNe‍, with the above mutation rate (‍µ = 3.5 × 10−9
‍ mutations per base 

per generation) and a mean nucleotide diversity of ‍θ ≈ 0.015‍, as reported by Miles, 2017 for the 

Gabon population. This resulted in an estimate of ‍Ne = 1.07 × 106
‍, which we rounded down to one 

million. These steps were documented in the code for the stdpopsim species model, to facilitate 

validation and future updates. We acknowledge that some of these steps involve somewhat arbi-

trary choices, such as the choice of the Gabon population and rounding down of the final value. 

However, this should not be seen as a considerable source of misspecification, since this value of ‍Ne‍ is 

meant to provide only a rough approximation to historical population sizes and would be overwritten 

by a more detailed demographic model. Miles, 2017 inferred demographic models from Anoph-

eles samples from nine different populations (locations) using the stairway plot method (Liu and Fu, 

2015). We chose to include in stdpopsim the demographic model inferred from the Gabon sample, 

which consists of a single population whose size fluctuated from below 80,000 (an ancient bottleneck 

roughly 10,000 generations ago) to the present-day estimate of over 4 million individuals (Figure 2B). 

To convert the timescale from generations to years, we used an average generation time of 1/11 

years, as in Miles, 2017.

All of these parameters were set in the species entry in the stdpopsim catalog, accompanied by 

the relevant citation information, and the model underwent the standard quality-control process. The 

species entry may be refined in the future by adding more demographic models, updating or refining 

the recombination map, or updating the mutation rate estimates based on ones directly estimated for 

this species. Note that even if the mutation rate is updated sometime in the future, the demographic 

model mentioned above should still be associated with the current mutation rate (‍µ = 3.5 × 10−9
‍ 

mutations per base per generation), since this was the rate used in its inference.

Bos taurus (cattle)
Bos taurus (cattle) was added to the stdpopsim catalog during the 2020 hackathon because of its 

agricultural importance. Agricultural species experience strong selection due to domestication and 

selective breeding, leading to a reduction in effective population size. These processes, as well as 

admixture and introgression, produce patterns of genetic variation that can be very different from 

typical model species (Larson and Burger, 2013). These processes have occurred over a relatively 

short period of time, since the advent of agriculture roughly 10,000 years ago, and they have inten-

sified over the years to improve food production (Gaut et al., 2018; MacLeod et al., 2013). High-

quality genome assemblies are now available for several breeds of cattle (e.g. Rosen et al., 2020; 

Heaton et al., 2021; Talenti et al., 2022) and the use of genomic data has become ubiquitous in 

selective breeding (Meuwissen et al., 2001; MacLeod et al., 2014; Obšteter et al., 2021; Cesarani 

et al., 2022). Modern cattle have extremely low and declining genetic diversity, with estimates of an 

effective population size of around 90 in the early 1980s (MacLeod et al., 2013; VanRaden, 2020; 
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Makanjuola et al., 2020). On the other hand, the ancestral effective population size is estimated to be 

roughly  ‍Ne‍=62,000 (MacLeod et al., 2013). This change in effective population size presents a chal-

lenge for demographic inference, selection scans, genome-wide association, and genomic prediction 

(MacLeod et al., 2013; MacLeod et al., 2014; Hartfield et al., 2022). For these reasons, it was useful 

to develop a detailed simulation model for cattle to be added to the stdpopsim catalog.

We used the most recent genome assembly, ARS-UCD1.2 (Rosen et al., 2020), with a constant 

mutation rate of ‍µ = 1.2 × 10−8
‍ mutations per base per generation for all chromosomes (Harland 

et  al., 2017), and a constant recombination rate of ‍r = 9.26 × 10−9‍ recombinations per base per 

generation for all chromosomes other than the mitochondrial genome (Ma et al., 2015). With respect 

to the effective population size, it is clear that simulating with either the ancestral or current effective 

population size would not generate realistic genome structure and diversity (MacLeod et al., 2013; 

Rosen et al., 2020). Since stdpopsim does not allow for a missing value of ‍Ne‍, we chose to set the 

species default ‍Ne‍ to the ancestral estimate of ‍6.2 × 104‍. However, we strongly caution that simulating 

the cattle genome with any fixed value for ‍Ne‍ will generate unrealistic patterns of genetic variation, 

and recommend using a reasonably detailed demographic model. Note that the default ‍Ne‍ is only 

used in the simulation if a demographic model is not specified. To this end, we implemented the 

demographic model of the Holstein breed, which was inferred by MacLeod et al., 2013 from runs of 

homozygosity in the whole-genome sequence of two iconic bulls. This demographic model specifies 

changes in the ancestral effective population size from  ‍Ne‍=62,000 at around 33,000 generations ago 

to  ‍Ne‍=90 in the 1980s in a series of 13 instantaneous population size changes (taken from Supplemen-

tary Table S1 in MacLeod et al., 2013). To convert the timescale from generations to years, we used 

an average generation time of 5 years (MacLeod et al., 2013). Note that this demographic model 

does not capture the intense selective breeding since the 1980s that has even further reduced the 

effective population size of cattle (MacLeod et al., 2013; VanRaden, 2020; Makanjuola et al., 2020). 

These effects can be modeled with downstream breeding simulations (e.g. Gaynor et al., 2021).

When setting up the parameters of the demographic model, we noticed that the inference by 

MacLeod et  al., 2013 assumed a genome-wide fixed recombination rate of ‍r = 10−8‍ recombina-

tions per base per generation, and a fixed mutation rate of ‍µ = 9.4 × 10−9
‍ mutations per base per 

generation (considering also sequence errors). The more recently updated mutation rate assumed in 

the species model (‍1.2 × 10−8‍ mutations per base per generation, from Harland et al., 2017) is thus 

28% higher than the rate used for inference. As a result, if genomes were simulated under this demo-

graphic model with the species’ default mutation rate they would have considerably higher sequence 

diversity than actually observed in real genomic data. To address this, we specified a mutation rate of 

‍µ = 9.4 × 10−9
‍ in the demographic model, which then overrides the species’ mutation rate when this 

demographic model is applied in simulation. The issue of fitting the rates used in simulation with those 

assumed during inference was discussed during the independent review of this demographic model, 

and it raised an important question about recombination rates. Since MacLeod et al., 2013 use runs 

of homozygosity to infer the demographic model, their results depend on the assumed recombination 

rate. The recombination rate assumed in inference (‍r = 10−8‍ recombinations per base per generation) 

is  8% higher than the one used in the species model (‍r = 9.26 × 10−9‍). In its current version, stdpopsim 

does not allow the specification of a separate recombination rate for each demographic model, so we 

had no simple way to adjust for this. Future versions of stdpopsim will enable such flexibility. Thus, we 

note that genomes simulated under this demographic model as currently implemented in stdpopsim 

might have slightly higher linkage disequilibrium than observed in real cattle genomes. However, 

we anticipate that this would affect patterns less than selection due to domestication and selective 

breeding, which are not yet modeled at all in stdpopsim simulations.

Conclusion
As our ability to sequence genomes continues to advance, the need for population genomic simula-

tions of new model and non-model organisms is becoming acute. So, too, is the concomitant need 

for an expandable framework for implementing such simulations and guidance for how to do so. 

Generating realistic whole-genome simulations presents significant challenges both in coding and in 

choosing parameter values on which to base the simulation. With stdpopsim, we provide a resource 

that is uniquely poised to address these challenges as it provides easy access to state-of-the-art simu-

lation engines and practices, and an easy procedure for including new species. Moreover, we aim 
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for the choices regarding the inclusion of new species to be driven by the needs of the population 

genomics community. In this manuscript we describe the expansion of stdpopsim in two ways: the 

addition of new features to the simulation framework that incorporate new evolutionary processes, 

such as non-crossover recombination, broadening the diversity of species that can be realistically 

modeled; and the considerable expansion of the catalog itself to include more species and demo-

graphic models.

We also formulated a series of guidelines for implementing population genomic simulations, based 

on insights from the community-driven process of expanding the stdpopsim catalog. These guide-

lines specify the basic requirements for generating a useful chromosome-level simulation for a given 

species, as well as the rationale behind these requirements. We also discuss special considerations 

for collecting relevant information from the literature, and what to do if some of that information 

is not available. Because this process is quite error-prone, we encourage wider adoption of ‘code 

review:’ researchers implementing simulations should have their parameter choices and implemen-

tation reviewed by at least one other researcher. The guidelines in this paper can be followed when 

implementing a simulation independently for a single study, or (as we encourage others to do) when 

adding code to stdpopsim, which helps to ensure its robustness and to make it available for future 

research. Currently, large-scale efforts such as the Earth Biogenome and its affiliated project networks 

are generating tens of thousands of genome assemblies. Each of these assemblies would become a 

candidate for inclusion into the stdpopsim catalog, although substantial changes to the structure of 

stdpopsim would be required to include so many distinct species. As annotations of those genome 

assemblies improve over time, this information, too, can easily be added to the stdpopsim catalog.

One of the important objectives of the PopSim consortium is to leverage stdpopsim as a means to 

promote education and the inclusion of new communities into computational biology and software 

development. We are keen to use outreach, such as the workshops and hackathons described here, 

as a way to grow the stdpopsim catalog and library while also democratizing the development of 

population genomic simulations in general. We predict that the increased use of chromosome-scale 

simulations in non-model species will lead to an improvement in inference methods, which tradition-

ally have been quite narrowly focused on well-studied model organisms. Thus, we hope that further 

expansion of stdpopsim will improve the ease and reproducibility of research across a larger number 

of systems, while simultaneously expanding the community of software developers among population 

and evolutionary geneticists.
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